No. 872 - Selecting predictors by using Bayesian model averaging in bridge models

Vai alla versione italiana Site Search

by Lorenzo Bencivelli, Massimiliano Marcellino and Gianluca MorettiJuly 2012

This paper proposes the use of Bayesian model averaging (BMA) as a tool to select the predictors' set for bridge models. BMA is a computationally feasible method that allows us to explore the model space even in the presence of a large set of candidate predictors. We test the performance of BMA in now-casting by means of a recursive experiment for the euro area and the three largest countries. This method allows flexibility in selecting the information set month by month. We find that BMA based bridge models produce smaller forecast error than fixed composition bridges. In an application to the euro area they perform at least as well as medium-scale factor models.

Full text