
New Eurocoin: A Tutorial Note

The following note provides a simple presentation of ideas and methods underlying the 
New Eurocoin indicator. For a detailed treatment see Altissimo, F., Cristadoro, R., Forni, 
M., Lippi, M. and G. Veronese (2010) “New Eurocoin: Tracking Economic Growth in Real 
Time”: see https://www.jstor.org/stable/40985810.

1. Measuring aggregate economic activity in the Euro area.

The most important official indicator of aggregate economic activity is the GDP. Unlike 
IP (Industrial Production), GDP includes Services, Agriculture and the Public Sector. 
Unlike the Surveys, GDP does not contain any subjective judgement. However, unlike 
IP and Surveys, GDP is released only quarterly and with delay. Lastly, IP, Surveys and 
GDP, all contain short-run oscillations, so that, for example, the beginning of a medium-

run upswing cannot be distinguished from an improvement lasting for just two or three 
months.

The Eurocoin indicator combines the positive aspects of GDP, IP and Surveys:

a. It is comprehensive, in that, like GDP, it takes into account Production, Services and 
the Public Sector.

b. It is released monthly and is timely: each month, we produce reliable estimate of the 
state of the economy on a daily basis.

Moreover, Eurocoin is free from short-run fluctuations.

2. The medium- to long-run component of a macroeconomic variable.

2.1 Although there may be disagreement about which macroeconomic series is best suited

to represent economic activity, it is a well established fact that to judge the current

economic outlook and analyse the business cycle behaviour the chosen series must be

firstly detrended. If zt is the selected series, alternative detrending transformations are:
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(i) Taking the residuals of a regression over time:

log zt = a + bt + ut.

(ii) Taking the difference:

log zt − log zt−1 = b + vt.

Whether the first or the second transformation should be used is a long story. It will

be sufficient here to recall that the second has definitely won the race, so that it is by

now common practice to describe macroeconomic time series as non stationary (trending)

series such that their rate of growth (which is approximately the log difference in the

second equation above) is stationary.

Figure 1: An artificial macroeconomic time series
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The artificial series plotted in Figure 1 exhibits some of the typical features of macroe-

conomic time series. It is trending, though with a varying rate of growth. This, i.e.

yt = log zt − log zt−1, is plotted in Figure 2. The series yt is clearly stationary, with an

average of 0.16%. If the data are interpreted as monthly, then the log difference yt is ap-

proximately the monthly rate of change of zt, the figure 0.16% implying an yearly average

rate of change of around 2%.

The plot in Figure 2 provides a good illustration of the idea that every stationary time

series can be thought of as the sum of waves of different periods (this is formalized in the

Spectral Representation Theorem). Long waves, with period between three and five years

(36 to 60 months) are clearly discernible, as well as waves whose period is shorter than 12
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Figure 2: The rate of growth of zt: yt = xt − xt−1
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months. For example, a complete 59-monthts cycle, from peak to peak, occurs between

the months 137 and 195. However, an economist or a policy maker, observing the rate of

growth during that period and trying to decide whether the economy is still slumping or

recovering, would have to change his/her assessment quite often. As a matter of fact, we

see a considerable number of peaks and troughs corresponding to short oscillations. But

neither the economist nor the policy maker is interested in these temporary phenomena.

Our aim in the construction of Eurocoin is the removal of the waves whose period is one

year or shorter from the rate of growth of zt, without distorting the residual medium-

long-run component. To illustrate our construction let us discuss a popular measure of

medium- long-run growth, that is the year-on-year rate of change log zt− log zt−12. Setting

xt = log zt, observe that

1

12
(xt − xt−12) =

1

12
[(xt − xt−1) + (xt−1 − xt−2) + · · · + (xt−11 − xt−12)] (1)

(we divide by 12 to make its size comparable with the month-on-month figure). The

year-on-year change at t and at t− 1 are twelve-terms moving averages with eleven terms

in common, thus it is very smooth as compared to the month-on-month change.

This smoothing effect is shown in Figure 3, in which yt and 1
12

(xt − xt−12) are plotted

together. We see that removal of the short-run oscillations makes it possible to clearly

observe shorter and longer cycles in the series, and the corresponding turning points.

However, the year-on-year change has a serious drawback. As it is apparent in Figure

3, using the year-on-year difference causes a phase distortion, i.e. the peaks and troughs
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Figure 3: Plot of yt = xt − xt−1 (blue line) and 1
12(xt − xt−12) (green line)
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of the waves clearly occur with a delay. The reason can be easily grasped examining

(1): The moving average on the right hand side only contains lags of xt − xt−1. In order

to keep the phase of the transformed series, the moving average should be centered and

symmetric. The moving average

xt+6 − xt−6 =
1

12
[(xt+6 − xt+5) + · · · + (xt − xt−1) + · · · + (xt−5 − xt−6)]

would be almost good but not completely, indeed it has 6 leading, one central and 5

lagging terms, whereas the average 1
2

[

1
12

(xt+6 − xt−6) + 1
12

(xt+5 − xt−7)
]

, that is

wt =
1

24
(xt−6−xt−7)+

1

12
[(xt−5−xt−6)+· · ·+(xt−xt−1)+· · ·+(xt+5−xt+4)]+

1

24
(xt+6−xt+5)

(2)

is both central and symmetric.

