
  

 

 

 

 

 

 

 

 

 

 

 

 

The “Matrix” Model  
 

 

 

 

Unified model for statistical data  

representation and processing 
 

 

 
 

 

 

 

May 2007 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prepared by : 
� Vincenzo Del Vecchio (Introduction, The Architecture of Models, The Matrix 

Statistical Metamodel: Introduction, Historicity and other common properties, 
all of the” description” sections ) 

� Fabio Di Giovanni (The Matrix Statistical Metamodel and the Administration 
Model: all of the “diagram descriptions: definitions” ); 

� Stefano Pambianco (All of the class diagrams, The External References Model, 
and the Appendix: A short guide to UML notation) 

 
We thank all the colleagues who put their knowledge at our disposal, made 
suggestions and revised the document. 
 
 
 
 
 
 
 
The views expressed are those of the authors and do not involve the responsibility of 
the bank  

 

 

 

 

 

 

 

 

 

 

 
All rights reserved. The text may be reproduced in whole or in part provided the source is stated 
 

 

 



 

 
CONTENTS 

 

CONVENTIONS .............................................................................................................................................................. 4 

THE ARCHITECTURE OF MODELS.......................................................................................................................... 7 

STATISTICAL DATA MODELS ........................................................................................................................................... 7 
OTHER RELATED MODELS ............................................................................................................................................... 9 
THE IMPLEMENTATION MODEL ....................................................................................................................................... 9 

THE MATRIX STATISTICAL METAMODEL......................................................................................................... 11 

INTRODUCTION ............................................................................................................................................................. 11 
OVERVIEW OF THE METAMODEL ................................................................................................................................... 12 
General metamodel description .............................................................................................................................. 12 
General metamodel: class diagram ........................................................................................................................ 16 
Diagram description: definitions ............................................................................................................................ 17 
Historicity and other common properties ............................................................................................................... 19 

STATISTICAL CONCEPTS ............................................................................................................................................... 21 
Introduction............................................................................................................................................................. 21 
Description of the statistical concepts metamodel .................................................................................................. 23 
Statistical concepts metamodel: class diagram....................................................................................................... 24 
Diagram description: definitions ............................................................................................................................ 25 
Description of the hierarchies metamodel .............................................................................................................. 33 
Hierarchies metamodel: class diagram .................................................................................................................. 34 
Diagram description: definitions ............................................................................................................................ 35 
Description of ‘Cross Time M_Element Correlations’ metamodel......................................................................... 40 
Cross time M_Element correlations metamodel: class diagram............................................................................. 42 
Diagram description: definitions ............................................................................................................................ 43 

STATISTICAL DATA....................................................................................................................................................... 44 
Introduction............................................................................................................................................................. 44 
Description of the statistical data  metamodel ........................................................................................................ 47 
Statistical data: class diagram................................................................................................................................ 49 
Diagram description: definitions ............................................................................................................................ 50 
Description of the functions about functions metamodel ........................................................................................ 55 
Functions about functions: class diagram .............................................................................................................. 57 

TRANSFORMATIONS...................................................................................................................................................... 58 
Description of the transformations metamodel ....................................................................................................... 58 
Transformations metamodel: class diagram........................................................................................................... 61 
Diagram description : definitions ........................................................................................................................... 62 

OTHER RELATED MODELS ..................................................................................................................................... 65 

EXTERNAL REFERENCES MODEL ................................................................................................................................... 66 
External references: class diagram......................................................................................................................... 66 
Diagram description: definitions ............................................................................................................................ 66 

ADMINISTRATION MODEL ............................................................................................................................................. 68 
Administration: class diagram................................................................................................................................ 68 
Diagram description: definitions ............................................................................................................................ 68 

A SHORT GUIDE TO UML NOTATION................................................................................................................... 70 

INTRODUCTION ............................................................................................................................................................. 70 
CLASSES AND THEIR ATTRIBUTES................................................................................................................................. 70 
Inheritance .............................................................................................................................................................. 71 

ASSOCIATIONS.............................................................................................................................................................. 71 
Simple association................................................................................................................................................... 72 
Aggregation............................................................................................................................................................. 73 

REFERENCES ............................................................................................................................................................... 75 



  

4 

Conventions 
 

In plain text the following conventions are used: 

� References (Bibliography can be found at the end of the document) are shown using square 

brackets [item_number] 
� Examples are shown in italic font and highlighted using a box surrounding the text 
� MOF or UML classes:  ClassName is shown in Courier font; 
� MOF or UML  attribute: AttributeName is shown in Courier font; 
� MOF or UML association: /AssociationName is shown in Courier and prefixed by a 

“/”; 
� MOF or UML Instances:  Instances of a Class are represented with the same ClassName 

and shown in Italic font; 
� The names of the model entities are marked with an initial “M_” (for Matricial) to 

distinguish them from the similar terms used in the common mathematical language (e.g. 

M_Element, M_Variable, M_Set, …). 

 

About the conventions adopted in the MOF and UML diagrams, see the guide on UML notation in 

the appendix.



5 

Introduction 

 

Statistical data are of great importance for the institutional functions of the Bank of Italy (see 

[3]). The activity of collecting, processing and disseminating statistics is extensive and complex 

([1],[2]). For this reason, the Bank has drawn up a managerial, technological and methodological 

strategy (see [10]). 

On a methodological plane, the topic of the representation of statistical data is crucial for the 

whole statistical activity. Many decades of experience in the field showed that a strong model is a 

key factor for the success of a statistical information system (SIS). In fact it makes it possible to 

achieve a powerful automation of the processing system, short time, low cost and reliability in 

designing and processing statistical information, high adaptability to the evolution of the 

information requirements, major support to harmonization, information documentation and usability 

and so on.  

The Bank of Italy (BI) statistical information system is based on two main conceptualizations, 

the first one describing the general architecture of a SIS (conceived as a hierarchy of models),
1
 the 

second one being the generic model devoted to defining the statistical data and the operations to be 

performed on them: the so called Matrix Model
 2
. 

The general architecture of a SIS, summarized in the first part of this document and built 

following the trends of research and international organizations (see standards such as ISO and 

OMG), meets many goals at once, offering a synthetic and high-level vision of the SIS and 

connecting the different perspectives in which it is usually seen. In fact it makes it possible: 

• to give a formal structure to the SIS and decompose it in parts; 

• to obtain a self-consistent SIS, i.e. containing not only information but also its definition;
3
  

• to make “active” the processing system of the SIS (i.e. software driven by the definitions of the 

data and the operations on them);  

• to harmonize and standardize the terms, definitions and data of the SIS; 

• to distinguish roles, fix competencies and assign them. 

 

The Matrix Model emerged during a slow evolution over several decades. It is used for most of the 

BI statistical surveys and is a fundamental component of the architecture of the SIS of the BI. The 

principles on which it is based are widely treated in [4].  

 

It is obvious that the Matrix Model is addressed to the administrators and final users of the SIS, and 

not to EDP specialist. In fact it is built making use of the basic notions of mathematics, set theory, 

probability theory and descriptive statistics methodology. Hence, its components and terminology 

are derived from those disciplines, are well known to statisticians and are based on a robust, simple 

and well proven theorization.  

 

                                                 

1 See [6], [8] 

2 The name “Matrix” was coined to mean “having the form of a matrix”, owing to the graphic representation used to 

define the data structure, which is a matrix of rows and columns. 

3 See the notion of  “infological completeness” [Sundgren]; 



6 

The Matrix Model, together with a proper design of the processing system, allows the 

administrators and final users to become largely independent of EDP specialist intervention in 

managing and using the SIS. In fact the Model is built to be “active”, i.e. able to drive the behaviour 

of the data processing software. Definitions directly given by users are intended to be interpreted 

and executed by the processing system. In this way, any change in the definitions leads to a 

corresponding change in data processing.  

As a consequence, the system is self-documented, because the definitions that drive the system also 

document data and the operations performed.  

Among the more important features of the Matrix Model, often not supported by commercial EDP 

products such as data base management systems and data warehouses, we can quote: 

 

• historicity (the model can represent the historical changes of data and operations on them); 

• the separate representations of abstractions (pure definitions) and data (measures), based on the 

basic notions of set theory and mathematics (element, set, variable, function), that makes it 

possible to manage the trade-off between the independence of different surveys and their 

coherence and harmonisation; 

• the powerful and not redundant representation of hierarchical structures such as classifications 
and other hierarchies, based on the probability theory notion of “space of events”; 

• the powerful support for the definition of the data processing algorithms (transformations); 

• the declarative language based on the methodology. 

 

The model has been also presented in the Metanet project, although at the time a formalized 

description of it did not existed (see [5],[6]). Many other contributions derived from the Matrix 

Model have been made to international projects and works.  

The “unified statistical dictionary” of the Bank of Italy, built for the representation of 

statistical concepts, data and transformations, is also based on the same model.  

This document therefore fills a serious documentary gap for this topic and provides a first 

formal representation of the Matrix Model.  

 



7 

The architecture of models 
 
 

Statistical data models 
 

The principles underlying statistical data modelling in the Bank of Italy are described in [6]. Parts 

of that document are also repeated here. The statistical information system is described by different 

levels (layers) of modeling in a hierarchy in which the model of one level is described in terms of a 

hierarchically higher model and also describes one or more hierarchically lower models (see Figure 

1). 

In brief, starting from the reality that has to be described (call it the “zero” level), in the first level 

we have the data extensions, which are models of parts of the reality, followed, in the second level, 

by the data definitions, which are models of the data. The third level contains the methods to 

produce the data definitions, which are models of models of data (metamodels). Finally, the fourth 

level contains the methods that produce other methods, which are models of the metamodels (meta-

metamodels).4 

 

L4 Methods that define methods (meta-metamodels) 

L3 Methods for the making of definitions (meta-models) 

L2 Definitions (models of data) 

L1 Extensions (data) 

L0 Reality 

     =describes 

 
Figure 1. The Hierarchy of Levels  

 

The specificity of the statistical field is located at the third level. A statistical third-level model is 

in fact considered the formal representation of a methodology for the statistical description of the 

reality (that is, a descriptive statistic methodology). A third-level model contains structures able to 

give a concrete and possibly formal shape to statistical methodological rules. The existence of a 

“statistical” third level is a consequence of the recognition of the specificity of the statistical 

methodology with respect to others, such as the EDP ones used for the implementation.5 

 

A second-level model can be considered the definition of a specific statistical information segment,6 

that is, the definition of data and operations on them for a specific subject. Therefore, second-level 

models are specific subject-matter models produced using a certain statistical methodology (that is, 

                                                 
4 Sometimes, in the EDP literature, “models” are called “schemas” and consequently  “metamodels” are called 

“models” and “meta-metamodels” are called “meta-models”. In this work, however, the term “schema” of a certain 

model (of a certain level) is used to indicate a lower level model produced using that model (e.g. a Matrix schema is a 

second level model produced using the Matrix model, that is a third level model). 

5 This consideration about the “statistical” hierarchy of models leaves temporarily aside the matter of the 

implementation  of the information system, which will be discussed later with regard to EDP environments. 

6 The term is introduced to indicate a self-consistent part of a statistical information system, with an autonomous 

existence and evolution, such as a survey, a stove pipe, a processing line, etc. 



8 

a third-level model). The set of second-level models for a specific SIS (statistical information 

systems) is also named the “statistical dictionary” of the SIS. As in the general case, at the first level 

we find extensions of statistical data and at the zero level the reality to be described.  

 

Note that the notion of “data model” (data that are the definition of other data) rather than 

“metadata” (data that describe other data in some way) is used because the former is more specific. 

For example, a “quality datum”, a datum measuring or reporting the quality of another datum, can 

be considered a “metadatum” yet it is not the “model” of the original datum.
7
 

 

The ideal situation would be to have only a single third-level methodology, able to model any other 

kind of statistical segment. In fact harmonization between models in a certain level (the second 

level in this case) happens to be much simpler if they are defined by means of the same higher level 

model, that is using the same modeling method. In practice the existence of many competing 

modeling methodologies cannot always be avoided. The effort to achieve a single statistical third 

level model drove the Bank of Italy to the construction of a “unified” statistical third level model 

(the Matrix metamodel, commonly referred to as the “Matrix model” for the sake of simplicity). 

 

The aim of this document is to describe the Matrix statistical metamodel. To do so, a fourth-level 

model should be used, according to the general schema. Structures suitable to belong to fourth-level 

models are not specific to statistics, they are more general and can also be used in other fields (such 

as operational systems). That is to say that a fourth-level model contains structures able to define 

any kind of methodology and is possibly shared by all of them
8
.  

 

As in the third-level case, the ideal situation would be to have only a single fourth-level model, able 

to model any other kind of third-level methodology. In this document, the Meta Object Facility 

(MOF) model is used as the meta-metamodel, because it is the standard fourth-level model 

according to the Object Management Group (OMG).9 The MOF model contains a subset of the 

construct used in UML, so MOF schema can be drawn using the notation used in UML.
10
 MOF 

schema with UML notation are therefore used here to describe the Matrix metamodel. The 

Hierarchy of models used in this document for statistics modelling is displayed in Figure 2. 
 

L4 Methodologies that define methodologies: MOF model 

L3 Descriptive statistic methodology: MATRIX Metamodel 

L2 Statistical information segment definitions: DICTIONARIES 

L1 Statistical information segment extensions: Stat.DATA Extensions 

L0 Reality 

= describes 

 

Figure 2. The Hierarchy of Levels of Models in Statistics 

                                                 
7 In the four-level model approach, both the original datum and the quality datum are considered level 1 data and 

have their definition in a level 2 model. So a level 1 model also contains metadata. The relationship between a datum 

and its “non-definition metadata” takes place within the same level, not between different ones.    

8 An important feature of a fourth-level model is its self-describing property, that is, the ability of its structures to 

describe themselves and, therefore, to make levels higher than fourth superfluous. 

9 An international organization supported by over 800 members: the major information system vendors, developers 

and users. OMG was founded in 1989 and promotes the theory and practice of object oriented technology in software 

development [12] [13].  

10 See OMG Meta Object Facility specification, March 2000. 



9 

 
Other related models  
 

Besides the models for statistical data representation and processing, some models on related topics 

are also treated in this document.  

 

The first one concerns references to external data. To better specify and document statistics, it is 

often necessary to enrich the models in the statistical hierarchy with references to other data, 

sometimes not structured or structured differently than statistical ones, such as comments, notes, 

text documents, etc.  

 

The second one defines the administration system of the statistical hierarchy models. As said in  

[8], the multi-level hierarchy of models provides a method to distinguish the competencies between 

different units, establishing a high-level link between the statistical information system structure 

and the organisation involved in running and using it, in term of roles and competencies. 

 

References and administration rules are designed to be linked, if necessary, to every model and at 

every level of the statistical hierarchy. Furthermore, they are not considered specific to the 

statistical methodology. For these reasons, both references and administration rules are represented 

following a hierarchy used in the EDP field rather than the statistical one described before. The 

MOF is used as the unique common fourth-level model. According to OMG standards, UML is 

used as the third-level model. Models of the references and of the administration rules are placed at 

the second level. Individual references and administration rules are at the first level. See Figure 3. 

  

 
 

L4 Meta-metamodel: MOF  

L3 Metamodel: UML 

L2 Models: References model ; Administration System model 

L1 Data:      References ;                  Administration Rules 

L0 Reality 

= describes 
 

Figure 3. Hierarchy of Models for “references to external data” and “administration system” 
 

 

 

So, level 2 models of “references to external data” and of the “administration system” are described 

in this document using UML. 

 

 

The implementation model 
 

One of the main goals of the architecture presented here for data representation and processing is 

the automation of the operative activities necessary to manage and use statistical data (see [10]). 

Going back to [8], we see that a model on a certain level can be used to process models in the lower 

level, acting as a specification. If this behaviour is enforced in practice, for example by means of 



10 

software artefacts, the system is called “active”. In this case, the software artefacts must be 

generalized [9] and able to read the upper level model and apply it as a specification to perform 

consistent processing on lower level models [10]. 

