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Abstract 

The Theta method is a well-established prediction benchmark widely used in forecast 
competitions. Introduced more than 20 years ago, this method has received significant attention, 
with several authors proposing different variants to improve its performance. This paper 
considers the multiple sources of error version of the Theta model, belonging to the family of 
structural time series models, and investigates its out-of-sample forecast performance using the 
extensive M4-Competition dataset, which includes 100,000 time series. We compare the 
proposed structural Theta model against several benchmarks, including all variants of the Theta 
method. The results clearly demonstrate its remarkable predictive abilities as it outperforms all 
its variants and competitors, emerging as a solid benchmark for use in forecast competitions. 
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1. Introduction1

The Theta method was introduced by [2] as a univariate forecasting algorithm par-

ticularly useful for generating predictions of time-series data. It is based on the idea of

decomposing a time series into a trend component, representing the long-term pattern

of the data, and a residual one, capturing the short-term random fluctuations around the

trend. In order to do so, the original Theta method adjusts the local curvature of the se-

ries by applying two coefficients, called theta coefficients, to the second differences of

the data. The theta coefficients control whether the local curvature is decreased (deflat-

ing the series) or increased (dilating the series), thereby amplifying either the long-term

or short-term component, respectively [24]. The resulting two distinct components, re-

ferred to as “theta lines”, approximate the long and short-term dynamics of the time

series, which are subsequently projected and then combined for forecast calculation.

This method, as originally proposed by [2], is often referred to as the “classic” Theta

method to distinguish it from other variants and subsequent extensions.

Forecasts produced by the classic Theta method are equivalent to those delivered by

a simple exponential smoothing with drift, with the restriction that the drift parameter

is set to half the slope of the linear trend fitted to the data, see [14]. However, as

clearly stated by [24], pp. 11-12, in a standard simple exponential smoothing with drift

both smoothing parameters are typically either set or optimized simultaneously in the

original time series. As a consequence, regardless of the optimization method used,

the smoothing parameters coincide with those used in the classic Theta model only by

coincidence. For this reason the forecasts generated by the two models are generally

different, despite the functional form of the model being the same.

Extensions of the classic Theta method have been put forward by [31], who proposed

1The views expressed herein are those of the authors and do not necessarily reflect those of the Bank

of Italy or the Eurosystem. The authors are grateful to Antonio Di Cesare and Raffaela Giordano, two

anonymous reviewers, Fabio Busetti, Davide Delle Monache and Ivan Petrella for useful comments and

suggestions on a previous draft.
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a multivariate version of the original univariate specification, and by [9], who introduced

the Dynamic Optimised Theta Model (DOTM), a state-space formulation that selects

the best short-term theta line and revises dynamically the long-term theta line. More

recently, [29] suggested three further extensions on the Theta’s original framework,

namely, considering both linear and non-linear trends, allowing the slope of the trend to

be adjusted, and introducing a new multiplicative representation along with the standard

additive one.

The classic Theta has been applied in various contexts and exhibited remarkable

performance in the M3 competition [18].2 As such, it is nowadays considered a solid

forecast method to beat. The Theta method is also extensively employed by large multi-

national organisations (e.g., Uber, Amazon and Bosch) in the private sector. For exam-

ple, Uber leverages quantitative forecasting methods to accurately predict user supply

and demand. Specifically, among statistical models, Uber utilizes the Theta approach,

known for its computational efficiency and demonstrated success in Uber’s time se-

ries data.3 Similarly, Amazon Forecast uses the Theta method within the Exponential

Smoothing (ETS) built-in algorithm.4 Additionally, companies like Bosch have adopted

this method for predicting demand and sales due to its proven performance and fast im-

plementation. However, as argued by [28], despite its good empirical performance lim-

ited academic research has been conducted to generalize its reach and exploit its full po-

tential. This paper aims to address this issue by introducing the structural Theta model,

or Multiple Source of Error (MSOE) Theta model, and investigating its prediction per-

formance. The widespread application of the Theta method by leading companies in the

private sector clearly underscores the impact of our research.

The structural Theta model examined in this work is an observationally-equivalent

variant of the single source of error (SSOE) simple exponential smoothing with drift

[14]. Unlike this latter model, the MSOE version incorporates distinct errors that affect

2Specifically, it was 3.8% more accurate than the Comb method, see [19].
3https://www.uber.com/en-GB/blog/forecasting-introduction/
4https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-recipe-ets.html
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both the states and observations in its state-space formulation [3]. In contrast, the simple

exponential smoothing with drift relies on a single perturbation term, which corresponds

to the one-step-ahead forecast error, to drive the entire system [14].

The structural Theta model can also be connected to the extensive body of liter-

ature studying the separation of time series into a long-term trend component and a

medium-term business cycle, bearing in mind that the random walk with a drift has of-

ten been used to estimate the trend (e.g., Beveridge-Nelson decomposition), see [25].

This literature is closely linked to the broader debate in macroeconomics regarding the

significance of permanent and transitory factors in explaining GDP growth ([32]; [22]).

It is noteworthy that the predictive accuracy of neither the structural Theta model nor

the SSOE simple exponential smoothing with drift has been assessed within the frame-

work of the M4 forecast competition, despite the fact that the classic Theta has been

employed as a benchmark method. This paper effectively fills this gap by specifically

evaluating the forecast accuracy of the structural Theta model using the M4-Competition

[20], which extends the results of the previous three Makridakis Competitions. The M4-

Competition provides a comprehensive database that encompasses an extensive collec-

tion of time-series data from various industries and economic sectors, spanning different

time frequencies. By including a large number of time series and facilitating the calcu-

lation of forecasts, the M4-Competition plays a crucial role in enabling more reliable

and robust assessments of forecasting methods in an empirical context.