The result of using (2) instead of (1) is shown in Figure 4. As compared to Figure 3,

the green line is shifted backward (and is slightly smoother), so that the phase distortion

disappears.

However, if T indicates the end of the sample, the values of xt − xt−1 with t > T are not

observed and must be replaced by forecasts. As new information arrives, that is at times

T +1, T +2, . . . , T +6, the average (2), computed for T (but also for T −1, . . . , T −5),

will have to be revised.

In conclusion, using two-sided moving averages like (2) to smooth out short-period os-

cillations runs into difficulties at the end of the sample, the reason being that some of
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Figure 4: As in Figure 3, with wt instead of 1
12(xt − xt−12)

50 100 150 200 2501
−2

−1

0

1

2

3

4

5

6
x 10

−3

the values that are necessary must be replaced by predictions. This problem is discussed

in detail in the next section. On the other hand, solving this end-of-sample problem is

crucial for the construction of a smooth, timely indicator of economic activity.

2.2 The moving average wt is a fairly good solution to the problem of removing oscillations

of period shorter then one year while keeping the remaining oscillations in phase. However,

as time-series theory shows, the weights used in (2) are not exactly what is needed to avoid

any undesired alterations in the time series. The “correct” moving average is known as

band pass filter. It is infinite and uses weights βj that tend to zero as j tends to infinity.

Denoting by ct the band-passed series,

ct = · · · + βkyt−k + · · · + β0yt + · · · + βkyt+k + · · · (3)

where

βk =







sin(kπ/6)
kπ

for k 6= 0

1/6 for k = 0.

The application of (3) to our artificial series is shown in Figure 5 (red line) together

with yt and wt (blue and green respectively). We see that ct is very smooth. Moreover,

comparison between ct and wt shows that wt removes “too many” frequencies, i.e. that

some of the waves longer than one year are erased or substantially reduced.

However, though being extremely precise as regards the waves to be removed, the band

pass filter is another centered and symmetric moving average (in order to keep the phase),
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Figure 5: Plot of yt (blue line), wt (green line) and ct (red line)
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so that we are left with the same end-of-sample problem we have mentioned in the conclu-

sion of the previous section. Precisely, computing the moving average (3) requires that the

values of yt that are missing, corresponding to t > T and t < 1, be replaced by forecasts

(backcasts for t < 1). The series ct plotted in Figure 5 is based on the most näıve forecast

of the missing values, namely yT+k = y1−k = ȳ, where ȳ denotes the sample average of yt.

It is easily seen that as soon as new information arrives, at T + 1, T + 2, . . ., all the

values of the series ct change. But if we consider, say, T −100, the change is insignificant,

whereas serious revisions may occur at the end of the sample.

As an illustration, consider again the artificial series yt and ct, between 1 and 250. In

Figure 6:

a. The red line represents the band passed series computed using the data up to 250, call

it c
(1)
t (this is the last part of the red line in Figure 5).

b. The black line represents ct computed when T = 235, i.e. with the data between 236

and 250 missing and therefore replaced by the average of yt, call it c
(2)
t .

Note that c
(1)
t is computed using the average of yt for t > 250, thus its values between,

say, 240 and 250 must be taken with care. However for t ≤ 235, c
(1)
t does not change

much as new data arrive, for t > 250, so that c
(1)
t can be considered as a reliable estimate

of ct for t ≤ 235.

We see in Figure 6 that a small difference between c
(2)
t and ct, i.e. between the black

and the red line, emerges after t = 207. However, at the end of the sample the difference

becomes very serious, with the black line signaling a turning point that is definitely “false”,
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as both the red line and the blue line, i.e. yt, clearly show.

In conclusion, for values of t within the sample, say for 12 periods away from T , the

band-passed series, obtained by setting the missing values equal to the average of yt, is

a reliable estimate of ct, with insignificant revisions as new data arrive. On the contrary,

as the above example shows, at the end of the sample the estimate of ct may be seriously

misleading.

Figure 6: yt between 131 and 250 (blue line). ct between t = 131 and t = 250 (red line). ct

computed when only data between t = 1 and t = 235 are available (black line).
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3. New Eurocoin. A sketch of the method.

New Eurocoin is a solution to the problem just outlined, that is obtaining a reliable

estimate of ct at the end of the sample, i.e. a good assessment of the medium- long-run

component of yt in real time.