 

We are used to seeing lower level models take shape in diagrams drawn in the higher level model 

language. In this document, for example, models are presented using MOF or UML. But diagrams, 

although very clear for humans, cannot be directly read by software artefacts. However, the model 

of each level can be represented as data and in this shape can be easily read by suitable software. 

Data can be also used by humans, directly or by means of automatically generated diagrams. For 

this reason, the master of a generic model to be is considered its implementation as data in an EDP 

environment, and the other forms are derived from it. 

 

Because there are no tools to implement a model of the statistical hierarchy directly in an EDP 

environment, an EDP hierarchy has to be used for the implementation. 

 

For example, using an XML instance to store data, the XML metamodel must be used as the third-

level model, producing XML Schemas in the second level and XML instances in the first. In the 

same way, when data are stored in a relational data base, the relational metamodel and relational 

models must be used respectively in the third and second level.  

 

Therefore, choosing a generic model of the statistical hierarchy, its structure has to be described in 

the second level of the EDP hierarchy (e.g. XML schemas or relational structures) and its content in 

the first level (XML instances or relational rows), independently of the level of the model in the 

statistical hierarchy.  

 

The need arises to map the structures of the “statistical” model with respect to the EDP structures 

used to implement it (bearing in mind that many alternative implementations of the same statistical 

model can be realized).  

This mapping itself could be represented according to a set of rules that could be seen as the 

“mapping representation” or “implementation” model. 

 

Because in the Bank of Italy the “statistical” definitions are stored in a relational data base, an 

implementation model is used to map the models of the statistical hierarchy with the relational 

model (the implementation model is not presented in this document).
11
 

 
 

 

 

 

 

  

                                                 
11 The implementation model itself is implemented as data. In this way the statistical processing software can be written 

according to the “statistical” model and made independent of the implementation choices. 

 



11 

The Matrix statistical metamodel  
 

 

Introduction 
 

The “Matrix” metamodel serves to support statistical data representation and processing. In fact, as 

well as representing the data, its major purpose is to permit their active processing, by designing a 

metadata system able to drive software artefacts by means of the definition of the data and the 

operations to be performed on them.
12
 

Another important purpose of the metamodel is to allow the statistics definers
13
 to give their 

definitions autonomously, possibly without the intervention of EDP people. This is feasible because 

the metamodel is the expression of a statistical methodology for describing statistical data and 

specifying operations on them and is based on concepts and language derived from mathematics 

and probability theory, rather than based on EDP.
14
 Even if a more exhaustive description of the 

principles applied in building the representation can be found in [4], some notions are recalled 

below to improve the document’s comprehensibility. 

With regard to the Bank of Italy’s EDP architecture for statistical processing, which consists of 

many function-specific processing packages ([11], [5]), the version of the Matrix statistical 

metamodel presented here is intended to embrace methodological constructs of general interest: it 

can be thought of as the “common” model. Like satellites, other “function-specific” models are 

related to the common model and complete the architecture, although they are not described here. 

 

Symbols and diagrams are the same as in UML because the core structures of MOF and UML are 

the same. However, some UML indications are missing because the model presented here is not 

intended to give all of the information needed for an EDP implementation. A description of the 

UML conventions used in this document can be found in the appendix. On the other hand, the fact 

that the metamodel is historic is not rendered in UML notation: this is to say that the classes and the 

associations of the metamodel are in general dependent on time (the topic is treated in the 

“Historicity and other common properties” section). The identification attributes of the classes are 

not shown in the diagrams and descriptions either (see the appendix or the “Historicity and other 

common properties” section). The names of the items and structures of the model are preceded by 

an M_ (to mean “of the Matrix statistical metamodel”) to distinguish them from terms used in the 

common language, according to principles set out in [6], [8] on terminology.  

 

Firstly a synthetic and general overview of the metamodel is given, then, splitting the metamodel in 

parts, the analysis goes into more detail. Hence, most of the classes represented in the overall 

diagram are discussed in much more detail in the sections dedicated to the single parts of the model, 

where other more specific classes and associations are also introduced. 

 

                                                 
12 Software artefacts are “active” if they are driven by the upper level model of the model they have to process (see 

[6], [8]); an “active” system also helps to enforce “infological” completeness” [6], [8], [14], because a model cannot 

exist (because it cannot be produced) if the upper level model that defines it does not exist. 

13 According to the roles defined in [6] and [8], statistics definers are administrators who apply a statistical 

methodology (third-level model) to produce the definition of one or more statistical segments (second-level models).  

14 The metamodel is expressed at a “business” level rather than at a “technical” level, since in this case the statistics 

are the “business”. 



12 

 

Overview of the metamodel 
 

General metamodel description 

 

The Matrix statistical metamodel can be divided into three sections, representing respectively: 

 

• Statistical concepts, i.e. abstractions of interest for statistical purposes (see also [4]);  

• Statistical data;  

• Transformations, i.e. computations aimed to calculate data using as operands other data 

available in the system. 

 

The aim of the “concepts” section of the metamodel is to allow a representation of abstractions 

independent of “data”, defining abstractions autonomously and then referring to them within data 

definitions. In this way abstractions (and relations between them) can be defined once and shared by 

different data, making it possible to enforce coherence and harmonize statistical data that describe 

the same aspect of the real world.
15
 

 

Many abstractions have to be used for a full description of statistical data. They are necessary to 

identify statistical units (e.g. people, firms, banks, bank operations, …), to define the groups of 

statistical units which data refer to, i.e. the key of the data (e.g. by age, gender, economic activity, 

place of residence, branch, country, …), and to specify the measures (e.g. income, earnings, …). 

For each of these categories it may also be necessary to specify additional meanings (country of 

birth, country of residence, …) and to list possible elements, that is single people, banks, gender, 

ages, countries … or groups of them.  

 

The abstractions, called M_Concepts, are of three main types: M_Elements, M_Sets, and 
M_Variables.16 
 

M_Element is the Matrix metamodel entity used to represent the single elements of the categories 

of statistical interest (e.g. a single country, economic activity, time value, …).  

 

M_Set is used to define sets of M_Elements (e.g. lists of countries, economic activities, time 

values). 

 

M_Variable is used to give an additional meaning to the generic M_Element belonging to an 
M_Set, named “definition set” of the variable (e.g. country of birth, country of work, country of 

residence, …) 

 

The subclasses are linked by some basic integrity relationships.
17
 

                                                 
15 Sharing M_Concepts can also help to reduce the definition work of data and concept definers. 
16 As explained in [4], each type of M_Concepts derives from the corresponding algebraic notions (variable, set and 

element of a set), but M_Variables, M_Sets and M_Elements are generally “historical”, i.e. their existence and 
properties are likely to be time dependent; in this case, considered at a specific moment, they correspond to their 

equivalent “algebraic” object (for example, an algebraic set), whereas over time they can be considered as a collection 

of algebraic objects, each referring to a specific moment (see also the historicity section). 

17 Note that in the general case, due to the historicity of M_Concepts, the multiplicities of relations is referred to  a 

single instant of time (considering the whole “time” axis, the multiplicity would always be “many” to “many”) 



13 

• An M_Set may “contain” many M_Elements, an M_Element may belong to many 

M_Sets: the association between M_Set and M_Element represents the M_Set definition in 
terms of M_Elements (an M_Set is composed of M_Elements, from 0 to N); 

• An M_Variable “is defined in” one and only one M_Set, many M_Variables can be 
defined in the same M_Set: the association between M_Variable and M_Set means that a 

variable has a definition set in which it takes values (one and only one); the values are the 

M_Elements belonging to the M_Set. 
 

The second section of the metamodel concerns statistical data definitions. A statistical datum is 

considered to be the law which associates each pair consisting of a group of statistical units and a 

manifestation of time with the measure of one or more properties of the pair, as described in [4]. A 

single association is called an “observation”. Therefore, a statistical datum is thought of as a 

mathematical function (statistical function), so the entity used to define data is called 

M_Function. 
 

A statistical function has a domain made up of some M_Variables (the ones that identify groups 
of statistical units and time) assuming values in some M_Sets, and a co-domain also made of some 

M_Variables (the measures) assuming values in some other M_Sets. Both domain and co-

domain are in general multi-dimensional. Therefore, many M_Concepts are generally needed to 
define an M_Function. The same M_Concept can be used to define many M_Functions. 
 

The variables that define the M_Function domain, also called “independent”, can be divided into 

two categories: grouping or time variables. The former is used to specify the groups of statistical 

units,
18
 the latter to specify the time values.

19 
In the general case, the domain can include many 

groups and many time values (a matrix of groups and times). Important function subtypes are the 

historical series, which have a domain made up of one group and many time values,
20
 and the cross-

sections, which have a domain made up of many groups and one time value.  

 

Although at a conceptual level the difference between time and grouping variables can be 

significant, there are no structural differences in the representation and therefore such a distinction 

is not emphasized in the metamodel. Simply, time variables are the variables that have a definition 

set of time values. Likewise, the distinction between cross-sectional data, time series data and 

matrices of groups and time periods is left to the definition of the domain of the function. 

Furthermore, although the time is often emphasized in the exposition due to the significance of the 

topic, data that are not dependent on time are also admitted and no variable is considered strictly 

mandatory.
21
. 

 

The variables of the M_Function co-domain, also called “dependent”, represent the kind of 

information we want to know about groups of statistical units and time (measures) and can be 

quantitative or qualitative.
22
 There can be dependent variables, called “attributes”, used, when 

needed, to describe properties of the observations. 

                                                 
18 A group can also consist of a single object, so that so called microdata [14] and analytical data [4] can also be 

represented. 

19 A time value can correspond to a time period or to an instant (which is considered as a particular case of a period). 

20 GESMES/CB (CB is for Central Banks) also uses a multidimensional Key-family to define a homogeneous 

historical series family (i.e. an array). 

21 Data not dependent on time are also admitted. 

22 A variable is considered “quantitative” when it makes sense to perform mathematical operations in its definition set 

and “qualitative” if not. 



14 

 

The extensional form of a function (which is located at the first level of the four-level hierarchy) 

links each domain element to one co-domain element. According to the general rule, the extensional 

form cannot exist if the function definition does not exist (i.e. the second-level model that defines 

the first level and that complies with its third-level model, i.e. this metamodel).  

 

As said before, the “transformations” section of the metamodel is used to define computations.  

 

In this case as well, to ensure the system’s consistency, it should be possible to execute only defined 

computations. Note that this constraint is satisfied when the software that executes computations is 

active, i.e. driven by the definition of the transformations. 

 

The main goal of transformations is to define how to calculate new statistical data starting from 

existing ones. Nevertheless, the definition of “transformation” is more general: it is considered a 

computation that can have many operands and one result, all of which are called “transformation 

members” and they can be statistical data or statistical concepts. The main entity for defining 

transformations is the M_Transformation. 
 

An M_Transformation can be viewed either from an external point of view (i.e. as a black box, 

considering its external relationships with the other Matrix metamodel entities) or from an internal 

one (i.e. as a white box, taking into consideration its internal structure).  

 

Externally a transformation defines a link between the operands and the result. In addition, because 

the result of a transformation can be the operand of another one, the transformations definitions 

trace the calculus sequences of the statistical information system (see Figure 4). 

 

 
 

Figure 4: Graphic example of calculus sequences (Tx=M_Transformation n.x; Fy=M_Function n. y) 
 

 

Internally (i.e. inside any single Tx box in the diagram above), transformations use “operators” to 

define the algorithms to be performed. The metamodel does not set the “grammar” of the operators: 

F1 

F3 

F7 

F5 

T3 F8 

T1 F4 

T2 F9 

F10 T4 F11 

T7 F15 

T5 
F12 

T10 F21 

F20 

F16 

T9 F18 T8 F17 

T6 F14 

F13 F6 

F2 



15 

they can be freely defined and refer, at a less conceptual level, to software routines able to perform 

them.
23
 

 

Like concepts and data, transformations are also typically defined autonomously by the statistics 

definers
24
 using existing operators (EDP work is needed only to develop the necessary routines 

when new operators have to be introduced). 

  

The metamodel consisting of concepts, data and transformations con be thought of as an onion with 

three layers, in which any layer refers to the more internal ones (Figure 5): 

 

• M_Concepts are in the internal layer, because they can be defined autonomously and 

independently of M_Functions and M_Transformations (however M_Concepts 
definitions are useful not “per se” but in defining M_Functions and 

M_Transformations);  
• M_Functions are in the middle layer because they need M_Concepts to be defined; 

representing the data definitions of the information system, they can be considered the main 

point of the metamodel;  

• M_Transformations are in the external layer; they are defined using M_Function and 
M_Concepts and specify the computation algorithms of calculated data. 

 

 

 

 

 

 

 

 

 
Figure 5: The three parts of the Matrix statistical metamodel 

 
 

 

                                                 
23 Since the system is “active”, each operator must have a routine able to perform it (in a sense the code of the 

software routine can also be considered the “extensional” form of the operator, i.e. its first level model) 

24 According to [6] and [8], they are the administrators who use a third-level model to produce second level ones. 

M_Functions M_Transformations M_Concepts 
 



16 

General metamodel: class diagram 

 

 

 

 

 

 

M_Function

M_Concept

M_VariableM_SetM_Element

M_TransformationMember

M_Transformation

+ /IsDefinedUsing

*

*

+ /RefersTo

0..1

*

+ /HasAsResult

1

1

+ /RefersTo

*

0..1

�

⊳

����

+ /HasAsOperand

1..*

1

�

⊳

+ /Contains

1..**

+ /HasDefSet

*1

⊳ ⊳
 

 
Diagram 1: General metamodel  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



17 

Diagram description: definitions 

 

M_Function  
 

Statistical data definition conceived of as mathematical function. An M_Function is defined 
using M_Concepts. An M_Function is defined using any number of M_Concepts and an 
M_Concept can participate in the definition of any number of M_Functions 
(/IsDefinedUsing association).  
 

 
M_Concept  
 

Abstraction of interest for statistical purposes. An M_Concept can be referred to many times in 

the definition of other concepts, data and transformations. M_Concepts are of three types: 
M_Variables, M_Elements, M_Sets. 
 

 
M_Element  
 

Single element of a category of the reality. For example, for the category of “countries”, 

M_Elements can be “Belgium”, “Denmark”, “France”, “Germany”, “Ireland”, “Italy”, 

“Luxembourg”, “Nederland”, and so on. 

 

 
M_Set  
 

Set of M_Elements. Examples of M_Sets for the category of “countries” are: 
“the European countries”, “the EC countries”, “the Euro countries”, “the Benelux countries” and so 

on. An M_Set contains any number of M_Elements (/Contains association). An 

M_Element can belong to any number of M_Sets.25 
 

 
M_Variable  
 

Generic unknown M_Element of an M_Set connected to a more specific meaning. Examples of 

variables for the category of countries are: “country of birth”, “country of work”, “country of 

residence”, and so on. An M_Variable is defined in an M_Set (/HasDefSet association), that 
is the M_Set in which it can take values (the values are the M_Elements belonging to such an 
M_Set).  
 

 
M_Transformation  
 

Definition of a computation of an M_Function or an M_Concept from other M_Functions 
or M_Concepts. An M_Transformation has a result (/HasAsResult association) and can 
have any number of operands (/HasAsOperand association) 

                                                 
25 But at least one 



18 

 

 
M_TransformationMember  
 

Class representing the operands and the results of the M_Transformations. An 

M_TransformationMember can refer to an M_Function or an M_Concept 
(/RefersTo associations). The same M_Function or M_Concept can be referred to by any 
number of M_TransformationMembers. 
 

 

Integrity constraints: 

 

- The /RefersTo associations between M_TransformationMember and 

M_Function and between M_TransformationMember and M_Concepts are 

mutually exclusive (an M_TransformationMember refers to either an M_Function 
or an M_Concept, never both, never none). 



19 

Historicity and other common properties 

  

The Matrix metamodel allows historical definitions, i.e. one of its features is to represent the history 

of concepts, functions and transformations considering them in a temporal perspective. 

 

Firstly, the instances of the classes of the Matrix metamodel (M_Instances) have a life, i.e. a set 
of time instants in which they are regarded as “existing” and thus being valid instances. 

