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Abstract 

What are the macroeconomic implications of shifting to greener technologies in the transition 
towards a low-emission economy? We identify shocks to the composition of US innovation 
entailing a shift towards greener technologies by exploiting granular data on the universe of 
patents granted in the United States. The rebalancing towards green technology is costly in the 
short run – lowering output and raising inflation – but Pareto-improving in the medium run, 
when the recessionary effects dissipate, the emissions intensity of output declines persistently, 
and energy production shifts towards renewables. These effects are independent of variations 
in national and international climate policy commitments. 
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1 Introduction1

The transition towards a low-carbon economy is at the forefront of the policy debate.

As this process requires substantially reducing the environmental impact of production

and consumption patterns, it may profoundly transform the economy. However, the em-

pirical evidence on the aggregate implications of the transition for output and consumer

prices is still scarce. One reason is that the literature has mainly focused on public policies

for the transition, such as carbon taxes and cap-and-trade systems that, while effective in

reducing emissions in some jurisdictions, may still fail to reach the emission targets at the

global scale if not accompanied by an outright shift towards greener technologies in pro-

duction.2 Whether adopting greener technologies is effective in reducing emissions in the

medium run and how it affects aggregate output and price dynamics are still unanswered

questions.

We take up this issue by investigating the aggregate trade-offs that arise from shift-

ing the innovation paradigm towards greener technologies. By leveraging on granular US

patent data, we construct proxies of future aggregate technological developments, follow-

ing the approach introduced in Miranda-Agrippino et al. (2020). Our analysis differs from

previous works as we do not focus on the potential benefits of scaling up green innovation

in itself but on the effects of a recomposition of technological development towards greener

innovation. Within this perspective, green and non-green technologies compete as in the

theoretical frameworks developed by Acemoglu et al. (2016a) and Lemoine (2024). In the

context of such a decision problem, in which entrepreneurs decide how to invest under

1We are grateful to Piergiorgio Alessandri, Luisa Carpinelli, Ambrogio Cesa-Bianchi, Antonio Di Cesare,
Silvia Miranda-Agrippino, Paolo Surico, Marco Taboga, and two anonymous referees for fruitful discus-
sions. We also thank participants in seminars at Banca d’Italia, ECB, ESCB research cluster, Luiss Univer-
sity, and in the Banca d’Italia-EUI-EABCN conference “The macroeconomic and financial dimensions of the
green transition” for their feedback. The views expressed in the paper are those of the authors and do not
involve the responsibility of the Bank of Italy or the Eurosystem.

2See for instance Green (2021), Metcalf and Stock (2023), Coenen et al. (2023), among others.
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limited resources, Acharya et al. (2024) show theoretically that green innovation can ac-

celerate the green transition when climate policy instruments are constrained, as a direct

result of intertemporal profit maximization strategy.By exploiting patent-level data from

the US Patent and Trademark Office (USPTO), we construct a monthly variable proxying

for the role that green technology will play in the future technology mix. We build this

measure as the share of granted patents that are specifically designed for climate change

mitigation over total patents.Employing the ratio of green patents is key as it nets out the

common component in US patenting (green and brown) driven by expected macroeco-

nomic conditions. However, because recent works have documented that energy prices

(Acemoglu et al., 2024; Hu et al., 2023) and credit conditions (Aghion et al., 2024; Fornaro

et al., 2024) affect green more than brown patenting, we cleanse our measure from oil

shocks (Baumeister and Hamilton, 2019; Känzig, 2021) and from variations in the excess

bond premium (EBP; Gilchrist and Zakrajšek, 2012), which is a measure of investors’ risk

appetite. The residual series passes a broad set of exogeneity tests and is orthogonal to

the most popular macroeconomic shocks identified in the literature.

We then use the exogenous fluctuations in the incidence of green patents within Vec-

tor Autoregressive (VAR) models of the US economy, estimated over 1980-2019, to gauge

the macroeconomic effects of green technology recomposition shocks. Our results show

that the trade-off coming from greening US innovation is mainly between its short- and

medium-run effects. Indeed, a shift towards a greener technology mix leads to a fall in

carbon emissions, a drop in output, and a surge in producer and consumer prices in the

short-run. The shock can thus be interpreted as a temporary negative supply-side distur-

bance. At the root of this downside effect lies the negative impact on aggregate produc-

tivity (TFP) that squares with the fact that green (emission-constrained) technologies are

overall less mature than brown ones; consequently, increasing their weight in firms’ tech-

nology mix makes production temporarily less efficient.However, the estimated stagfla-
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tionary effects of a green technology recomposition are short-lived: economic activity re-

covers within five years and, although emissions decline more gradually than output, the

carbon emissions intensity of output (i.e., the quantity of emissions per unit of produc-

tion) eventually drops. These dynamics go hand-in-hand with a recomposition of energy

consumption away from fossil fuels and towards renewable sources, and make our shock

stand apart from a general, negative TFP shock. In other words, the technological recom-

position leads to a Pareto improvement in the medium-run, as the adverse output effects

dissipate while the decline in emission intensity persists over time.

Quantitatively, our green technology recomposition shock contributes for a significant

variance share of carbon emissions (10%) while it explains a more modest portion of the

volatility in macroeconomic aggregates, further validating the interpretation of our shock

as a shock to the composition (and not to the level) of technological innovation.

While technology is the key ingredient in the low carbon transition, such a complex

process is shaped by various forces, including climate policy and the general concern

over future climate-related risks shaping households’ and firms’ preferences. Our results

are unaffected by if we include (national and international) climate policy indicators, as

well as changes in public attention on climate change.3 Moreover, by linking the patent-

ing activity of a subsample of quoted firms to their financial performance, we show that

financial markets positively reward the filing of new green patents (see also Hege et al.,

2023). Positive equity returns may explain why firms decide to switch to green innovation

in the first place and, together with the absence of any significant influence from policy,

it suggests an autonomous role of entrepreneurs’ green innovation choices in driving the

recomposition of production.

Related literature. This paper contributes to the literature in two ways. First, it pro-

3The interplay between green technology and climate policy connects this paper to the literature deriv-
ing measures of transition risk exposure from media or earnings calls: Engle et al. (2020), Ardia et al. (2023),
Sautner et al. (2023), Gavriilidis et al. (2023), Meinerding et al. (2023).
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vides empirical estimates that qualify and quantify the economic consequences of the

green transition from an innovation perspective. Under the lens of our findings, the

trade-off between going green and fostering economic growth looks only temporary, in

line with earlier model-based results (Ferrari and Nispi Landi, 2022; Airaudo et al., 2022;

Bartocci et al., 2022; Coenen et al., 2023).

