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1 Introduction1

The role played by strategic interactions and spillovers among agents in shaping economic

outcomes has gained an increasing attention in recent years. Starting from pioneering

papers on social interactions, researchers in almost every field of economics have sequen-

tially recognized the importance of accounting for interdependence and simultaneity of

agents’ actions and the issues occurring when they are ignored. While in some fields

researchers have only recently realized the importance of including spillovers in their

models, the methodological frontier is focusing on improving methods to account for

interactions when estimating treatment responses.

There is also growing consensus on the importance of accounting for the heterogene-

ity of spillovers and the issues arising when we ignore it. For example, on the one hand

customer-supplier relationships can generate positive spillovers among firms, propagating

shocks along production networks (Barrot and Sauvagnat; 2016; Boehm et al.; 2019; Car-

valho et al.; 2021; Huremovic et al.; 2020). On the other hand, competition can induce

negative spillovers among firms selling on the same product market. Even more trivially,

spillovers among the consumption of goods and services can be positive or negative de-

pending on whether they function as complements or substitutes. A similar reasoning

can be applied to assets and liabilities when outcomes from balance sheets are analyzed.

Similarly, social interactions can be both reinforcing and opposing (using Manski; 2013,

terminology). Spillovers could be positive within political or warfare allies and negative

between them (as in König et al.; 2017).

Even though spillovers’ heterogeneity is so pervasive in economics, there are still few

econometric approaches to rely on. Our paper contributes in this direction. It studies

partial identification of treatment response via monotone comparative statics in settings

with endogenous and heterogeneous interactions. While the use of comparative statics

for monotonic increasing functions is well established, a more general approach that al-

lows for increasing and decreasing monotonicity has not been developed yet. This tool

would be required to handle the examples listed above. Comparative statics have been

largely analyzed in (noncooperative) supermodular games (see Milgrom and Roberts;

1990, 1994), initially introduced by Topkis (1979) and further explored by Vives (1985,

1990). Supermodular games exhibit “strategic complementarity”when each player’s strat-

egy set is partially ordered, and the marginal returns to one’s strategy rise with those

of competitors’ strategies. Even though this class of games encompasses many of the

1We thank Marco Battaglini, Alberto Bisin, Gaetano Bloise, Rocco Ciciretti, Timothy Christensen,
Giovanni Compiani, Domenico Depalo, Aureo de Paula, Davide Fantino, Giovanni Guazzarotti, Alessio
De Vincenzo, Andrea Fabiani, Guillaume Pommey, Federico Luigi Signorini, Giancarlo Spagnolo, Juha
Tolvanen, James Tremewan, Jaume Vives, for their valuable comments as well as participants at the Tor
Vergata University seminar, Microeconometrics and policy evaluation workshop during the 2024 BSE
summer forum.
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most important economic applications of noncooperative game theory,2 there are many

relevant games in which players’ payoffs are increasing in some other players’ payoffs and

decreasing in some others. In those cases, then the equilibrium with the highest payoff

for one group is the equilibrium with the lowest payoff for the other.3

Our main innovation is allowing the outcome of an agent to be affected heteroge-

neously by the outcomes, and thus the treatment status, of other agents in the economy.

The sign and the intensity of interactions can vary at the pair-of-outcomes level. This

generalization enables the use of credible partial identification in many contexts where

interactions among outcome variables are not trivial. We derive new theoretical results

on how monotone comparative statics can provide nonparametric bounds for treatment

effects and an empirical application showing that our method can produce tight and

meaningful bounds. We also provide a wide set of examples that highlight how our

method can unlock the use of partial identification via monotone comparative statics

in many fields in which social and market interactions matter and should be accounted

for. This generalization comes at a cost. The system of structural equations does not

give rise to an increasing function that maps possible outcomes into themselves. Conse-

quently, the standard application of Tarski’s fixed point theorem is not feasible in this

context. We introduce the heterogeneous fixed points theorem, which has never been used

in economics, an extension of the well-known Tarski’s fixed point theorem, to solve this

problem. It proves the existence of fixed points when a system of simultaneous equations

is heterogeneously monotonic. That is, it is each outcome variable is increasing in some

variables and decreasing in others. Using this theorem, we then extend the results of

Milgrom and Roberts (1990, 1994) to the case of heterogeneous monotone systems of

simultaneous equations, establishing a connection between econometric theory on non-

parametric identification and the existing literature on monotone comparative statics in

games.

We show how our methodology can produce tight bounds for potential outcomes even

in quite complex settings. We focus on a relatively understudied problem: assessing the

effects of policy interventions on firms’ balance sheets in the presence of heterogeneous

market interactions among them. Balance sheets are composed by endogenously and

simultaneously determined outcomes in both the asset and liability sides, deriving from

firms’ profit maximization. Interactions among firms’ outcomes are heterogeneous and

of opposite signs. They can be negative because they arise from competition on the

2Such as Diamond (1982)’s search model and Bryant (1983, 1984)’s rational expectations models, in
macroeconomics; Dybvig and Spatt (1983), Farrell and Saloner (1986), and Katz and Shapiro (1986) in
tecnology adoption; Diamond and Dybvig (1983) in bank runs, and many others.

3For example, in the Cournot duopoly game the equilibrium with the highest payoff for one firm is
the one in which its output is highest and its competitor’s output is lowest. A similar result obtains in
the Hendricks-Kovenock drilling game. Also, in technology adoption games, the equilibrium with the
most extensive adoptions of the new technology is the equilibrium preferred by players who were poorly
served by the former technology and least preferred by players who were well served by it.
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same product market. They can be positive because they are formed within the same

firm or from customer-supplier relationships. In our empirical application, we focus on

banks’ balance sheets for the following reasons: (i) banks are at the crux of the economic

and financial system; (ii) they were at the center of all the relevant crises occurred

in the last decades (as propagators or attenuators); (iii) they interact with each other

heterogeneously on many markets on both asset and liability sides, exchanging resources

through direct and indirect linkages; (iv) often these linkages are endogenously formed

and not precisely measurable (and thus standard parametric models, like the spatial

autoregressive, can not be easily used); (v) many important policies involve banks and

are difficult to assess because of the impossibility of using randomized control trials.

Often researchers assume that (a) some banks are exposed to the policy and others are

not, (b) only a balance sheet item is affected by the policy and the others are treated

as exogenous controls, (c) banks do not interact with each other (d) a valid instrument

exists for the endogenous treatment assignment. Using our new method we can relax

these assumptions, that may often sound unrealistic.

After having established a set of (potentially testable) monotonic assumptions on the

interactions among items within and between banks’ balance sheets, we assess the effects

of central bank funding on credit to the real economy. After the global financial crisis,

central banks around the world started to lend to commercial banks to help them with

funding difficulties and sustain credit to the real economy, eventually with targeted oper-

ations. We focus on this policy due to its significant role in facilitating credit provision,

particularly during the recent financial crises. Additionally, some of the unconventional

operations are currently progressing through sequential maturation. Consequently, it is

of paramount importance to comprehend their effects both at inception and termination.

Our method is particularly well suited for studying this policy. Firstly, many banks

engaged in this treatment endogenously and often at the same time, as banks endoge-

nously decide the amount of funds to borrow. Secondly, the treatment affects many of

the balance sheet items simultaneously (not only credit, the main outcome variable under

study), because it changes banks’ profit maximization and the structure of both assets

and liabilities. It is thus difficult to use other balance sheet items as controls and as-

sume that they are exogenously determined. Thirdly, banks allocated the funds received

competing on the same markets, and thus the treatment effects can not be assessed con-

sidering banks in isolation. Accounting for all these features with a standard approach,

for example a diff-in-diff one, can be problematic, even trying to treat all the balance

sheet items as endogenous and taking into account all the interactions among banks.

We use bank-level monthly balance sheet data for the Italian banking system from

2011 to 2023. Italy is a perfect laboratory to study the effects of central bank funding.

Starting from the sovereign debt crisis in 2011, Italian banks have borrowed a considerable

amount of funds from the Bank of Italy mainly through long term refinancing operations
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and targeted longer-term refinancing operations. Central bank funding reached more

than ten percent of total liabilities at the aggregate level. In line with the evidence col-

lected in the literature,4 we find that banks borrowing more from the central bank grant

more credit to the real economy especially when other banks’ borrowing is low. When

other banks borrow heavily, borrowing more from the central bank does not increase

credit supply so remarkably, because of competitive interactions. A standard deviation

increase in central bank funding can induce up to 60 percent of a standard deviation

increase in one bank’s credit to the real economy when other banks borrow less funds

on average (below the first decile of the distribution). This effect reduces to less than

one percent of a standard deviation increase when other banks borrow more (above the

ninth decile of the distribution). The upper bound of potential outcome decreases much

more prominently when the individual treatment is low, highlighting that a significant

portion of the positive effect stemming from one’s own treatment can be mitigated by

competitive interactions when others receive high treatments. This mechanism is com-

pletely overlooked if interactions among banks are ignored. The effect of borrowing from

the central bank would be invariant to other banks’ behavior. The upper bounds would

be overestimated at all individual treatment levels. Symmetrically, a reduction of central

bank funding has milder adverse effects on lending when funds were widely borrowed by

most of the banks.

The remainder of this article is organized as follows. In Section 2 we introduce our

framework and the concepts of heterogeneous monotonic interactions and fixed points.

Section 3 describes some examples of settings in which our approach can be used. Section

4 outlines the main assumptions and derives the identification region for potential out-

comes. Section 5 presents the results of the empirical application. Section 6 concludes.

In the reminder of this section, we discuss the related literature.

1.1 Related Literature

Our paper is related to the large and growing literature on strategic interactions and

spillovers among economic agents.

In the 80s and 90s game theory broke down the sharp distinction between markets

and social interactions (see Manski; 2000, for a discussion). Game theory started to

formalize all interactions as games, with markets as special cases. An example is the

class of noncooperative supermodular games introduced by Topkis (1979) and further

analyzed by Vives (1985, 1990) and Milgrom and Roberts (1990, 1994). As a result,

economic theorists have studied phenomena that stretch beyond traditional economic

realms, such as the evolution of social norms (Akerlof; 1980; Cole et al.; 1992; Jones;

4See in particular Benetton and Fantino (2021) and Andreeva and Garćıa-Posada (2021). Differently
from previous studies, we take all the balance sheet items as endogenous and we study both central bank
funding and defunding.
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1984; Kandori; 1992; Young; 1996, for example). A large portion of theoretical work

has then focused on networks. Jackson (2010) offers a very complete critical survey of

the theoretical literature on the economics of networks.5 After the pioneering work of

Jackson and Wolinsky (2003), Ballester et al. (2006) and Galeotti et al. (2010) among

others, the literature expanded further, exploring many mechanisms that can characterize

the formation of social and economic interactions and outcomes.

The relevance of including interactions and spillovers has been widely recognized and

models accounting for them have been developed in almost every field of economics.

Labour economists first recognized the relevance of social interactions in education and

productivity (see Becker; 1994; Boucher et al.; 2014; Calvó-Armengol et al.; 2009; Mas

and Moretti; 2009; Mincer; 1974, among others). Following the groundbreaking work

by Acemoglu et al. (2012), the importance of intersectoral spillovers for the propagation

of shocks gained the attention of macro economists (see Carvalho; 2014; Carvalho and

Tahbaz-Salehi; 2019). More recently, also researchers in finance started to show the

importance of accounting for spillovers for the adoption of financial services (Patacchini

and Rainone; 2017) and to assess the effects of financial shocks on interest rates (Rainone;

2020), real outcomes (Berg et al.; 2021; Huber; 2022) and credit markets (Pietrosanti and

Rainone; 2023). These are just some examples, there are many other papers in these and

other fields in which this type of models were successfully introduced and used.

In parallel, starting from linear-in-means models (Brock and Durlauf; 2001; Lee; 2007;

Manski; 1993) and discrete choice models (Brock and Durlauf; 2007; Tamer; 2003), the

literature on econometrics has developed a wide range of methods to identify models that

include interactions (see Blume et al.; 2011; Durlauf et al.; 2010, for an overview). More

recently, the importance of interactions has been recognized also in policy evaluation (see,

e.g., Angelucci and De Giorgi; 2009; Arduini et al.; 2020b; Auerbach and Tabord-Meehan;

2021; Barrera-Osorio et al.; 2011; Forastiere et al.; 2021; Leung; 2020, 2022). In these

approaches, identification often relies on randomized experiments or strong assumptions

and/or very granular and detailed data.

Following the diffusion of network models, a large branch of the literature has focused

on procedures that estimate parameters deduced from the theory. A workhorse in this

field is the spatial autoregressive model, in which the properties of the network struc-

ture of observable connections (i.e. intransitivity) is used to identify spillovers among

agents’ outcomes (Bramoullé et al.; 2009). See Bramoullé et al. (2020) for a review of the

literature, De Paula (2020) for a review of network formation models and Graham and

De Paula (2020) for a wide view on the econometric analysis of network data.6 However,

connections among agents may be endogenous and spillovers heterogeneous. In addition,

5See also Jackson and Zenou (2015) and Jackson et al. (2017).
6See Kelejian and Prucha (1999), Kelejian and Prucha (2004), Kelejian and Prucha (2007), Lee et al.

(2010) and Liu and Lee (2010) among others for spatial autoregressive models.
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reliable information on the connections among agents is often not available. The con-

ventional practice used to address these issues has been to invoke assumptions that are

strong enough to point-identity spillovers and average treatment effects.7 The issue with

this approach is that, if these assumptions do not hold, parameters and thus treatment

effects are biased and could eventually lead to misleading conclusions. Indeed, the fron-

tier is dealing with these issues. See Goldsmith-Pinkham and Imbens (2013), Qu and Lee

(2015), Hsieh and Lee (2016), Hsieh et al. (2020), Johnsson and Moon (2021), Auerbach

(2022) and Hsieh et al. (2022) for frequentists and Bayesian spatial econometric models

with endogenous adjacency matrices. See Patacchini et al. (2017), Arduini et al. (2020b),

Arduini et al. (2020a), Tincani (2018) and Beugnot et al. (2019) for models with multiple

or heterogeneous spillovers among agents. See Patacchini and Rainone (2017) for a model

with both heterogeneous spillovers and endogenous adjacency matrices. The literature

has only recently started to address the issue of estimating spillovers when connections

among agents are not precisely observable. De Paula et al. (2019), Miraldo et al. (2021),

and Battaglini, Crawford, Patacchini and Peng (2020) use high-dimensional estimation

techniques to estimate social networks, which can bypass the dimensionality problem

when the networks are sufficiently sparse. Breza et al. (2020) and Alidaee et al. (2020)

propose aggregated relational data as a low-cost substitute that can be used to recover

the structure of a latent social network. Battaglini et al. (2022) propose a model of en-

dogenous network formation with unobserved connections and use approximate Bayesian

computation methods to recover the links and estimate spillover effects among by agents.

Our paper, has a similar starting point. A relatively new literature uses a partial

identification approach to deal with interactions. Study of partial identification analysis

removes the focus on point estimation obtained under strong assumptions. Instead, it

begins by posing relatively weak (and eventually testable) assumptions that should be

highly credible in the applied context under consideration. Such weak assumptions come

at the cost that they generally imply set-valued estimates rather than point estimates.8

Few papers use monotone assumptions to account for interactions and derive bounds

for potential outcomes under different treatment statuses. Manski (2013) studies partial

identification of potential outcome distributions when treatment response may depend on

social interactions, and nonparametric shape restrictions and distributional assumptions

are placed on response functions. Importantly, Manski (2013) recognizes the importance

of heterogeneous interactions, and analyzes what he calls reinforcing and opposing in-

teractions separately. A reinforcing interaction occurs when a agent’s outcome increases

both with the value of his own treatment and with the values of the treatments received

7These assumptions typically assert invariance of some kind through difference-in-difference regres-
sions (see Manski and Pepper; 2018, for a discussion) and/or force the peer or reference groups to be
based on incomplete information.

8See Manski (1995, 2003, 2009) for monograph expositions at different technical levels. See Tamer
(2010) and Molinari (2020) for review articles.
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by others in the reference group. An opposing interaction occurs when a agent’s out-

come increases with the value of his own treatment but decreases with the values of the

treatments received by others. Lazzati (2015) has the same object of interest, but differs

from Manski (2013) by imposing all the assumptions on the primitives of the structural

model and deriving their implications on the solution sets instead of imposing restrictions

directly on the equilibrium behavior of the agents. This micrifoundation comes at the

cost of some additional assumptions: the structural reference groups are symmetric; the

endogenous interactions are reinforcing; the structural functions are monotone in the own

and others’ treatment; there is a mechanism that selects the smallest or largest solution

in case of multiple equilibria.