As described above, to compute ct we have used the average of yt as predictor for out-of-

sample values. Obviously we can do better by resorting to more sophisticated techniques:

(A) Univariate ARMA models. Fitting an ARMA to yt we obtain predictions of yt for

t > T , which improve upon the sample average as soon as yt has non trivial autocorrelation

(this is apparently the case with our simulated series).

(B) Small-size multivariate ARMA models. We can improve upon univariate ARMA

models by modeling yt together with other macroeconomic series.

(C) Large factor models. When a large dataset is available, say hundreds of macroeco-

nomic time series, factor techniques can be applied to improve the prediction. Factors
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are linear combinations of the variables in the dataset. A small number of them can be

used as a very good summary of the relevant information. The following is an elementary

example. Suppose that the variables of the dataset follow the model

xit = aut + but−1 + ξit, (4)

where

i = 1, 2, . . . , n,

ut is a white noise scalar (a process with no autocorrelation),

ξit is also a white noise, the difference with respect to ut being that ut is common to all

variables while ξit is specific to variable i,

ut and ξit are uncorrelated, for all i,

ξit and ξjt are uncorrelated for all i and j; assume for simplicity that the variance of ξit is

independent of i, and call it σ2
ξ .

The “macrovariables” xit are driven by a common component, that is aut + but−1, plus a

specific component, called idiosyncratic in the literature. This extremely stylized model

provides quite a clear idea as to how the factor structure can be employed for forecasting.

Let us now take the average of the x’s:

x̄t =
1

n

n
∑

i=1

xit = aut + but−1 +
1

n

n
∑

i=1

ξit,

and its variance

var(x̄t) = (a2 + b2)σ2
u +

1

n2

n
∑

i=1

σ2
ξ = (a2 + b2)σ2

u +
1

n
σ2

ξ

(this is an elementary calculation, based on the fact that the variance of uncorrelated

variables is the sum of their variances).

Therefore, when n is large x̄t is almost equal to the common component aut + but−1.

Assuming that yt is the first variable in the dataset, that is yt = x1t, we can predict yt

by separately predicting x̄t, which is a moving average of order one, and the idiosyncratic

component ξ1t. This provides a clear advantage over both a univariate ARMA and small

multivariate ARMA models. In both cases, the moving average aut + but−1 gets mixed

with the idiosyncratic components.

(D) The construction of Eurocoin is based on a factor model like that exemplified above

in (4). However, we do not make use of explicit predictions of yt, t > T . Rather,
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Eurocoin is obtained as a projection of the (bandpassed) GDP on factors obtained through

a generalization of the concept of principal components. An illustration of our idea is given

below using, again, a stylized model.

As above, assume that the variables in the dataset are xit and that yt = x1t. Moreover,

let

xit = ut−ki
+ ξit (5)

for i = 2, . . . , n, so leaving aside for the moment yt, and let ki take the values 0, 1

or 2. Thus we have three subgroups, the variables that are leading, those loading ut

(corresponding to ki = 0), the variables that are lagging, those loading ut−2 (ki = 2), and

the central variables, those loading ut−1 (ki = 1).

Lastly, assume that yt is central: yt = ut−1 + ξit. For the sake of simplicity let us use a

truncation of the band-pass filter (3):

κt = β1yt−1 + β0yt + β1yt+1. (6)

We have:

κt = [β1ut−2 + β0ut−1 + β1ut] + [β1ξ1,t−1 + β0ξ1t + β1ξ1,t+1] = Ut + Vt. (7)

Within the sample, for t < T , the moving average κt can be computed using (6). But,

at t = T , (6) is no longer feasible. However, the three terms adding up to Ut can be

recovered using the current values of the variables in the dataset. In particular, ut can be

obtained as an average of current values of the leading variables. If we can assume that

the idiosyncratic component is a fairly small fraction of the GDP, then recovering Ut at

the end of the sample represents a good approximation of κt.

We cannot go into further details of our construction here. The basic idea, illustrated in

the above example, is that variables belonging to the dataset that are leading with respect

to the GDP act as proxies for future values of the GDP, that are necessary to obtain ct

but are missing at the end of the sample. Our method can be summarized as follows:

(I) We construct m linear combinations of current values of the variables xit that auto-

matically select lagging, central and leading variables in order to maximize smoothness.

The number m is determined by a compromise between smoothness and goodness of fit.

Our linear combinations, a generalization of ordinary principal components, are referred

to as smooth factors and denoted by F1t, F2t, . . . , Fmt.

(II) Then we regress ct over the factors:

ct = A1F1t + A2F2t + · · · + AmFmt + Rt (8)
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(the mean has been subtracted from all variables, so that no constant appears in the

regression). The covariances necessary to estimate the coefficients Aj can be computed

using values of ct that are far from the beginning and the end of the sample, where (3)

provides a good estimate.