Our work also relates to a growing strand of literature that explores the transition

towards a low-emission economy, with emphasis on changing citizens’ and consumers’

values (Besley and Persson, 2023, Aghion et al., 2023, , Phelan and Love, 2023, Hong et al.,

2023) or on the innovation-led transition driven by scientists (Lemoine, 2024) and ampli-

fied by firms’ profit maximization (Acharya et al., 2024). In particular, Besley and Persson

(2023) and Aghion et al. (2023) emphasize the prominent role of the intrinsic incentives

– consumers being climate concerned and caring about the environmental effects of their

actions – in pushing firms to compete on green innovation; differently, climate policy may

fail to deliver such strong signals being subject to changes in political preferences (Besley

and Persson, 2023). As our evidence points to green innovation as a stand-alone driver of

the low-carbon transition, our paper empirically supports such views. In this sense, our

findings offer a motivation for directly subsidizing green innovation, which is deemed ef-

fective in pursuing the transition according to theoretical models (Acemoglu et al., 2012,

2016b).

Finally, this paper connects to the empirical literature that exploits patents to iden-

tify technology shocks.4 Recently, Miranda-Agrippino et al. (2020) proposed a way to

exploit the information embedded in patenting activity to extract news shocks on future

TFP growth, and showed that such shocks cause a business cycle expansion in anticipa-

tion of the expected productivity gains. We build on this intuition to construct a shock

4Among earlier contributions see for instance Griliches (1998), Lach (1995), Hall and Trajtenberg (2004),
and Kogan et al. (2017).

8



to the greenness of the future technology mix, bridging developments in the empirical

literature on technology shocks with that on green innovation. Within the latter, a grow-

ing strand is investigating the drivers and consequences of green patenting (e.g. Popp

et al., 2010; Popp, 2019; Cohen et al., 2021; Hege et al., 2023; Ciccarelli and Marotta, 2023).

In particular, two works study the economic consequences of an increase in the number

of green patents in the economy finding aggregate expansionary effects (Moench and

Soofi Siavash, 2023; Hasna et al., 2023). This result follows from the fact that, by construc-

tion, a surge in the number of patents shifts the production possibility frontier upwards

(at least weakly). We focus instead on a technological recomposition from brown to green

technology, which involves trade-offs for innovators under limited resources and, there-

fore, is closer in the spirit to the transition towards a low-carbon economy.

Structure of the paper. The remainder of the paper is organized as follows. Section 2

describes the data and the construction of our proxy for technology recomposition. Sec-

tion 3 presents the main empirical findings. Section 4 shows the results coming from

robustness exercises. Section 5 concludes.

2 Measuring green technological recomposition

2.1 Data

The primary data sources used to construct our green technology news measure for the

United States are the PatEx and Patents View datasets from the U.S. Patent and Trade-

mark Office (USPTO). PatEx is a valuable research-oriented, patent-level database (Marco

et al., 2017), while PatentsView provides the Cooperative Patent Classification (CPC) for each

granted patent: the category “Y02” specifically refers to green patents, i.e. those inno-

vations related to climate mitigation efforts. Crucially, the availability of patent data at
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FIGURE 1: Total vs green patent filing activity (upper panel) and share of green patents over total patents
(lower panel); data only refers to granted patents. Source: USPTO PatEx and Patent Views.

monthly frequency allows us to study the business cycle consequences of the transition

and, moreover, to tackle the endogeneity in patenting documented in Miranda-Agrippino

et al. (2020).

In order to quantify future shifts towards green technology, we calculate the ratio

between the number of green patents (patG) filed in a given month t to the total number

of patents (patT) filed in the same month (Eq. 1). We consider the filing date (instead

of the approval date) as in Miranda-Agrippino et al. (2020) who argue that some news

about the underlying technology might potentially spread out already at the filing date.

In formulas, we define our green patent proxy as

gpt =
patG,t

patT,t
(1)

where patG,t indicates the number of green patents filed in month t, while patT,t is the
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total number of patents filed in the same period. Figure 1 displays the dynamics of green

versus total patent filing activity (top panel) and of the ratio of the number of green over

total patents gpt (bottom panel) from 1980. A potential concern is the correlation between

gp and oil prices: their level was high at beginning of the ’80s after the major oil sup-

ply shocks, and peaked again before the shale revolution in the 2010s. We address this

endogeneity concern in Section 2.2.

Green patents examples

To gain deeper insights on the green patents that we exploit to identify green technology

recomposition shocks, we report some illustrative examples of patents classified with the

“Y02” CPC code. Patents under the Y02 label cover technologies aimed at mitigating cli-

mate change by reducing greenhouse gas emissions, such as electric vehicles, renewable

energy systems, and carbon capture processes. Importantly, as shown below, important

technologies for the green transition were patented decades ago, confirming that green

innovation was already ongoing well before climate change and green transition gained

larger media attention in the year 2010s.

Electric car. In 1977, Lee Raymond Organization Inc. filed a patent request titled

“Electric car” that introduced efficiency gains for electric motors by improving the torque-

to-weight ratio and energy management of onboard batteries, representing an early step

toward the commercial viability of electric vehicles.5

Hydrogen engine. In 1983, a private individual filed a patent application titled “Hy-

drogen engine” that enhanced methods for generating hydrogen gas from water and uti-

lizing it directly as fuel in an internal combustion engine. This patent is an example of an

early attempt to shift away from fossil fuels, and it widely anticipated the later interest in

5Further details are available at https://tinyurl.com/49prpmby.
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hydrogen as a clean energy vector.6

Method and apparatus for producing parts by selective sintering . In 1986, the Uni-

versity of Texas filed a patent application titled “Method and apparatus for producing

parts by selective sintering” that improved the production of manufacturing components

for renewable energy systems, potentially enhancing production efficiency and reducing

material waste through additive processes.7

Stratospheric Welsbach seeding for reduction of global warming . In 1990, Hughes

Aircraft Co. filed a patent application titled “Stratospheric Welsbach seeding for reduc-

tion of global warming” that developed a method aimed at reflecting a portion of solar

radiation with the aim of reducing the pace of global warming.8

Method and apparatus for sequestering carbon dioxide in the deep ocean or aquifers.