 

Example 1:  
The M_Elements “ West Germany” and “East Germany” existed until 1989, the M_Element “Euro” has existed 
since 1999, the M_Element “Italian lira” existed until 2001, the M_Function “Number of inhabitants of 
European countries” exists from … to …  
 

Secondly, for M_Instances, attributes and references to other M_Instances resulting from 

associations also have a time validity and can change over time. 

 

Example 2:  
Tthe M_Element “country of Greece” has belonged to the M_Set of the euro countries since 2002, the 
M_Element “country of …” has belonged to the M_Set of the European Community since …., the M_Set of 
European countries contains West Germany and East Germany until 1989, the M_Function “Number of inhabitants 
of European countries” has the M_Domain called “domain A” since … 

 

To represent the historicity, a historical qualifier is attached to all of the classes of the Matrix 

metamodel (M_Classes): it specifies the “period”, with regard to a conventional time called 

“reference time”, in which the generic M_Instance exists and has constant attributes and 

references to other M_Instances. 
 

Therefore, a generic M_Instance can have many data occurrences, each one corresponding to a 

single period of existence of the M_Instance. The periods of validity of the various occurrences 
of an M_Instance must not overlap one another. The whole life of an M_Instance 
corresponds to the “union” of the periods of validity of its occurrences. 

 

In this context, due to the variability of the references in connection with time, the multiplicity of 

associations would always be “many” to “many”. To avoid such a loss of descriptive power, in this 

document the multiplicity of the associations is described with reference to the single, generic time 

instant.  

  

Attributes and associations that cannot change with time are specified within the integrity 

constraints as “invariable with time”. 

 

The historicity of the definitions allows the active software to use different algorithms to process 

data relevant to different reference times. 

 

Another kind of historicity, treated in a different way, is related to “the information system time”, 

i.e. the time period in which a certain definition is present in the meta-information system and can 

produce effects in the processing. This kind of historicity is automatically applied to all the 

definitions inserted, cancelled or modified in the system, logging them with the “system date and 

time”, so that it is possible to know, at every instant, present or past, the definitions that are or were 



20 

effective and active for processing.
26
 However, since this kind of historicity concerns the processing 

model more than the statistical one, it is not explicitly treated here.  

 

Besides the historical qualifier, also other attributes are common to all the M_Classes and to 
their references to other M_Classes resulting from associations. The common attributes are the 

following: 

 

- Historical qualifier [mandatory]: the period of validity in which M_Instance 
exists and has constant attributes and references to other M_Instances; the period is 
specified by the attributes: “start date” and “end date”;

27
 

- Administration Model reference [mandatory]: set of attributes providing the link 

between the M_Instance (or of a period of validity of an M_Instance) and the 
maintenance organization, specifying roles and competences for the administration; the topic 

will be discussed in the “External References and Administration Models” section; 

- External Information reference [optional]: set of attributes providing the link 
between the M_Instance (or of a period of validity of an M_Instance) and other relevant 
information whatever structured, like text (e.g. comments, notes, documents) or other data 

differently structured than the Matrix metamodel. 

 

In the diagrams and descriptions of this document, such attributes are not reported within the 

M_Classes, since it is assumed that they are inherited. 

 

Still about the general properties, every class of the metamodel has an identifier, that is a set of 

attributes whose values uniquely identify an instance of the class. The identifiers are not shown in 

the diagrams and descriptions of this document although they are taken to exist for every class, to 

be mandatory and to be named by adding “Id” to the name of the class (e.g. M_SetId, 
M_FunctionId, …). 

 

Another property, common to most of the metamodel classes, is the “Description”, which provides 

the meaning of the instance in natural language (multilingual when needed). The presence of the 

Description property is pointed out for each metamodel class. 

                                                 
26 This logging also records the user who makes the change and is used as an audit trail.  

27 For instances that don’t depend on time, the start and the end dates are set equal to the first and last instant of the 

reference time conventionally represented in the system. 



21 

Statistical Concepts 

Introduction   

 

The metamodel for representing the statistical concepts is built around the idea that the abstractions 

used to describe the properties of a statistical population can be defined using the conceptual 

instruments of probability theory, especially the notions of event and space of events. In the present 

work, obviously, there is no interest in discussing the measure of probability, but rather in using the 

formal representation of the events given in the theory.  

 
 

A chance phenomenon (or experiment, or random trial) can be defined as a process that, once executed, produces a 
specific result from a predefined set of possible results called space of results or also sample space (note that if the 
result is not one of the predefined set, the experiment is considered as not executed). 

For example, if the experiment is tossing a coin, the space of the results is the set {head, tail}. In rolling a dice, the 
sample space is {1, 2, 3, 4, 5, 6}. 

An event is a set of possible results, that is a subset of the space of the results (an event “occurs” if the outcome of the 
experiment is one of the results of the set). 

A space of events is, in simple terms, the space of any possible event (in general the power set of the sample space) or 
the space of the event of interest, that is a collection of subsets of the sample space closed under countable set 
operations (and therefore allowing to define measures). 

The space of events includes the empty set (also called “impossible event” because it will never take place) and the set 
that comprises all of the possible results (also called “certain event” because it will always take place). An event that 
contains just one possible result is called “elementary event”. 

For example, for the experiment of tossing a coin the space of events contains the following events: 

Impossible event:               

Event A:                            head 

Event B:                            tail 

Certain event:                   head, tail 

 

In rolling a dice, the possible events are all the sets obtained using integers from 1 to 6, and therefore: 

 ,1,2,…,6,1,2,1,3,…,5,6,1,2,3,1,2,4,…,4,5,6,…,…,…,1,2,3,4,5,6 

Events are mutually exclusive if the occurrence of one of them prevents the occurrence of the others. Mutually 
exclusive events correspond to a disjointed set of results. 

Events can be composed using logical operators (like and, or, not) obtaining other events of the same space: this 
corresponds to the composition using set operators (like intersection, union, complement respectively) of their set of 
results.  

 

Following this approach, the depiction of a generic category of the reality is considered a chance 

phenomenon, e.g. the determination of time, territorial location, economic activity, currency, shares, 

economic operators (persons, firms, …), economic operations and so on.  

 

Example 3:  

For territorial location, the space of result can be defined as the set of the points of the earth’s surface. Consequently, 
any (measurable) set of points of the earth’s surface (i.e. each zone or territory) is considered an admissible event: 
regions, countries, continents, etc. are events represented as M_Elements in the metamodel. 

In the case of time, a generic time instant can be assumed to be a possible result, the space of result can be the set of all 
the time instants (or a set of time instants of interest, for example a predefined period). The possible events are, besides 
the single time instants, also any (measurable) set of them, such as days, months, years, etc. 

Still in the case of time, different experiments and sample spaces should be defined for the measure of “durations”, 
because the result of the measure is not an absolute time but a length of time. 

The identification of single objects, such as people or securities, is also considered a chance phenomenon, in which the 
possible results are the single objects and the events of interest are the elementary events, i.e. the events composed of a 



22 

single result. 
 

Moreover, when historical changes have to be considered, the original chance phenomenon is 

associated with another one consisting in determining the time the original measure refers to, in this 

way obtaining a combined experiment whose outcomes are pairs made up of an outcome of the 

original experiment and an outcome of the reference time. An event of this experiment is an 

“historical” event. 

 
Given two chance phenomena A and B, the combined chance phenomenon C consists in the execution of an experiment 
of A and of an experiment of B, so a possible result of C is the pair of a result of A and a result of B (the space of results 
of C is in general the Cartesian product of the spaces of results of A and B) 
 

Note that the probability theory approach in defining the space of events also allows a smooth 

formalization of the so called missing values, i.e. values that indicate that the measure of a certain 

category was not successful, so that a significant value is unknown. In fact the “unknown” 

(“missing”) result can be considered a proper possible result of the chance phenomenon (also 

different types of “unknown” results if needed) and consequently “unknown” or “missing” events 

can be defined as needed. 

 

A proper choice of the events of interest allows the representation of a single level of detail of the 

category (for example the cities for the category of the territory) or different levels (for example 

cities, countries and continents). In the latter case, the metamodel allows the representation of the 

logical relationships between events, like the hierarchical structure between events of the different 

levels of a classification (for example, the composition of continents in term of countries and of 

countries in term of cities). 

 

For simplicity, the presentation of the M_Concepts metamodel is divided into three parts. Firstly, 

the basic one, which contains the main entities and their relationships. The second one addresses the 

hierarchical relationships between M_Elements, in which the important topic of hierarchies and 

classifications is treated (such relationships are considered instant by instant, i.e. with time being 

equal). The third one deals with the relationships between M_Elements across time (such as the 

temporal phenomena of merging, breaking up, renaming). 

 



23 

Description of the statistical concepts metamodel  

 

The space of results is registered in the M_SpaceOfResult class. Single results and their 

association to events are not represented.
28
 The focal point of the concept metamodel is the 

definition of the events and spaces of events. Only the events of interest are defined.
29
 

 

To identify the events uniquely, it is necessary to choose an “identifier”, that is a set of 

identification attributes (e.g. the ISO code for countries; the NACE code for economic activities; the 

ISO code for currencies; name, surname, place and date of birth of people; the ISIN code for 

securities).  

 

The M_EventsDomain (from now M_Domain) is the entity used to define a space of events 
with a given events identifier. An M_Element is the representation of an event in an M_Domain 
and it is identified by a specific “value” of its identifier

 30
. An M_Element belongs to just one 

M_Domain. An M_Domain can contain many M_Elements.  
 

The ideal situation, in a statistical information system, would be to have just a single identifier for 

each category of the reality. In practice, however, the coexistence of many identifiers cannot always 

be avoided, owing to the different needs to be satisfied, different coding of events at a different 

level of detail, different sources of data, different standards and organizations, and so on (e.g. the 

ISO and SWIFT codes for countries, …). Many M_Domains can correspond to the same 

M_SpaceOfResult because of the possible coexistence of more than one event identifier. The 

same event can be defined in many M_Domains of the same M_SpaceOfResults, producing 
different M_Elements with the same meaning (synonyms).

31
 

 

Example 4:  
Possible M_Domains for the category of the “territory”: 
 
Countries – Identifier: ISO code (FR= France ; ES=Spain) 
Countries – Identifier: Bank of Italy code  (001=United States; … ; 039=Italy; …) 
 
 

The M_Set class, in the depicted context, contains the definition of the “sets of events” and the 
M_Variable class contains the definition of the “random variables”. The relationships between 

M_Element, M_Set and M_Variable classes are the same as those described in the overall 

diagram section. 

 

Moreover the diagram shows that an M_Set refers to an M_Domain (it can contain 

M_Elements belonging to just one M_Domain), and an M_Variable is defined on an 

M_Domain (it can assume values in M_Sets referring to just one M_Domain).  
 

                                                 
28 This is obvious because the outcomes of an experiment can also be infinite. 

29 This makes the representation finite and does not limit the detail achievable, because an event can also contain a 

single result of the experiment.  

30 The value will be used to refer to the M_Element when needed, in particular in the data extensions, for this reason 
the term “value” will be often used as a synonym of M_Element. 
31 M_Elements with the same meaning can also exist in the same M_Domain (when the same event is defined 

more than once). 



24 

Statistical concepts metamodel: class diagram 

 

 

 

 
 
 

M_Variable

+ Description

M_Domain

+ DimensionNumber
+ IdentifierName
+ IdentifierType
+ IdentifierCodingSystem
+ Description

M_Element

M_Set

+ IsEnumerated
+ Criterion
+ Description
+ IsBooleanType
+ IsOrdinal

+ /DefinedOn

1 *

+ /Contains* 1..*

M_CodedDomain

M_UncodedDomain

M_ElementCoding

+ Description

M_FullSet
M_Subset

M_AlgebraicStructure

+ IsHistorical
+ IsQuantitative
+ IsBooleanType
+ IsOrdinal
+ Description

M_SpaceOfResults

+ IsOrdinal
+ IsTimeInstantBased
+ Description

+ /DescribedBy

*

1

+ /RefersTo

10..1

+ /RefersTo

1

*

+ /SubsetOf

1 *

M_1dimDomain M_NdimDomain

+ /Has

1

*

+ /DefinedOn

1 *

+ /ConstitutedOf

*

2..*

M_Synonymity

+ /IsFirstSynonim

1

0..1

1

0..1

+ /IsSecondSynonym

1

+ /BelongsTo

*

M_1dimVariable

M_NdimVariable

M_NdimSet

M_1dimSet

+ /HasDefSet

1

*

+ /HasDefSet

1

*

+ /CartesianProductOf

*
*

+ /ConstitutedOf

*

2..*

�

�

⊳

�

�

⊳

�

⊳

⊳

��

⊳
M_ElementList

+ /Enumerates

*

*
+ /ListedBy

0..1

1

⊳

�

⊳

�
�

�

  
 

Diagram 2: Statistical concepts metamodel  
 



25 

Diagram description: definitions 
 
 
M_SpaceOfResult 
 

The sample space of the chance phenomenon that measures a category of the reality.  

 

Attributes:  

• IsOrdinal [mandatory]: the M_SpaceOfResult is ordinal
32
 if an intrinsic ordering 

criterion exists between all of its points (i.e. all of the possible results of the chance 

phenomenon) 

Examples: 
o The sample space of tossing a dice is ordinal, since the intrinsic ordering criterion is the 

natural numbers sequence; 
o The sample space of territorial zones is not ordinal 

• IsTimeInstantBased [mandatory]: the M_SpaceOfResult is based on time instants if 

its possible results are time instant
33
. 

• Description [mandatory]. 

 

Integrity constraints: 

 

- IsOrdinal and IsTimeInstantBased attributes are invariable with time 

- For a time instant based M_SpaceOfResult there is an intrinsic ordering criterion based 
on the sequence of time instants, therefore when IsTimeInstantBased is “true” 

IsOrdinal is also “true” 
 

 

M_Domain  
(and M_CodedDomain; M_UncodedDomain; M_1DimDomain; M_NDimDomain) 
 

In simple terms, an M_Domain is the set of the elements of interest of a category that are 

identified by a given identifier (set of identification attributes). More formally, it is a representation 

of a space of events by means of a given identifier. An M_Domain contains (from zero to many) 

M_Elements, each representing an event (/BelongsTo association). 
 

An M_Domain is defined on an M_SpaceOfResults (/DefinedOn association).  
 

An M_Domain has an M_AlgebraicStructure (/Has association) from which it inherits 

algebraic properties. 

 

An M_Domain can be coded or uncoded. 
An M_CodedDomain is an M_Domain whose identifier is a conventional code that is not 

considered self-explanatory for understanding the meaning of the M_Elements. An 

M_CodedDomain is described by the M_ElementCoding class (/DescribedBy 

                                                 
32 “Ordinal” means that it can be ordered following an intrinsic criterion 

33 Note that the space of result of time distances (durations) is not considered time instant based, because its results 

are not time instants. 



26 

association) which has the Description attribute that specifies the meaning of the 

M_Elements. 
An M_UncodedDomain is an M_Domain whose identifier is considered self-explanatory, so 
nothing else is needed to specify the meaning of the M_Elements. 
 

An M_Domain can be considered a Cartesian Space and can be mono (M_1dimDomain) or multi 

dimensional (M_NdimDomain). An M_NdimDomain is the representation of a combined space 

of events. An M_NdimDomain is constituted of M_Domains (/ConstitutedOf 
association) having a lower number of dimensions.  

 

Attributes: 

• DimensionNumber [mandatory]: number of dimensions of the M_Domain. 
• IdentifierName [mandatory, for M_1dimDomains only]: it specifies the attribute that 

will be used to uniquely identify the M_Elements belonging to the M_1dimDomain. For 
M_NdimDomains the identifier is inferred from those of the component M_1dimDomains. 

• IdentifierType [mandatory, for M_1dimDomains only]: it specifies the data type of 
the identifier for the M_1dimDomains. For M_NdimDomains the data type is inferred from 

those of the component M_1dimDomains. 
• IdentifierCodingSystem [optional, for M_1dimDomains only]: it specifies the 

coding system used to express the IdentifierName for the M_1dimDomains, if the 
identifier is coded.  