In this paper, we extend the results of these studies in important ways. First, we

are the first to study partial identification via monotonic comparative statics of potential

outcome distributions when interactions can be both reinforcing and opposing (using

Manski; 2013, terminology). This innovation allows the use of partial identification in

settings with complementarity and substitutability, which are pervasive in economics as

we discuss in Section 3. Second, we show a set of assumptions on the structural functions

that can be used to bound the solution sets. By doing so, we introduce new concepts,

such as the heterogeneous fixed points, which are new to economics and contribute to the

literature on games. Third, we show how this approach can be used for policy evaluation

when firms compete on the same product markets and are embedded in customer-supplier

relationships. We provide a first application to real data of partial identification under

positive and negative spillovers, and show how it can produce very tight and meaningful

bounds for the response of credit to the real economy to central bank funding.

Additionally, we also provide a new tool and contribute to the vast literature studying

the effects of policies and shocks on banks’ (and more generally firms’) balance sheets.9

A far from complete list of influential works assessing the effects of different bank shocks

includes Peek and Rosengren (2000), Khwaja and Mian (2008), Jimenéz et al. (2012),

Schnabl (2012), Jiménez et al. (2014), Behn et al. (2016) and Jiménez et al. (2017).

Moreover, our work relates to the growing strand of papers in macro-finance and banking

focusing on spillovers’ implications for the identification of shocks’ effects. Mian et al.

(2022) proposes a method to recover general equilibrium multipliers from differences in

the regional impact of credit supply shocks. Berg et al. (2021) studies how spillovers

from firms’ interactions may affect the measurement of shocks’ effect on firm level out-

comes. Huber (2022) provides overall guidance to empirical researchers on how to deal

9There is a large literature studying the effects of central bank funding on credit provision and other
items of banks balance sheets, see Benetton and Fantino (2021), Andreeva and Garćıa-Posada (2021),
Carpinelli and Crosignani (2021), Garcia-Posada and Marchetti (2016), Crosignani, e Castro and Fonseca
(2020), Afonso and Sousa-Leite (2020), Laine (2019), Balfoussia and Gibson (2016), Jasova et al. (2018),
Acharya and Steffen (2015), Van der Kwaak (2015), Corbisiero (2022), Andrade et al. (2019), Daetz
et al. (2018), Darracq-Paries and De Santis (2015), and Alves et al. (2021) among others.
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with multiple contemporaneous spillovers (spatial, competitive, agglomeration, general

equilibrium and so on).

2 Monotonic Interactions and Heterogeneous Fixed

Points

This section begins with basic definitions from lattice theory, reports some known con-

cepts in the literature, and concludes with our new results. We first introduce the hetero-

geneous fixed points (HFP) theorem, an extension of the well-known Tarski’s fixed point

theorem. This theorem was introduced in computer science by Kanade et al. (2005) and

never used in economics. It proves fixed points exist when a system of simultaneous

equations is heterogeneously monotonic. i.e., each outcome variable increases in some

variables and decreases in others. Using HPF theorem, we extend the results of Mil-

grom and Roberts (1990, 1994) on monotone comparative statics for the extremal fixed

points to the case of heterogeneous monotone systems of simultaneous equations.10 The

monotonicity properties of the structural functions w.r.t. some exogenous variables are

preserved by the least and the greatest elements of the system’s solution set.

Let Sn be a system of n > 1 simultaneous equations in n variables

y1 = f1(y2, y3, . . . , yn),

y2 = f2(y1, y3, . . . , yn),
...

yn = fn(y1, y2 . . . , yn−1).

(1)

The functions f1, . . . , fn are called structural functions of Sn. Let F be a function defined

as F(y) = (f1(y), . . . , fn(y)), where y = (y1, . . . , yn).

We call F the function vector of Sn. We assume that the outcome yi with i = 1, . . . , n,

takes value from a finite complete lattice Pi = (Pi, ≤i, ⊓i, ⊔i) where≤i is the partial order

over the set Pi, and ⊓i and ⊔i, are respectively the meet and the join of the lattice. The

set Pi is a lattice if for each two-element subset {x, z} ⊆ Pi there is a supremum and an

infimum denoted join and meet, respectively.11 The lattice is complete if for all subset

T ⊂ Pi, inf(T ) and sup(T ) ∈ Pi. Let us define P = (P, ≤, ⊓, ⊔) = P1 × . . . × Pn, a

function fi : P → Pi and the function vector F : P → P.

Definition 1. The outcome yi depends on yj where 1 ≤ i ≤ n and 1 ≤ j ≤ n, j ̸= i, if

and only if there exists at least two distinct values aj, a
′
j of yj, such that for any evaluation

of yk, 1 ≤ k ≤ n, k ̸= j we have that fi(y1, . . . , aj . . . , yn) ̸=i fi(y1, . . . , a
′
j . . . , yn).

10In particular, Theorem 2.3 extends the results in Theorem 3 of Milgrom and Roberts (1994).
11Given a subset S of Pi, b̄ is called an upper bound for S if b̄ ≥ x for all x ∈ S. It is the supremum

of S, denoted sup(S), if b ≤ b̄ for all upper bounds b of S.
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Let R be a relation, called dependence relation, such that < yi, yj > are in R if and

only if yi depends on yj. Let us define D = (V,C) as the dependence graph of Sn, where

V is the set of variables and C is the set of relations R. We say that the system is closed

if its dependence graph is strongly connected.12 Without losing generality, we consider

only strongly connected D in what follows.

Definition 2. A structural function fi : P → Pi is monotonically increasing in a variable

yj where 1 ≤ i ≤ n and 1 ≤ j ≤ n, j ̸= i, if and only if for any evaluation of yk,

1 ≤ k ≤ n, k ̸= j, and for all aj, a
′
j ∈ Pj,

aj ≤j a
′
j =⇒ fi(y1, . . . , aj . . . , yn) ≤i fi(y1, . . . , a

′
j . . . , yn)

The definition of monotonic decreasing follows the same argument. Observe that if a

variable yi does not depend on yj, the function is both monotonically increasing and

decreasing in yj.

Definition 3. A vector function F : P → P is monotonic if and only if for all C,D ∈ P

C ≤ D =⇒ F(C) ≤ F(D),

In other words, a function vector F is monotonic if and only if each of its component

functions, fi, 1 ≤ i ≤ n, is monotonically increasing in all variables.

2.1 Identification of a Valid Partition

Let us define ≤ as the usual coordinate-wise order. Consider a partition (A,B) of the

set {1, . . . , n}. Let us call A and B the blocks of the partition. A ∪ B = {1, . . . , n}
and A ∩ B = ∅. We say a vector function is heterogeneous monotonic or simply h-

monotonic w.r.t. a partition (A,B) if and only if the functions whose subscripts belong

to A are monotonically decreasing (increasing) in the endogenous variables with the

same subscripts and monotonically increasing (decreasing) in the variables whose sub-

scripts belong to B. At the same time, the functions with B-subscripts are monotonically

decreasing (increasing) in the variables whosesubscripts belong to B and monotonically

increasing (decreasing) in the variables with subscripts in A. The following results can

be generalized when blocks are more than two.

Definition 4. A vector function F : P → P is h-monotonic w.r.t. a partition (A,B), if

and only if,

• for any i ∈ A, fi monotonically increases in yj, if j ∈ A, j ̸= i and monotonically

decreases in yj, if j ∈ B.

12A graph is said to be strongly connected if every vertex is reachable from every other vertex.
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• for any i ∈ B, fi monotonically increases in yj, if j ∈ B, j ̸= i and monotonically

decreases in yj, if j ∈ A.

If a function vector F of a system Sn is h-monotonic w.r.t. a partition (A,B) of

the set {1, . . . , n}, then (A,B) is said to be a valid partition of Sn. Let us provide the

conditions under which a given system has valid partitions. If in the dependence graph of

Sn, D = (V,E), yi depends positively on yj (i.e., fi is increasing in yj ), then we have that

in the set E this is represented by a solid edge. On the contrary if yi depends negatively

on yj (i.e. fi is decreasing in yj ), then there is a dashed edge from yi to yj. Let a path

in a graph be a sequence of edges that joins two vertices. The parity of a path in D is

even if it has an even number of dashed edges. Otherwise, its parity is odd. If all paths

between every pair of nodes have the same parity, then the dependencies between those

variables are consistent (a visual example is provided in Figure 1). If the parity is even,

then the two variables are monotonically increasing. If the parity is odd, then the two

variables are monotonically decreasing. The univocal monotonic relationship between two

variables cannot be determined if paths connect the same nodes with different parities.

Figure 1: Consistent and Inconsistent Dependences

(a) Consistent (b) Inconsistent

Notes. Grey nodes are the variables, yi, yl, and yj . Dashed edges represent negative relationships, and solid ones represent
positive ones.

Definition 5. Dependences in a system of simultaneous equations are consistent if for

every pair of nodes (yi, yj) contained in a strongly connected component of the dependence

graph, all paths between yi and yj have the same parity.

Having consistent dependencies is particularly important to establish h-monotonicity

of a system w.r.t. a partition, which can be used to model heterogeneity in strategic

interactions. We can now state conditions of a valid partition’s existence (and uniqueness)

in a system of simultaneous equations.

Lemma Kanade et al., 2005 (Existence of a Valid Partition). A valid partition

for a system Sn iff the dependencies in Sn are consistent. If (A,B) is a valid partition

for the system Sn, then there is no other valid partition except (B,A).

The proof is in Lemma 1 and 2 of Kanade et al. (2005). For example, consistent de-

pendencies can be assumed among outcomes of interacting units embedded in a network
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of relationships belonging to different blocks. Using Manski (2013)’s terminology, the

partition would be valid as long as interactions are reinforcing within the same block and

opposing between blocks. The following theorem provides formal conditions for such a

structure of interactions to generate a valid partition.

Theorem 2.1. In a partition (A,B) of the set {1, . . . , n} in which interactions are

reinforcing within the same block and opposing between blocks, the dependencies are con-

sistent and the partition is valid.

See the Appendix for all the proofs. Theorem 2.1 tells us that when interactions are

reinforcing within the same block and opposing between blocks, the partition’s validity

is easily implied. Figure 2 provides simple visual examples of consistent dependencies

among 3, 4, and 5 nodes belonging to two blocks (in black or white). Solid edges repre-

sent reinforcing interactions among nodes of the same block, and dashed edges represent

opposing ones between nodes of different blocks. The partition validity for these types

of interactions is related to the extensive literature in social psychology, particularly the

theory of structural balance (Cartwright and Harary; 1956; Harary; 1953; Heider; 1946).

This influential concept explores how relationships form among individuals and their per-

ceptions of shared objects. In a P-O-X triad, where P represents a focal individual, O is

a second individual, and X can be either another individual or a common object, Heider

proposed that a triad is balanced if P likes O, O likes X, and P also likes X. Conversely,

an imbalance occurs if any of these conditions are violated. Heider’s primary claim is

that balance represents a state of psychological equilibrium, and individuals in networks

strive to achieve and maintain this balance. Harary (1953), and Cartwright and Harary

(1956) extend the theory to signed graphs, where relationships between pairs of nodes

can be represented as either positive or negative. Overall, structural balance theory sheds

light on how individuals seek cognitive harmony in social interactions, influencing sen-

timents and stability within networks. Figure 1 can be interpreted as follows from this

perspective. In Figure 1 (a), nodes i and j are friends who share a common enemy, l.

This configuration represents a stable relationship between social actors or groups. Con-

versely, in Figure 1 (b), node i is the enemy of both j and k, who are enemies as well -Such

configuration results in an unstable graph. Therefore, a signed graph is deemed stable

if and only if it can be partitioned into two sets: one consisting of positive relationships

(plus-set) and the other of negative relationships. The stability of the signed graph is

the same as having consistent dependencies in Sn. This concept is formally articulated

as follows.

Theorem 2.2 (Harary (1953)). A signed graph is balanced, iff the set of vertices, V, can

be partitioned into two subsets, called plus-sets, such that all positive edges are between

vertices within a plus-set and all negative edges are between vertices in different plus-sets.
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Theorem 2.2 establishes that possessing this bipartition structure is also necessary for

ensuring the consistency of Sn. Consequently, regardless of the observed partition in

the data, the partition is valid if the analyst can categorize the nodes into two positive

within-interaction blocks and a set of negative links between these blocks.

Figure 2: Heterogeneous Interactions and Consistent Dependences

(a) 3 units (b) 4 units (c) 5 units

Notes. Black and white nodes belong to different blocks. Dashed edges represent cross-block connections, and solid ones
represent within-block connections.

2.2 Heterogeneous Fixed Points and Monotone Comparative

Statics

Since the component lattice Pi is a complete lattice, any subset of Pi has a supremum

and an infimum. Let FP (F) be the set of fixed points of F. Let us define FPi(F) as

the set of elements from Pi that belong to some fixed points of F.

If F is monotonic (not h-monotonic) -e.g. fi(·) is increasing in yj, ∀i, j-, then FP (F)

has two subsets LFP (F) and GFP (F) containing respectively the least and greatest fixed

points, which in turn are the greatest and the least (element-wise) in each dimension (Pi).

When F is h-monotonic, it no longer holds. Thus, a fixed point can be the greatest in

one dimension and the least in another. We now define a subset of fixed points FP (F),

which are the greatest and least in different dimensions, depending on which partition

the specific dimension belongs to.

Let us define HFP (A,B)(F) as the set of HPF of the system Sn w.r.t. a partition

(A,B) such that its element HFP
(A,B)
i (F) is sup of FPi(F) if i ∈ A and is inf of FPi(F)

if i ∈ B.

HFP
(A,B)
i (F) =

{
⊓iFPi(F) if i ∈ A

⊔iFPi(F) if i ∈ B

At the same time, let us define HFP (B,A)(F) as the set of HPF of the system Sn w.r.t.

a partition (A,B) such that its element HFP
(B,A)
i (F) is infimum of FPi(F) if i ∈ A

and is supremum of FPi(F) if i ∈ B.
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HFP
(B,A)
i (F) =

{
⊔iFPi(F) if i ∈ A

⊓iFPi(F) if i ∈ B

Let us define HFP (F) ≡ HFP (B,A)(F)orHFP (A,B)(F) and introduce its existence theo-

rem provided by Kanade et al. (2005).

HFP Theorem (Kanade et al., 2005). If the function vector F : P → P of a system

Sn is h-monotonic w.r.t. a valid partition (A,B), then HFP (A,B)(F), HFP (B,A)(F) ∈
FP (F).

• HFP (A,B)(F) has the least possible values from the component lattice with a sub-

script in A and the greatest possible values from the component lattice whose sub-

scripts belong to B;

• HFP (B,A)(F) has the least possible values from the component lattice with a sub-

script in B and the greatest possible values from the component lattice whose sub-

scripts belong to A;

Let us now extend the result of Milgrom and Roberts (1994) for the case of HFP. In do-

ing so, we allow our system Sn to contain t = (t1, . . . , tn) defined on any partially ordered

set T as additional exogenous variables. Observe that the concept of h-monotonicity eas-

ily extends to the presence of exogenous variables, we thus assume that F is h-monotonic

in t later on, when not specified. Let us define yL
a ∈ ⊓iFPi(F), and yU

a ∈ ⊔iFPi(F)

if i ∈ A; yL
b ∈ ⊔iFPi(F), and yU

b ∈ ⊓iFPi(F) if i ∈ B.

Theorem 2.3. Let P be a complete lattice and F : P×T → P. Suppose F is h-monotonic

with respect to a valid partition (A,B), then also yL
a yU

a , y
L
b and yU

b are h-monotonic in

t.

3 Possible interpretations

As mentioned above, our framework is amenable to many possible interpretations and

applications in which there are heterogeneous interactions. In all these contexts, the

proposed method can be useful especially if connections among agents are not observable

with precision, assuming specific functional forms may be restrictive, economic theory

provides straightforward monotone assumptions, treatments and networks are potentially

endogenous. Here, we discuss some of these possible applications.

3.1 Social interactions

This framework is useful whenever reinforcing and opposing interactions are possibly at

play (Manski; 2013). A reinforcing interaction occurs when a person’s outcome increases
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both with the value of his own treatment and with the values of the treatments received

by others in the reference group. An opposing interaction occurs when a person’s out-

come increases with the value of his own treatment but decreases with the values of the

treatments received by others.