In 1992, the Electric Power Research Institute filed a patent application titled “Method and

apparatus for sequestering carbon dioxide in the deep ocean or aquifers” that developed

a carbon capture and storage (CCS) solution, i.e. a method for removing carbon dioxide

from power plant emissions or from the general atmospheric environment and storing it

in deep ocean reservoirs. 9

Lithium-ion battery. In 2000, Motorola Inc. filed a patent application titled “Lithium-

ion battery“ that allowed the production of improved lithium-ion or lithium-polymer

batteries that are capacity-fade resistant over multiple charging cycles. This innovation

marked a significant advancement in the clean-energy market, as reliable battery perfor-

mance is crucial for the widespread adoption of electric vehicles and the efficiency of

consumer electronics.10

System and process of biodiesel production. In 2009, a private individual filed a

6Further details are available at https://tinyurl.com/2fbf383y.
7Further details are available at https://tinyurl.com/js57danu.
8Further details are available at https://tinyurl.com/mrx4pzzf.
9Further details are available at https://tinyurl.com/5fvxauam.

10Further details are available at https://tinyurl.com/2kv8rksa.
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patent application titled “System and process of biodiesel production” detailing an inte-

grated approach to producing biodiesel from waste oils using reusable sugar-based cata-

lysts, minimizing the environmental impact of biodiesel production.11

Production of ammonia from air and water. In 2010, a private individual filed a

patent application titled “Production of ammonia from air and water“ which introduced

a method to produce ammonia without relying on fossil fuels. The process uses air as a

source of nitrogen and water as a source of hydrogen, offering a cleaner and more sus-

tainable alternative for industries such as agriculture and energy.12

Electrical vehicle charging station with power management. In 2019, Eaton Intelli-

gent Power Ltd filed a patent application titled “Electrical vehicle charging station with

power management“. This patent proposes a smart charging station for electric vehi-

cles that enhances grid interaction and reduces greenhouse gas emissions by efficiently

distributing power within a network that includes residential buildings, local energy pro-

ducers (e.g., solar panels), and energy consumers.13

2.2 Addressing endogeneity

Recent works document that green patenting is endogenous to fossil fuels prices (Ace-

moglu et al., 2024 ; Hu et al., 2023) and credit conditions (Aghion et al., 2024; Fornaro

et al., 2024). For this reason, we purge gpt by the oil shocks identified in Baumeister

and Hamilton (2019) and by oil supply news shocks from Känzig (2021). To address the

concerns related to credit conditions, we also control for variations in the excess bond pre-

mium (Gilchrist and Zakrajšek, 2012).14 Specifically, we regress gpt on a constant (α), its

11Further details are available at https://tinyurl.com/yc3rjk9r.
12Further details are available at https://tinyurl.com/yeyte568.
13Further details are available at https://tinyurl.com/4y8tmmf9.
14We find that gpt is orthogonal to the Baumeister and Hamilton (2019) economic activity shocks (thus

not appearing in eq. 2), suggesting that only sector-specific shocks affect incentives across green and brown
patents. We employ the EBP rather than monetary policy shocks as in Aghion et al. (2024) and Fornaro
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own 12 lags and contemporaneous and lagged values of oil supply (εs), oil precautionary

demand (εpd), and oil-specific demand shocks (εos), oil supply news (εsn) and the EBP:

gpt = α +
12

∑
h=1

β
gp
h gptt−h +

12

∑
h=0

βs
hεs

t−h +
12

∑
h=0

β
pd
h ε

pd
t−h +

+
12

∑
h=0

βod
h εod

t−h +
12

∑
h=0

βsn
h εsn

t−h +
12

∑
h=0

β
ebp
h EBPt−h + ϵ

gp
t (2)

We extract the time series of the residuals from the estimated Eq.(2) ϵ̂gp and employ it

in our empirical analysis.

3 Macroeconomic effects

3.1 Econometric framework

Consider the standard VAR model:

yt = a + A1yt−1 + · · ·+ Apyt−p + ut (3)

where p is the lag order, yt is a n × 1 vector of endogenous variables, ut is a n × 1 vector

of reduced-form innovations with covariance matrix Var (ut) = Σ, a is a n × 1 vector of

constants, and A1, . . . , Ap are n × n matrices. The innovations ut are typically expressed

as a linear combination of the structural shocks εt under the assumption of invertibility:

ut = Bεt (4)

Var (εt) = Ω is diagonal as the structural shocks are by construction uncorrelated. Con-

et al. (2024) because our preliminary test indicate contamination from the EBP rather than monetary policy
shocks. This result is compatible with the crucial role played by the EBP in the transmission of US monetary
policy (see Alessandri et al., 2023).
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versely, Σ = BΩB′ is not diagonal as, generally, the reduced-form residuals are correlated.

We are interested in estimating the causal impact of a single shock in the system, i.e. the

green technological recomposition shock ε
gp
t . Because we employ the proxy ϵ̂gp for our

shock of interest ε
gp
t as an internal instrument, we can avoid the invertibility assumption

in Eq.(4) (Plagborg-Møller and Wolf, 2021; Miranda-Agrippino and Ricco, 2023). Identifi-

cation is instead achieved under the following assumptions:

E
[
ϵ̂gpε

gp
t
]

= α ̸= 0 (5)

E [ϵ̂gpε2:n,t] = 0 (6)

E [ϵ̂gpεt+i] = 0 for i ̸= 0 (7)

where Eq.(5-6) are the typical conditions for the validity of an instrument. Eq.(7) is an

additional condition that is necessary in this dynamic setting according to which the in-

strument is orthogonal to lags and leads of all structural shocks. Under those conditions,

the dynamic effects are obtained as the impulse responses to ϵ̂gp that is included in the

VAR as an additional endogenous variable.

Our baseline monthly VAR model of the US economy includes ϵ̂gp, industrial produc-

tion, the unemployment rate, the commodity producer prices, consumer prices (proxied

by the deflator of Personal Consumption Expenditures - PCE), the level of CO2 emissions

released in the US, and the 3-month Tbill rate.15 The VAR includes 12 lags and the vari-

ables enter in log-level following Sims et al. (1990). We estimate the VAR on the sample

from January 1980 to December 2019.