• Description [mandatory]. 

 

Integrity constraints: 

  

- Coded/Uncoded characteristic is invariable with time 

- IdentifierName attribute is invariable with time 

- IdentifierType attribute is invariable with time 

- DimensionNumber attribute is invariable with time 

- The /DefinedOn association with M_SpaceOfResults is invariable with time 

- The /Has association with M_AlgebraicStructure is invariable with time 

- The /DescribedBy association with M_ElementCoding is invariable with time 

- The /ConstitutedOf association is invariable with time 

- An M_Domain is time instant based when it is defined on a time instant based 

M_SpaceOfResult (the IsTimeInstantBased property is inherited) 
 

 

M_AlgebraicStructure 
 

This class gathers some algebraic properties that an M_Domain can have as well as the set of 
operators allowed for its M_Elements in data calculation and processing. 
 

Attributes: 

• IsHistorical [mandatory]: the M_AlgebraicStructure is historical when it is time 

dependent. The existence and relationships of the M_Elements belonging to an M_Domain 
having a historical M_AlgebraicStructure are considered time dependent and are 



27 

qualified by a “period of validity”
34
 (otherwise there is not time dependency and the validity is 

assumed equal to “always”). 

• IsQuantitative [mandatory]: the M_AlgebraicStructure is quantitative when it 

makes sense to perform mathematical operations such as addition, subtraction, multiplication, 

division and so on (note that this property cannot be merely inferred from the data type of the 

M_Domain class). The M_Elements belonging to an M_Domain having a quantitative 

M_AlgebraicStructure represent quantitative values.  
If the M_AlgebraicStructure is not quantitative, it is called “qualitative” and 

mathematical operations are not allowed. 

• IsBooleanType [mandatory]: the M_AlgebraicStructure is Boolean when it makes 

sense to apply logical operators (e.g. “and”, “or”, “not”) or set operators (e.g. intersection, 

union, complement). The M_Elements belonging to an M_Domain having a boolean 

M_AlgebraicStructure can represent any elements of the power set of the space of 

results (hence at any level of detail, e.g. cities, countries, continents and the whole world in a 

sample space of the territory); therefore they may not be mutually exclusive and can be 

composed by mean of logical operators to give other M_Elements of the M_Domain (a 
more detailed explanation can be found in the “Description of the hierarchies metamodel” 

section).  

If the M_AlgebraicStructure is not Boolean, it is called “partition type” or “partition”. 
M_Elements belonging to an M_Domain having a partition M_AlgebraicStructure 
represent mutually exclusive events (hence at just one level of detail) and cannot be composed 

by mean of logical operators. 

• IsOrdinal [mandatory]: the M_AlgebraicStructure is ordinal when it has an intrinsic 
ordering criterion. 

• Description [mandatory]. 

 

Integrity constraints:  

 

- The IsHistorical, IsQuantitative, IsBooleanType, IsOrdinal attributes 
are invariable with time 

- A Quantitative M_AlgebraicStructure is partition type 
- A Qualitative M_AlgebraicStructure can be either partition or Boolean type 
- A Quantitative M_AlgebraicStructure is ordinal 
- A Qualitative M_AlgebraicStructure can be ordinal or not 
- A time instant based M_Domain can be Qualitative or Quantitative 
- A time instant based M_Domain can be Boolean or partition 
- An M_Domain defined on a “non-ordinal” M_SpaceOfResult cannot have an 

“ordinal” M_AlgebraicStructure 
- An M_Domain defined on an “ordinal” M_SpaceOfResult can have an “ordinal” 

M_AlgebraicStructure (or not) 
- An M_AlgebraicStructure of Boolean type is not ordinal  
 

 

M_Element  
 

This is the abstract class of all of the M_Elements of interest, independently of their concrete and 
explicit representation in the system.

35
 In simple words, M_Elements are single elements of the 

                                                 
34 In the general case, the periods of validity can be many, provided they don’t overlap. 



28 

categories of the reality. More formally, an M_Element is the representation of an event of a 
chance phenomenon corresponding to the measure of a category of the reality.  

 

An M_Element belongs to one and only one M_Domain (/BelongsTo association).  For a 
full identification of an M_Element, the pair (M_DomainId, M_ElementId) is needed.  
For M_UncodedDomains the M_Element meaning

36
 is inferred from the value of the 

M_ElementId (which is considered self-explanatory), for M_CodedDomains it is provided by 
the Description attribute of the M_ElementCoding class.  
 

 
Example 5:  

 

M_CodedDomain: Currency identified by “ISO” coding system  

Example of M_Element: Value: "29" : “CHILEAN PESO”  

 

M_CodedDomain: Geographical Locations identified by the Bank of Italy coding system 

Example of M_Elements: Value:  "21":   “Denmark”   

    Value:  "29"  “France”   

 

M_UncodedDomain: Geographical Locations identified directly by the name of the country 

Example of M_Elements: Value: “Denmark” 

    Value: “France” 

 

Integrity constraints: 

 

- The /BelongsTo association with the M_Domain class is invariable with time 

- An M_Element has the same dimensions as the M_Domain it belongs to 
- The dimensions of an M_Element are invariable with time 

- For a Boolean M_Domain the definition of an M_Element corresponding to the certain 
event is mandatory  

 

 

M_ElementCoding  
 

The class provides the “descriptions” needed to understand the meaning of the M_Elements 
belonging to M_CodedDomains (see also M_CodedDomain and M_Element classes). 
An M_ElementCoding refers to one and only one M_Element (/RefersTo association). 
 

Attributes: 

• Description [mandatory] 

 

Integrity constraints: 

- M_Elements belonging to M_CodedDomains must be referred to by an 
M_ElementCoding 

                                                                                                                                                                  
35 M_Elements can be defined explicitly by listing them or implicitly by giving a criterion whose outcome is the 

M_ElementList (see also the description of the M_Set class) 
36 The ”meaning“ of an M_Element consists in understanding which event is represented. 



29 

- M_Elements belonging to M_UncodedDomains cannot be referred to by an 
M_ElementCoding 

 

 

M_Synonymity  
 

Two or more M_Elements, belonging to the same M_Domain or to different M_Domains 
defined on the same M_SpaceOfResult, can have the same meaning, corresponding to the same 

event. They are called synonyms and the instances of this class establish the connection between 

pairs of them. Hence, an M_Synonymity refers to two M_Elements (/IsFirstSynonym 
and /IsSecondSynonym associations). When possible and suitable, one of the synonyms is 

given a pivot role, connecting all other synonyms to it through many M_Synonymities: in this 
way it is possible to avoid untidy chains of M_Synonymities.37 
 

 

M_Set  
(and M_Fullset, M_Subset, M_1dimSet, M_NdimSet) 
 

An M_Set is a set of M_Elements belonging to the same M_Domain.  
 

An M_Set refers to one and only one M_Domain (/RefersTo association). An M_Set has 
the same dimensions as the M_Domain it refers to, so it can be mono (M_1dimSet) or multi 

dimensional (M_NdimSet). 
 

An M_Set can contain any number of M_Elements (/Contains association38).  
 

The M_Elements that belong to the M_Set can be specified explicitly by listing the 

M_Elements (/ListedBy association with the M_ElementsList class), implicitly by 

mean of a criterion whose outcome gives the list of M_Elements (the Criterion attribute) or 
by both: in this case the list of M_Elements specified explicitly must be equal to the outcome of 

the criterion. 

 

For an M_NdimSet, the M_Elements can also be specified through the Cartesian product of 
other M_Sets, each one referring to one of the component M_Domains of its M_NdimDomain 
(/CartesianProductOf association). In addition, a Criterion can be used to specify, if 
necessary, other M_NdimSets containing combinations of M_Elements to exclude from the 

M_NdimSet being defined (or to include, being the only admissible ones). 

 

An M_Fullset is an M_Set that contains all of the M_Elements belonging to the 

M_Domain. For each M_Domain, one and only one M_Fullset exists, independently of time. 

 

An M_Subset is a proper subset of the M_Fullset of the M_Domain (/SubsetOf 
association). For each M_Domain any number of M_Subsets can exist. 

                                                 
37 If “A”,”B”,”C”,”D” are synonym and § means “is a synonym of”, it is normally better to specify A § B, A § C, A § 

D with “A” playing a pivot role rather than A § B, B § C, C § D, D § A, …, without any role. 

38 The /Contains is the abstract association between an M_Set and its M_Elements, however specified, i.e. also 
for the M_Elements that are specified by means of a criterion and are not explicitly represented or listed; the explicit 

list of M_Elements is registered in the M_ElementList class. 



30 

 

By default, the M_FullSet of an M_NdimDomain is considered to be the Cartesian product of 
the M_FullSet of all the component M_Domains; if so, it is not necessary to specify explicitly 
its M_Elements. Otherwise, a Criterion can be used to specify other M_NdimSets containing 
combinations of M_Elements to exclude from the default Cartesian product (or to include, being 

the only admissible ones).   

 

Note that the extension of the M_Fullset of an M_NdimDomain expresses the compatibility / 

incompatibility between M_Elements of the component M_Domains. Hence, defining explicitly 
M_NdimDomains and their M_Fullsets serves to express the mutual compatibility or 

incompatibility between events of different spaces of events (or also of the same one, if an 

M_Domain is combined with itself). 

 

Attributes 

• IsEnumerated [mandatory]: specifies whether an explicit extension of the M_Set is 

defined, i.e. if the M_Set is listed by an M_ElementList (/ListedBy association). 
• Criterion [optional]: name of the algorithm that produces the M_Set extension, usable by 

active software to generate the list of M_Elements of the M_Set;39 a criterion can also 
be used, in particular for M_NdimSets, to specify combinations to be excluded/included. 

• Description [optional]. 
• IsBooleanType [mandatory]: an M_Set is of boolean type if it can contain M_Elements 

that are not mutually exclusive, otherwise it is of partition type (or “partition”). 

• IsOrdinal [mandatory]: an M_Set is ordinal when it has an intrinsic ordering criterion 

between its M_Elements.40 
 

Integrity constraints: 

 

- The /RefersTo association with M_Domain class is invariable with time 

- The property of being the M_Fullset or an M_Subset is invariable with time 

- The M_Set has the same dimensions as the M_Domains it refers to 
- The dimensions of an M_Set are invariable with time 

- An M_Set can contain (/Contains association) only M_Elements that belong to 
(/BelongsTo association) the M_Domain it refers to (/RefersTo association) 

- An M_Set can contain (/Contains association) any number of M_Elements, An 
M_Element is contained by one or more M_Sets (at least to the M_FullSet of the 
M_Domain) 

- For an M_Set either a Criterion (attribute of the M_Set class) or an explicit list of 
the M_Elements (/ListedBy association with M_ElementsList class) or a 

Cartesian product (/CartesianProductOf association) must exist (for the 

M_FullSets of an M_NdimDomains, it is always considered existing the Cartesian 
product of the M_FullSets of all the component M_Domains) 

- If the attribute IsEnumerated is “true”, the M_Set is listed by one and only one 

M_ElementList (the multiplicity of the /ListedBy association is one and only one); 

                                                 
39 The criterion can be used to produce the extension of the M_Set and use it dynamically, even without storing it 

explicitly as an M_ElementList. 
40 Any M_Set, even if it is not ordinal, can be ordered by means of any number of conventional criteria (not intrinsic 

ones) that can be expressed in many ways: the topic is not treated here because at the moment it is not part of the 

“common” meta-model. 



31 

if IsEnumerated is “false”, the M_Set is not listed (the multiplicity of the /ListedBy 
association is zero) 

- The M_Sets inherit a number of properties from the M_Domain they refer to and from 

the related M_AlgebraicStructure and M_SpaceOfResult:  
- M_Sets referring to a Boolean type M_Domain can be of Boolean type or not 
- M_Sets referring to a Partition type M_Domain cannot be of Boolean type 
- M_Sets referring to quantitative M_Domains are quantitative  
- M_Sets referring to qualitative M_Domains are qualitative 
- M_Sets referring to an M_Domain defined on a non-ordinal 

M_SpaceOfResult are not ordinal 
- M_Sets referring to an M_Domain defined on an ordinal M_SpaceOfResult 

can be ordinal or not  

- An M_Set referring to an ordinal M_Domain is ordinal 
- An M_Set referring to a non-ordinal M_Domain can be ordinal or not  
- A subset of an ordinal M_Set is ordinal 

- An M_NdimSet containing combinations of M_Elements to exclude (or to include 

being the only admissible ones) from another M_NdimSet being defined, can refer to a 
subset of the dimensions of the latter. 

 

 

M_ElementsList  
 

An M_ElementsList is the explicit list of the M_Elements belonging to an M_Set. An 
M_ElementsList enumerates the M_Elements of one and only one M_Set 
(/Enumerates association), an M_Set can be listed by one or no M_ElementsList 
(/ListedBy association).  
 

Integrity constraints: 

 

- If a Criterion is specified for the M_Set, the M_ElementsList must enumerate the 

M_Elements resulting from the execution of the criterion. 

 

 

M_Variable  
(and M_1dimVariable, M_NdimVariable) 
 

An M_Variable is a generic unknown M_Element of an M_Set to which a specific 

additional meaning is given. An M_Variable can also be thought of as a characteristic (i.e. a 
property) abstracted from the objects it can be referred to. In the probability theory approach, an 

M_Variable is the random variable of the measure of a property. 

 

The basic component of the M_Variable definition is the M_Set whose M_Elements are 
the admissible values of the M_Variable (also called here “defining M_Set” of the 
M_Variable: /HasDefSet associations).  
 

The defining M_Set of an M_Variable refers to an M_Domain (/RefersTo association)   
and can be the M_Fullset or one of its M_Subsets. Therefore, an M_Variable is also 
defined on an M_Domain (/DefinedOn association) and has the same number of dimensions of 

the M_Set and M_Domain on which it is defined, i.e. can be mono (M_1dimVariable) or 



32 

multi dimensional (M_NdimVariable). An M_NdimVariable is constituted of 

M_Variables having a lower number of dimensions (/ConstitutedOf association). 
 

 

Attributes: 

• Description [mandatory] 

 

Integrity constraints: 

 

- The /DefinedOn association with the M_Domain class is invariable with time 

- The /ConstitutedOf association between M_NdimVariable and M_Variable is 
invariable with time 

- The number of dimensions of an M_Variable is invariable with time 

- The M_Variable inherits the characteristics of the M_Domain and of the M_Set it is 
defined on: 

o An M_Variable is Boolean or partition type if its defining M_Set is of that kind 
o An M_Variable is qualitative or quantitative if its defining M_Set is of that 

kind 

o An M_Variable is ordinal if its defining M_Set is of that kind 
o An M_Variable is time instant based if its defining M_Set is of that kind 

 



33 

Description of the hierarchies metamodel  

 

 

This section deals with the logical relationships between M_Elements, seen as probability theory 
events, and their organization in hierarchies. 

 

Particularly suited to such a construction are the M_Domains having an 

M_AlgebraicStructure of Boolean type (attribute IsBoolean is “true”), because they 
allow a Boolean algebra to be defined within their M_Elements.41 
 

A boolean algebra is an algebraic structure (i.e. a set of items and operators having given properties) that summarizes 
the properties of the set operators (e.g. intersection, union, complement) and the logical operators (e.g. “and”, “or”, 
“not”).  
 

A Boolean type M_Domain is the more general type of M_Domain and results from the 

probability theory notion of space of events. 

 

In a space of events, events can be combined with logical operators. For example C = (A and B) is the event that occurs 
if both A and B occur; D = (A or B) is the event that occurs if A or B (or both) occur, E = (not A) is the event that 
occurs if A does not occur.  

This corresponds, in the space of result, with set operations between the corresponding set of results. For example, the 
results set of C is the intersection of the results sets of A and B, the results set of D is the union of the results sets of A 
and B, the results set of E is the complement with respect to the certain event of the results set of A. 
 

In the representation of the algebraic structure of a Boolean type M_Domain, the Matrix 

metamodel takes into consideration a specific operation: the “partition” operator (and its inverse 

operation “disjoint union”). 