3.1.1 Legislative Activity

There is an important body of work in political science that has stressed the importance

of taking into account interpersonal relations and social connections when studying how

legislatures work. For example, the history of the U.S. Congress is indeed rich in examples

where voting coalitions are shaped by social connections formed inside and outside the

legislative chambers. We can imagine that interactions could be reinforcing within a

party and opposing between parties that compete for voters, or follow other and finer

criteria, for example considering committees or geographical location as well.

While scholars in political science have recognized the relevance of social connections

between lawmakers for quite some time, only recently data availability and advances in

network analysis has allowed to move beyond descriptive analyses.13 Peoples (2008),

Masket (2008), Rogowski and Sinclair (2012), Cohen and Malloy (2014) and Harmon

et al. (2019) have studied whether social links affect voting behavior. Battaglini and

Patacchini (2018) have studied the impact of the legislators’ social connection on PAC’s

contributions. Fowler (2006), Kirkland (2011) and Battaglini, Sciabolazza and Patacchini

(2020) have studied the relationship between legislators effectiveness in the U.S. Congress

and their social connections.

The main challenges are that social networks are endogenous and not directly ob-

served in legislatures (as, indeed, in most other social groups). With few exceptions, the

standard approach in the empirical literature is to assume that there is an observable

network; and that it can be used to estimate key parameters (for example the effect of

covariates, the spillover effect, the cost of link formation and other parameters that mat-

ter for the network). A remarkable exception is Battaglini et al. (2022), which develop

a model of endogenous network formation to recover unobserved social networks using

only observable outcomes and approximate Bayesian computation methods.

3.1.2 Conflicts and Warfare

In many episodes, like civil conflicts or wars, there are links among alliances and enmities.

Military alliances can also be influenced by trading relationships (Jackson and Nei; 2015).

König et al. (2017) construct a stylized theory of conflict that captures the effect of

informal networks of alliances and enmities, and apply it to the empirical study of the

13Earlier work include Rice (1927), Rice (1938), Routt (1938), Eulau (1962). See Victor et al. (2017)
and Battaglini and Patacchini (2019) for recent surveys.
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Second Congo War. In their model, the fighting effort of group i’s allies increases group

i’s operational performance, whereas the fighting effort of its enemies decreases it. Since

the cost of fighting is borne individually by each group, a motive for strategic behavior

arises among both enemies and allies. The complex externality web affects the optimal

fighting effort of all groups.14 A similar approach can be used to study conflicts between

or interactions within criminal groups (Dell; 2015; Glaeser et al.; 1996; Lee et al.; 2021;

Patacchini and Zenou; 2008) or ethnic groups (Arbatl et al.; 2020; Bisin and Verdier;

2000).

3.2 Market Interactions

When outcomes are formed as an expression of trade and monetary exchanges, negative

(positive) spillovers can be generated between substitutes (complements). For example,

the outcome of a market participant can affect negatively the outcomes of competitors

on the same side of the market.

3.2.1 Financial Services and Markets

Financial networks, the web of business links that banks and other financial operators

establish among themselves, have long been recognized as important factors in finan-

cial crises, for interbank liquidity, and the diffusion of investment choices (see Allen and

Babus; 2009, for a survey of this literature). Financial networks are often endogenous,

typically unobservable, and embedding positive and negative spillovers. For example,

direct financial links between banks are formed through credit exposures in the inter-

bank market (see Denbee et al.; 2021; Drehmann and Tarashev; 2011). These exposures,

however, are often not perfectly observed and results are often sensitive to how they

are measured (Upper; 2006). Exposures are generally recovered from the banks’ balance

sheets which only provide information on the aggregate exposure of a bank.15

As banks exchange reserves on the interbank market, increased supply of a bank can

affect positively the borrowing behavior of a bank on the other side of the market.

In addition, banks interact with each other on other markets simultaneously. They

compete in the markets for deposits and loans to the real economy, thus increased supply

of a bank can affect negatively the supply of other banks (Pietrosanti and Rainone;

2023). At the same time, outcomes on these markets are not independent within the

14In their study, the network of interactions is identified using information from a variety of expert
and data sources. The identification strategy exploits the exogenous variation in the average weather
conditions facing, respectively, the set of allies and of enemies of each group.

15Bilateral credit positions vis-a-vis the other banks are generally reconstructed using ad hoc algo-
rithms such as the maximum entropy method (which is based on the idea that banks spread their
position uniformly across other banks). Among others, the maximum entropy algorithm has been used
by Drehmann and Tarashev (2011), Anand et al. (2015) and Peltonen et al. (2019). See Mistrulli (2011)
for a survey and discussion of these approaches.
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single bank’s balance sheet. Increasing funding through deposits for example allows

granting more loans. These interactions between and within banks’ outcomes, creates a

complex system of interdependence embedding both positive and negative interactions.

As shown by Allen and Gale (2000), among others, contagion is very sensitive to the

shape of the financial network. For regulations on financial stability, monetary policy,

and policy intervention more generally, it is therefore important to incorporate the effects

of underlying links between and within financial operators to get unbiased estimates of

policy measures and external shocks. Indeed, there is a growing strand of papers in

macro-finance and banking focusing on spillovers’ implications for the identification of

shocks’ effects (Berg et al.; 2021; Huber; 2022; Mian et al.; 2022). More discussion and

details on this topic are provided in our empirical analysis in Section 5.

4 Identification of Treatment Response with Hetero-

geneous Interactions

This section studies the identification of treatment response with heterogeneous interac-

tions. The results in Section 2 are used to construct identification regions for potential

outcome distributions via monotone comparative statics under conditions motivated by

economic theory.

4.1 Model Specification

Let the population P be partitioned into two blocks, A and B. The vector of out-

comes for units in the kth block is denoted as yk. Each unit has a reference group,

G, composed of some units from each block. Reference groups are mutually exclusive

and symmetric, with unit l being a member of j’s group if and only if j belongs to l’s

group. The structural functions are assumed to be block-specific. A potential treatment

t ∈ Ti is administered to population units that are not necessarily randomly selected.

Additionally, we define the exposure mapping h0 : T → D ⊂ R2, as a function that

maps the treatment vector into an effective treatment for each unit (Manski; 2013). For

example, a widely used exposure function is the fraction of treated units in group G,

i.e. h0(t) = (ti,
1
nA

∑
j∈,A/i tj,

1
nB

∑
j∈B/i t) = {d0Ii , d0Ai , d0Bi } = d0

i ∈ D (see, e.g., Leung;

2020; Vazquez-Bare; 2023). Let us define fi(·) as the structural function. We introduce a

constant treatment response assumption (CTR, Manski; 2013) that only restricts inter-

actions within reference groups and uses the exposure mapping function to describe the

interference mechanism.

Assumption CTR. For all i ∈ P, and for all t, t′ ∈ T such that h0(t) = h0(t′), the
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following holds:16

fk
i (h

0(t), ·) = fk
i (h

0(t′), ·).

Formally, the structural equation for the generic ith unit in block k ∈ K ≡ {A,B}
and group G is as follows:

yki = fk
i (d

0, S0
i (y

k\i(t)), S0
i (y

l(t))), i ∈ G, k, l ∈ K. (2)

here, S0
i (·) is any function of the outcome distribution that respects stochastic dominance,

such as a quantile or the mean of an increasing function of the outcome (Manski; 2013).

In equation (2), the outcome of unit i depends on the group vector of assignments through

the exposure mapping h0(·), the outcomes of other units in the same block (excluding

her), and the outcomes of units in the other block.17 Observe that thanks to the CTR

assumption, the structural function can be indexed by the effective treatment, d0. In

what follows, we implicitly assume that the CTR assumption holds.

Following Lazzati (2015), we characterize groups indexed by r based on the structural

functions of the group members in a given block. Two units are of the same type if they

react similarly to different treatment configurations and the behavior of other units in

the same block and group. Let Sk
y and Yk denote the set of all possible values assumed

by S(·) on yk
r and yk

r itself. We drop the superscript k to denote the set of all possible

values for all units in the group r. If Yk and Ti are countable, then there are countably

many different systems of structural equations that can describe a group type. Let pkr

be the fraction of group-types r for a given block k. The group is characterized by the

structural functions of its members: fkr (·) = [fk
ir(·), i ∈ k, r] with fk

ir : Ti × Sy → Yk.

According to this probabilistic framework, [(fkr , p
k
r)] describes the universe of group types

in the population for a given block.

For example, in Table 1, we describe the structural functions of a population with

two blocks and three groups. Outcomes are assumed to be binary, i.e., ykir equals one

if units exert some effort and zero otherwise. The numbers in the first row and column

represent the structural function yA11 when the outcome of yA21 is equal to one, and at least

one unit in block B exerts some effort. Interactions are assumed to be reinforcing within

a block and opposing between blocks. While the structural functions of units in block A

and B are the same in groups 1 and 2, they differ from the third group. Thus, in this

population, there are two group types r = 1, 2 with pA = pB = {2/3, 1/3}. Observe that

16The CTR assumption is also referred to as neighborhood interference in Forastiere et al. (2021). See
also the exposure mapping definition in Aronow and Samii (2017). Additionally, we implicitly assume
what is called consistency in causal inference, which ensures that potential outcomes are well-defined
by excluding the possibility of multiple versions of the treatment. Consistency and CTR constitute the
components of the so-called Stable Unit Treatment Value Assumption (SUTVA, Rubin; 1986).

17In our model, the primitives do not explicitly incorporate covariate information; however, in principle,
they can. In such instances, the primitives should be interpreted as conditional on specific covariate values
(Lazzati; 2015).
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pkr can also depend on the relative size of the block.

We denote the vectors of potential outcomes, which solves the system of structural

equations, as yk
r (d

0
r) : D → Y k. Each group has an observable realized treatment collected

by the vector t0r ∈ T , observed effective treatment z0r ∈ D, and realized outcomes yk
r ≡

yk
r (z

0
r). The available data are (t0kir , y

k
ir), i ∈ P , k ∈ K, and r ∈ R. The main assumptions

about the shape of the structural functions are described below.

Table 1: Structural functions in the population

Group 1

Block A yA/i = 1, S(yB) = 1 y
A/i
1 = 1, S(yB) = 0 yA/i = 0, S(yB) = 1 y

A/i
1 = 0, S(yB) = 0

t=1,0

y11 1,1 1,1 0,0 1,0
y21 1,1 1,1 1,0 1,1

Block B yB/i = 1, S(yA) = 1 yB/i = 1, S(yA) = 0 yB/i = 0, S(yA) = 1 yB/i = 0, S(yA) = 0
t=1,0

y31 1,1 1,1 0,0 1,0
y41 1,0 1,1 1,0 1,1

Group 2

Block A yA/i = 1, S(yB) = 1 yA/i = 1, S(yB) = 0 yA/i = 0, S(yB) = 1 yA/i = 0, S(yB) = 0
t=1,0

y12 1,1 1,1 0,0 1,0
y22 1,1 1,1 1,0 1,1

Block B yB/i = 1, S(yA) = 1 yB/i = 1, S(yA) = 0 yB/i = 0, S(yA) = 1 yB/i = 0, S(yA) = 0
t=1,0

y32 1,1 1,1 0,0 1,0
y42 1,0 1,1 1,0 1,1

Group 3

Block A yA/i = 1, S(yB) = 1 yA/i = 1, S(yB) = 0 yA/i = 0, S(yB) = 1 yA/i = 0, S(yB) = 0
t=1,0

y13 1,0 1,1 0,0 1,0
y23 1,1 1,1 1,0 1,1

Block B yB/i = 1, S(yA) = 1 yB/i = 1, S(yA) = 0 yB/i = 0, S(yA) = 1 yB/i = 0, S(yA) = 0
t=1,0

y33 1,1 1,1 0,0 1,0
y43 1,0 1,0 1,0 1,1
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4.2 Heterogeneous Monotonic Structural Functions

In this section, we impose restrictions on the structural equations and derive their impli-

cations in terms of equilibrium behavior justified by the results in the previous sections.

We then use the result of the main Lemma to derive the identifying region of the potential

outcome distribution when h-monotonicity is assumed.

Without further restrictions, the system of equations (2) might have no solution. In

order to avoid this case, we provide a set of assumptions that precludes this possibility.

To make the derivations easier, we assume that S0
ir(·) = E(·).

Assumption HMI (H-Monotonic Interactions). For each i ∈ P, k, l ∈ K, r ∈ R, and

d0
ir ∈ D, fk

ir(d
0
ir, E(y

k/i
r ), E(yl

r)) are increasing in E(y
k/i
r ) and decreasing in E(yl

r).

Assumption HMI requires reinforcing interactions between units in the same block and

opposing between different blocks. This implies the partition is valid, and we can apply

the HFP Theorem. Among the models that satisfy Assumption HMI, we have games

that exhibit both strategic complements and strategic substitutes; see Section 3 for some

examples.

Let ϕk(dr, r) be the solution set of the system of structural equations for a given

k, r, dr. The following result states the existence of extrema equilibria. To make the

notation lighter we drop the subscript r from the vector of potential and realized effective

treatment.

Lemma 1. If assumption HMI holds, then ϕA(d0, r) always has a least (or greatest)

solution and ϕB(d0, r) has a greatest (or least) solution for all d0 ∈ D.

Let yk
r (d

0) denote the element of ϕk(d0, r) that is selected by the units that get effective

treatment d0. The expectation of the potential outcome vector over the population type

distribution is

E(yk(d0)) =
∑
r∈R

yk
r (d

0)pkr . (3)

Researchers typically do not know the true exposure function and must select a candidate

that minimizes the likelihood of model misspecification. The choice of the exposure func-

tion is subject to two constraints. Firstly, the exposure function must satisfy stochastic

dominance, which characterizes endogenous interactions in the structural form through

S0
ir(·) and allows the prediction of the direction of variation in d0. Secondly, the exposure

function must be no finer than the true one. Observe that while S0
ir(·) can theoretically

take any sign-preserving form, h0(·), which is unknown, must be “almost” correctly spec-

ified. This is crucial for the (partial) identification of the average treatment effects. We

adopt the definition of coarseness introduced in Vazquez-Bare (2023) to formalize this

constraint:
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Definition 6 (Coarseness.). Given two exposure functions h(·) : T → D and h̃(·) : T →
D̃, we say h(·) is coarser than h̃(·) if there exist a funtion f(·) : D̃ → D such that

h(t) = f(h̃(t)) for all t ∈ T .

The concept of coarseness implies that the exposure function, h(·), imposes more restric-

tions on the potential outcome than h̃(·). For instance, a constant exposure function,

which is coarser than the fraction of treated units in a group, is coarser than the entire

treatment vector. We assume that the true exposure function, h0(·), satisfies the stochas-
tic dominance constraints, and it is coarser than the exposure function selected by the

researcher, h(·):

Assumption EF (Exposure function). h0(·) is coarser than or equal to h(·) and it is a

function which respects stochastic dominance.

Assumption EF allows to condition only on h(t) = z given that uniquely determine the

value of the true exposure h0(t) = z0. Let pkr|z be the proportion of units that belong to

a group r conditional on the realized effective treatment vector z. Then,

E(yk|z = s) =
∑
s0∈D

E(yk(s0)|z = s, z0 = s0)P k(z0 = s0|z = s) (4)

=
∑
s∈D

E(yk(s)|z0 = s)P k(z0 = s)

where the third equality is given by coarseness, E(yk(s)|z = s) =
∑

r∈R yk
r (s)p

k
r|z=s, and

P k(z) denotes the distribution of realized effective treatments across group-types for a

given block. See also Lemma 1 in Vazquez-Bare (2023). Observe that under EF, we can

use d instead of d0, thus allowing for partial misspecification of the exposure function

and the resulting random variables. The next assumption formalizes that the structural

equations are h-monotonic in potential treatments.

Assumption 1 (HMTR). For each i ∈ P, r ∈ R, E(y
A/i
r ) ∈ ∆

A/i
y , and E(yB

r) ∈ ∆B
y ,

fA
ir (d

I
ir, ·) ≥ fA

ir (d
I′
ir, ·) and

fA
ir (d

A
ir, ·) ≥ fA

ir (d
A′
ir , ·), while

fA
ir (d

B
ir, ·) ≤ fA

ir (d
B′
ir , ·)

for all dk
ir ≥ dk′

ir , and dIir ≥ dI
′

ir.

As showed in Lazzati (2015) without further restrictions, Assumption HMTR allows

counterfactual predictions only at the extremal solutions of ϕk(d, r). Under Assumptions

HMI and HMTR, which guarantee that the greatest and least elements (w.r.t. the

partitions A,B) are h-monotonic in d, we can use the HFP Theorem to motivate the

following additional assumption.
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Assumption ES1 (Equilibrium Selection). Within each group units in block A select

either the largest (the smallest) element of ϕA(d, r) and units in block B select the smallest

(the largest) element of ϕB(d, r) for each d ∈ D.