15CO2 emissions are interpolated as in Gavriilidis et al. (2023).
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3.2 Diagnostics on structural shocks

Before presenting the macroeconomic effects of ε
gp
t shocks, we display a battery of tests

aimed at diagnose the potential endogeneity ε
gp
t to other structural shocks (monetary and

fiscal policy shocks, among others). Notice that ε
gp
t differs from ϵ̂gp because it has been

regressed on lags of all the endogenous variables in the VAR. We regress ε
gp
t on a broader

set of commodity prices – in particular the price of other fossil fuels and metals related

to the green transition – macroeconomic factors and forecasts. We run the following re-

gression for each potential explanatory factor xt, which enters the set of regressors both

contemporaneously and up to 12-month lags:

ε
gp
t = α +

12

∑
h=0

δhxt−h + νt (8)

Table 1 (panel a) reports the F statistic and associated p-values from a test on the

joint statistical significance of the δs. We also test the correlation between ε
gp
t and sev-

eral macroeconomic shocks from the literature (panels b-c). The test does not diagnose a

spurious contamination of our εgp measure by confounding factors.
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Panel (a): Macroeconomic aggregates
Variables F-stat P-value Obs.
Commodity prices (level) 1.01 0.46 468
Fossil fuels price (level) 0.74 0.86 444
Transition metal prices (level) 0.90 0.63 468
Commodity prices (growth rate) 1.15 0.23 467
Fossil fuels price (growth rate) 0.85 0.72 443
Transition metal prices (growth rate) 0.98 0.51 467
Long-term Consensus Forecast 1.03 0.42 318
FRED-MD factors 1.10 0.28 456

Panel (b): Monthly structural shocks
Shocks ρ P-value Obs.
Gertler and Karadi (2015) monetary -0.01 0.83 324
Romer and Romer (2004) monetary 0.06 0.41 192
Baker et al. (2016) EPU 0.08 0.11 390
Känzig (2022) carbon policy 0.00 0.98 246

Panel (c): Quarterly structural shocks
Shocks ρ P-value Obs.
Romer and Romer (2010) fiscal 0.13 0.18 112
Ramey (2011) fiscal 0.10 0.28 124
Fisher and Peters (2010) fiscal 0.12 0.22 116
Mertens and Ravn (2013) tax 0.01 0.92 108
Smets and Wouters (2007) monetary 0.06 0.58 100
Romer and Romer (2010) fiscal 0.13 0.18 112
Smets and Wouters (2007) TFP -0.13 0.19 100
Basu et al. (2006) TFP -0.15 0.11 128
Barsky and Sims (2011) news -0.01 0.95 111
Kurmann and Otrok (2013) news -0.16 0.12 102
Beaudry and Portier (2014) news -0.08 0.37 131

Table 1: Orthogonality of ε
gp
t

Notes. Panel (a): ε
gp
t is regressed on a constant, and the explanatory variables of interest (contemporaneous and up to 12 lags). The F-test statistics

correspond to the joint significance test for energy, agriculture, industrial metals, precious metals commodity price indexes (commodity prices); oil,
gas and coal prices (fossil fuels); copper, nickel, and zinc (transition metals); Long Term Consensus Forecasts includes GDP, CPI, and bond yields 1
and 4 years ahead; FRED-MD stands for 7 factors extract from the FRED-MD database. In the case of FRED-MD factors, the explanatory variable
of interest is the first 12 lags of 7 factors extracted from the FRED-MD database. Panel (b)-(c) report the correlation between the ε

gp
t and various

structural shocks from the literature. In the case of the quarterly exercise, ε
gp
t is aggregated as quarterly averages.
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FIGURE 2: Structural shocks ε
gp
t extracted from the VAR. Raw values in upper panel; cumulative value in

lower panel.

Figure 2 displays our structural shock of interest ε
gp
t extracted from the VAR and their

cumulative sum over the sample.

3.3 Macroeconomic implications of a green technology recomposition

Figure 3 displays the dynamic causal effect, i.e. the impulse responses (IRFs), of ε
gp
t on the

variables included in the VAR. Consistently with the delayed diffusion of innovation, all

variables display a gradual response to the shock. Industrial production falls, reaching a

trough after three years before mean-reverting back to zero. Consistently, the unemploy-

ment rate increases, reaching a peak around three years after the shock. Producer and

consumer prices increase corroborating the interpretation of ε
gp
t as a negative supply-side

disturbance. Crucially, the technological shift successfully reduces CO2 emissions in a

delayed yet persistent fashion.

The forecast error variance decomposition (FEVD) gauges the quantitative relevance

of switches towards greener technologies for the US economy (Figure 4). Albeit green
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FIGURE 3: Baseline IRFs to a green technology recomposition shock. Shaded areas denote 68% and 90%
confidence bands; the horizon is in months.
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FIGURE 4: Baseline FEVD of a green technology recomposition shock. Shaded areas denote 68% and 90%
confidence bands; the horizon is in months.

technology recomposition shocks are arguably not a major driver of the US business cy-

cle, they nonetheless explain a significant share of the forecast error variance of carbon

emissions (10%). The higher explanatory power for emissions rather than economic ac-

tivity further corroborates our interpretation of ε
gp
t as a technology recomposition shock.
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3.4 Transmission mechanism

This Section digs further into the channels that drive the aggregate responses of a green

technology recomposition shock. First, we investigate the role of TFP, and then we focus

on the interpretation of our shock of interest by examining the behavior of additional

variables.

3.4.1 The TFP channel

As TFP is only available at the quarterly frequency, we extract εgp from our monthly

baseline VAR; then, we average the latter at the quarterly frequency and employ it in

a local projection estimation as done in Känzig (2022). We use utilization-adjusted TFP

constructed by Basu et al. (2006) as dependent variable. The left panel in Figure 5 shows a

delayed negative response of TFP to a εgp shock, which validates the interpretation of the

shock as a negative supply shock. The right panel corroborates this finding by displaying

the heterogeneous effects of green and non-green patenting on TFP.16 An increase in the

number of brown patents exerts a lagged positive influence on TFP; conversely, a rise in

the number of green patents does not lead to any significant effects.

3.4.2 Cleaner production process

Figure 6 provides important insights on the medium-term effects on the economy after

a green technology recomposition. First, the emission intensity of industrial production

drops, albeit with a marked delay. Second, the weight of renewables in the mix of primary

energy consumption of US households surges. These results corroborate our interpreta-

tion of a technology recomposition shocks towards an economy less reliant on fossil fuels

and overall less carbon-intensive.
16We are using the number of green (non-green) patents to estimate these effects.
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FIGURE 5: TFO response to a green recomposition shock estimate with local projections. Shaded areas
denote 68% and 90% confidence bands; the horizon is in quarters.