 

Given an event “A”, a partition of “A” is a set of mutually exclusive events “Bi” (i=1..n) whose “or” composition gives 
“A” again (the results sets of “Bi” are the partition of the results set of “A”). The inverse operation of the “partition” 
is the “or” of disjointed events (which corresponds to the union of disjointed results sets). 
 

The M_ElementComposition and M_ElementCompositionItem classes allow such a 
relationship to be defined, by associating a set of components (M_Elements that must be 

mutually exclusive) to the compound M_Element that is their logical “or” (the same 

M_ElementComposition, considered in the opposite direction, relates a compound 

M_Element with a set of M_Elements that are its logical “partition”). 
 

An M_ElementComposition has a hierarchical structure (the compound is the parent, the 

components are the children) and it is the basic step in defining an M_Hierarchy, which is 
simply a group of M_ElementsCompositions. M_Hierarchies can have a structure made 

up of predefined levels (M_Classifications) or a free structure (M_FreeHierarchies). 
 

Note that the metamodel is historical. For example, the components of an 

M_ElementsComposition and the M_ElementCompositions that are part of an 

M_Hierarchy can change with time. The operator of “partition” is intended to be applied time 

by time, i.e. time being equal.  

                                                 
41 However, from a formal point of view, it is also possible to define hierarchies between different domains (including 

those of partition type) provided these domains share the same ‘Space of Results’.  



34 

Hierarchies metamodel: class diagram 

 

 

 

M_Hierarchy

+ Description

M_FreeHierarchy M_Classification

M_ElementComposition

+ Description

M_ClassificationLevel

+ Sequence

+ Description

M_ElementCompositionItem

StatisticalConcepts: 

M_Element

StatisticalConcepts: 

M_Set

+ /GroupOf

1..*

*

+ /MadeUpOf

1..*

1

+ /GroupOf*

*

+ /RefersTo

1

*

1..*

* + /Contains

�

⊳1

1..*

+ /IsCompound
+ /IsComponent

1

*

+ /IsCompositionOf

1..*

1

�

⊳

 
 

Diagram 3: Hierarchies metamodel  



35 

Diagram description: definitions 

 

 

M_ElementComposition 
 

An M_ElementComposition is the composition by means of “logical OR” of any number of 

mutually exclusive M_Elements to obtain a compound M_Element (/IsCompound 
association). Alternatively, it can be viewed as a way to decompose an M_Element into a set of 
mutually exclusive M_Elements whose “logical OR” returns the original M_Element. There 
can be many ways of decomposing a given M_Element, so that the same M_Element can be the 
“compound of” many different M_ElementCompositions. 
 
Example 6: 
For the M_Domain “territorial areas” it is possible to represent "ITALY" as the union of  geographical areas 
north, center, south and islands or, alternatively, as the union of the Italian regions: 

 

 

 

 

 

 

 

 

 
 
For the same M_Domain it is possible to specify other compositions between M_Elements by introducing, for 
example, the geographic area "Islands" in terms of regions; the hierarchical tree could be the following: 

 

 

  

 

 

 

 

 
 
 
 
 

Note: “Italy”, “Sicily” and “Sardinia” are defined once in the M_Element class and are simply referred to in the 
three M_ElementComposition definitions (one for  “Islands” and two for “Italy”).  
 

 

Attributes: 

� Description [optional] 
 

 

Composition method:  

regions 

Composition method: 

geographical areas Italy 

north center south islands …

…. 

lombardy 

 
…… sicily sardinia 

sicily sardinia 

…

…. 

lombardy … north center south islands 

Italy 

 



36 

M_ElementCompositionItem  
 

Single item of the M_ElementComposition (/IsCompositionOf association) that refers 
to a single component M_Element (/IsComponent association). 
 
 
M_Hierarchy 
 

Hierarchical structure defined among the M_Elements. An M_Hierarchy is a group of 

M_ElementCompositions There are two possible kinds of hierarchies: the classification (see 
below M_Classification class) and the free hierarchy (see below the M_FreeHierarchy 
class).  

 

Attributes: 

� Description [mandatory] 

 

Integrity constraints: 

 

- The property of being an M_FreeHierarchy or an M_Classification is time 

invariable 

- In an M_Hierarchy an M_Element can be the compound M_Element 
(/IsCompound association) of one and only one M_ElementComposition  

 

 

M_Classification  
 

An M_Hierarchy made up of predefined and ordered levels (/MadeUpOf association  with 
M_ClassificationLevel class) , each of them formed of mutually exclusive M_Elements, 
in which the M_Elements of a given level are obtained as a composition of M_Elements of 
the previous one. The composition of all the M_Elements of each 

M_ClassificationLevel gives the more general event of the hierarchy, called the 

“universe” or “root M_Element” of the M_Classification. 
 

The systematic classification of phenomena and the naming of the classes provides the common 
language which makes consistent communication possible [cited after T.M.F. Smith]. Thus, a 
classification or nomenclature is an ordering system for the phenomena of a certain kind. It 
describes the division of a set of objects, such as economic activities, products, diseases or 
professions into classes. Each class has a unique identifier, its code. A classification can also be 
seen as a controlled language that enables the user to define concepts and to relate them to classes 
and codes [7].  
 

 

Integrity constraints: 

 

- The root M_Element (also the “universe” of the M_Classification) is mandatory 

- All the M_Elements of an M_Classification imply the root M_Element (if any 
one of the M_Elements occurs the root M_Element also occurs) 

- An M_Element in an M_Classification can be a component of one and only one 
M_ElementComposition 



37 

 M_ClassificationLevels 

World 

Asia 

Europe Africa America Oceania 

Italy France Egypt Mexico Australia 

“Continents” M_Set 
“Nations” M_Set 

“World” M_ElementComposition 

“Europe” M_ElementComposition 

“World”  

“Continent”  

“Nation” 

“World” M_Set 

 

 

 

 

 

 

 

 

Example 7:     An M_Classification of the world territory 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

M_ClassificationLevel  
 

The predefined level of an M_Classification. An M_ClassificationLevel refers to an 
M_Set (/RefersTo association) that contains the M_Elements of the 

M_ClassificationLevel. An M_ClassificationLevel has a group of 

M_ElemenCompositions (/GroupOf association) that relate the 

M_ClassificationLevel to the next one (of course except for the level for which there is not 
a subsequent one). Note that the M_Elements of an M_ClassificationLevel are 

associated through the /IsCompound association to the M_ElementsCompositions of the 
M_ClassificationLevel. 
 

Attributes: 

� Sequence [mandatory]: ordering number of the M_ClassificationLevel within the 

M_Classification  

� Description [mandatory] 

 

China 

“World” (the “Universe” M_Element) 

“World-Oceania” 
M_ElementCompositionItem 



38 

Integrity constraints : 

- An M_ClassificationLevel refers to an M_Set of partition type (i.e. an M_Set 
containing only mutually exclusive M_Elements) 

- The first level of an M_Classification contains only the root M_Element (the 

“universe” of the M_Classification)  
- The “logical or” of the M_Elements of a generic M_ClassificationLevel gives 

the root M_Element of the M_Classification 
 

Example 8: 

For the WORLD M_Element the following compositions are equivalent:  

 WORLD = U [ Asia, America, …]    (Union of the Continents) 

 WORLD = U [ Italy, France, Japan,…]  (Union of the Nations) 

 

 

 

 

M_FreeHierarchy 
 

The M_Hierarchy with free M_ElementCompositions (/GroupOf association) defined 
among the M_Elements. 
 
Example 9:  

A free Hierarchy (circles indicate M_Elements, dotted lines indicate M_ElementCompositions): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As shown in the example above, in a free hierarchy there can be M_Elements that are not part of 
a level (“isolated” M_Elements) and the hierarchical tree can be unbalanced (there can be 
branches with different numbers of M_ElementsCompositions in the hierarchy). 
 

Benelux 

Europe Continent 

Belgium Luxemburg Holland Italian  
area 

Europe of 25 

Europe of 12 

Croatia Austria Albania 

Italy  S.Marino Vatican 

Isolated 

M_Elements 

Unbalanced 

hierarchical tree 



39 

Integrity constraints: 

 

- An M_FreeHierarchy is not made up of predefined levels 

- An M_FreeHierarchy does not necessarily have a root M_Element that represents 
the more general (or less detailed) event of the hierarchy 

- An M_Element can be a component of many M_ElementCompositions of the 
M_FreeHierarchy 



40 

Description of ‘Cross Time M_Element Correlations’ metamodel 

 

 

This section deals with the representation of the equivalence among events before and after a 

temporal discontinuity. This is also called the “correlation” among M_Elements across time 

(also the “time correlation”) and it is needed in the case of temporal discontinuities in the 

M_Elements definition.  
 

The word “event” has been used, until now, with the meaning it has in probability theory, 

e.g. a set of results of a random experiment; but “event” in natural language can also be used to 

indicate that something happens at a given time (and can cause a change of the “events”, with a 

probabilistic meaning, that the M_Elements represent). 
 

A “time correlation” is the definition of the equivalence between “events” (probabilistic 

meaning) valid before and after the temporal discontinuity. 

 
Example 10: 
 
real world category: Geographical Location 

What happened: West Germany and East Germany reunited 
 Time Instant: 1989 
 M_Elements: West Germany, East Germany, Germany  
 Type: merge 

What happened: Czechoslovakia divided into Czech Republic and Slovakia  
 Time Instant: 1993 
 M_Elements: Czech Republic, Slovak Republic, Czechoslovakia  
 Type: break up 

 
 

Discontinuities and hence time correlations can exist only for historical M_Domain (e.g. 

M_Domains that have a historical M_AlgebraicStructure). 
 

The equivalence is established between an M_Set valid before and an M_Set valid after the 
temporal discontinuity. Neither the before nor the after M_Set can be empty.  

 

There are different types of time correlations, depending on the number of M_Elements in each 
M_Set and on the M_Elements contained in the M_Sets before and after the temporal 

discontinuity.  

 

More precisely (in the following diagrams the temporal discontinuity is indicated by a vertical line):  

 

One before, one after: change of name (e.g. change of coding system)  

 

A   __________________     B 

 

 



41 

Many before, one after:  

 

Merge  (A, B, C merge and become D) 

A __________ 

B ___________________      D  

C __________ 

 

Incorporation   (A incorporates B and C) 

A _________ 

B ____________________    A  

C _________ 

 

 

One before, many after:  

 

Break up / fragmentation  (A breaks up becoming B, C, D) 

                        __________  B         

A ____________________  C 

                        __________   D 

                                                      

 

Hiving off (some parts of A are hived off and become B and C) 

                        __________  A 

A ____________________  B                                                         

                        __________  C 

                                                         

 

Many before, many after: merge and break up    

 

(A, B, C merge and the outcome breaks up becoming D and  E) 

A __________  

B ____________________  D 

C ____________________  E  

 

 

(A incorporates B, C and hives off D) 

A __________  

B ____________________  A 

C ____________________  D 

 

 

Note that the same M_Element does not correspond to the same set of results before and after the 

time correlation.
42
 

 

                                                 
42 Although the set of results of an M_Element is not represented in the metamodel, in principle it must be thought 

as historical, i.e. containing results that can vary depending on the time. 



42 

Cross time M_Element correlations metamodel: class diagram 

 

 

 

 

Statistical Concepts: M_Element

Statistical Concepts: M_Set

+ /Contains

*

1..*

M_CrossTimeSynonymity

+ Time
+ Type
+ Description

1

+ /IsValidBefore

*

1

+ /isValidAfter

*

� �

�

 
 

Diagram 4: Cross time M_Element  correlations metamodel 
 



43 

Diagram description: definitions 
 
M_CrossTimeSynonymity 
 

This class establishes the equivalence between one M_Set valid before and one M_Set valid 
after the temporal discontinuity(/IsValidBefore and /IsValidAfter relationships).  
 

Attributes: 

• Time [mandatory]: the time instant when the temporal discontinuity happens 

• Type [mandatory]: the type of temporal discontinuity. 

• Description [optional] 
 



44 

 

Statistical Data 
 

Introduction 

 

As mentioned in the previous sections, in the Matrix metamodel statistical data are thought of as 

mathematical functions. 

 

The definition of a function consists in the specification of the set of “a priori” admissible values for 

the function occurrences (x,y),43 while the extension of a function is its graph “G”. 

 

Considering the statistical information system as a data warehouse, the definition is the “a priori” 

specification of the data structure whereas the “extension” is the set of observed values stored in 

physical archives (i.e. “a posteriori”). The definition is prepared before inserting data in the system 

and is used to specify the statistical data structure to providers, receivers, end users and software 

artefacts that process the data (check, store, retrieve, calculate, …). 

 

The set of the admissible values of the function is the Cartesian product X*Y (or a subset of it), 

therefore the first (and maybe also the last) step of the definition of a function is the specification of 

the independent and dependent variables with their set of admissible values.  

 

When the set of admissible values of the function is a proper subset of X*Y, it is necessary to 

specify the combinations of the values of the variables that must be excluded because “a priori” 

they are impossible (or, conversely, the “a priori” possible combinations that must not be excluded). 

This can be done by defining in some way groups of combinations to be excluded or not (for 

example using Cartesian products of appropriate sets of two or more variables of the function). 

 

                                                 
43 “A priori” in this case means “before knowing the graph G”. 

A mathematical function is an ordered triple (X,Y,G), where X and Y are sets (called the domain and codomain of 
the function), G is a subset of the cartesian product of X and Y such that each element x of X occurs exactly once as 
the first coordinate. 
G is also called the graph of the function and is composed of ordered pairs (x,y) with the property that for an 
element x there is no more than one element y such that x is related to y.  
The variable values x and y are called  respectively “independent” and “dependent” variables. The function is also 
denoted by y= f(x). 
The domain of a function X is the set of elements that occurs as the first coordinate in the pairs (x, y) of the relation 
G. If x is not in the domain, then f(x) is not defined. 
The codomain (also the range) of a function is the set Y of elements y that can occur as the second coordinate in the 
pairs (x, y) of the relation G. 
The variable x and y and the sets X and Y can be multidimensional, i.e. x=(x1, … , xn), y=(y1, … , ym) 

Example 11: 

                                          Function      √ x1 + x2  = y 
 

the domain dimensions are { x1,  x2} and the  co-domain dimension is { y }; 
 the domain values are couples of values (x1,  x2)  belonging to the Cartesian product  of admissible values of x1  
(any real value greater than or equal to 0) and x2 (any real value), therefore { 4, 1} and { 16, -50} are elements of 
the function domain  but {-8, 0} is not;  
the codomain values are the admissible values of “y” (any real value), 
 the “a priori” admissible values for the function are the ordered  triples ( x1,  x2,   y), in which  x1 must be greater 
than  or equal to zero and   x2   and y can assume any value. 



45 

Example 12: 

  
Function “total amount of monthly loans in 2005 broken down by counterparty residence (Europe or non--Europe), 
counterparty location (European countries for Europeans and continents for non-Europeans), currency”  
 

Independent Variables : Time, Residence of the Counterparty, Location of the Counterparty, Currency; 
Dependent Variable: Total amount of loans 
 
The X*Y Cartesian product is obtained by specifying the three one dimensional sets of admissible values: 

• {Jan2005,Feb2005,… ,Dec2005} for Time 
• {European, Non--European) for the Residence of the counterparty 
• {Austria, France, Germany, … , Africa, America. Asia,…} for the Location of the Counterparty 
• {USD, euro, UK .Pound, …} for the Currency 
• (from 0 to 10 18)  for the Total amount of loans 

 
Each occurrence of the function is a vector of 5 values such as {Jan 2005, European, France, USD, 
15.687.300.000}, {Feb 2005, European, Italy, Euro, 56.789.000.000}. But not all of the points of such a Cartesian 
product are admissible, in fact a “European” can be located only in a European country and a non-European only 
in a continent (except for Europe). To specify impossible combinations (or alternatively possible combinations), the 
following Cartesian products can be defined: 
 
First Cartesian product (containing combinations to exclude): 

• {European} for the Residence of the counterparty 
• {Africa, Asia, America, … } for the Location of the Counterparty 

 
Second Cartesian product (containing combinations to exclude): 

• {Non-Eutopean) for the Residence of the counterparty 
• {Austria, France, Germany,…} for the Location of Counterparty 

 
 

As for statistical concepts, also statistical data can be defined using the conceptual instruments of 

probability theory as stated in [4], For the purpose of this section, however, it is sufficient to 

remember that elements (values), sets and variables that are necessary to specify the function must 

be defined as M_Concepts. 