Assumption ES2. Within each group, units in block A select the largest (the smallest)

element of ϕA(d, r), and units in block B select the smallest (the largest) element of

ϕB(d, r) and the selection rule is the same for each r ∈ R.

Assumption ES1 is useful because it guides us always to choose either the smallest or

the largest equilibrium when predicting the effect of d on the expectation of potential

outcomes. Observe, however, that the credibility of this assumption would be difficult

to assess in practice (Manski; 2013) and depends on the context. If the population is

partitioned by A and B, the HFP Theorem states that the largest equilibrium in A-

block corresponds to the smallest in the B-block so that Assumption ES1 can be justified

using the concept of Pareto dominance. For example, it holds if the utility in block A

increases for outcomes of units in the same partition but decreases for units in block B.

The opposite is true for the utility of units in block B. The condition holds if the block-

wise structural functions correspond to the best replies of a game, the largest equilibrium

dominates the others for A, and the smallest dominates the others for B if for all yA
r ≥ y′A

r

and yB
r ≥ y′B

r we have

UA
ir (y

A
r ,y

′B
r , tr) ≥ UA

ir (y
′A
r ,y′B

r , tr) ≥ UA
ir (y

′A
r ,yB

r , tr).

Assumption ES2 is stronger and requires the same selection rule across groups. Alter-

natively, we can apply different selection rules, such as the second rule used in Lazzati

(2015), based on making the solution set strongly increase with the potential treatment.

We next state that under all previous assumptions, we can apply Theorem 2.3, and

hence, the equilibrium outcome is h-monotonic in t.

Lemma 2. If Assumptions HMI, HMTR, EF, and ES1 hold, then E(yA
r (d)) and

E(yB
r (d)) are h-monotonic in d.

Lemma 2 uses two different shape restrictions on the outcome function of units in A

and B. First, h-monotonicity of unit choices -i.e., HMI-. Second, h-monotonicity with

respect to the treatment -i.e. HMTR-. These two types of assumptions play different

roles in Lemma 2. The first guarantees the existence of extremal equilibria through

the HFP Theorem. The second allows us to obtain the new h-monotone comparative

statics results that we exploit to construct the identification region for potential outcomes

functional.

We now introduce heterogeneous monotone treatment selection. Let fk denote a

random vector of function with support on (fkr , r ∈ R) , and let us define P (fk = fkr|z) ≡
pkr|z. We assume that the probability of having a type-r structural function (given the
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type of the members), conditional on the realized treatment, is statistically h-monotonic

in z. We can interpret this condition as follows: units in group r and block k that

self-select into higher treatment vectors exhibit stochastically higher structural functions

than those with lower ones.

Assumption HMTS (H-Monotone Treatment Selection). P (fk|z = s) is stochastically

h-monotonic in s.

HMTS is a h-monotonic condition applied on the conditional probability that groups are

of a given type. Thus, it compares potential outcomes across different types and blocks.

Lemma 3 in Appendix B shows that if fAr is (point-wise) greater or equal to fBr′ , then

also the corresponding elements in the solution set are larger than the solution set in the

other block-group. Importantly, this also holds when units belong to the same block.

If we add HMTS to HMI and ES2, we have that yA
r (d) ≥ yB

r′(d) for all groups such

that fAr ≥ fBr′ . HMTS states that the structural functions are statistically increase in

realized treatments. Following Manski and Pepper (2018), we can interpret the condition

as group types that self-select into higher treatments within a block because they have

stochastically larger structural functions than those that self-select into lower ones. The

following lemma uses the selection rule to move from selection into treatment vectors of

the structural functions to the solutions sets.

Lemma 3. If Assumptions HMI, HMTS, EF, and ES2 hold, then for each d ∈ D,

E(yA(d)|z = s) and E(yB(d)|z = s) are h-monotonic in s.

In practice, let us assume that A and B are the blocks which partition P , Lemma 3 shows

that if HMI, HMTS, EF, and ES2 hold, and sA ≥ sA
′
, sB ≥ sB

′
then E(yA(d)|zA =

sA, zB = sB
′
) ≥ E(yA(d)|zA = sA, zB = sB) ≥ E(yA(d)|zA = sA

′
, zB = sB) and

E(yB(d)|zA = sA, zB = sB
′
) ≤ E(yB(d)|zA = sA, zB = sB) ≤ E(yB(d)|zA = sA

′
, zB =

sB), where yk(d) = (yk
r (d), r ∈ R).

4.3 Identification Region for Potential Outcome Distributions

In this section, we translate the monotone comparative statics results in the previous

sections into sharp distributional bounds for the potential outcomes. Given the existence

of the equilibrium and the results about of heterogeneous monotone comparative statics

discussed above, all the propositions in this section are built on Manski and Pepper

(2000). Using the Law of Total Probability, we can formulate the expected potential

outcomes as follows.

E(y(d)) = E(y(d)|z = d)P (z = d) + E(y(t)|z ̸= d)P (z ̸= d). (5)

Under HMI and given equations (3) and (4), the empirical evidence reveals E(y(d)|z =

d) = E(y|z = d), P (z = d) and P (z ̸= d). The observation of treatments and outcomes
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alone remains silent about the potential outcome distribution for those units that have

realized treatments different from the potential treatment, i.e., E(y(d)|z ̸= d). If we

assume that the vectors of outcomes have lower and upper bounds equal to y, y, then

E(y) ∈ [y, y] and the resulting bounds are sharp. Let ∆yA and ∆yB be the set of (condi-

tional) expectations of YA and YB, for blocks A and B respectively and let H be the set of

expectations which characterize the sharp identification region for E(yA(d)). We present

the result only for block A, but by reversing the inequality, we obtain the identification

region for H{E(yB(d))}, thanks to the symmetry of the problem.

Proposition 1. If Assumption HMI holds, then for all d ∈ D,

H{E(yA(d))} =



E(yA|z = d)P (z = d) + yAP (z ̸= d)

δA ∈ ∆yA : ≥ δA ≥

E(yA|z = d)P (z = d) + yAP (z ̸= d)


.

The size of H{E(yA(d))} varies inversely with P (z = d). The set of expectations is the

singleton E(yA(d)) when P (z = d) = 1. It is informative when P (z = d) = 0. The

result is standard and follows by Manski (1990, 2013). If P (z ̸= d) = 1, these bounds

are sharp but completely uninformative. We next show that the identification region can

be substantially tightened by adding either heterogeneous monotone treatment response

or monotone treatment selection assumptions.

If HMI, HMTR, EF and ES1 hold, then by Lemma 2 E(yA(d)) and E(yB(d)) are

h-monotonic in d. H-monotonicity assumption denotes that response functions in block

A, yA(dA) are weakly increasing in dA, while response functions in the partition B are

weakly decreasing in dA. For example, consider a specific group r, a realized policy z,

and a realized outcome yA
r . If d

A ≥ zA, and dB ≤ zB, then yA
r is a sharp lower bound for

yA
r (d). Otherwise, the empirical evidence is uninformative and yA

r
is a sharp lower bound.

If dA ≤ zA, and dB ≥ zB , then yA
r is a sharp upper bound for yA

r (d). Otherwise, the

empirical evidence is uninformative, and yAr is a sharp upper bound. Since the group r is

arbitrarily chosen, this analysis extends to all group types and justifies the next result.

Proposition 2. If Assumptions HMI, HMTR, EF, and ES1 hold, then for all d ∈ D,
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H{E(yA(d))} =



yAP (dA > zA or/and dB < zB)

+E(yA|dA ≤ zA,dB ≥ zB)P (dA ≤ zA,dB ≥ zB)

δA ∈ ∆yA : ≥ δA ≥

E(yA|dA ≥ zA,dB ≤ zB)P (dA ≥ zA,dB ≤ zB)

+yAP (dA < zA or/and dB > zB)


.

We now use the heterogenous monotone treatment selection assumption HMTS . If

HMI, HMTS, EF, and ES2 hold, then E(yA|zA = dA, zB = dB) is a sharp lower

bound for E(yA(d)|zA ≥ dA, zB ≤ dB) and a sharp upper bound for E(yA(d)|zA ≤
dA, zB ≥ dB), while E(yB|zA = dA, zB = dB) is a sharp lower bound for E(yB(d)|zA ≤
dA, zB ≤ dB) and a sharp upper bound for E(yB(d)|zA ≥ dA, zB ≤ dB). Hence, the

identification region is the following.

Proposition 3. If Assumptions HMI, HMTS, EF, and ES2 hold, then for all d ∈ D,

H{E(yA(d))} =



E(yA|zA = dA, zB = dB)P (zA ≤ dA, zB ≥ dB)

+yAP (zA > dA or, and zB < dB)

δA ∈ ∆yA : ≥ δA ≥

E(yA|zA = dA, zB = dB)P (zA ≥ dA, zB ≤ dB)

+yAP (zA < dA or, and zB > dB)


.

It is worth noting that the HTMS assumption can be tested for each block using the

approach outlined in Lee et al. (2018) andHsu et al. (2019).

We now combine Assumptions HMTR and HMTS as in Manski and Pepper (2000).

In this case, the bounds are informative even if the outcome is assumed to be unbounded.

If Assumptions HMI, HMTR, HMTS, EF, and ES2 hold, then for all sA
′ ≤ sA, and

sB
′ ≥ sB we have that

E(yA|zA = sA
′
, zB = sB

′
) = E(yA(s

′
)|zA = sA

′
, zB = sB

′
) (6)

≤ E(yA(s)|zA = sA
′
, zB = sB

′
) ≤ E(yA(s)|zA = sA, zB = sB) = E(yA|zA = sA, zB = sB),
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E(yB|zA = sA
′
, zB = sB

′
) = E(yB(s

′
)|zA = sA

′
, zB = sB

′
)

≥ E(yB(s)|zA = sA
′
, zB = sB

′
) ≥ E(yB(s)|zA = sA, zB = sB) = E(yB|zA = sA, zB = sB).

Observe that the data reveal E(yA|zA = sA
′
, zB = sB

′
) and E(yA|zA = sA, zB = sB) so

that we can test the two joint hypotheses (see footnote 9 in Manski and Pepper; 2000).

Thus, the identification region is

Proposition 4. If Assumptions HMI, HMTR, HMTS, EF, and ES2 hold, then for

all d ∈ D,

H{E(yA(d))} =



E(yA|zA = dA, zB = dB)P (zA ≤ dA, zB ≥ dB)+∑
dA′

>dA

or, and dB′
<dB

E(yA|zA = dA′
, zB = dB)P (zA = dA′

, zB = dB)

δA ∈ ∆yA : ≥ δA ≥

E(yA|zA = dA, zB = dB)P (zA ≥ dA, zB ≤ dB)+∑
dA′

<dA

or, and dB′
>dB

E(yA|zA = dA′
, zB = dB)P (zA = dA′

, zB = dB)



.

If two particular values of the potential treatment are specified we can construct

bounds for the average treatment effects based on the previous results. For example,

let d and s be two potential effective treatments with dA > sA, and dB < sB . Then

let us define ATE(t, s) = E(yA(d)) − E(yA(s)). Following Manski and Pepper (2000)

the sharp upper bound of ATE(t, s) will be the upper bound of E(yA(d)) minus the

lower bound of E(yA(s)). The lower bound can be computed as the difference between

the upper bound of E(yA(s)) and the lower bound of E(yA(d)). Under Assumption

HMTR, however, it is not feasible to compute the lower bound in this way because the

result is generally negative. In this case, Manski and Pepper (2000) showed that the

lower bound of ATE(d, s) must be no less than zero.

The next section provides an empirical application of our new method. We will

focus on market interactions where all participating firms are observed and part of the

reference group. Consequently, the imprecision in our results is attributable solely to the

fact that specific potential outcomes cannot be observed rather than being caused by

any random variability resulting from the sampling process (Manski and Pepper; 2018).

However, suppose groups are randomly sampled. In that case, the researcher can estimate

the proposed identification regions by the sample analog of our bounds and provide a

confidence set based on the literature on inference for settings with partial identification

(see e.g., Lazzati; 2015; Manski; 2013, and references therein). Note that conditioning on

other characteristics is permissible. Classical estimation is feasible in cases where these
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characteristics assume finitely many values, and the researcher can estimate bounds by

calculating the corresponding sample averages.. However, when the characteristics involve

continuous components, nonparametric methods such as Local Polynomial Regression or

Nadaraya-Watson Estimator can be employed for estimation.

5 Empirical Application

As discussed in Section 3, our method can be used in a wide range of settings characterized

by social and market interactions. In the context of market interactions, firms maximize

their profits competing on the same product market or exchanging inputs and outputs.

This creates interactions between and within firms’ outcomes, such as income reports and

balance sheets items. It follows that when we analyze balance sheet items, we deal with

simultaneously determined outcomes on both the asset and liability sides.

5.1 Banks’ Balance Sheet Items

We consider the following outcomes of banks’ balance sheets. On the asset side, ai is

the value of securities held (like bonds, treasuries and equity), ci is the value of credit

provided to the non financial sector (i.e. households and firms), li is the value of lending

in the interbank market, ri is the value of reserves held at the central bank, by bank

i. On the liability side, bi is the value of borrowing in the interbank market, si is the

value of bonds issued by bank i, di is the value of deposits held at bank i. Suppose

the banking system is composed of N = {1, .., n} banks. Let A ≡ {ai, ci, li}i∈N and

B = {bi, si, di}i∈N .18

In what follows we refer to the log of gross nominal monetary value of the stock of

balance sheet items, the approach can be applied also to flows, or other transformations

of both them. It can also accommodate different or eventually multiple characteristics of

each balance sheet item, like interest rates.

5.2 Dependencies among Asset and Liability Outcomes

In the majority of empirical studies, these variables are not considered as simultaneous

and endogenous outcomes. Often one of these outcomes, say ci, is regressed on a treatment

variable and the other items are used as exogenous controls or treatments themselves,

for each bank in isolation, thus ignoring the endogeneity arising from interactions within

and between banks’ balance sheet items.19

18For simplicity, we abstract from reserves on the asset side.
19Remarkable exceptions include Benetton and Fantino (2021), Andreeva and Garćıa-Posada (2021)

and Berg et al. (2021), in which competitive interactions between banks are considered.
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This popular approach bypasses the interactions among the balance items generated

by the simultaneous optimization of banks interconnected through markets (like the mar-

kets for retail deposits, credit to non financial corporations and households and the inter-

bank market). These interactions can be classified based on both the markets in which

banks operate and the side of the balance sheet to which the relative outcome belongs.

For example, ci and cj are on the asset side respectively of bank i and bank j and present

opposing interactions generated by the competition between bank i and j for lending to

non financial corporations and households. In what follows, we propose a set of general

and simple monotonicity assumptions for between-banks and within-bank interactions

among balance sheet outcomes. For simplicity, we assume that there are two banks i

and j in the system and they operate in the same markets, the results easily extend to a

banking system with any number N of participating banks when we aggregate the other

market participants and use −i instead of j in the notation.

5.2.1 Between Banks Dependencies

Banks operate on the same side of many markets. For example, bank i and bank j offer

loans to non financial corporations. With respect to the outcomes listed before, we have

the following interactions. In credit markets, loans supplied by bank i (ci) affect negatively

the supply of credit by bank j (cj), being substitutes for borrowers in the non financial

sectors.20 In deposit markets, deposits collected by bank i (di) affect negatively the retail

funding of bank j (dj), being substitute as well for depositors. In interbank markets,

banks compete on both the supply and the demand side, thus li (bi) affects negatively

lj (bj).
21 In financial markets, banks demand securities (ai and aj), and supply them,

issuing bonds (si and sj). We call these same-side-of-the-market interactions (M).

20In principle, there could also be complementarities among banks’ lending for syndicated loans (one
bank’s participation is conditional on, or at least encouraged by, other banks’ participation), because
of customer-supplier relationships in the production network among their clients, or induced by the
information available in credit registers (used by one bank to supply credit to some borrower provided
the same borrower has a good standing with other banks). The implicit assumption here is that these
mechanisms are on average overruled by competition among banks. This is supported by the findings of
Pietrosanti and Rainone (2023), which shows that substitutability of credit across different relations of
the same firm prevails on average. However, if information on credit registers inquiries, composition of
syndicated loans and production networks is available and allows to identify the pair of banks for which
credit complementarity (instead of substitutability) should be more prominent, the sign of monotonicity
could be reverted and (if the system of dependencies still produces a valid partition) bounds can be
estimated as well. Importantly, this could be done only because of the main innovation we propose in
the paper, i.e. allowing for both substitutability and complementarities among the endogenous variables
in the system.