3.5 Accounting for climate policy

Climate policy constitutes a factor that can affect green patenting and the incentive of

undertaking green or brown innovation. Indeed, expectations of future climate policy

interventions in the US, or changes in the international commitments on the fight to cli-

mate change might affect those incentives over time. For this reason, we enrich our VAR

model with the Climate Policy Uncertainty (CPU - Gavriilidis et al., 2023) that captures

information on climate policy events both at US and at the global level.17 In a conser-

vative exercise, we include CPU prior to ϵ̂gp in a recursive ordering identification of ε
gp
t .

In this way, ε
gp
t is orthogonal to both contemporaneous and lagged values of the CPU.

Within this specification, results are similar to the baseline but the picture that emerges is

even more clear cut and the estimates more precise.

17The sample is slightly shorter than in the baseline as the CPU is available since 1987.
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Shaded areas denote 68% and 90% confidence bands; the horizon is in months.
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FIGURE 7: IRFs to a green technology recomposition shock - controlling for CPU. Shaded areas denote
68% and 90% confidence bands; the horizon is in months.

4 Additional results and robustness analysis

In this Section, we replicate the analysis, modifying our empirical strategy along sev-

eral dimensions, including the definition of the green technology shock, the identification

scheme, the specification of the VAR model, and the sample period.
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Alternative definitions of gp. Employing a citation-weighted measure of patents to

build gp yields qualitatively similar results. For this purpose, we retrieve from PatentsView

the information on the total number of citations associated with each patent. More pre-

cisely, we rely on the number of citations made to U.S. patent applications by other U.S.

patents. Using this information significantly boosts the explanatory power of green tech-

nology recomposition shocks (see Figure A.1).18 We do not employ this weighted measure

as a baseline because it uses information that is not available in real-time to economic

agents. Results consistent with our baseline hold also if we exclude from our analysis

green patents filed by the US oil and gas industry. This evidence confirms that our results

are pervasive across industrial sectors and not limited to energy-producing firms, which

recent literature has found to lead green innovation (Cohen et al., 2021).

Alternative identification strategy. Our baseline analysis employs gp as an internal

instrument within a VAR model. Comparable results hold if we include both the number

of non-green and green patents (in logs) in the VAR and identify our shock of interest as

the unpredictable change in the number of green patents (not their share) that is orthogo-

nal to surprise changes in non-green patents (Figure A.2). This amounts to ordering the

number of non-green patents first and the number of green patents second in a recursively

identified SVAR where we are interested only in the second structural shock. As we have

already mentioned, this orthogonality condition is necessary to identify a technological

configuration that leads to a fall in carbon emissions and is thus consistent with the green

transition.

Alternative VAR specifications. The conclusions from our analysis hold in a large

set of alternative specifications of the baseline VAR. In terms of variables, we made the

following modifications: i) we include stock prices (Figure A.3); ii) we include the VIX as

18The number of citations per patent comes from PatViews; we associate patents to firm using the match-
ing provided by Arora et al. (2021a) and Arora et al. (2021b).
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a proxy for uncertainty shocks and the global financial cycle (Figure A.4); iii) we add the

EBP to explicitly control for financial shocks (Figure A.5); iv) we include the total number

of patents in the VAR and impose that this variable is not affected by our shock at any

horizon to control for potentially endogenous variation in the number of patents due to

the business cycle (Figure A.6).

Subsets of gp. The CPC classification also provides sub-categories of green patents:

energy, goods, transport, building, and digital. We repeat our analysis for these categories

and find results that are comparable to the aggregate measure overall (Figures A.7-A.11).

Among them, a green push seems to produce larger effects when it comes from the build-

ing industry and from the goods and energy ones.

Equity response to green patenting. Firm value and equity returns can motivate

firms to pursue green innovation independently of environmental regulation. While the

aggregate economic consequences of green patenting shocks may be recessionary, this

does not mean that firms do not benefit from green patenting (see Table in Appendix B).

In an event study, we study the impact of green innovation on corporate equity returns

using a monthly panel from 1980 to 2019. We find that the filing of one additional green

patent is associated with higher stock market returns, suggesting that financial investors

reward firms doing green innovation.

5 Conclusions

Our study sheds light on the macroeconomic and environmental implications of shifting

innovation from brown to green technologies. We find that, empirically, this shift acts as

a negative supply-side shock in the short term: output falls, unemployment raises while

consumer prices surge. From an environmental perspective, however, such technological

shift is able to reduce carbon emissions persistently. Crucially, the negative implications
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for economic activity and prices dissipate in the medium-run leading to a Pareto improve-

ment in terms of the trade-off between keeping economic activity strong and reducing

carbon emissions in the longer run.
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A Appendix - additional results
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FIGURE A.1: Monthly VAR: citations. Coefficients represent the IRF to a 1 standard deviation increase
in a citation weighted measure of gp. Shaded areas denote 68% and 90% confidence bands; the horizon is
monthly.
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FIGURE A.2: Monthly VAR: alternative identification strategy ordering the number of green patents sec-
ond after the number of non green patents. Coefficients represent the IRF to a 1 standard deviation increase
in the number of green patents.Shaded areas denote 68% and 90% confidence bands; the horizon is monthly.

FIGURE A.3: Monthly VAR: shocks to green patents - including stock prices. Coefficients represent the
IRF to a 1 standard deviation increase in the raw number of green patents. Shaded areas denote 68% and
90% confidence bands; the horizon is monthly.
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FIGURE A.4: Monthly VAR: shocks to green patents - including VIX. Coefficients represent the IRF to
a 1 standard deviation increase in the raw number of green patents. Shaded areas denote 68% and 90%
confidence bands; the horizon is monthly.