 

As said above, the graph of the function (also called the extension of the function) is the 

correspondence law between the elements of the function domain and the elements of the function 

codomain. Each pair (x,y) is called “observation” or “occurrence”. 
 
Often, for mathematical functions, the correspondence law can be described by means of a synthetic rule that allows 
the dependent variable to be calculated once the dependent one is given, e.g.      y=x2 
 
For statistical data, however, a synthetic rule is not available.  The way to describe the graph of a function is to use 
a “correspondence table”, e.g. a table where the pairs (x,y) are listed: 
        

X Y 

0 0 

1 1 

2 4 

3 9 

…. ….  
 

In the hierarchy of models, the graph is located in the first level. According to the general integrity 

rules, a graph cannot exist if its definition does not exist in the second level (that is the definition of 

the function given according the third level metamodel, i.e. the Matrix one). 

 



46 

If the definition of the function exists, however, nothing can be said about the existence of the 

extension. Since the definition serves to specify “a priori” the objective of a statistical survey 

whereas the graph is the final result, the latter can certainly be missing if the survey has not yet been 

executed (or, for calculated data, if the calculus has not yet been made). The graph can also be 

partially known if the survey is not complete (for example, for periodical surveys, the graph exists 

for the past but not for the future). 

 

When the information on the knowledge of the graph cannot be inferred directly from the graph 

itself, as is often the case for statistical data, it has to be represented in another way: the “knowledge 

domain” is the set of points in which the extension of the function is known
44
 and it is also called 

the “status” of the function. 

 

A special type of function consists of those that give information about the other functions 

belonging to the information system: they are called “functions about functions”.
45
 The “status” of a 

function can be considered a first sort of “function about functions”, but many other types can exist, 

such as quality information, data specifying attributes of other data (e.g. if “stock” or “flow”, if 

“measured” or “estimated”).
46
 

 

The presentation of the statistical data metamodel is divided into two parts, the first regarding the 

definition of the function and valid for every type of function, the second concerning the 

specificities of functions about functions.  

                                                 
44 Remember that the definition domain expresses admissible values, i.e. the “a priori” values for which statisticians 

want to know the function and not the “a posteriori” values for which the function is known. 

45 As also noted in the “Architecture of Models” section, such functions are not meant to be the “model” (i.e. the level 

2 definition) of the other functions they refer to; rather they have an extension in level 1 and a definition in level 2, like 

the other data bearing information about the reality. 

46 When the attributes are relevant to the occurrences of the function, they can be included as dependent variables in 

the same function as they describe. 



47 

Description of the statistical data  metamodel  

 

Statistical data are identified and registered by means of the M_Function class.  

The Cartesian product that matches or contains the set of “a priori” admissible values of the 

M_Function is described by means of M_StructureItem. Every M_StructureItem is a 
dimension of such a Cartesian product.

47
 An M_Function has many M_StructureItems 

(/HasAsDimension association), an M_StructureItem is a dimension of one and only one 

M_Function. 

An M_StructureItem is the use of an M_1dimVariable within an M_Function with a 
specific role (e.g. dependent or independent) and with a set of admissible values (that is a subset of 

the defining M_Set of the M_Variable). Hence, an M_StructureItem refers to an 

M_1dimVariable and an M_1dimSet, both defined in the “Description of the statistical 
concepts metamodel” section. The M_1dimSet referred to is also called the “domain in use for 

the M_1dimVariable in the M_Function”. 

The independent M_Variables in an M_Function can be quantitative or qualitative. If more 

than one independent M_Variable exist in an M_Function, each one can be quantitative or 
qualitative independently of the others. 

If the set of “a priori” admissible values of the M_Function matches the Cartesian product of the 

M_StructureItems, the M_Function definition is complete. Otherwise, the specification of 

combinations to be excluded (or to be maintained) is made using the M_CombinationsGroup 
class. 

Every M_CombinationsGroup identifies a group of combinations that can be excluded 

(/NotAllows association) or allowed (/Allows association). An M_Function can allow 
(or not allow) any number of M_CombinationsGroups. An M_CombinationsGroup can 
be allowed or not allowed by any number of M_Functions. An M_CombinationsGroup is 
the use of an M_NdimVariable with an M_NdimSet: the former qualifies its dimensions, the 

latter contains the combinations. An M_Function can refer only to M_CombinationsGroups 
whose dimensions are a subset of the dimensions of the M_Function. 

With regard to historicity, as in the general case, an M_Function can be considered a set of 
mathematical functions, one for each “reference time” value. Consequently, the 

M_StructureItems and the M_CombinationsGroups of the M_Function can change 
with time. 

The domain of the M_Function “X” can be obtained from the Cartesian product of the 

independent M_StructureItems, excluding or maintaining possible 

M_CombinationsGroup between them. The codomain “Y” can be obtained in the same way 

from the dependent M_StructureItems.  

                                                 
47 Note that for some commercial data warehouses the term “dimension” is only used for independent variables of the 

data, while here it is used for both independent and dependent variables. 



48 

For the domain all the “a priori” admissible values must also be present in the graph G, if this is 

known (remember that “each element x of X occurs exactly once as the first coordinate”), while this 
is not true for the codomain.

48
 The set of values of the dependent M_Variables that really occur 

in the graph G is also called the “actual codomain”. 

 

                                                 
48 Do not be confused by cases in which, as a convention, some function occurrences are not explicitly represented in 

the graph (e.g. when the function is equal to “zero”); in such cases some admissible independent values apparently do 

not occur in the graph, but this is only because the graph is not fully represented. 



49 

Statistical data: class diagram  

 

 

 

 

 

 

M_Function

+ ArchiveReference
+ IsCalculated
+ Description

M_StructureItem

+ IsIndependent
+ IsAttribute
+ IsReferenceTime
+ IsSender
+ IsFactKey
+ IsAggregated
+ IsCalculated
+ IsImplicit

+ /IsUsageOf

1

*

M_Combinations
Group

+ Description

Statistical Concepts: M_Set

Statistical Concepts: M_Variable+ /IsUsageOf

1

*

+ /DependsOn

*

1

M_GeneratedFunctionM_DerivedFunction

+ /HasAsDimension

*

1

+ /Allows **

+ /NotAllows **

Statistical Concepts: 
M_1dimVariable

Statistical Concepts: 
M_NdimVariable

Statistical Concepts: 
M_1dimSet

Statistical Concepts: 
M_NdimSet

+ /UsesVariable

1

*

+ /UsesSet

1

*

�

�

⊳

�

�

�

�

�

 
 

Diagram 5: Statistical data metamodel 

 

 



50 

Diagram description: definitions 

 
 
M_Function 
(And M_GeneratedFunction, M_DerivedFunction)  
 

The M_Function class is the register of the data definitions.  
 

An M_Function can be an M_GeneratedFunction or an M_DerivedFunction. An 
M_GeneratedFunction is an “original” or “primary” M_Function of the information 

system, not defined in terms of other M_Functions. An M_DerivedFunction, on the 
contrary, is defined in terms of other M_Functions.49 
 

An M_Function has as dimensions any number of M_StructureItems 
(/HasAsDimension association). 
 

An M_Function can allow (or not allow) any number of M_CombinationsGroup 
(/Allows and /NotAllows associations). 
 

Attributes: 

• IsCalculated [mandatory]: an M_Function is “calculated” if its graph “G” is obtained 
as the output of a calculus performed within the statistical information system; if not calculated, 

an M_Function is “collected” from external sources, i.e. its graph can be “reported” from 

reporting persons or institutions, extracted, transformed and loaded (“ETL” in data warehouse 

language) from other EDP databases or applications, “drawn up” from “statistics producers” 

(sorts of administrators, see [6]) and so on. 

• ArchiveReference [mandatory]: the identifier of the physical archive (or archives) in 

which the M_Function extension is (or can be) stored.  
• Description [mandatory]. 

 

Integrity constraints: 

- An M_GeneratedFunction is “collected” (it cannot be “calculated” because it is not 
defined in terms of other M_Functions). 

- An M_DerivedFunction can be collected or calculated (if an M_DerivedFunction 
is collected, it is defined in terms of other M_Functions but its calculus is not performed 

within the information system). 

- An M_Function cannot “allow” and “not allow” M_CombinationsGroups at the 
same time. 

 

 

M_StructureItem 
 

An M_StructureItem is a mono-dimensional component of the Cartesian structure of an 

M_Function.  
 

                                                 
49 The distinction is expressed as an “is a” in the diagram rather than with an attribute because it is referred to later in 

the M_Transformation diagram. 



51 

An M_StructureItem is the use of an M_1dimVariable (/IsUsageOf association) as 
the dimension of the M_Function. At the same time, an M_StructureItem is the use of an 
M_1dimSet (/IsUsageOf association) as the set of allowable values (also the “domain in 

use”) for the M_1dimVariable referred to within the M_Function. 
 

In addition to the main functional dependence, i.e. the one between all the independent 

M_Variables and the dependent ones, other functional dependencies can exist in an 

M_Function, in which an M_StructureItem is dependent on a group of 

M_StructureItems that do not coincide with the independent ones. Such dependencies are 
expressed by the /DependsOn association. In this case, the values of the dependent 

M_Variable are determined by the values of the M_Variables it depends on.  
 

Attributes:  
• IsIndependent [mandatory]: if “true”, the M_1dimVariable referred to is 

independent (also called the “key” variable); if “false”, it is dependent. 

• IsAttribute [optional]: if “false”, the M_1dimVariable referred to describes a 

property type relevant to the whole set of independent M_Variables of the M_Function 
(a “proper measure” of the M_Function), if “true” it describes a property type of all the 
occurrences or some of them (an “attribute” of the M_Function).50 

• IsReferenceTime [mandatory]: if “true”, the M_StructureItem is independent and 
refers to a time instant based M_Variable that plays the role of reference time. 

• IsSender [mandatory]: if “true” the M_StructureItem refers to an M_Variable 
that contributes to the identification of the sender of the observation (e.g. the reporting agent for 

primary reporting, the country for secondary reporting). 

• IsFactKey [mandatory]: if “true” the M_StructureItem is independent and has a 
meaning that refers to other M_StructureItems representing measures. For example, the 

two following data structures are semantically equivalent, but in the latter the 

M_StructureItem referring to the variable “Economic Phenomenon” is a “fact key”
51
 

because it gives a meaning to the generic measure “Total Amount”, that would be meaningless 

“per se”: 

 

Data structure no.1 

 

 

 

 

 

Data structure no.2  

 

 

 

 

• IsAggregated [mandatory]: if “true”, the M_Set referred to contains one and only one 
M_Element, describing a property common to all the observations of the M_Function. 

                                                 
50 Note that an “attribute” is not an independent M_Variable, therefore the M_Fucntion graph cannot contain 
two different observations that differ only in their attribute values. 

51 “Fact key” is a term taken from data warehouse terminology.  

CUSTOMER 

RESIDENCE  

CURRENCY LOANS - 

TOTAL 

AMOUNT 

CURRENT 

ACCOUNTS 

- TOTAL 

AMOUNT  

Rome Euro 1.000.000 2.000.000 

CUSTOMER

RESIDENCE 

CURRENCY ECONOMIC 

PHENOMENON 

TOTAL 

AMOUNT 

Rome Euro Loans  1.000.000 

Rome Euro Current account  2.000.000 



52 

• IsCalculated [mandatory]: if “true”, the value of the M_StructureItem in the 

M_Function graph is calculated from the values of other M_StructureItems.52 
• IsImplicit [mandatory]: if “true”, the M_StructureItem does not appear explicitly 

in the graph of the M_Function, but it is useful to express some additional meaning and to 

harmonize the definition space of M_Functions with different explicit 

M_StructureItems. 
 

Integrity constraints: 

- The M_Variable and the M_Set used by an M_StructureItem must refer to the 

same M_Domain and the M_Set must be a subset of the M_Variable defining M_Set  
- An M_Variable can be used by any number of M_StructureItems. 
- An M_Set can be used by any number of M_StructureItems. 
- If IsAttribute is “true” then IsIndependent is “false”. 
- In an M_Function structure there cannot be two M_StructureItems referring to the 

same M_Variable in the same role of dependent or independent variable. 

- In an M_Function structure there does not necessarily exist a fact key, a reference time 

or a sender 

- If one or more of the independent M_Variables of the M_Function refers to an 

M_Domain with a historical M_AlgebraicStructure, the M_Function must have 

a reference time dimension. 

- For an M_Function no more than one fact key, reference time and sender can exist, but it 

is possible to identify each of them by means of more than one M_StructureItem; in 
this case, for all the M_StructureItems that identify the fact key (or the reference 
time, or the sender), the IsFactKey (or the IsReferenceTime or the IsSender) is 
“true”; as an example for the “fact key”, let us examine the following data structure, 

semantically equivalent to those described above:   

 

  Data Structure no.3  
CUSTOMER 

RESIDENCE 

CURRENCY ECONOMIC 

PHENOMENON 

TYPE OF 

MEASURE 

AMOUNT 

Rome Euro Loans Total  1000000 

Rome Euro Current accounts Total  2000000 

 

In this structure, the M_StructureItems referring to the M_Variables 
“EconomicPhenomenon” and “TypeOfMeasure” have the IsFactKey property. Of course, 
this kind of possibility has a practical usefulness when there is more than one possible “type 

of measure” (e.g. total, min, max, mean, variance, …). 

- If IsFactKey is “true”, IsIndependent is also “true” 
- If IsReferenceTime is “true”, IsIndependent is also “true” 
- If IsSender is “true”, IsIndependent is also “true” 
- If IsCalculated is “true”, then IsIndependent is “false” 
- When an M_Function has more than one “proper measure”, the /DependsOn 

relationship can be used to associate the proper attributes to each “proper measure”. For 

example: 

Example 13: 

Independent variables: Time, Branch, Currency; 
Proper measures: total amount of loans, total number of operations; 
Attributes: “precision”  
/DependsOn Association: The”precision” attribute depends on the “total amount of loans” 

                                                 
52 The algorithm is defined as an M_Transformation. 



53 

- If IsImplicit is “true”, then IsAggregated is “true”. 
 

 

M_CombinationsGroup 
 

An M_CombinationsGroup is a group of combinations of values of given 

M_1dimVariables53
 to be excluded from (or allowed in

54
) the Cartesian product of the 

M_StructureItems to specify the set of “a priori” admissible values of the M_Function.  
 

Because of an M_Function inherits the properties of the M_Variables used and the 

properties of their M_Domains, no M_CombinationsGroup definition is needed when the 

exclusions/inclusions are already specified for the M_NdimSet that the M_NdimVariable is 
defined on or from the M_Fullset of its M_Domain. To this end, consider that the 
M_Function implicitly inherits the properties of all the M_NdimVariables obtainable as a 
composition of any number of the M_1dimVariables used by its M_StructureItems. 
 

The specification of combinations of events to be excluded (or not) is made in different ways 

depending on the extent to which they are impossible (or possible): if “always”, it appears in the 

definition of the M_Fullset of the relevant M_NdimDomain, if “for a given 

M_NdimVariable”, it is made in the relevant M_NdimSet, if “for given M_Functions”, it is 
made by means of an M_CombinationsGroup. 
 

An M_CombinationsGroup uses an M_NdimVariable (/UsesVariable association) 
and an M_NdimSet in which the M_NdimVariable takes values (/UsesSet association). A 
“combination” is a value of the M_NdimVariable, which is an M_Element of the 

M_NdimSet.55 
 

An M_CombinationsGroup can be allowed (/Allows association) or not allowed 

(/NotAllows) by any number of M_Functions, provided every M_1dimVariable that 

composes the M_NdimVariable used by the M_CombinationsGroup is also part of the 
M_Function structure (i.e. is used by an M_StructureItem of the M_Function). If the 
M_CombinationsGroup is allowed, it implies that all the combinations not belonging to it are 

“not allowed”.  