(III) Lastly, the value of ct at the end of the sample is estimated using (8):

ĉT = A1F1T + A2F2T + · · · + AmFmT . (9)

This is the Eurocoin equation. It provides an estimate of ct at the end of the sample

which is not based on predicted values of yt but on current values of the variables xit, and

is therefore feasible at T .

(IV) Note that, unlike the estimates of ct that are based on predictions of future missing

observations, the performance of

A1F1t + A2F2t + · · · + AmFmt,

as an estimate of ct, does not depend on whether t is far, close or equal to T . However,

the advantage of New Eurocoin with respect to other estimates of ct shows up at T , that

is in real time, whereas for t far from T estimates based on predicted missing values are

clearly superior.

Figure 7: Plot of yt (blue line) and ỹt (green line) for t = 1, . . . , 31

1 31
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

10



4. Empirical implementation of New Eurocoin.

4.1 For the sake of clarity the previous section gives a stylized presentation of New

Eurocoin. In particular, we have assumed that yt is observed monthly. In practice however

the GDP is released only quarterly. As a consequence, obtaining the monthly series ct,

which is on the left hand side of the projection (8), requires some further work.

A convenient way to deal with this problem is to think of the variable zt as aggregating

the GDP flow over the months t, t−1, t−2, with two observations missing every quarter.

Thus, for example, if t is January 1987, then zt is the aggregate over November 1986,

December 1986, January 1987, and is a missing observation, whereas zt−1, corresponding

to December 1986, is the ordinary observed figure for the fourth quarter of 1986.

Moreover, yt is not defined as log zt − log zt−1, which would be never observable, but as

the monthly quarter-on-quarter rate of growth

yt = log zt − log zt−3,

which has, just like yt, two missing observations every quarter. Techniques to obtain

monthly observations for a series like yt range from linear interpolation, which simply

draws the straight segment joining subsequent observed figures, to sophisticated regres-

sions of the series with missing observations over monthly reference indicators (see Chow

and Lin, 1971, see the references in Altissimo et al., 2008).

However, in our case things are simplified by the fact that our focus is not on yt but

on ct. The latter is obtained by removing short-run oscillations from yt, so that the

particular method employed to interpolate values within quarters matters very little. A

simple experiment will illustrate this point.

Start with the artificial series yt, remove two observations for every quarter, so that we are

left with y1, y4, y7, . . ., then replace the missing observations by the linear interpolation

values, call y̌t the resulting monthly series.

Then construct the band-pass filtered series using y̌t in place of yt, call it čt. The ratio

var(ct − čt)/var(ct) is equal to 1.4%, thus using the interpolated series y̌t in place of the

“real” series yt has a negligible effect after band passing.

4.2 As mentioned at the beginning of the present note, a detailed account of the perfor-

mance of New Eurocoin is given in Altissimo et al. (2008). The indicator published in

this website is based on the work done in that paper but improves on it in at least two

ways: (i) the data set on which the indicator published here is based has been upgraded

substituting series that were updated with long delays with more timely, equivalent ones
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and enlarged to comprehend also daily variables (ii) the indicator for a given month t is

now available before the end of that month (and not by the 20th of the following month

as in the paper. Let us summarize here the key features of the dataset employed and

some performance indicators.

(I) The dataset includes about 150 series from Thomson Financial Datastream, referring to

the euro area as well as its major economies, and starts in June 1987. The dataset includes

groups of variables that are, according to current practice in conjunctural analysis, leading,

lagging and coincident with respect to the GDP. In particular, the presence of leading

variables, which contain information about future values of the GDP, is crucial to obtain a

good estimate of ct at the end of the sample. The database is organized into homogeneous

blocks, i.e. industrial Production Indexes (41 series), Prices (24), Money Aggregates (8),

Interest Rates (11), Financial Variables (6), Demand Indicators (14), Surveys (25), Trade

Variables (9) Labour Market Series (7) and daily series (stock markets).

(II) The variables in the dataset are available with different delays. Around the 20-th of

month T , when the indicator for month T is produced, Surveys, daily sereis and Financial

Variables are usually available up to time T , thus with no delay, Car Registrations and

Industrial Orders up to T − 1 and Industrial Production indexes up to T − 2 or T − 3.

This end-of-sample unbalance problem can be solved by forward realignment, that is by

simply shifting forward the variables that are available with delay. As an alternative,

the variables that are not available might be predicted, using ARMA models or the EM

algorithm. We are currently using all these methods and monitoring the results.

(III) Regarding the performance, we show in the paper that the R2 of regression (8)

is 0.79, and that the ratio of correct predictions of the sign of ct − ct−1 by the sign of

ĉt− ĉt−1 is 88%. Moreover, a real-time exercise shows that ĉt does provide a good indicator

of the turning points in ct. Analogous results are obtained with the new dataset and the

estimation at T on T .
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