FIGURE A.5: Monthly VAR: shocks to green patents - including EBP. Coefficients represent the IRF to
a 1 standard deviation increase in the raw number of green patents. Shaded areas denote 68% and 90%
confidence bands; the horizon is monthly.
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FIGURE A.6: Monthly VAR: imposing no variations in the total number of parents. Coefficients represent
the IRF to a 1 standard deviation increase in gp. Shaded areas denote 68% and 90% confidence bands; the
horizon is monthly.
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FIGURE A.7: Monthly VAR: buildings. Coefficients represent the IRF to a 1 standard deviation increase
in gp, limiting the analysis to green patents in the building sector. Shaded areas denote 68% and 90%
confidence bands; the horizon is monthly.
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FIGURE A.8: Monthly VAR: digital. Coefficients represent the IRF to a 1 standard deviation increase in
gp, limiting the analysis to green patents in the digital sector. Shaded areas denote 68% and 90% confidence
bands; the horizon is monthly.
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FIGURE A.9: Monthly VAR: energy. Coefficients represent the IRF to a 1 standard deviation increase
in gp, , limiting the analysis to green patents in the energy sector. Shaded areas denote 68% and 90%
confidence bands; the horizon is monthly.
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FIGURE A.10: Monthly VAR: goods. Coefficients represent the IRF to a 1 standard deviation increase in
gp, , limiting the analysis to green patents in the good sector. Shaded areas denote 68% and 90% confidence
bands; the horizon is monthly.

38



20 40 60

0

0.01

0.02

0.03

0.04

p
.
p
.

Transport gp

20 40 60

-0.2

-0.1

0

0.1

%

Industrial production

20 40 60

0

0.02

0.04

0.06

p
.
p
.

Unemployment rate

20 40 60

-0.1

0

0.1

0.2

%

Commodity prices

20 40 60

-0.04

-0.02

0

0.02

0.04

0.06

0.08

%

PCE price index

20 40 60

-0.1

-0.05

0

0.05

0.1

%

Emissions

20 40 60

-0.05

0

0.05

p
.
p
.

3m Tbill

FIGURE A.11: Monthly VAR: transport. Coefficients represent the IRF to a 1 standard deviation increase
in gp, limiting the analysis to green patents in the transport sector. Shaded areas denote 68% and 90%
confidence bands; the horizon is monthly.
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B Appendix - Green patents and equity returns

This Appendix presents the results of an event study exercise to demonstrate how an

increase in firm value may serve as a driver of green innovation even in the absence

of stringent regulatory requirements. More precisely, we focus on the equity response of

firms issuing green patents. We rely on the firm-patent matching procedure developed by

Arora et al. (2021a) and Arora et al. (2021b) to identify ISIN codes for firms issuing green

patents. Consistent with our macro analysis, we study the impact of green innovation

on corporate equity returns using a monthly panel from 1980 to 2019, employing the

following specification:

Ri,t = αi + dt + βRi,t−1 + γ # green pat.i,t−1 + ϵi,t (9)

where R is the monthly return of firm i in month t, and greenpat is the key regressor of

interest and measures the number of green patents that the firm has filed in the previous

month. Results are displayed in Table B.1 and show that the filing of one additional green

patent is associated with a 0.04 higher return in the following month. This finding is

consistent with the evidence in Hege et al., 2023 suggesting that financial markets react to

the signaling value of green patents, which may reflect a firm’s enhanced commitment to

climate action.
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Variables Rt
Rt−1 -0.149***

(0.000)
#greenpat 0.044**

(0.048)
Obs. 724,211
R-squared 0.11
Time FE YES
Firms FE YES

Table B.1: Estimates of the impact of green patents on firms’ monthly equity returns. Standard
errors (in parentheses) clustered by time and firm. *, **, and *** denote significance at, respectively,
the 10%, 5% and 1% level.

41



RECENTLY PUBLISHED “TEMI” (*)

(*) Requests for copies should be sent to: 
Banca d’Italia – Servizio Studi di struttura economica e finanziaria – Divisione Biblioteca e Archivio storico – Via 
Nazionale, 91 – 00184 Rome – (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

N. 1457 – The structural Theta method and its predictive performance in the M4-Competition, 
by Giacomo Sbrana and Andrea Silvestrini (June 2024).

N. 1458 – Mom’s out: employment after childbirth and firm-level responses, by Francesca 
Carta, Alessandra Casarico, Marta De Philippis and Salvatore Lattanzio (July 2024).

N. 1459 – Mortgage lending and bank involvement in the insurance business: the effects 
of cross-selling, by Federico Apicella, Leandro D’Aurizio, Raffaele Gallo  
and Giovanni Guazzarotti (July 2024).

N. 1460 – The impact of macroeconomic and monetary policy shocks on the default risk  
of the euro-area corporate sector, by Marco Lo Duca, Diego Moccero and Fabio 
Parlapiano (July 2024).

N. 1461 – Geographic shareholder dispersion and mutual fund flow risk, by Javier Gil-Bazo, 
Alexander Kempf and Raffaele Santioni (July 2024).

N. 1462 – The allocation of public guaranteed loans to firms during Covid-19: credit risk and 
relationship lending, by Emilia Bonaccorsi di Patti, Roberto Felici, Davide Moretti 
and Francesca Rinaldi (October 2024).

N. 1463 – The distributional effects of carbon taxation in Italy, by Francesco Caprioli and 
Giacomo Caracciolo (October 2024).

N. 1464 – As soon as possible: the effectiveness of a financial education program in Italian 
schools, by Tommaso Agasisti, Alessio D’Ignazio, Gabriele Iannotta, Angela 
Romagnoli and Marco Tonello (October 2024).

N. 1465 – Climate supervisory shocks and bank lending: empirical evidence from microdata, 
by Maria Alessia Aiello (October 2024).

N. 1466 – The global transmission of U.S. monetary policy, by Riccardo Degasperi, Seokki 
Simon Hong and Giovanni Ricco (October 2024).

N. 1467 – The market externalities of tax evasion, by Irene Di Marzio, Sauro Mocetti and 
Enrico Rubolino (October 2024).

N. 1468 – Sanctions and Russian online prices, by Jonathan Benchimol and Luigi Palumbo 
(October 2024).

N. 1469 – Bank beliefs and firm lending: evidence from Italian loan-level data, by Paolo 
Farroni and Jacopo Tozzo (November 2024).

N. 1470 – The origins of the gender pay gap: education and job characteristics, by Giulia 
Bovini, Marta De Philippis and Lucia Rizzica (November 2024).

N. 1471 – Green granular borrowers, by Margherita Bottero and Michele Cascarano 
(December 2024).

N. 1475 – FraNK: fragmentation in the NK model, by Alessandro Moro and Valerio Nispi 
Landi (December 2024).

N. 1472 – The macroeconomic effects of reducing a central bank monetary policy 
portfolio: a model-based evaluation, by Anna Bartocci, Alessandro Notarpietro  
and Massimiliano Pisani (December 2024).

N. 1473 – Partial identification of treatment response under complementarity and 
substitutability, by Tiziano Arduini and Edoardo Rainone (December 2024).