 

The choice between the /Allows and the /NotAllows association depends on the ease of 
definition: when only a few combinations have to be excluded, it would probably be better to use 

the /NotAllows, if almost all the combinations have to be excluded, it would probably be better 

to use the /Allows, defining the allowed ones because they are fewer.  
 

An M_CombinationsGroup is a relation (a subset of the Cartesian product) between a number 

of M_Variables and relevant M_Sets, therefore a typical M_CombinationsGroup looks 
like this: 

 

                                                 
53 A combination is thought of as a set of values, one for each M_1dimVariable; therefore, a combination is a value 

of the M_NdimVariable that is constituted of the given M_1dimVariables 
54 I.e. the allowed combinations are maintained and all the other combinations are excluded 

55 In other words, the M_NdimSet contains the combinations. 



54 

 
Var1 Var2 

1 A 
1 B 
2 B 
.. .. 

 
Attributes: 

• Description [mandatory] 

 

Integrity constraints: 

 

- The M_Variable and the M_Set used by an M_CombinationsGroup must refer to 

the same M_Domain  
- An M_Variable can be used by any number of M_CombinationsGroups. 
- An M_Set can be used by any number of M_CombinationsGroups. 

 

 



55 

Description of the functions about functions metamodel 

 

 

The functions about functions are data that give information about other data. They are defined 

using the same metamodel as a generic function
56
 but in addition they make references to the 

functions which they give information on. 

 

An M_FunctionAboutFunction can provide information about any number of 

M_Functions; information on an M_Function can be given by means of any number of 

M_FunctionAboutFunctions (/ProvidesInformationOn association).  
 

The level of detail of the information can vary from a minimum (i.e. referred to the whole 

M_Function) to a maximum (i.e. referred to the single M_Function occurrence57), passing 
through all the intermediate possibilities (e.g. the occurrences characterized by some values of some 

M_Variables of the M_Function). The independent M_Variables of an 

M_FunctionAboutFunction are therefore a convenient subset of the independent 

M_Variables of the described M_Functions. By convention, the property expressed by a 
value of the M_FunctionAboutFunction is referred to the observations of the described 

M_Functions having the same values for the common independent M_Variables. The 
M_Function name described can also be included as independent M_Variable in the 

M_FunctionAboutFunction structure.  
 

There can be many types of function about function, depending on the information they contain. 

The main types are “attribute” data, “status” data and “quality” data. Although these three cases 

only are represented in the class diagram below, the list of types of 

M_FunctionAboutFunction is considered open ended, i.e. it can be extended by the 

Administrator of the M_Functions  to include also cases of interest in the specific environment. 

 

“Attribute” data describe attributes of the M_Functions referred to, i.e. properties of the 

M_Functions occurrences (e.g. true value, estimated value, seasonally adjusted, …). The 

“attribute” data can act as a specification for producing the described data or can simply be 

documentation.  

 

“Status” data give information about the so-called “knowledge domain” of the M_Functions, i.e. 
the availability of the observations in the data warehouse. In many cases, in fact, the points at which 

the M_Function is known cannot be inferred completely from the M_Function graph and 
have to be declared explicitly (or simply this may be appropriate). It is useful, for example, to 

document whether the expected respondents of a survey have responded or not, the dates for which 

a periodical survey has been executed, the cases in which derived data have also been calculated (or 

not).  

 

“Status” data can be necessary, for example, when the “known” graph is not completely 

represented, intentionally omitting some observations, such as those in which the measures are 

zero.
58
 The lack of an observation results in uncertainty if the measure is unknown or zero.  

                                                 
56 Note that this approach ensures that the data about data is defined and treated exactly like the described data and 

that they can be stored in the same data warehouse. 

57 In this case, the information can also be put in the M_Function itself in the form of additional attributes. 

58 Such a convention is common for example for quantitative M_Functions where the possible combinations are 



56 

 

Example 14: a “status” data 
59
: 

 
M_Function Sender Date Knowledge 

F1 A 2005.12.31 Known 
F1 B 2005.12.31 Known 
F2 B 2005.12.31 Not known 
.. .. .. .. 

 

 

The “status” data of the M_Functions are usually produced by the software artefacts that 

process the graph. 

 

The “quality” data describe some quality attribute of the referenced M_Functions. They usually 
measure “if” and “how” the observations in the data warehouse conform to a given set of not 

mandatory but recommended “integrity” rules. 

 

Example 15: 

M_Function no. 1: amount of loans classified by currency, counterparty country, activity sector 

M_Function no. 2: amount of loans classified by currency, maturity 

Integrity rule: the M_Functions no .1 and no .2, aggregated at the “currency” detail, should coincide 

Quality data: Unbalance of M_Functions(no. 2 – no. 1) classified by currency (the unbalance measures the 

amount of the error) 

 

In this example, the quality data can be calculated by means of an M_Transformation (see in 
the “Description of the transformations metamodel” section). The basic idea is that statistical data 

can also be defined and calculated to give a “measure” of the quality of other data. The operands are 

the “input” data (whose quality has to be measured) and the result is the quality data. Note that in 

this case the integrity rule is formally expressed as an M_Transformation definition. 

However, quality data are not necessarily calculated.  

 

Quality data can also contain information on formal errors (e.g. missing or unrecognized values, 

lack of integrity). 

 

 

 

 

 

 

                                                                                                                                                                  
so many that it would be burdensome to represent them all (e.g. to store also observations whose measure is equal zero), 

and only significant observations are exchanged / processed / stored. This choice, however, makes the interpretation of 

the “observations not  physically available” ambiguous: in fact their measures could be “zero” or the observations not 

have been sent by the provider / not stored / not calculated and therefore “unknown”. 

59 The example is taken from the Bank of Italy information system (in the real case the dependent variable, whose 

M_Elements are 1=known and 0=unknown, is not expressed explicitly, because the zero values are omitted and the 

“1” values are implied by the presence of the occurrence). 



57 

Functions about functions: class diagram  

 
 
 
 

�

Statistical Data: 
M_Function

M_FunctionAboutFunction

M_QualityFunction M_StatusFunctionM_AttributeFunction

+ /ProvidesInformationOn

*

*

 
 

Diagram 6: Functions about functions metamodel 
 
 
 
 
 

 



58 

Transformations 
 

Description of the transformations metamodel  

 

An M_Transformation is thought of as a process that calculates a “result” by applying an 
“algorithm” to one ore more “operands”. The result and the operands are called 

M_TransformationMembers. Each M_TransformationMember can be either an 

M_Function or an M_Concept. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Transformation 

 

The external view of an M_Transformation (Figure 5) links the input data to the calculated 
data (which in turn can be inputs of other M_Transformations), documents the calculus 

sequences, allows the active software to determine the calculus order and to establish which 

calculated data have to be refreshed when collected data changes.  

 

The internal view of an M_Transformation deals with the way its algorithm is specified.
60
 In 

fact it can be composite, can make use of many M_Operators and combine them in a 

hierarchical graph, exactly like in an expression. In the following example, given two functions F1 

and F2 having the same M_Variables, an M_Transformation calculates the M_Function 
F3 as the percentage of F1 on the sum of F1 and F2 using the operators +, *, / defined among 

M_Functions: 
 

F3  =   F1  / (F1 + F2) * 100 

 

This M_Transformation has three steps, the first calculates the partial result:  
P1 = (F1 + F2),  

the second produces another partial result:  

P2 = F1 / P1  

and the third obtains the final result as:   

F3 = P2 * 100.  

                                                 
60 The internal view of an M_Transformation is fully compliant with the “expression metamodel” of the CWM 

foundation packages (see [13]), but in addition it is  historical. 

Operand1 Operand2 OperandN ......

 

Algorithm 

Result 

T

r

a

n

s

f

o

r

m

a

t

i

o

n 



59 

 

This is the hierarchical graph of the M_Transformation in the example: 

 

     Operands   Algorithm internal view    Result 
 

F1        N1       / 

         N6    P2 

       N2     + 

                   N5   P1   

F2                  N3         * 

            N7       F3 

100           N4 

 
Figure 6: Transformation graph 

 

The steps of an M_Transformation and the references to the external operands are called 

M_TransformationNodes (shown as circles in the graph above). There exist three types of 
M_TransformationNodes: those that reference an M_Operator (+, *, /) called 

M_OperatorNodes, those that reference a costant (100) called M_ConstantNodes, and those 
that reference an item of the model that is either an M_Function or an M_Concept (F1, F1 

again, F2) called M_ModelItemNodes.  
 

The links between the steps (shown with arrows in the graph above) are represented in the “class 

diagram“ by mean of an association. The links are hierarchical and oriented from the “child” (the 

arrow tail) toward the “parent” (the arrow head). A “parent” must be an M_OperatorNode.  
 

Note that while the operands and the result must be defined in the proper classes of the metamodel, 

the partial results (P1 and P2 in the example) are not defined, because they serve only for the 

calculation. 

 

M_Operators and M_Constants are registered in the classes having the same name. The 

grammar of the M_Operators is left free, so very different kinds of operators can be introduced 
as necessary and incrementally (e.g. algebraic, logical, statistical, for data manipulation, and so on). 

Obviously, the type of child nodes (i.e. M_Function of various types, M_Variable, M_Set, 
M_Element, scalar constant, matrix constant, …) must be equal to the type of the input parameters 

provided for by the parent M_Operator. An operator can be described by a text structured as an 
expression in which other operators can be composed (ExpressionTemplate attribute of the 
M_Operator class). When an M_Operator must be “actively” used by automatic processes, it 

makes reference to a software routine able to perform it (such a routine is automatically invoked by 

the software that performs the calculus sequence).  

 

Even if an M_Transformation provides the specification of a calculus, the calculation is not 
necessarily performed within the information system. For example, the definition of the 

M_Tranformations can be used to tell the data sender how to calculate the data to be sent or 
can be used by the data sender to document how the data sent were calculated. For this reason, the 

M_TransformationResult class refers to (/RefersTo association) the 

M_DerivedFunctions (see the “Description of the statistical data metamodel” section) rather 

than the “calculated” ones.  

 



60 

As for the general case, the classes and the associations of the transformations section are also 

historical. Consequently the M_Transformation structure can change with respect to the time: 

the whole M_Transformation can be considered as a set of component 

M_Transformations, one for each “reference time” value. 

 

 



61 

Transformations metamodel: class diagram  

 

 

 

 
 

M_Transformation

+ Description

+ Expression

M_TransformationMember

M_TransformationResult

M_TransformationNode

+ Description

+ ParentParameter

M_ItemModelNode M_ConstantNode M_OperatorNode

M_Constant

+ ConstantValue

+ ArchiveReference

M_Operator

+ RoutineReference

+ Parameters

+ ExpressionTemplate

+ Description

Statistical Data: 

M_Function

Statistical Data:         

M_GeneratedFunction

Statistical Data:     

M_DerivedFunction

Statistical Concepts: 

M_Concept

Statistical 

Concepts: M_Elem...

Statistical Concepts: 

M_Variable

Statistical Concepts: 

M_Set

+ /IsFormedBy

*

+ /Applies

1

*

+ /RefersToConstant

1

*

+ /HasAsResult

1

1

+ /RefersTo

0..1

1

+ /RefersTo

0..1

*

+ /HasAsOperand

1..*

1

+ /RefersTo

*
0..1

+ /RefersTo

0..1

*

�
⊳

�

�

�
��

� �

+ /IsParent

0..1

* ⊳

 
 

 

Diagram 7: Transformations metamodel 



62 

Diagram description : definitions 
 
M_Transformation 
 

This class registers the M_Transformations defined in the information system. An 

M_Transformation is an expression (i.e. is a finite and ordered sequence of operators applied 
on some operands to give a result) that is defined through a hierarchical tree and, optionally, 

through an equivalent textual expression (Expression attribute). 
 

An M_Transformation has one result (/HasAsResult association) and many operands 

(/HasAsOperand association). 
 

An M_Transformation is formed by any number of M_TransformationNodes 
(/IsFormedBy association) that are structured as a tree, in which the result of an 

M_TransformationNode is the argument supplied to another M_TransformationNode, 
that is the immediately higher level node in the tree, and there is a single highest level 

M_TransformationNode (the root node), that gives the result of the whole 

M_Transformation. 
 

Attributes: 

• Expression [optional]: a textual but structured representation of the 

M_Transformation expression that uses proper identifiers for operators and operands and 
uses special symbols (e.g. brackets) to specify the sequence of the applied operators.  

• Description [optional] 
 

Integrity rules 

• The operands of an M_Transformation are the M_ItemModelNodes it consists of.  
• The structure of the textual expression, if present, must match the structured tree of the 

M_TransformationNodes 
 

 

M_TransformationMember  
 

An M_TransformationMember is a result (M_TransformationResult) or an operand 
(M_ItemModelNode) of an M_Transformation.  
 

 

M_TransformationResult  
 

• Class of the results of the M_Transformations. An M_TransformationResult refers 
either to an M_DerivedFunction or to an M_Concept, never to both (/RefersTo 
association) 

 

 

Integrity rules: 

• The M_TransformationResult is the outcome of the root node of the 
M_Transformation 



63 

• An M_TransformationResult refers either to an M_DerivedFunction or to an 

M_Concept, never to both 
• An M_Function can be referred to by one and only one M_TransformationResult (in 

other words, an M_Transformation specifies the only method to be used to calculate the 

M_Function graph) 
• An M_Concept can be referred to by any number of M_TransformationResults (in 

other words, an M_Transformation specifies one of the possible methods to obtain an 

M_Concept)  
 

 

M_TransformationNode 
(and M_ItemModelNode, M_OperatorNode, M_ConstantNode)  
 

The class registers the nodes of the M_Transformations, i.e. their “atomic steps”. An 

M_TransformationNode can be of different types: an M_ItemModelNode (which refers to 
an item of the Matrix metamodel: an M_Concept, an M_Function), an M_OperatorNode 
(which refers to a composition law) or an M_ConstantNode (a constant used in the expression, 
also with composite structure).  

 

An M_ItemModelNode is a use of an item of the metamodel as an external operand of an 

M_Transformation (/HasAsOperand association) and refers to either an M_Function 
or an M_Concept (/RefersTo associations). An M_Function or an M_Concept can be 
referred to by many M_ItemModelNodes. 
An M_OperatorNode is a use of an M_Operator within an M_Transformation 
(/Applies association).  
An M_ConstantNode is a use of an M_Constant within an M_Transformation 
(/RefersToConstant association). 
 

An M_TransformationNode participates in the hierarchical tree structure and can have 0 or 1 
parent M_OperatorNode (/IsParent association). The root node of an 

M_Transformation has no parent node, the other nodes have one parent node. An 

M_OperatorNode is the parent of any number of M_TransformationNodes. 
 

Attributes: 

• Description [optional] 
• ParentParameter [mandatory, except for the root node]: the parameter of the 

M_Operator used by the parent M_OperatorNode, which the child node is given to as an 
argument; 

 

Integrity rules: 

• An M_TransformationNode belongs to one and only one M_Transformation 
• M_TransformationNodes for which an M_OperatorNode is the parent must 

correspond to the parameters of the applied M_Operator in type and multiplicity (every 

M_TransformationNode must be the argument of one of the parameters of the 

M_Operator). 
 

 



64 

M_Constant 
 

This class represents the constant values that are usable in the M_Transformations (through 
the M_ConstantNodes). Scalar or structured constants are allowed. 
The value of an M_Constant can be represented either by using the ConstantValue attribute 
(e.g. when the constant is a scalar quantity such as a number or a character string) or by providing a 

link to an external data structure containing the constant values (a flat file, a relational table and so 

on).  

 

Attributes: 

• ConstantValue [optional]: the constant value  
• ArchiveReference [optional]: the link (url, location, etc.) to the external structure 

containing the constant value.  

 

 

M_Operator 
 

This class registers the M_Operators applicable within the M_Transformations (through 
the M_OperatorNodes). An M_Operator can be applied by many M_OperatorsNodes. 
 