21Since after the global financial crisis money markets shifted to centralized secured venues, we abstract
from the case in which bank i lend (li) directly to bank j (bj). We discuss possible extensions below.
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5.2.2 Within Banks Dependencies

Outcomes are not only linked between different banks interacting in the market layers

described above, they are also linked within the same bank. For example, an euro of

extra retail funding (di) can be employed in lending to the non financial sector (ci) (or

the other way around) or in other assets, like buying securities ai. Basically balance sheet

expansion or reduction from one side of the balance sheet reflects, mechanically or not,

on the other side. We call these between-sides-complementarity interactions (C).

It follows that in this context the following monotonic assumption are credibly weak.

M interactions generate negative monotone effects, because of competition between banks.

C interactions generate positive monotone effects, because of banks’ balance sheet expan-

sion on both asset and liability sides. Let us define the set of same-side-of-the-market (M)

and between-sides-complementarity (C) as MC interactions. Table 2 reports the upper

triangular matrix that summarizes the signs of MC interactions among banks’ outcomes,

considering a banking system with two banks, i and j. The lower triangular has the

same signs, as the full matrix is symmetric. We can see that even with quite simple and

straightforward monotonic assumptions the interdependences within and between banks

generate a quite complex system of interactions among balance sheet outcomes. From

this perspective, it is easy to see that the effect of a shock or a policy on even only one

single item of one single bank, can potentially reverberate to all the items of all the other

banks through internal optimization and market equilibrium adjustments.

In general terms, more complexity could be embedded in the system of dependencies

outlined. We provide an as simple as possible setting, grounding our assumptions on the

evidence collected and consolidated in the existing literature, which focused mainly on

competing interactions (see Andreeva and Garćıa-Posada; 2021; Benetton and Fantino;

2021, for example). It follows that we refrain from setting an application that relies

on assumptions not fully tested (or departs from what has been identified as the main

source of spillovers among banks’ lending) by the existing literature and lever the data

mentioned above, because it is often not available (even to us).

Proposition 5. Under MC interactions, dependencies among banks’ A-L outcomes are

consistent and it always exists a valid partition, which implies the existence of heteroge-

neous fixed points.

In Appendix C we also provide the conditions for a valid partition under substitutabil-

ity within the same balance sheet side, assets or liabilities.
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Table 2: Monotonic Assumptions - Interactions among Banks’ Assets and Liabilities -

A L

ci cj li lj ai aj di dj bi bj si sj
ci − [M ] + [C] + [C] + [C]
cj + [C] + [C] + [C]

A li − [M ] + [C] + [C] + [C]
lj + [C] + [C] + [C]

ai − [M ] + [C] + [C] + [C]
aj + [C] + [C] + [C]

di − [M ]
dj

L bi − [M ]
bj

si − [M ]
sj

Notes. A and L stand respectively for assets and liabilities. i and j are two banks. li and
bi are respectively the amount of lending and borrowing in the interbank market. ci is the
amount of credit provided by bank i. di is the amount of deposits held at bank i. ai is the
amount of securities held by bank i. si is the amount of bonds issued by bank i. + and −
indicate respectively positive and negative interactions. [M ]: same side of the market. [C]:
balance sheet expansion complementarity.

5.3 Selected Treatment: Central Bank Lending

In our empirical exercise, we focus on an important and recently widely adopted policy:

central bank lending to commercial banks. The central bank can lend funds to banks for

several purposes and under different conditions, usually through open market operations

(OMO). Before the global financial crisis, central bank funding was mainly used to provide

banks with the adequate amount of reserves to settle interbank transactions, maintain

the desired target rate, and meet the regulatory requirements under competitive auctions.

After the global financial and sovereign debt crisis, and subsequent stress in unsecured

interbank markets (see Afonso et al.; 2011; Angelini et al.; 2011; Rainone; 2017, among

others), this tool started to be used by central banks to help banks with funding difficulties

and sustain credit to the real economy, eventually with targeted operations.22

Money injections by the central bank must increase mechanically the consolidated

balance sheet of the banking sector. However, depending of the specific policy considered,

the configuration of the balance sheet, in terms of shares of assets and liabilities, can vary.

Moreover, this configuration is not solely determined by the policy itself but also hinges on

22Given the relanvance of the topic, there is a large literature studying the effects of these operations on
credit provision and other items of banks balance sheets, see Benetton and Fantino (2021), Andreeva and
Garćıa-Posada (2021), Carpinelli and Crosignani (2021), Garcia-Posada and Marchetti (2016), Crosig-
nani, e Castro and Fonseca (2020), Afonso and Sousa-Leite (2020), Laine (2019), Balfoussia and Gibson
(2016), Jasova et al. (2018), Acharya and Steffen (2015), Van der Kwaak (2015), Corbisiero (2022),
Crosignani, e Castro and Fonseca (2020), Andrade et al. (2019), Daetz et al. (2018), Darracq-Paries and
De Santis (2015), and Alves et al. (2021) among others. Generally, the literature agreeds on the positive
effects of these operations on credit, but potential externalities and competition are mentioned as factors
that can curb the direct effects of this policy.
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the optimal responses of banks, which are influenced by their interactions in the markets

they participate in. It means that under different configurations of optimal choices of and

interactions among banks operating in the system, the same amount of money injected

could have a different effect on aggregate credit to the non financial sector (NFS). For

example, suppose there are two banks of equal size, i and j, in the system. If bank

i intends to borrow funds from the central bank and allocate a portion to lending to

the NFS, the aggregate NFS credit can vary significantly depending on whether bank j

utilizes the same funds for lending or for purchasing securities.

We assume positive monotonicity between central bank funding and credit to the NFS

at the individual bank-level and negative monotonicity (substitutability) between banks’

credit to the NFS.

This framework enables the expansion of the consolidated banking sector (and the cen-

tral bank’s) balance sheet, as the positive effect of central bank funding can outweigh the

negative effect of inter-bank substitution. This alignment with balance-sheet constraints

at the macro-level can be achieved solely through the assumption of monotonicity, with-

out the imposition of additional constraints, thereby maintaining a light and general set

of assumptions.23Let us make a real-life example that may highlight the advantages of

our methodology. Assume bank i and bank j have a true (but unobserved) response of

credit to the NFS of 0.3 for each euro of central bank funding and that an additional euro

of lending from bank j to the NFS decreases the lending of bank i of 0.2. For simplicity,

assume that the remaining amount of funds not allocated in the credit market is held

in reserves at each bank and credit is deposited outside the banking system, thus the

balance sheet constraint holds for all entities. An aggregate injection of 200 of central

bank funding, 100 to bank i and 100 to bank j, would then increase aggregate credit to

the NFS by 54, with a macro-level effect of 0.27. In this example, the bank-level effect of

central bank funding is 0.3, the macro-level effect is ten percent lower because of substi-

tutability of (competitive interactions among) banks’ lending. Assume that there exists

another bank k that does not borrow any funds from the central bank, and thus work as a

control group for micro estimates, and whose lending decreases (as for bank i) by 0.2 for

each euro of lending by bank j. Any variation of lending is counterbalanced by purchases

or sales of a security issued outside the system, and thus balance sheet constraint holds.

Diff-in-diff estimates, usually employed because the effect of aggregate central bank fund-

ing is indistinguishable from other correlated forces operating at the macro-level, would

suggest a macro-level effect of 0.33, twenty percent higher than the true. Our partial

identification approach provides an upper bound of 0.3 and a lower bound of 0.24 for

such effect. Even if not point identified, the true effect is in the identified region. The

width and the position of the region reflect the uncertainty about the intensity and the

23It’s worth noting that while we do not impose such constraints initially, they can be incorporated if
necessary.
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sign of the interactions at work.

5.4 Data Description

This section describes our data and helps to gauge the correlations in the data at ag-

gregate and individual level. Our analysis is based on a unique, proprietary data set of

balance sheet items (BSI) at bank level (Individual Balance-Sheet Items or IBSI), which is

regularly updated by the Bank of Italy. In the context of European regulations, national

central banks regularly collect and disseminate monthly data on banks’ balance sheet

items (BSI).24 BSI data represent a crucial source for the production of both national

and euro-area monetary aggregates (M1, M2 and M3) and their counterparts, which have

a major role for the ECB assessment of the risks to price stability and stability. See Al-

tavilla et al. (2017) for a description of the unique representativeness of this data. The

IBSI statistics encompass information on the balance sheet of banks, both on the assets

and liabilities side, which makes it an ideal dataset for the application of our methodology

to banks’ outcomes. The asset side indicators include loans to households and NFCs, se-

curities, and funds lent in money markets. On the liabilities side, time series are collected

for deposits included and not included in the broad money aggregate M3, debt securities

issued, and funds borrowed in money markets.25 As a result, the Bank of Italy monthly

collects and elaborates a huge amount of individual balance sheet data reported by the

entire population of Italian banks (385 reporting banks at the end of 2023) in order to

compile aggregate statistics to be provided to the ECB and the public.

5.5 Descriptive Statistics

In Table 5, we report end of the year aggregate statistics for the balance sheet items under

study in our application, c, a, l, b, s, d and our selected treatment t, from 2011 to 2023 the

years we focus on in the empirical analysis. Credit to the real economy, c, is probably the

most studied item of banks’ assets, given its relevance for the transmission of monetary

24See the ECB Regulation ECB/2013/33 on the balance sheet of the monetary financial institutions
sector, and the ECB Guideline of 4 April 2014 on monetary and financial statistics (ECB/2014/15).
At the European level, the reporting obligations are specified in different legal frameworks, including
the ECB statistical regulations on balance sheet items (BSI) and interest rates (MIR) of monetary
financial institutions (MFIs), the sectoral module of Securities Holdings Statistics (SHS-S), granular
credit and credit risk (AnaCredit), as well as the European Banking Authority’s Implementing Technical
Standards on supervisory reporting and resolution reporting and the ECB Regulation on report-
ing of supervisory financial information. See the https://www.ecb.europa.eu/stats/ecbstatistics/co −
operationandstandards/reporting/html/index.en.htmlESCBlong − termstrategyforbanks′datareporting

25National central banks of the Eurosystem collect outstanding amounts and, for some of them, the
corresponding adjustment series, covering information on revaluations for changes in prices and exchanges
rates, reclassifications or loan write-offs/write-downs. For loans, additional data on loan transfers, linked
for instance to securitisation, are also covered. See Morandi et al. (2016) for more details on the content
of BSI data and the sample of banks. See Marinelli et al. (2021) for a discussion of quality of the data
and methods to improve it.
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policy. Indeed, the relationship between our main treatment variable, the central bank

funding, and loans supply to firms and households has been widely investigated.26 In the

period under analysis, Italy has been hit by multiple macro and idiosyncratic shocks, and

central bank interventions were often aimed at restoring the soundness of banks’ funding

and let them continuing providing credit to the real economy. In Figure 3, we report more

frequent, monthly, time series of the average stock of central bank funding and loans to

the NFS for the Italian banking system for a wider time period, from January 2003 to

October 2023.

Figure 3: Aggregate time series
- Stock of loans to the NFS and central bank funding -

Notes. Monthly data of average stock of loans to the NFS and central bank funding for the IBSI sample of the Italian
banking system in million euro. The stock of loans to the NFS is reported in grey. The stock of central bank funding is
reported in black.

We can see from this figure that the stock of loans steadily increased before the global

financial crisis, even in absence of significant central bank funding. Since then its growth

rate declined, also reflecting the adverse effects of the sovereign debt crisis. Central bank

funding started to flow intensively in banks’ balance sheets after mid 2011, mainly through

long term refinancing operations (LTRO) following the second peak of the sovereign debt

26See Afonso and Sousa-Leite (2020); Andrade et al. (2019); Andreeva and Garćıa-Posada (2021);
Benetton and Fantino (2021); Carpinelli and Crosignani (2021); Esposito et al. (2020); Garcia-Posada and
Marchetti (2016) among others. Observe that our method can be used to assess also other conventional
and unconventional policies, see Abbassi et al. (2016); Acharya and Steffen (2015); Crosignani, Faria-e
Castro and Fonseca (2020); Krishnamurthy et al. (2018).
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crisis, in which Italy was at the epicenter. From that time period, we can see a remarkable

correlation in the behavior of the two time series, which supports the hypothesis that

central bank funding supported credit to the real economy. The introduction of the

targeted longer-term refinancing operations (TLTROs) strengthened such linkage even

more, given that the amount of funds that banks can borrow is linked to their loans to

the NFS. More loans to NFS (except loans to households for house purchases) imply more

attractive interest rates.27 Central bank funding increased significantly again in 2020 with

the pandemic crisis when also a new series of non-targeted pandemic emergency longer-

term refinancing operations (PELTROs) flanked TLTROs. Recently the outstanding

amount of central bank funding started to decline quite sharply, given the expiration of

the main long term operations. Even if other policies affect the stock of loans to the

NFC, like the level of interest rates or the public guarantee schemes during the pandemic

crisis, the influence of central bank funding is quite evident from this plot, and generally

supported by the empirical studies mentioned above. Given the diffuse interest on this

relationship, we will mainly focus on the effect of central bank funding (the treatment

variable) on the credit to the NFS (the outcome variable) from mid 2011 in the remainder

of the paper.

5.6 Main Results

5.6.1 Empirical Bounds

We are interested in estimating bounds for the credit to the NFS (ci) that a bank i gives

when it gets a certain treatment (central bank funding, ti). Let h(t−i) be the average

treatment received by the rest of the banking system.

Below we report the empirical upper and lower bounds for the potential outcome for

the individualistic treatment response (ITR),28 which assumes that there are no interac-

tions among balance sheet items and under the different assumptions outlined before: (i)

the HMI bounds from Proposition 1; (ii) the HMIR bounds form Proposition 2; (iii) the

HMIS bounds from Proposition 3; (iv) the HMIRS bounds from Proposition 4.

The individualistic treatment response without interactions considers only the individual

treatment status:

LBITR[ci(ti)] = E(ci(s)|ti = s)P (ti = s)

+ ciP (ti ̸= s), (7)

27A first series of TLTROs was announced on 5 June 2014, a second series (TLTRO II) on 10 March
2016 and a third series (TLTRO III) on 7 March 2019.

28We follow the definition of Manski (2013) to mark the assumption that one unit’s outcome may
vary only with its own treatment, not with those of other members of the population. Cox (1958) called
this ‘no interference between units’. Rubin (1978) called it the ‘stable unit treatment value assumption’
(SUTVA).
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UBITR[ci(ti)] = E(ci(s)|ti = s)P (ti = s)

+ ciP (ti ̸= s), (8)

where ci and ci are respectively the minimum and maximum observed credit granted by

a bank in the sample.

The HMI bounds account for interactions and considers the whole treatment vector:

LBHMI [ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti = s, h(t−i) = k)

+ ciP (ti ̸= s, or h(t−i) ̸= k), (9)

UBHMI [ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti = s, h(t−i) = k)

+ ciP (ti ̸= s, or h(t−i) ̸= k). (10)

The HMI bounds are very conservative as they use the observed outcomes at ti, h(t−i)

and the extreme values ci and ci for the other observations.

The HMIR bounds are:

LBHMIR[ci(ti, h(t−i))] = E(ci(s)|ti ≥ s, h(t−i) ≤ k)P (ti ≥ s, h(t−i) ≤ k)

+ ciP (ti < s, or h(t−i) > k), (11)

UBHMIR[ci(ti, h(t−i))] = E(ci(s)|ti ≤ s, h(t−i) ≥ k)P (ti ≤ s, h(t−i) ≥ k)

+ ciP (ti > s, or h(t−i) < k). (12)

The HMIR bounds are generally tighter, as they give smaller weights to the extreme

values. This is because in the HMIR bounds outcomes of units having smaller (larger)

own treatments, and larger (smaller) others’ treatments are used to increase (decrease)

the lower (upper) bound, exploiting the monotone treatment response assumption.

The HMIS bounds are:

LBHMIS[ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti ≤ s, or h(t−i) ≥ k)

+ ciP (ti > s, or h(t−i) < k), (13)

UBHMIS[ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti ≥ s, or h(t−i) ≤ k)

+ ciP (ti < s, orh(t−i) > k). (14)

Also the HMIS bounds are generally tighter than the HMI, because they exploit the
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monotone treatment selection assumption. In HMIS bounds, outcomes of units with a

certain realized own treatment are used to set an upper (lower) bound for the expected

value of the outcome of units with smaller (larger) realized own treatments. Units with

a certain realized others’ treatment are used to construct a lower (upper) bound for the

expected value of the outcome of units with larger (smaller) realized own treatments.