N. 1474 – Monetary policy shocks and inflation inequality, by Christoph Lauper and Giacomo 
Mangiante (December 2024).

N. 1476 – Artificial intelligence and relationship lending, by Leonardo Gambacorta, Fabiana 
Sabatini and Stefano Schiaffi (February 2025).

N. 1477 – Business loan characteristics and inflation shocks transmission in the euro area, by 
Valentina Michelangeli and Fabio Massimo Piersanti (February 2025).

N. 1478 – Uncovering the inventory-business cycle nexus, by Luca Rossi (February 2025).



"TEMI" LATER PUBLISHED ELSEWHERE 
 

2023 
 

APRIGLIANO V., S. EMILIOZZI, G. GUAITOLI, A. LUCIANI, J. MARCUCCI and L. MONTEFORTE, The power of text-
based indicators in forecasting Italian economic activity, International Journal of Forecasting, v. 39, 2,  
pp. 791-808, WP 1321 (March 2021). 

BALTRUNAITE A., G. BOVINI and S. MOCETTI, Managerial talent and managerial practices: are they 
complements?, Journal of Corporate Finance, v. 79, Article 102348, WP 1335 (April 2021). 

BARTOCCI A., A. NOTARPIETRO and M. PISANI, Non-standard monetary policy measures in non-normal times, 
International Finance, v. 26, 1, pp. 19-35, WP 1251 (November 2019). 

CAPPELLETTI  G. and P. E. MISTRULLI, The role of credit lines and multiple lending in financial contagion and 
systemic events, Journal of Financial Stability, v. 67, Article 101141, WP 1123 (June 2017). 

CECI  D. and A. SILVESTRINI, Nowcasting the state of the Italian economy: the role of financial markets, Journal 
of Forecasting, v. 42, 7, pp. 1569-1593, WP 1362 (February 2022). 

CIAPANNA E, S. MOCETTI and A. NOTARPIETRO, The macroeconomic effects of structural reforms: an empirical 
and model-based approach, Economic Policy, v. 38, 114, pp. 243-285, WP 1303 (November 2020). 

CORNELI F., Sovereign debt maturity structure and its costs, International Tax and Public Finance, v. 31, 1, pp. 
262-297, WP 1196 (November 2018). 

DAURICH D, S. DI ADDARIO and R. SAGGIO, The macroeconomic effects of structural reforms: an empirical and 
model-based approach, Review of Economic Studies, v. 90, 6, pp. 2880–2942, WP 1390 (November 
2022). 

DI ADDARIO S., P. KLINE, R. SAGGIO and M. SØLVSTEN, The effects of partial employment protection reforms: 
evidence from Italy, Journal of Econometrics,v. 233, 2, pp. 340-374, WP 1374 (June 2022). 

FERRARI A. and V. NISPI LANDI, Toward a green economy: the role of central bank's asset purchases, 
International Journal of Central Banking, v. 19, 5, pp. 287-340, WP 1358 (February 2022). 

FERRIANI F., Issuing bonds during the Covid-19 pandemic: was there an ESG premium?, International Review 
of Financial Analysis, v. 88, Article 102653, WP 1392 (November 2022). 

GIORDANO C., Revisiting the real exchange rate misalignment-economic growth nexus via the across-sector 
misallocation channel, Review of International Economics, v. 31, 4, pp. 1329-1384, WP 1385 
(October 2022). 

GUGLIELMINETTI E., M. LOBERTO and A. MISTRETTA, The impact of COVID-19 on the European short-term rental 
market, Empirica, v. 50, 3, pp. 585-623, WP 1379 (July 2022). 

LILLA F., Volatility bursts: a discrete-time option model with multiple volatility components, Journal of Financial 
Econometrics, v. 21, 3, pp. 678-713, WP 1336 (June 2021). 

LOBERTO M., Foreclosures and house prices, Italian Economic Journal / Rivista italiana degli economisti, 
 v. 9, 1, pp. 397-424, WP 1325 (March 2021). 

LOMBARDI M. J., M. RIGGI and E. VIVIANO, Worker’s bargaining power and the Phillips curve: a micro-macro 
analysis, and wages, Journal of the European Economic Association, v. 21, 5, pp. 1905–1943, WP 1302 
(November 2020). 

MODENA F., S. PEREDA-FERNANDEZ and G. M. TANZI, On the design of grant assignment rules,  
Politica economica/Journal of Economic Policy, v. 1/2023, pp. 3-40, WP 1307 (December 2020). 

NERI S., Long-term inflation expectations and monetary policy in the Euro Area before the pandemic, European 
Economic Review, v. 154, Article 104426, WP 1357 (December 2021). 

ORAME A., Bank lending and the European debt crisis: evidence from a new survey, International Journal of 
Central Banking, v. 19, 1, pp. 243-300, WP 1279 (June 2020). 

RIZZICA L., G. ROMA and G. ROVIGATTI, The effects of shop opening hours deregulation: evidence from Italy, 
The Journal of Law and Economics, v. 66, 1, pp. 21-52, WP 1281 (June 2020). 

TANZI G. M., Scars of youth non-employment and labour market conditions, Italian Economic Journal / Rivista 
italiana degli economisti, v. 9, 2, pp. 475-499, WP 1312 (December 2020). 

 
 
 

2024 
 

BALTRUNAITE A. and E. KARMAZIENE, Fast tracks to boardrooms: director supply and board appointments, 
Journal of Corporate Finance, v. 88, Article 102642, WP 1278 (June 2020). 

BARTOCCI A., A. CANTELMO, P. COVA, A. NOTARPIETRO and M. PISANI, Monetary and fiscal policy responses 
to fossil fuel price shocks, Energy Economics, v. 136, Article 107737, WP 1431 (December 2023). 



"TEMI" LATER PUBLISHED ELSEWHERE 
 

BENCHIMOL J. and L. PALUMBO, Sanctions and Russian Online Prices, Journal of Economic Behavior & 
Organization, v. 225, pp. 483-521, WP 1468 (October 2024). 

BRANZOLI N., R. GALLO, A. ILARI and D. PORTIOLI, Central banks' corporate asset purchase programmes and 
risk-taking by bond funds in the aftermath of market stress, Journal of Financial Stability, v. 72, Article 
101261, WP 1404 (March 2023). 

BRANZOLI N., E. RAINONE and I. SUPINO, The role of banks' technology adoption in credit markets during the 
pandemic, Journal of Financial Stability, v. 71, Article 101230, WP 1406 (March 2023). 