An M_Operator is a composition law that composes a certain number of input parameters and 

gives one or more output parameters. Input and output parameters have a predefined data type and 

multiplicity. 

 

An M_Operator has as attribute a human readable description and a link to a software routine 

able to perform it. An M_Operator can be composite, i.e. constituted of a structured symbolic 

expression that makes use of other M_Operators and of the generic parameters of the 

M_Operators (ExpressionTemplate attribute), for example imagine an operator that 

calculates the percentage of an M_Function with respect to another M_Function: 
Operator : % 

Expression template:     F0    =  ( F1  /  F2) * 100 

F0 = expression result (Type=M_Function, multiplicity=1) 
F1 and F2 = expression operands (each one of type = M_Function and multiplicity = 1) 
/  , *  = operators used in the expression 

 

Attributes: 

• RoutineReference [optional]: the link (url, location, etc.) to the external structure 
containing the software able to perform the operator. 

• Parameters [mandatory]: Specification of the parameters of the M_Operator, with their 
role (input or output), data type and multiplicity  

• ExpressionTemplate [optional]: Character string containing the symbolic expression that 

describes the algorithm. 

• Description [optional]. 
 

 

 



65 

Other related models 
 
 

The representation of the references to external data and of the administration system of the 

statistical hierarchy models is based on two proper models. 

 

References and administration rules are designed to be linked to every model at every level of the 

statistical hierarchy. 

 

The basic idea is to define a generic entity “resource” (that will be a “documentable resource” in the 

Reference Model and an “administrable resource” in the Administration Model) so that the 

components of any model at any level of the statistical hierarchy can be considered as instances of 

this entity.  

 

The properties and relationships of the entity “resource”, therefore, will be valid for all the 

statistical hierarchy components. 

  
Example: 
A “note” could be linked to a generic DocumentableResource. 
Since any component of the statistical hierarchy is a DocumentableResource, a note could be linked in the same way to 
any kind of instance at any level of that hierarchy (e.g. to the M_Domain concept, which is an instance of the level 3 
Matrix metamodel, or to the ‘Securities’ M_Domain, which is an instance of the level 2 model)  

 

A detailed description of the entity “resource” is beyond the scope of this document; however, 

broadly speaking, “resources” can have an XML or a relational representation, i.e., in the relational 

case, each “resource” can be represented by one or more “relational rows” and can be identified 

using the corresponding “relational key”. 

 

 



66 

External references model 
 

External references: class diagram 

 

DocumentableResource

+ Id
+ Type

AttachmentLink

+ Id
+ Type
+ Url
+ Version

AttachmentProperty

+ PropertyName
+ PropertyValue

+ /LinkedTo

1..*

*

�

+ /Has

1

*

⊳

 
 

Diagram 8: External references  metamodel 
 

 

 

Diagram description: definitions 

 

DocumentableResource  
 

A generic resource is a DocumentableResource when further information can be attached to 

(/LinkedTo) the resource: the information can be structured or not-structured. All the 

components of the statistical hierarchy and the AttachmentLinks themselves are 

DocumentableResources (an AttachmentLink can be linked to another 

AttachmentLink).  
 

Attributes: 

• Id [mandatory]: the unique resource identifier within the system; the identifier is based on the 

relational representation of the resources. 

• Type [mandatory]: resource type; this property can be used to classify different types of 
resources in the information system. 

 

 

AttachmentLink  
 

This class represents the link to the additional information (i.e. notes, documents,..) that can be 

linked to the resources (/LinkedTo). Through its link an attachment is itself a resource. Note that 

through this class the model describes the way attachments are linked to resources but does not 

establish any rule about attachment structure. 



67 

 

Attributes: 

• Id [mandatory]: : the unique attachment identifier within the system 

• Type [optional]: this property can be used to classify different types of attachment in the 

information system (Notes, Documents, …). 

• Url [mandatory] : specifies the location where the attachment is stored to permit its retrieval. 

• Version [optional] : identifier of the version of the attachment. 

 

 

AttachmentProperty 
 

It is possible to enrich the information about the attachment (/Has relationship) by specifying 
further AttachmentProperties. Since an attachment is not a model entity, its properties are 

not fixed and can be defined according to the attachment type.  

 

Attributes: 

• Name [mandatory]: property name  

• Value [mandatory]: property value 
 

 

 



68 

Administration model 
 

Administration: class diagram 

 

 

AdministrableResource

+ Id
+ Type
+ CircularityLevel

Profile

+ Id
+ Description+ /Manage

*

*

Administrator

+ Id
+ Description

+ /Has

*

*

BusinessUnit

+ Id
+ Description

+ /BelongTo1

*

*

*

+ /Use

Role

+ Id
+ Description + /Has

1

*+ /DefinedIn

⊳

⊳⊳

⊳

��

 
 

Diagram 9: Administration  metamodel 
 

Diagram description: definitions 

 

AdministrableResource  
 

A generic resource is classified as an AdministrableResource when it is needed to document 

the roles and competencies necessary to administer it.  

 

An AdministrableResource has information associated with it about the administrators 

(users who are responsible for the maintenance of the resource) and about the circularity level (the 

use of the resource in the system can be free or restricted to specific company areas). Hence, for 

each AdministrableResource it is necessary to define the set of Profiles authorized for 
its management (/Manage association) and the set of company business areas that are allowed to 

use it (/Use association). 
 

Attributes: 

• Id [mandatory]: the unique resource identifier within the system; the identifier is based on the 

relational representation of the resources. 

• Type [optional]: resource type; this property can be used to classify different types of 
resources in the information system. 

• CircularityLevel [mandatory]: specifies the circularity level of the resource, related to 
the fact that its management is based on specific requisites and needs: 

� PU: “public” resource, available for all the BusinessUnits. 



69 

� PR: “private” resource, available for specific BusinessUnits. 
� UT: “user” resource, available for a specific user. 

 

 

Profile  
 

Represents the authorization profile assigned to maintain (/Manage association) the 

AdministrableResource. A resource can be managed by many Profiles and the same 

Profile can manage many resources. Profiles refer to a number (/Has association) of 

Administrators. 
 

Attributes: 

• Id [mandatory]: profile identifier.  

• Description [mandatory]: profile description. 

 

 

Administrator 
 

Represents the “logical” user assigned to the maintenance of resources. An Administrator 
must be associated with one or more Profiles (/Has association) through which the 

Administrator can be linked to the AdministrableResource. The Administrator 
has a Role (/Has association) within the BusinessUnit he belongs to (/BelongTo 
association). 

 

Attributes: 

• Id [mandatory]: administrator identifier. 

• Description [mandatory]: administrator description. 
 
 
Role 
 

Represents the business roles defined within a BusinessUnit (/DefinedIn association). Each 
BusinessUnit comprises many Roles and each Role can be associated with many 

Administrators. 
 

Attributes: 

• Id [mandatory]:: role identifier. 

• Description [mandatory]:: role description. 

 

 

BusinessUnit 
 

Represents the component of the organization. BusinessUnits  use (/Use association) 

AdministrableResources.  
 

Attributes: 

• Id [mandatory]: business unit identifier. 

• Description [mandatory]: business unit description. 



70 

APPENDIX 

A short guide to UML notation 
 
 

Introduction 
 

This section gives a brief overview of the use of UML notation in this document. The examples are 

taken from the diagrams.  

 

Among the UML modelling tools, only the “class diagram” is used. 

 

Because the diagrams are not intended to give all the information needed for an EDP 

implementation, some UML indications are not used (see below). On the other hand, the historicity 

of the metamodel is not rendered in UML notation (this is to say that the classes and the 

associations of the metamodel are in general dependent on time: this topic is also treated in the 

“Historicity and other common properties” section).  

 

 

Classes and their Attributes 
 

In UML, an object class is something of interest for the user and models the characteristics and the 

behaviour of some objects.  

 

The UML graphic representation of a class is a rectangle split into three compartments. The top 

compartment is for the class name (which is mandatory), the second is for attributes 

(characteristics) and the last is for operations (behaviours). In this document only the data structures 

are modelled, so behaviours are not indicated and then the third compartment is left empty.  

 

As a naming convention, the names of classes and attributes are assembled using one or more words 

linked together and capitalizing the first letter of each word. The names of the classes of the Matrix 

metamodel are preceded by an “M_” to distinguish them from terms used in the common language, 

according to the terminology principles set out in [6], [8].  

 
 

M_Set

+ IsEnumerated
+ Criterion
+ Description
+ IsBooleanType
+ IsOrdinal

 
Figure A1 Class and its attributes 

 

In Figure “A1” the name of the class is M_Set and its attributes are IsEnumerated, 
Criterion, Description, IsBooleanType and IsOrdinal61

 (note that the full identity 

of an attribute includes its class, e.g. a complete attribute name is “M_Set.Description”).  
                                                 

61 Attributes named “Is…Something…” have two possible values: “true” and “false”. 



71 

 

In UML the attribute name is preceded by the symbol “+” (to mean public accessibility) or “-“ 

(private). In this document all the attributes are considered “public”. 

 

Every class of the metamodel has an identifier, which is an attribute (or more than one) whose value 

uniquely identifies an instance of the class. The identifiers are not shown in the diagrams of this 

document although they are presumed to exist for every class, to be mandatory and to be named by 

adding “Id” after the name of the class (e.g. M_SetId, M_FunctionId, …).  

 

Attributes referring to other classes, whose existence is implied by an association, are not explicitly 

indicated. 

 

The UML distinction between “abstract” and “concrete” classes is not indicated. 

 

Because the metamodel is divided into parts, it is possible to see the same class in more than one 

diagram. The complete description of the class meaning and of its attributes, however, is presented 

in one diagram only (the diagram of the section to which the class is most related, usually the first 

diagram in which the class appears). In the other diagrams the class is drawn just to be referred to, 

the rectangle is painted with a grey background and its name is preceded by the name of the 

diagram the class belongs to. 

 
 

StatisticalConcepts: 

M_Set

 
Figure A2 - Class belonging to another class diagram 

 

Inheritance 
 

A class can be specialized by subclasses that inherit all the attributes (and operations) of the 

superclass, but not the associations. A subclass can have attributes (and operations) in addition to 

those of the superclass. 
 

 

 

M_Hierarchy

+ Description

M_FreeHierarchy

 
Figure A3 – Subclass that inherits from a superclass 

 

In Figure A3 the class M_FreeHierarchy is a subclass of the M_Hierarchy class. 
 

 

Associations 
 

Because of the historicity of the metamodel, the links between the instances of the classes can vary 

with time. In this context, the multiplicity of the associations would always be many to many. To 



72 

avoid such a loss of descriptive power, in this document the multiplicity of the associations is 

described with reference to the single, generic time instant.  

 

The navigability of associations is intended to be always in both directions. In addition to the 

classical UML notation, a full black triangular arrow specifies the sense in which the name of the 

relationship should be read.  

 

There are various kinds of association types that make it possible to explain the relationships 

existing between classes. 

 

 

Simple association 

 
A simple association links two classes to each other by specifying the multiplicity of the link. 

 

In UML it is possible to specify a variety of “multiplicity” rules. The ones used in the diagrams are: 

 

0..1  : Zero or one 

1    : One and only one  

1..*  : One or many 

*    : Zero, one or many (any number) 

 

A B1

1..*  
Figure A4 - Simple association 

 

Figure A4 shows the simple association between class A and class B. The multiplicity specifies that 

an object of B can be associated with one and only one object of A and that an object of A can be 
related to one or many objects of B.  
 

It is possible to give a name to an association. Naming associations is useful to describe their 

purposes. Like class and attribute names, the names of associations are also assembled using one or 

more words linked together and capitalizing the first letter of each word. Every association name is 

preceded by ‘/’ and the visibility indicator (i.e. ‘+’ for public, ‘-‘ for private). In this document all 

the associations are considered “public”.  
 

M_Domain

+ DataType
+ CodingSystem
+ Description
+ DimensionNumber
+ M_ElementIdentifier

M_SpaceOfResults

+ IsOrdinal
+ IsTimeInstantBased
+ Description

⊳

+ /DefinedOn

1 *

 
Figure A5 Association names 

 

 

In the case of two classes joined by more than one association it is extremely useful to name the 

purpose of the association to explain the diagram completely. Figure A6 shows this case. 
 



73 

 

M_Function

+ Archive
+ IsCalculated
+ Description

M_Combinations
Group

+ Description

+ /Allows **

+ /NotAllows ** �

�

 
Figure A6 Association names 

 
 

Aggregation 
 
Simple Aggregation 
 

M_ElementComposition

+ Description

M_FreeHierarchy

+ /GroupOf
1..*

*

 
Figure A7 A simple aggregate association 

 

Aggregation is a special kind of association indicating that a set of classes (subordinate classes) are 

linked to build another class (aggregated or parent class). In a simple aggregation association, an 

instance of a subordinate class can survive the related instance of the parent class. The symbol 

representing an aggregation relationship is an unfilled diamond shape on the side of the aggregated 

class. Figure A7 shows an example of an aggregation relationship between M_FreeHierarchy 
and M_ElementComposition. 
 
 

Composition 
 

The composition (or composite aggregation) relationship is a stronger kind of aggregation. In a 

composition the lifecycle of the instance of a subordinate class is influenced by that of the parent. 

An instance of a subordinate class cannot survive the related instance of the parent class. The UML 

convention represents composition as an aggregation, but in this case the diamond shape is filled. 

Figure A8 shows a composition relationship between M_Function and M_StructureItem. 
 



74 

M_Function

+ Archive
+ IsCalculated
+ Description

M_StructureItem

+ IsIndipendent
+ IsMeasure
+ IsReferenceTime
+ IsSender
+ IsFactKey
+ IsAggregated
+ IsCalculated
+ IsImplicit

� + /HasAsDimension

*

1

 
Figure A8 An aggregate association by composition 

 



75 

REFERENCES 
 

 

 

[1] Banca d’Italia – “The monetary and financial statistics of the Bank of Italy” – March 1994.  

[2] Banca D’Italia - "L'informazione statistica nell'attività della Banca centrale" (a cura del 

Comitato per le statistiche creditizie e finanziarie, coordinatore C. Conigliani), Tematiche 

istituzionali - Ottobre 1996. 

[3] Ciampi C.A. "La statistica nell'attività della Banca d'Italia" - intervento all'Università degli 

Studi di Roma La Sapienza - Banca d'Italia - Bollettino economico - n. 20 - 1993. 

[4] Del Vecchio V. - “Statistical data and concepts representation” (English translation of “La 

Rappresentazione dei dati e dei concetti statistici” - Banca D’Italia - Tematiche Aziendali - 

settembre 1997) 

[5] Del Vecchio V. - “The Banca d’Italia’s active statistical meta-information system” – 

European Commission Information Society Technologies Programme - MetaNet Project - 

Proceedings of 1
st
 MetaNet Conference - 2-4 April 2001 

[6] Del Vecchio V. – “The multi-level model of the statistical information system in the Bank of 

Italy” – (Bank of Italy internal paper) - October 2002 

[7]  European Board for Edi Standardisation / EG6 Statistics – “CLASET- Concepts and terms 

related to classifications & exchange of classifications – European Commission CLASET 

initiative – EG6/WG3/mda/96005 – June 1996.  

[8] Froeschl K.A.; Grossmann W; Del Vecchio V.; The Concept of Statistical Metadata, – 
European Commission Information Society Technologies Programme - MetaNet Project -  
Deliverable 5 – Modeling levels in statistical information systems. [February 2003]  

[9] Maggiolini M.  – “The software generalization process” – (Bank of Italy internal paper) - 

March 1999  

[10] Maggiolini - “Statistical Data Processing Strategy in Banca d’Italia” - (Bank of Italy internal 

paper) - October 2002 

[11] Milani, P. – “Procedural steps and software support in statistics processing” - (Bank of Italy 

internal paper) - October 2002 

[12]  Object Management Group - “Meta Object Facility (MOF) Specification” – March 2000. 

[13]  Object Management Group - “Common Warehouse Metamodel (CWM) specification” – 

February 2000. 

[14]  Sundgren B. - "Statistical Metainformation and Metainformation Systems" - Statistic 

Sweden R&D Report -1991:11. 

. 

 

 