The HMIRS bounds are:

LBHMIRS[ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti ≤ s, h(t−i) ≥ k)

+ E(ci(s)|ti > s, or h(t−i) < k)P (ti > s, or h(t−i) < k),(15)

UBHMIRS[ci(ti, h(t−i))] = E(ci(s)|ti = s, h(t−i) = k)P (ti ≥ s, h(t−i) ≤ k)

+ E(ci(s)|ti < s, or h(t−i) < k)P (ti < s, or h(t−i) < k).(16)

The HMIRS bounds can be even tighter as they combine the h-monotone treatment

response and selection assumptions, thus less informative extreme values of ci are not

used to compute upper and lower bounds.

5.6.2 Estimated Bounds

In Table 3, we report the estimated upper and lower bounds for the potential outcome

when the individual treatment varies, under the different assumptions outlined before:

HMI, HMIR, HMIS and HMIRS. We consider ten intervals for the individual treatment

and the average treatment status of others, corresponding to the deciles of the distribu-

tions. Both the treatment and the outcome are expressed in logs.

The first panel reports the ITR bounds for the response to the individual treatment.

The bounds are increasing in the treatment. Interestingly, the lower bound is negative,

suggesting that even with high treatment values the outcome is not necessarily positive,

which could be explained by negative spillovers from others’ treatments.

In the other panels, the response of the potential outcome to the individual treatment

is combined with the treatment status of others: a low and high level of others’ treatment,

respectively below the first and above the last decile of its distribution.

The second panel reports the HMI bounds for the response to the individual treat-

ment, under h-monotonic interactions. The introduction of theHMI assumption, slightly

widens the bounds. This is due to the fact that accounting also for monotonic interactions

increases the uncertainty about the potential outcome.

The third panel reports the HMIR bounds for the response to the individual treat-

ment, under h-monotonic interactions and h-monotonic response to the treatment vector.

The introduction of the HMTR assumption, h-monotonicity in the treatment response,

narrows the bounds, more prominently the lower bounds. In particular, the lower bounds
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are much higher when the treatment of others is low, substantially narrowing the poten-

tial outcome region. The lower bounds decrease remarkably if the treatment of others is

high.

The fourth panel reports the HMIS bounds for the response to the individual treat-

ment, under h-monotonic interactions and endogenous selection into the treatment vector.

The introduction of HMTS, the monotone treatment selection, decreases sensibly the

upper bounds w.r.t. the HMI, much more when the treatment of others is low, less

remarkably when it is high. This means that accounting for self-selection into the treat-

ment makes the highest potential outcome lower especially if others’ treatment status is

low.

The fifth panel reports the HMIRS bounds for the response to the individual treat-

ment, under h-monotonic interactions and h-monotonic treatment response and selection.

When both HMTR and HMTS are imposed the bounds are remarkably tighter. A high

treatment of others substantially decreases both the lower and the upper bounds. When

the treatment of others is low, bounds are strictly higher than when the treatment of

others is high. Their lower bounds are regularly greater than the upper bounds when the

treatment of others is high.

In Table 4, we report the estimated upper and lower bounds for the potential out-

come when others’ treatment status varies, under the HMIR, HMIS and HMIRS. The

response of the potential outcome to others’ treatment status is combined with a low

and high level of own treatment, respectively below the first and above the last deciles

of its distribution. From the first panel, we can see that the HMTR produces bounds

quite stable across different levels of others’ and own treatments, inline with the findings

of Table 3. The second panel shows that the HMTS instead generates lower bounds

remarkably decreasing in the treatment of others. The upper bound decreases much

more prominently when the individual treatment is low, highlighting that a significant

portion of the positive effect of own treatment can be offset by competitive interactions

if the others receive high treatment. The third panel highlights that when both HMTR

and HMTS are assumed the upper bounds decrease much more sharply with others’

treatment status.

Observe that nearly all of the bounds (except HMIR lower bounds when others’ and

and own’ treatment status is low) include zero. This means that under HMI, HMTR,

and HMTS assumptions, we cannot generally identify the sign of the treatment effect.

Thus, in Figure 4, we focus on the tightest identified set and provide a more detailed

and graphical representation of the HMIRS bounds. The left (right) panel represents the

HMIRS bounds when own (others’) treatment vary, under low, medium and high others’

(own) treatment status, respectively in light gray, dark gray and black (black, medium and

light gray). From panel (a) we can see that upper and lower bounds increase remarkably

with the treatment when the treatment of others is low and, to a lower extent, when it is
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Table 3: Estimated Upper and Lower Bounds under Different Monotonic
and Selection Assumptions - Own Treatment Variation -

Bounds Monotonic assumptions

type HMI HMTR HMTS ES

ITR N N N N
Own treatment

Interval level Lower bound Upper bound

(0.001,3.58] 1 -6.589 12.820
(3.58,4.33] 2 -6.627 12.869
(4.33,4.8] 3 -6.588 12.863
(4.8,5.23] 4 -6.594 12.874
(5.23,5.58] 5 -6.586 12.880
(5.58,6.02] 6 -6.574 12.885
(6.02,6.5] 7 -6.565 12.893
(6.5,7.13] 8 -6.553 12.906
(7.13,8.34] 9 -6.523 12.931

Own treatment Low others’ treatment level High others’ treatment level

level Lower bound Upper bound Lower bound Upper bound

HMI Y N N Y

1 -6.892 13.012 -6.873 12.997
2 -6.887 13.011 -6.889 13.009
3 -6.885 13.010 -6.879 13.005
4 -6.891 13.014 -6.875 13.004
5 -6.888 13.013 -6.862 13.000
6 -6.887 13.013 -6.869 13.004
7 -6.886 13.013 -6.868 13.005
8 -6.891 13.015 -6.866 13.006
9 -6.878 13.014 -6.866 13.010

HMIR Y Y N Y

1 2.746 12.954 -4.857 11.799
2 3.027 12.962 -4.819 11.981
3 3.347 12.970 -4.775 12.120
4 3.661 12.980 -4.722 12.268
5 3.982 12.986 -4.659 12.405
6 4.316 12.993 -4.604 12.535
7 4.659 12.999 -4.544 12.662
8 5.014 13.006 -4.481 12.781
9 5.399 13.011 -4.418 12.887

HMIS Y N Y Y

1 -6.731 7.577 -4.247 11.717
2 -6.737 7.973 -4.469 11.747
3 -6.754 7.961 -4.578 11.857
4 -6.771 8.250 -4.841 11.872
5 -6.785 8.406 -5.080 11.910
6 -6.802 8.379 -5.340 11.952
7 -6.821 8.290 -5.628 11.982
8 -6.838 8.904 -5.909 12.067
9 -6.851 9.776 -6.196 12.232

HMIRS Y Y Y Y

1 3.902 4.846 1.622 2.303
2 4.043 5.525 1.577 2.252
3 4.164 5.825 1.616 2.265
4 4.310 6.414 1.519 2.194
5 4.459 6.872 1.439 2.154
6 4.611 7.152 1.340 2.094
7 4.771 7.370 1.215 2.022
8 4.943 8.291 1.099 1.994
9 5.132 9.472 0.976 2.015

Notes. Levels and log million euro. The nine levels for the individual treatment correspond to the deciles of the
distribution of strictly positive values. The first (last) level are not considered in the comparison because the HMIRS
lower (upper) bound can not be computed. The low others’ treatment level corresponds to first decile of the mean
of others’ treatment distribution, the first is not considered as the log function has values equal or close to zero. The
high others’ treatment level corresponds to the last decile of the mean of others’ treatment distribution. ITR stands
for individual teratment response. HMI stands for the h-monotonic interactions assumptions from Proposition 1,
HMIR stands for the h-monotonic treatment response assumptions from Proposition 2, HMIS stands for the h-
monotonic treatment selection assumptions from Proposition 3, HMIRS stands for the h-monotonic treatment
selection and responseassumptions from Proposition 4. The bounds are constructed with the formulas in Section
5.6.1.
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Table 4: Estimated Upper and Lower Bounds under Different Monotonic
and Selection Assumptions - Others’ Treatment Variation -

Bound Others’ Low own treatment level High own treatment level Monotonic assumptions

type Interval treatment level Lower bound Upper bound Lower bound Upper bound HMI HMTR HMTS ES

HMI Y Y N Y

(0.508,1.05] 1 -5.795 12.307 -6.876 13.016
(1.05,1.16] 2 -5.875 12.372 -6.852 13.012
(1.16,1.25] 3 -5.902 12.388 -6.856 13.013
(1.25,1.33] 4 -5.919 12.373 -6.874 13.016
(1.33,1.37] 5 -5.963 12.405 -6.873 13.016
(1.37,1.53] 6 -5.899 12.364 -6.873 13.016
(1.53,1.58] 7 -6.019 12.481 -6.831 13.011
(1.58,1.6] 8 -6.103 12.516 -6.842 13.013
(1.6,1.62] 9 -5.892 12.391 -6.874 13.016

HMIR Y Y N Y

1 2.427 12.281 5.812 13.016
2 1.378 11.543 4.558 13.009
3 0.403 10.842 3.249 13.002
4 -0.546 10.104 2.012 12.998
5 -1.479 9.371 0.757 12.994
6 -2.371 8.620 -0.503 12.990
7 -3.323 7.948 -1.774 12.982
8 -4.161 7.259 -3.065 12.974
9 -4.921 6.528 -4.368 12.970

HMIS Y N Y Y

1 -5.693 7.071 -6.877 10.703
2 -4.425 7.813 -6.825 10.787
3 -3.237 8.418 -6.776 11.053
4 -2.090 8.916 -6.743 11.393
5 -0.876 9.535 -6.708 11.755
6 0.352 10.119 -6.673 12.046
7 1.777 10.836 -6.604 12.173
8 2.897 11.311 -6.540 12.401
9 4.183 11.794 -6.512 12.575

HMIRS Y Y Y Y

1 3.902 4.846 5.132 9.472
2 3.561 3.806 4.598 8.204
3 3.236 3.639 4.109 7.314
4 2.944 3.405 3.591 6.479
5 2.663 3.034 3.064 5.781
6 2.349 2.804 2.527 4.861
7 2.111 2.508 2.028 3.672
8 1.940 2.358 1.526 2.879
9 1.622 2.303 0.976 2.015

Notes. Levels and log million euro. The nine levels for the individual treatment correspond to the deciles of the distribution
of strictly positive values. The low others’ treatment level corresponds to first decile of the mean of others’ treatment
distribution, the first is not considered as the log function has values equal or close to zero. The high others’ treatment level
corresponds to the last decile of the mean of others’ treatment distribution. HMI stands for the h-monotonic interactions
assumptions from Proposition 1, HMIR stands for the h-monotonic treatment response assumptions from Proposition 2,
HMIS stands for the h-monotonic treatment selection assumptions from Proposition 3, HMIRS stands for the h-monotonic
treatment selection and responseassumptions from Proposition 4. The bounds are constructed with the formulas in Section
5.6.1.

medium. When others’ treatment is high, the bounds do not even increase with the own

treatment status and remain strictly inferior to those when others’ treatment status is low

or medium, pushed down by the highest competitive externalities. In addition, the lower

the treatment status of competitors the higher the increase of the potential outcome

following an increase of the own treatment. From panel (b) we can appreciate how a

gradual increase of the treatment status of others reduces the own potential outcome

bounds, sharply converging to a quite narrow area much closer to zero. A high own

treatment status attenuates the negative effect induced by higher others’ treatments.
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When the own treatment status is the lowest (the darkest area in the plot) the upper

bound is remarkably lower than when it is medium or high and this holds true the lower

is others’ treatment status. This means that when competitors treatment status is high,

the own treatment has very small effect on the outcome almost certainly.

We find that banks borrowing more from the central bank grant more credit to the

real economy when other banks’ borrowing is low. When competitors in the market

borrow heavily, the effect of central bank funding on credit attenuates remarkably. A

standard deviation increase in central bank funding can induce up to 60 percent of a

standard deviation point increase in a single bank credit provision to the real economy

when other banks get limited funding from the central bank on average (about the first

decile of the distribution). This upper bound reduces to less than one percent of a

standard deviation point when other banks borrow more funds (about the ninth decile of

the distribution). Symmetrically, a reduction of central bank funding, which is included

in our data (especially in the last periods), has milder adverse effects on lending when

funds were widely borrowed by most of the banks.
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Figure 4: Partial Identification under HMIRS
- Estimated Upper and Lower Bounds when Own and Others’ Treatment Varies -

(a) Own treatment (b) Others’ treatment

Notes. panel (a) x-axis: levels of own treatment status. panel (b) x-axis: levels of others’ treatment status. Levels are
expressed in log million euro. The levels correspond to the deciles of the empirical distribution. y-axis: estimated upper
and lower bounds for the own potential outcome. In panel (a), light grey: low others’ treatment status; dark grey: medium
others’ treatment status; black: high others’ treatment status. The low others’ treatment level corresponds to first decile of
the mean of others’ treatments distribution, the medium others’ treatment level corresponds to fifth decile of the mean of
others’ treatments distribution, the high others’ treatment level corresponds to last decile of the mean of others’ treatments
distribution. In panel (b), light grey: low own treatment status; dark grey: medium own treatment status; black: high own
treatment status. The low own treatment level corresponds to first decile of the own treatment distribution, the medium
own treatment level corresponds to fifth decile of the own treatment distribution, the high own treatment level corresponds
to last decile of the own treatment distribution. HMIRS stands for the h-monotonic treatment selection and response
assumptions from Proposition 4. The bounds are constructed with the formulas in 5.6.1.

6 Concluding Remarks

This paper provides identification results for treatment response in contexts with endoge-

nous and heterogeneous interactions among agents by means of monotone comparative

statics. Our method enables an agent’s treatment response to be a function of the en-

tire vector of treatments received by the population, and to react differently according

to heterogeneous interactions, which can arise within or between different agents’ types

or outcomes in the population. Compared to previous work, this generalization allows

the use of credible partial identification via comparative statics in many contexts where

the relationships between outcome variables are not trivial, for example under comple-

mentarity and substitutability. It relies neither on random treatment assignment nor on

random assignment of agents to types or interactions. In doing so, we bridge the theory of

identification of treatment effects that exploits monotone restrictions with that on games

featuring strategic complementarity and substitutability. In particular, we introduce the

heterogeneous fixed points theorem in economics to show that our bounds are coherent

with equilibrium behavior arising from the assumptions made on the primitives of the

structural model. We derive identification regions for the true distribution of outcome

variables and show that such bounds can be highly informative under relatively weak
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monotonic assumptions.

While the mathematical foundation of our method may look complex, it produces

bounds that are very easy to compute, it just requires few expected values and frequencies.

In practice, the primary effort involves constructing a system of coherent monotonic

assumptions based on economic theory. This exercise, often necessary and required in any

case, can be facilitated by ancillary statistical tests if needed. The empirical application

illustrates the usefulness of our method to inform monetary policy and financial stability.

Allowing for full endogeneity of and heterogeneous interdependence among banks’ balance

sheet items, we show how the method can produce tight and meaningful bounds for the

response to central bank funding of credit to the real economy.
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Huremovic, K., Jiménez, G., Moral-Benito, E., Vega-Redondo, F. and Peydró, J.-L.
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APPENDIX

Appendix A: Useful Results and Extensions

Let us include some useful results to make this paper self-contained.

Tarski’s Fixed Point Theorem (TFP). If L is a complete lattice and f : L → L is

an increasing function, then f has a fixed point. Furthermore, the set of fixed points of f

has a least and a greatest element. (Tarski, 1955 ADD REF)

Milgrom and Roberts (1990, 1994) Theorem. If L is a complete lattice, and T is

a partially ordered set, and f : L × T → L is an increasing function, then the least and

the greatest fixed points of f are increasing in t on T . (Milgrom and Roberts; 1990)

Appendix B: Proofs

Monotonic Interactions and Heterogeneous Fixed Points

Proof of Theorem 2.1. Suppose y = (y1, . . . , yn) is the outcome vector of n units as in

system (1), and the population is split into two separate groups, A and B. If interactions

are reinforcing within the same group and opposing between groups, the direct effect of yi

on yj is positive if iI and j belong to the same group, it ; it is negative otherwise. In this

case, the indirect effects follow the sign of the direct effects. The indirect effect of yi on

yj trough yk is positive if i and j belong to the same group, negative otherwise, whatever

group k belongs to. If k is in the same group, the direct effects of yi on yk and yk on yj

are positive, then the indirect effect of yi on yj is positive too. If k is in the other group

the direct effects of yi on yk and yk on yj are negative, then the indirect effect of yi on yj

is positive. The same holds for longer paths of influence. We formalize this propriety in

what follows. Let Dk = {< yi, yj, k >}i,j∈N,k∈N+ be a N ×N matrix with dij,k = 1 if the

impact of yj on yi is positive and dij,k = −1 if the impact of yj on yi is negative passing

through k other variables (in a chain of influences).