BUONO I, F. CORNELI and E. DI STEFANO, Capital inflows to emerging countries and their sensitivity to the global 
financial cycle, International Finance, v. 27,2, pp. 17-34, WP 1262 (February 2020). 

CANTELMO A., N. FATOUROS, G. MELINA and C. PAPAGEORGIOU, Monetary policy under natural disaster 
shocks, International Economic Review, v.65, 3, pp. 1441-1497, WP 1443 (March 2024). 

DEL PRETE S, G. PAPINI and M. TONELLO, Gender quotas, board diversity and spillover effects. Evidence from Italian 
banks, Journal of Economic Behavior & Organization, v. 221, pp. 148-173, WP 1395 (December 2022). 

DE MARCHI R. and A. MORO, Forecasting fiscal crises in emerging markets and low-income countries with 
machine learning models, Open Economies Review. v. 35, 1, pp. 189-213, WP 1405 (March 2023). 

FERRARI A. and V. NISPI LANDI, Whatever it takes to save the planet? Central banks and unconventional green 
policy, Macroeconomic Dynamics, v. 28, 2, pp. 299-324, WP 1320 (February 2021). 

FLACCADORO M., Exchange rate pass-through in small, open, commodity-exporting economies: lessons from 
Canada, Journal of International Economics, v. 148, Article 103885, WP 1368 (May 2022). 

GAUTIER E., C. CONFLITTI, R. FABER, B. FABO, L. FADEJEVA, V. JOUVANCEAU, J.-O. MENZ, T. MESSNER, P. 
PETROULAS, P. ROLDAN-BLANCO, F. RUMLER, S. SANTORO, E. WIELAND and H. ZIMMER, New facts 
on consumer price rigidity in the euro area, American Economic Journal: Macroeconomics, v. 16, 4, 
pp. 386-431, WP 1375 (July 2022). 

LATTANZIO S., Schools and the transmission of Sars-Cov-2: evidence from Italy, Economics & Human Biology, 
v. 52, Article 101342, WP 1453 (February 2023). 

MORO A. and V. NISPI LANDI, The external financial spillovers of CBDCs, Journal of Economic Dynamics and 
Control, v. 159, Article 104801, WP 1416 (July 2023). 

PORRECA E. and A. ROSOLIA, Immigration and unemployment. Do natives get it right?, Journal of Economic 
Behavior & Organization, v. 225, pp. 522–540, WP 1273 (April 2020). 

RAINONE E., Real-time identification and high frequency analysis of deposits outflows, Journal of Financial 
Econometrics, v. 22, 4, pp. 868–907, WP 1319 (December 2017). 

ROSOLIA A., Do firms act on their inflation expectations? Another look at Italian firms, Journal of Political 
Economy Macroeconomics, v. 2, 4, pp. 651-686, WP 1353 (October 2021). 

ZAGHINI A., Unconventional Green, Journal of Corporate Finance, v. 85, Article 102556, WP 1453 (April 
2024). 

 

2025 
 

BERNARDINI  M. and A. DE NICOLA, The market stabilization role of central bank asset purchases: high-frequency 
evidence from the COVID-19 crisis, Journal of International Money and Finance, v. 152, Article 103257,  
WP 1310 (December 2020). 

LOSCHIAVO D., F. TULLIO and A. DI SALVATORE, Measuring households' financial fragilities: an analysis at the 
intersection of income, financial wealth, and debt, Review of Income and Wealth, v. 71, 1, e12691,  
WP 1452 (April 2024). 

MISTRETTA A., Synchronization vs transmission: the effect of the German slowdown on the Italian business 
cycle, International Journal of Central Banking, v. 21, 1, pp. 331-386, WP 1346 (October 2021). 

 
 
 

FORTHCOMING 
 

BALTRUNAITE A., M. CANNELLA, S. MOCETTI and G. ROMA, Board composition and performance of state-owned 
enterprises: quasi experimental evidence, The Journal of Law, Economics, and Organization, WP 1328 
(April 2021). 

BENVENUTI M. and S. DEL PRETE, The evolution of banking competition in italian credit markets using a profit 
elasticity approach, Italian Economic Journal / Rivista italiana degli economisti, WP 1237 (October 2019). 

BOTTERO M. and S. SCHIAFFI, Firm liquidity and the transmission of monetary policy, International Journal of 
Central Banking, WP 1378 (July 2022). 



"TEMI" LATER PUBLISHED ELSEWHERE 
 

CIANI E., A. GROMPONE and E. OLIVIERI, Jobs for the long-term unemployed: place-based policies in depressed 
areas, Italian Economic Journal / Rivista italiana degli economisti, WP 1249 (November 2019). 

CUCINIELLO V. and N. DI IASIO, Determinants of the credit cycle: a flow analysis of the extensive margin, 
Journal of Money, Credit and Banking, WP 1266 (March 2020). 

CUCINIELLO V., C. MICHELACCI and L. PACIELLO, Subsidizing business entry in competitive credit markets, 
Journal of Political Economy, WP 1424 (October 2023). 

DESTEFANIS S. and V. DI GIACINTO, The heterogeneous effects of EU structural funds: a spatial VAR 
approach, Journal of Regional Science, WP 1409 (April 2023). 

FLACCADORO M., Exchange rate pass-through in small, open, commodity-exporting economies: lessons from 
Canada, Journal of International Economics, WP 1365 (April 2022). 

FRATTOLA E., Parental retirement and fertility decisions across family policy regimes, Review of Economics 
of the Household, WP 1417 (July 2023). 

GNOCATO N., Energy price shocks, unemployment, and monetary policy, Journal of Monetary Economics,  
WP 1450 (March 2024). 

MICHELANGELI V. and E. VIVIANO, Can internet banking affect households' participation in financial markets 
and financial awarness?, Journal of Money, Credit and Banking, WP 1329 (April 2021). 

MORO A., Optimal policies in a small open economy with an environmental externality and shallow foreign 
exchange markets, Portuguese Economic Journal, WP 1348 (October 2021). 

RAINONE E., Reservation rates in interbank money markets, Journal of Money, Credit and Banking, WP 1160 
(February 2021). 

ROPELE T., Y. GORODNICHENKO and O. COIBION, Inflation expectations and misallocation of resources: evidence 
from Italy, American Economic Review: Insights, WP 1437 (December 2023). 

 


	Pagina vuota