Set D0 = IN . By construction we have that Dk = Dk−1 ·D1. Let R = {< yi, yj >}i,j∈N
be the reduced form matrix whose generic element rij represents the sign of the total

impact of yj on yi (the total derivative through all the possible chains). Let rij = 1 if the

final impact of yj on yi is positive and rij = −1 if the impact of j on i is negative.

R embeds all the direct and indirect effects, providing a final sign. According to

Kanade et al. (2005), the system of equations is consistent if R = D1 = D2 = · · ·DN+ .

Suppose that each variable yi represents a specific unit i’s outcome and units are con-

nected through a network G of connections, which keeps track of who influences whom.

gij is equal to 1 is j influences i, 0 otherwise. Let S be a matrix such that sij = 1 if

gij ̸= 0 and i, j ∈ A or i, j ∈ B, sij = −1 if gij ̸= 0 and i ∈ A, j ∈ B or i ∈ A, j ∈ B

and sij = 0 if gij = 0. W.l.o.g. assume G is strongly connected. It implies that S = D1,
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sign(S2) = D2, ... , sign(Sk) = Dk and R = sign(H) where H = (IN − θS)−1 = Z−1,

θ ∈ Θ+ where Θ+ is the positive subset of the parameter space for inversion of Z.

W.l.o.g. Suppose units are sorted, and the interaction matrix is split accordingly G =[
GA GA,B

GB,A GB

]
. It is easy to see that it implies S =

[
P M

M P

]
., S2 =

[
PP + MM PM + MP

MP + PM PP + MM

]
.,

S3 =

[
PPP + MMP + PMM + MPM PPM + MMMPMP + MPP

MPP + PMP + MPP + MMM MPM + PMM + PPP + MMP

]
., ... , Sk =

[
ρkP µkM

µkM ρkP

]
, where P is a

square matrix of ones, M is a square matrix of minus ones, µk and ρk are integers param-

eters strictly positive. It implies that sign(Sk) =

[
P M

M P

]
,∀k. It thus follows that

for any G and any (A,B) we have that D1 = D2 = · · · = DN+ = R.

Proof of HFP Theorem (Kanade et al.; 2005). See proof Theorem 1 in Kanade

et al. (2005).

Proof of Theorem 2.3. Let us define the vector functions Fa = (fi(y, t), i ∈ A), with

Fa : P × T → Pa and Fb = (fi(y, t), i ∈ B) with Fb : P × T → Pb. Let us define

yL
a = inf{ya|Fa(y, t) ≤ ya}, yU

a = sup{ya|Fa(y, t) ≥ ya}, yL
b = inf{yb|Fb(y, t) ≤ yb}

and yU
b = sup{yb|Fb(y, t) ≥ yb}. Define SA(t) = {ya(t)|Fa(Y(t)), t) ≤ ya} so that

yL
a (t) ≡ inf(SA(t)). Since Fa(Y(t), t) is h-monotonic, for all ya(t) ∈ SA, yL

a (t) ∈
HFP (A,B) ∈ FP (F) by the heterogeneous fixed point theorem. Furthermore, we have also

that yU
b (t) ∈ HFP (A,B) ∈ FP (F). Since yL

a (t) is a lower bound of SA we have yL
a (t) ≤

Fa(y
L
a (t), t) and given that F is h-monotonic in t w.r.t. (A,B) we have that the set SA(t)

becomes smaller as t increases for the elements of the vector i ∈ A and it becomes larger

for elements of the vector i ∈ B. Hence, we have that yL
a ≡ inf(SA(t)) is a h-monotonic

function of t. The same argument holds for the set SB(t) = {yb|fb(Y, t) ≥ yb} and is

supremum yU
b . Given the fact that F is h-monotonic function, then there are no ya and

yb, which satisfy the two equations ya = Fa(ya, t) and yb = Fb(yb, t) for two different

values of t. So yL
a and yU

b must be h-monotonic as well. The same way of reasoning can

be applied if F(y, t) is an increasing (or decreasing) function. In that case, the solutions

of the system will preserve the sign of the monotonicity of the structural vector function.

The result follows from Milgrom and Roberts (1990, 1994).

Heterogeneous Monotonic Structural Functions

The strategy of the following proofs is similar in spirit to Lazzati (2015). However, they

are applied to different blocks/outcomes, use heterogenous monotonic shape functions,

and use conditional expectations rather than the outcome’s probability. W.l.o.g., we

focus on two blocks A and B, which partitions the population P .

Proof of Lemma 1. Consider the mapping
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NA
d,r : ∆y → ∆A

y ,

E(Y ) → E(Y A)

where E(Y A) = (1/|A|)
∑

i f
A
ir (tir, E(y

A/i
r (tir)), E(yB

r (tir))) for block A. By construc-

tion, the elements of the solution set ϕA(d, r) coincide with the extremal fixed points of

NA
d,r. Then, the proof of Lemma 1 reduces to show that the set of fixed points of NA

d,r

has a least and greatest element. By Lazzati (2015), (∆A
y ,≥) is a complete lattice for the

usual (coordinatewise) order. By Assumption HMI, fA
ir (·), is h-monotonic in E(y

A/i
r (t))

and E(yB
r (t)). Thus, given the linearity of the expectation operator , also NA

d,r are h-

monotonic in the same arguments, and the result follows by the HFP Theorem. By

symmetry, the same strategy can be applied for block B.

Proof of Lemma 2. If HMI holds, then Lemma 1 shows that the solution set has

at least two heterogeneous solutions: the greatest, and the least for the two blocks we

consider.. Let HMR holds. Then, fixing r we have that NA
d,r as defined in (17) is h-

monotonic in d, given Assumption EF. The fact that the extremal elements of ϕk(d, r)

are h-monotonic in d follows by Theorem 2.3. Then, condition ES1 is sufficient to prove

our claim.

Proof of Lemma 3. The first part of the proof will show that if fkr ≥ fk
′

r , then yk
r (d) ≥

yk′
r (d) for all d ∈ D. Assume that HMI hold, then Lemma 1 shows that the solutions

ϕk(d, r) and ϕk′(d, r) has at least two heterogeneous solutions: one is the greatest and

the other is the smallest. Observe that fkr ≥ fk
′

r implies that Nk
d,r is larger than Nk′

d,r.

Then since ϕk(d, r) and ϕk′(d, r) are the sets of heterogeneous fixed points of Nk
d,r and

Nk′

d,r this implies that the largest (smallest) element of ϕk(d, r) is larger than the largest

(smallest) element of ϕk′(d, r) for each d ∈ D by Theorem 2.3. Thus, yk
r (d) ≥ yk′

r (d) for

each d ∈ D by ES2 and EF. Using similar argument we can show that if fkr ≥ fkr′ , then

yk
r (d) ≥ yk

r′(d) for all d ∈ D given ES2 and EF.

For the second part of the proof, we have by definition that

E(yk|z = s) =
∑
r∈R

(yk
r (s))p

k
r|z=s.

Thus, if yk
r (d) ≥ yk

r′(d) for each d ∈ D, then P (fk = fkr|z) = P k
r|z we have that P (fk|zk =

sk, zl = sl′) ≥st P (fk|zk = sk, zl = sl) ≥st P (fk|zk = sk, zl = sl′) and P (f l|zk = sk, zl =

sl′) ≤st P (f l|zk = sk, zl = sl) ≤st P (f l|zk = sk, zl = sl′) if sk > sk ′, and sl > sl′, by

HMTS and EF. Hence, E(y(d)|z = s) is h-monotonic in s and the result follows.
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Identification Region for Potential Outcome Distributions

Proof of Proposition 1. See Manski and Pepper (2000) and Manski (2013).

The proof of Proposition 2 requires an additional Lemma.

Lemma F4. Assume HMI, HMR, EF, and ES1 hold. Then if zA ≥ dA, and

zB ≤ dB, we have (i) E(yA|zA ≥ dA, zB ≤ dB) ≥ E(yA(d)|zA ≥ dA, zB ≤ dB);

(ii) E(yB|zA ≥ dA, zB ≤ dB) ≤ E(yB(d)|zA ≥ dA, zB ≤ dB).

Proof. (i)

E(yA|zA ≥ dA, zB ≤ dB) =
∑
s∈D

{∑
r∈R

yAr (s)p
A
r|z=s

}
1(sA ≥ dA, zB ≤ dB)PA(z = s|zA ≥ dA, zB ≤ dB) ≥(17)

∑
s∈D

{∑
r∈R

yAr (d)p
A
r|z=s

}
1(sA ≥ dA, zB ≤ dB)PA(z = s|zA ≥ dA, zB ≤ dB) =

E(yA(d)|zA ≥ dA, zB ≤ dB).

Under HMI, HMR, EF and ES1, the inequality follows by Lemma 2, as it implies that

E(yA(s)) ≥ E(yA(d)) for all sA ≥ dA, sB ≤ dB,, and for every r ∈ R.

(ii)

E(yB|zA ≥ dA, zB ≤ dB) =
∑
s∈D

{∑
r∈R

yBr (s)p
A
r|z=s

}
1(sA ≥ dA, zB ≤ dB)PB(z = s|zA ≥ dA, zB ≤ dB) ≤(18)

∑
s∈D

{∑
r∈R

yBr (d)p
B
r|z=s

}
1(sA ≥ dA, zB ≤ dB)PB(z = s|zA ≥ dA, zB ≤ dB) =

E(yB(d)|zA ≥ dA, zB ≤ dB).

Under HMI, HMR, EF and ES1, the inequality follows by Lemma 2, as it implies that

E(yB(s)) ≤ E(yB(d)) for all sA ≥ dA, sB ≤ dB, and for every r ∈ R.

Proof of Proposition 2. We have to prove that

E(yA(d)) ≤ E(yA|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB)+yAP (zA < dA or/and zB > dB)
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E(yA(d)) (19)

= E(yA(d)|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB)

+ E(yA(d)|zA < dA or/and )P (zA < dA or/and zB > dB)

≤ E(yA|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB)

+ E(yA(d)|zA < dA, zB > dB)P (zA < dA or/and zB > dB)

≤ E(yA|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB) + yAP (zA < dA or/and zB > dB).

E(yB(d)) ≥ E(yB|zA ≤ dA, zB ≥ dB)P (zA ≤ dA, zB ≥ dB)+yBP (zA > dA or/and zB < dB)

E(yB(d)) (20)

= E(yB(d)|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB)

+ E(yB(d)|zA < dA, or/and zB > dB)P (zA < dA or/and zB > dB))

≥ E(yB|zA ≥ dA, zB ≤ dB)P (zA ≥ dA, zB ≤ dB)

+ E(yB(d)|zA < dA, or/and zB > dB)P (zA < dA or/and zB > dB)

≥ E(yB|zA ≥ dA, zB ≤ dB)P (zA ≥ dA or/and zB ≤ dB) + yBP (zA < dA or/and zB > dB).

Under HMI, HMR, EF and ES1, the first inequality follows by Lemma F4. The

second one is true as yA is an upper bound, and yB is a lower bound for any conditional

expectation of potential outcomes. The proof for the remaining bounds follows the same

argument. To show that the bounds are sharp, first observe that we restrict E(yA(d)) to

the set of all possible expectations that are consistent with the nature of the outcomes,

i.e., E(yA(d)) ∈ ∆yA . Furthermore, given the data, our assumptions are consistent with

both E(yA(d)|zA < dA or/and zB > dB) = yA = yA. Then, E(yA(d)) can coincide with

any element within ∆yA that lies between the considered lower and upper bounds. A

similar argument applies to E(yB(d)).

The proof of Proposition 3 requires an additional Lemma.

Lemma F5. Assume HMI, HMTS, EF and ES2, hold. we have (i) E(yA(d)|zA ≥
dA, zB ≤ dB) ≥ E(yA|zA = dA, zB = dB) and E(yA|zA = dA, zB = dB) ≥ E(yA(d)|zA ≤
dA, zB ≥ dB) ; (ii) E(yB(d)|zA ≥ dA, zB ≤ dB) ≤ E(yB|zA = dA, zB = dB) and
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E(yB|zA = dA, zB = dB) ≤ E(yB(d)|zA ≤ dA, zB ≥ dB).

Proof. (i)

E(yA(d)|zA ≥ dA, zB ≤ dB) (21)

=
∑
s∈D

E(yA(d)|zA = sA, zB = sB)1(sA ≥ dA, sB ≤ dB)PA(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

≥
∑
s∈D

E(yA(d)|zA = dA, zB = dB)1(sA ≥ dA, sB ≤ dB)PA(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

= E(yA(d)|zA = dA, zB = dB)
∑
s∈D

1(sA ≥ dA, sB ≤ dB)PA(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

= E(yA|zA = dA, zB = dB).

Under HMI, HMTS, EF and ES2, the inequality follows by Lemma 3. The third

line holds as E(yA(d)|zA = dA, zB = dB) is independent of s. The last line holds as

the conditioning event is on block A and
∑

s∈D 1(sA ≥ dA, sB ≤ dB)PA(zA = sA, zB =

sB|zA ≥ dA, zB ≤ dB) = 1. The proof of the second claim is similar; thus, we omit it.

(ii)

E(yB(d)|zA ≥ dA, zB ≤ dB) (22)

=
∑
s∈D

E(yA(d)|zA = sA, zB = sB)1(sA ≥ dA, sB ≤ dB)PB(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

≤
∑
s∈D

E(yB(d)|zA = dA, zB = dB)1(sA ≥ dA, sB ≤ dB)PB(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

= E(yA(d)|zA = dA, zB = dB)
∑
s∈D

1(sA ≥ dA, sB ≤ dB)PB(zA = sA, zB = sB|zA ≥ dA, zB ≤ dB)

= E(yB|zA = dA, zB = dB).

Under HMI, HMTS, EF and ES2, the inequality follows by Lemma 3. The third line

holds as E(yB(d)|zA = dA, zB = dB) is independent of s. The last line holds as the

conditioning event is on block B and
∑

s∈D 1(sA ≥ dA, sB ≤ dB)PB(zA = sA, zB =

sB|zA ≥ dA, zB ≤ dB) = 1. The proof of the second claim is similar; thus, we omit

it.

Proof of Proposition 3. The proof follows using Lemma F5 and the same reasoning

we did for Proposition 2.

Proof of Proposition 4. The proof follows by applying Lemma F4, Lemma F5, and

the same reasoning used for Proposition 2 and Proposition 3.
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Within Banks Dependencies

Proof of Proposition 5. Let Y ≡ {A,L} with dimension N and D1 = {< yi, yj, 1 >

}i,j∈N be the N × N matrix with dij,1 = 1 if the direct impact of yj on yi is positive

and dij,k = −1 if it is negative, according to the signs in Table 2. Under assets-liabilities

interactions D1 can be decomposed into four submatrices: D1 =

[
AA AL

LA AA

]
, where

AA (LL) is the partition of D1, which represents the signs of interactions among asset

(liabilities) items, and AL (=LA′) is the matrix that represents the signs of interactions

between assets and liabilities. Let Dk = {< yi, yj, k >}i,j∈N,k∈N+ be the N × N matrix

with dij,k = 1 if the impact of yj on yi is positive and dij,k = −1 if the impact of yj on yi

is negative passing through k other variables. Let R = {< yi, yj >}i,j∈N be the reduced

form matrix whose generic element rij represents the sign of the total impact of yj on yi

(the total derivative through all the possible chains). Let rij = 1 if the final impact of yj

on yi is positive and rij = −1 if the impact of j on i is negative. Under assets-liabilities

interactions D1 can be decomposed in four submatrices: R =

[
ÃA ÃL

L̃A ÃA

]
.

Let D0 = IN , D1 be the N × N matrix with dij,1 = 1 if the direct impact of

yj on yi is positive and dij,k = −1 if it is negative, according to the signs for M ,

O and C in Table 2. To prove that A-L outcomes are consistent, we can show that

R = D1 = D2 = · · ·DN+ , which is a sufficient condition for a system of equations to be

consistent, see the proof of Theorem 2.1. Under MOC interactions, we have that D2 =[
AA AL

LA AA

]2

=

[
AA2 + AL(AL′) AA(AL) + AL(LL)

AL′(AA) + LL(AL′) AL′(AL) + LL2

]
=

[
AA AL

LA AA

]
= D1,

which implies Dk = Dk−1D1 and R = D1 = D2 = · · ·DN+ . This proves that there exists

a valid partition for the system of equations, which guarantees the existence of HFP.
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Appendix C: Additional Tables, Figures, and Results for the

Empirical Application

Table 5: Banks’ Balance Sheet Items Descriptives

Variable Description

Loans to NFS (c)

”Stock of loans to the non financial sector in milion euro. It

includes loans to non financial firms, households, non-profit in-

stitutions, public administrations, insurance companies, mutual

funds of the euro area and to the rest of the world. All maturi-

ties are considered.”

Securities (a)

”Stock of securities held in milion euro. It includes equities,

bonds and any debt issued by other financial institutions, NFS

(non financial firms, non-profit institutions, households, public

administrations, insurance companies) of the euro area and to

the rest of the world. All maturities are considered. Intragroup

exposures are not computed, as banking groups are considered.

”

Interbank lending (l)

”Stock of loans to other financial institutions in milion euro.

It includes secured and unsecured transactions agreed OTC,

through a CCP, third party repos with counterparties of the

euro area and to the rest of the world. All maturities are con-

sidered. Intragroup exposures are not computed, as banking

groups are considered.”

Interbank borrowing (b)

”Stock of loans from other financial institutions in milion euro.

It includes secured and unsecured transactions agreed OTC,

through a CCP, third party repos with counterparties of the

euro area and to the rest of the world. All maturities are con-

sidered. Intragroup exposures are not computed, as banking

groups are considered.”

Bonds issued (s)
”Stock of bonds issued by the financial institution in milion

euro. All maturities and seniorities are considered. ”

Deposits (d)

”Stock of deposits at the financial institution in milion euro.

Deposits included and not included in M3 are considered. Sight

and term deposits of NFC (non financial firms, non-profit insti-

tutions, households, public administrations, insurance compa-

nies, mutual and pension funds) of the euro area and the rest of

the world are considered.”

Central bank funding (t)

”Stock of funds borrowed from the central bank in milion euro.

All maturities and operation types (including OMO, LTRO, TL-

TRO, PELTRO) are considered.”

N Mean Std Median 10th pct 90th pct

Time: 31dec2011

Loans to NFS (c) 623 2,992 19,583 270 41 2,595

Securities (a) 623 1,226 9,750 51 1 497

Interbank lending (l) 623 752 8,047 19 4 151

Interbank borrowing (b) 623 1,048 9,202 26 1 533

Deposits (d) 623 2,014 13,067 170 31 1,624

Bonds and equity issued (s) 623 1,209 9,421 62 - 614

Central bank funding (t) 623 331 2,508 - - 95

Time: 31dec2012

Loans to NFS (c) 602 3,062 19,931 287 38 2,398

Securities (a) 602 1,297 8,521 81 0 799

Interbank lending (l) 602 773 7,195 25 4 163

Interbank borrowing (b) 602 1,042 8,405 42 1 495

Deposits (d) 602 2,160 13,019 197 31 1,695

Bonds and equity issued (s) 602 1,091 8,643 59 - 553

Central bank funding (t) 602 408 2,456 - - 259

Time: 31dec2013

Loans to NFS (c) 593 2,939 18,614 286 36 2,450

Securities (a) 593 1,370 8,606 113 0 945
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Interbank lending (l) 593 771 7,075 24 4 185

Interbank borrowing (b) 593 1,067 8,504 50 1 674

Deposits (d) 593 2,166 12,629 219 33 2,045

Bonds and equity issued (s) 593 1,003 7,992 49 - 491

Central bank funding (t) 593 379 2,074 - - 342

Time: 31dec2014

Loans to NFS (c) 579 2,956 18,577 283 38 2,310

Securities (a) 579 1,382 8,750 129 0 1,078

Interbank lending (l) 579 399 2,680 29 5 196

Interbank borrowing (b) 579 683 4,061 46 1 505

Deposits (d) 579 2,250 12,875 240 41 1,986

Bonds and equity issued (s) 579 916 7,275 46 - 468

Central bank funding (t) 579 335 1,855 - - 397

Time: 31dec2015

Loans to NFS (c) 564 3,025 18,719 295 41 2,273

Securities (a) 564 1,393 8,832 130 1 1,079

Interbank lending (l) 564 395 2,883 27 5 184

Interbank borrowing (b) 564 724 4,160 40 0 621

Deposits (d) 564 2,402 13,833 268 46 2,361

Bonds and equity issued (s) 564 831 6,637 34 - 377

Central bank funding (t) 564 273 1,617 - - 294

Time: 31dec2016

Loans to NFS (c) 529 3,194 19,447 292 43 2,387

Securities (a) 529 1,427 9,170 141 0 1,265

Interbank lending (l) 529 410 2,875 27 4 196

Interbank borrowing (b) 529 720 4,237 44 0 576

Deposits (d) 529 2,682 15,557 290 49 2,552

Bonds and equity issued (s) 529 741 5,982 22 - 318

Central bank funding (t) 529 382 2,489 - - 302

Time: 31dec2017

Loans to NFS (c) 474 3,488 21,799 347 51 2,580

Securities (a) 474 1,493 9,864 148 - 1,234

Interbank lending (l) 474 469 3,335 30 5 201

Interbank borrowing (b) 474 714 4,138 48 0 574

Deposits (d) 474 3,076 18,681 357 54 2,694

Bonds and equity issued (s) 474 683 5,524 12 - 271

Central bank funding (t) 474 526 3,645 - - 370

Time: 31dec2018

Loans to NFS (c) 450 3,574 21,537 379 53 2,745

Securities (a) 450 1,642 10,356 182 - 1,359

Interbank lending (l) 450 533 3,782 26 4 255

Interbank borrowing (b) 450 855 4,704 52 1 713

Deposits (d) 450 3,317 19,126 404 68 3,208

Bonds and equity issued (s) 450 622 5,181 5 - 219

Central bank funding (t) 450 537 3,649 - - 372

Time: 31dec2019

Loans to NFS (c) 437 3,553 20,846 394 59 2,842

Securities (a) 437 1,780 10,931 193 - 1,558

Interbank lending (l) 437 558 4,446 8 0 274

Interbank borrowing (b) 437 814 4,556 33 -11 930

Deposits (d) 437 3,575 20,167 459 77 3,655

Bonds and equity issued (s) 437 643 5,238 3 - 172

Central bank funding (t) 437 499 3,229 - - 352

Time: 31dec2020

Loans to NFS (c) 422 3,771 25,118 400 62 3,082

Securities (a) 422 1,924 11,884 240 - 2,020

Interbank lending (l) 422 505 3,378 8 0 356

Interbank borrowing (b) 422 699 3,808 53 -9 673

Deposits (d) 422 4,084 26,240 527 87 3,718

Bonds and equity issued (s) 422 584 5,532 1 - 149

Central bank funding (t) 422 843 5,345 - - 687

Time: 31dec2021

Loans to NFS (c) 404 3,965 24,328 436 73 3,451
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Securities (a) 404 2,077 12,662 278 - 1,878

Interbank lending (l) 404 487 3,260 7 0 317

Interbank borrowing (b) 404 664 3,377 60 -14 643

Deposits (d) 404 4,511 27,471 572 92 4,057

Bonds and equity issued (s) 404 593 5,557 - - 134

Central bank funding (t) 404 1,113 7,625 - - 777

Time: 31dec2022

Loans to NFS (c) 385 4,167 23,871 480 83 3,985

Securities (a) 385 2,124 12,838 290 - 2,105

Interbank lending (l) 385 532 3,382 5 0 443

Interbank borrowing (b) 385 791 3,627 85 - 1,006

Deposits (d) 385 4,713 27,871 616 92 4,179

Bonds and equity issued (s) 385 623 5,735 0 - 130

Central bank funding (t) 385 915 6,091 - - 499

Notes. End of year monthly data in million euro. Individual Balance sheet items (IBSI) data for

the Italian banking system. Individual banks are aggregated in banking groups. Data is aggregated

at the banking group level according to the group strucuture at each time observation. Descrip-

tive statistics are computed across banking groups at the end of the year. Any zero values in the

archives may refer either to a phenomenon that does not exists or to periods for which the data

do not reach the significant figure of the minimum amount considered in the statistical report-

ing. The institutional sectors correspond to those of the European System of Accounts (ESA2010).

Monetary financial institutions include: the Bank of Italy, banks, money market funds, electronic

money institutions and Cassa Depositi e Prestiti spa. The latter is not included in the sample.

Public administrations include central government and ”other general government institutions”,

which in turn can be distinguished into local government and social security agencies. ”Other res-

idents” include insurance and pension funds, other financial institutions, including nonmonetary

mutual funds monetary, non-financial corporations, households, and nonprofit institutions serving

households. Stocks do not correct for differences in stocks to account for reclassifications, value

adjustments, and any other changes (except those due to exchange rates) that do not originate

from economic transactions. Statistical reclassifications are due, for example, to changes in the

reporting population or re-attributions of balance sheet items; value adjustments are, for exam-

ple, loan write-downs or changes in the price of securities. In addition, adjusted flows neutralize

the increases in stocks attributable to any merger or incorporation transactions. In the case of

loans, decreases due to disposals (net of acquisitions) are also adjusted. For further details on

the content of the items, see the notes for Section 1 within the issue of the Statistics, Meth-

ods and Sources series of https://www.bancaditalia.it/pubblicazioni/metodi-e-fonti-note/metodi-

note-2020/index.html?com.dotmarketing.htmlpage.language=1Banks and Money: National Data.

In particular, within section 1.4 are highlighted all the statistical discontinuities that over time

have been reflected in the consistencies.

Extensions of Monotonic Assumptions among Banks’ Balance

Sheet Items

In addition to the between-sides-complementarity interactions (C), which generate mono-

tone positive effects among same bank’s outcomes in opposed sides of the balance sheet,

there could also be interactions among same bank’s outcomes in the same side of the bal-

ance sheet. For example, there could be substitutability within the same balance sheet

side, assets or liabilities. On the liabilities side, the bank decides its funding structure,

given its desired balance sheet size. On the assets side, a bank decides how to allocate its

resources, given the budget constraint. For example, an additional euro of loans (ci) can

be substituted by selling securities (ai) or other assets, in absence of a balance sheet ex-

pansion. These within-side-substitution interactions (S) can generate monotone negative

effects among same bank’s outcomes. Furthermore, if we are studying a period in which

unsecured bilateral interbank trading is relevant, like before the global financial crisis, we

can assume that bank i can lend (li) directly to bank j (bj). We call these opposite-side-

of-the-market interactions (O). O interactions can generate positive monotone effects,

because banks’ jointly increase their outcomes. In addition, bank i, by lending to cus-
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tomers (ci) that borrow to pay bank j’s clients, can affect positively the retail funding of

bank j. We define the system of previously described interactions MC plus these ones

as MOCS. Table 6 reports the upper triangular matrix that summarizes the signs of

the MOCS interactions among banks’ outcomes, considering a banking system with two

banks, i and j.

Table 6: Monotonic Assumptions - MOCS -

A L

ci cj li lj ai aj di dj bi bj si sj
ci − [M ] − [S] − [S] + [C] + [C] + [C] + [C]
cj − [S] − [S] + [C] + [C] + [C] + [C]

A li − [M ] − [S] + [C] + [C] + [O] + [C]
lj − [S] + [C] + [O] + [C] + [C]

ai − [M ] + [C] + [C] + [C] + [O]
aj + [C] + [C] + [O] + [C]

di − [M ] − [S] − [S]
dj − [S] − [S]

L bi − [M ] − [S]
bj − [S]

si − [M ]
sj

Notes. A and L stand respectively for assets and liabilities. i and j are two banks. li and bi are respectively
the amount of lending and borrowing in the interbank market. ci is the amount of credit provided by bank i.
di is the amount of deposits held at bank i. ai is the amount of securities held by bank i. si is the amount
of bonds issued by bank i. + and − indicate respectively positive and negative interactions. [M ]: same side
of the market. [O]: opposite side of the market. [S]: asset liability substitution. [C]: balance sheet expansion
complementarity.

Let DMOCS =

[
AA AL

LA LL

]
, where AA (LL) is the partition of D1 which represents

the signs of interactions among asset (liability) items and AL (=LA′) is the matrix that

represents the signs of interactions between assets and liabilities under MOCS. Let

DMOCS
K = (DMOCS)K RMOCS =

∑∞
K=1(D

MOCS)K

Proposition 6. Under MOCS interactions, the HMI bounds provided by Proposition

1, the HMI, HMTR, and ES bounds provided by Proposition 2, the HMI, HMTS,

and ES bounds provided by Proposition 3 and the HMI, HMTR, HMTS, and ES

bounds provided by Proposition 4, derive from structural dependencies among banks’ A-L

outcomes iff RMOCS = DMOCS.

Proof of Proposition 6. The proof follows from the proof of Proposition 5.

The condition RMOCS = DMOCS, basically constraints the indirect effects to not offset

the first order effect of one outcome variable on the other, and provides immediately a

valid partition. It is required as MOCS interactions do not guarantee per se a valid

68



partition, sinceO and S interactions may generate indirect effects with opposite sign w.r.t.

the direct effects. While it could look a strong assumption, for A-L interdependencies it

is quite plausible. Below we provide an example.

Example. Let us focus on the effect of an increase of one unit of di on ci, i.e. the

effect of one additional unit of deposits on credit granted to the NFS. According to MC

and MOCS interactions, the first order effect is positive. Under MOCS there is also

a substitution mechanism at play: di may have a negative effect for example on bi, the

interbank borrowing of bank i, which in turn could generate a negative effect on ci.

While bank i could increase its revenues more just expanding the asset side (this is why

we presented MC interactions as our primary set of assumptions), it could also prefer to

maintain the size of the balance sheet stable and substitute a unit of bi with a unit of

di. In this more complex case, there are also a series of indirect effects with potentially

contrasting signs, as the substitution is among any item within both sides of the balance

sheet. The condition RMOCS = DMOCS states that the final effect of an increase in di on

ci is monotone positive. While in other environments it could be a strong assumption, for

banks A-L interactions it is quite reasonable. In this example, consider three scenarios in

which an expansion of a liability induce equally positive direct effects on the asset items

(one third, in our stylized balance sheet). We abstract for the sake of simplicity from

higher order effects, that tend to zero and do not change qualitatively the illustrative

point of this example. In the first scenario, the increase of di is a pure balance sheet

expansion, thus there is no reduction in other liabilities. In this case, dependencies are

fully consistent and ci, ai and li increase by a third. In the second, the increase of di

reduces bi by one half. In this case, it only partially reduces others liabilities, thus still

being a balance sheet expansion, ceteris paribus. In this case, dependencies are not fully

consistent anymore but ci, ai and li increase by a sixth, with a final reduced form effect

that is positive. In the third scenario, the increase of di is fully offset by a reduction of

bi, there is no balance sheet expansion and thus assets can not be expanded as well. In

all these scenarios there is no decrease of ci or other assets items.

Whether or not the Democrats are the incumbent party in a Congressional district

is a deterministic function of their vote share in the prior election. Assuming that there

are two parties, consider the following model of Congressional elections:

vi2 = αwi1 + βvi1 + γdi2 + ei2

di2 = 1(vi1 ≥ 1/2)

vit is the vote share for the Democratic candidate in Congressional district i in election

year t. d is the indicator variable for whether the Democrats are the incumbent party

during the electoral race in year 2. It is a deterministic function of whether the Democrats
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won election 1. wi1 refers to characteristics determined by agents’ choices as of election

day in year 1.

The first line in (3) is a standard regression model describing the causal impacts of

wi1, which is a vector of variables that reflect all relevant characteristics. These could

represent the partisan make-up of the district, party resources, or the quality of potential

nominees. vi1 is also permitted to impact vi2. For example, a higher vote share may

attract more campaign donors, which in turn, could boost the vote share in election year

2.

The potentially discontinuous jump in how vi1 impacts vi2 is driven by the relationship

between wi1, vi1, and di2.

Possible model with HMI:

vi2 = αwi1+αRw
R
i1+αw−i1+αRw

R
−i1+βvi1+ γdi2+ϕ 1

nj

∑
j dj,2+ϕR

1
nj

R ∑
j d

R
j,2+ ei2

di2 = 1(vi1 ≥ 1/2)
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