We decided to focus on the structural Theta model after a close look at the properties

of the M4 series. Our analysis reveals that, for the vast majority of them, standard unit

root tests do not reject the presence of a unit root. Moreover, among the integrated se-

ries, the presence of a drift is detected in more than one-third of them. These two factors

are the crucial ingredients underlying the dynamic properties of the random walk with

drift plus noise model, being the state-space representation of our proposed approach.

Therefore, the results of this descriptive analysis led us to evaluate the prediction prop-

erties of the structural Theta, previously overlooked in the M4-competition.

Forecasts produced by the structural Theta are compared against several competing
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models, including all benchmarks included in the original M4-Competition, together

with Auto Theta [29], the Dynamic Optimised Theta Model [9] and the Random Walk

with Drift plus AutoRegressive model (RWDAR) recently introduced by [27]. Our find-

ings clearly demonstrate the structural Theta’s remarkable predictive capabilities, espe-

cially for trended series, as it consistently outperforms all its variants and competitors

across the 100,000 series in M4. As such, the structural Theta provides a parsimonious

yet strong benchmark to employ in business and economic forecasting. The remarkable

performance of the structural Theta is further highlighted by the fact that the model can

be easily estimated with minimal computational resources and time.

One might be concerned that the good performance of the structural Theta is specific

to the forecasting application of the M4-Competition. However, the forecasting perfor-

mance of the structural Theta model remains remarkably strong even when tested on

the M5-competition dataset, which comprises hierarchical sales data, often character-

ized by intermittent and erratic patterns. This result is noteworthy given the significant

difficulty in predicting such series using conventional forecasting models, such as those

used in previous M competitions [21].

The rest of the paper proceeds as follows. Section 2 presents the structural Theta

model and its estimation procedure. Section 3 focuses on some time-series properties

(presence of drift and persistence) of the M4-dataset. Section 4 illustrates a Monte

Carlo experiment designed for comparing the forecast accuracy of the structural Theta

model relative to other benchmark models on simulated data, controlling for the pres-

ence of drift and persistence components. Section 5 evaluates the forecast accuracy of

the structural Theta model on the M4-Competition dataset. Section 6 discusses a po-

tential implementation of the structural Theta on the M5-Competition dataset. Lastly,

Section 7 provides some final comments.
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2. Model and estimation approach

2.1. The structural Theta model

The state-space representation of the structural Theta model is as follows:

yt = µt−1 + εt εt ∼ NID(0, σ2
ε )

µt = ω + µt−1 + ηt ηt ∼ NID(0, σ2
η)

(1)

where yt is the observed time series, µt is its level (or stochastic trend), ω is a

constant term, whileNID denotes normally and independently distributed innovations

and t = 1, 2, . . . , n is the number of observations. It is also assumed that E(εtηt) = 0.

In contrast to the single source of error state-space approach, the structural Theta model

in (1) is driven by two uncorrelated noises, resulting in a formulation known as a MSOE,

and belongs to the class of ”unobserved components time series models”, or ”structural

time series models”, pioneered by [11].

Model (1) has an ARIMA(0,1,1) with drift reduced form:

(1− L)yt = ω + (1− L)εt + ηt−1 = ω + vt + θvt−1 (2)

where L is the lag operator, such that Lyt = yt−1. The second equality in (2) holds

true as far as the two expressions are observationally equivalent, as they share the same

autocorrelation structure (i.e., an autocorrelation function which is zero after the first

lag). Indeed the sum (1 − L)εt + ηt−1 is a first-order moving average process, which

can be rewritten as vt + θvt−1, where θ is the moving average coefficient and vt is the

innovation term. The corresponding forecast function is equal to a simple random walk

update plus a constant linear trend: yt+h = ωh + yt (∀h > 0), see [14], p. 289. In the

empirical context, [22] and [26] provide substantial evidence supporting the applicabil-

ity of the ARIMA(0,1,1) model to a variety of macroeconomic time series. Additionally,

[33] demonstrates that temporal aggregation of a high-frequency random walk leads to

an ARIMA(0,1,1) model with a positive-valued moving average coefficient.

5



Once fed into its state-space representation, model (1) can be estimated by the

Kalman filter. The structural Theta features three parameters, however, as shown by

[11], the model can be concentrated out by considering the “signal-to-noise” ratio:

qη =
σ2
η

σ2
ε
. This reduces the number of parameters to be estimated and simplifies the

Kalman filter recursions as follows (see [11], p. 107, Example 3.2.1):

• Innovation : vt = yt −mt−1

• Innovation variance : ft = pt−1 + 1

• Kalman gain : kt =
pt−1

pt−1+1

• Prediction mean : mt = E(µt|Yt−1) = ω +mt−1 + ktvt

• Prediction variance : pt = E(µt −mt)
2 = pt−1 −

p2t−1

pt−1+1
+ qη

where Yt−1 = {y1, y2, . . . , yt−1} denotes the information provided by data up to time

t− 1 and V ar(vt|Yt−1) = σ2
ε ft.

These expressions can be used to derive the prediction intervals (PI) for yt at time

n+ h, h = 1, 2, . . .. Those are:

PI(ŷn+h|n) = ŷn+h|n ± z(1−α)
√
MSE(ŷn+h|n) (3)

where ŷn+h|n is the h-step-ahead prediction of yn+h, z(1−α) is the quantile of a

standard normal distribution at the desired significance level α and the forecast Mean

Squared Error (MSE) is

MSE(ŷn+h|n) = σ2
ε (pn + 1 + (h− 1)qη)

see [11], p. 148.

The model in (1) can be easily estimated by selecting the two parameters (qη and ω)

that maximize the concentrated log-likelihood function: logLc = −n
2
log(2π + 1) −
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1
2

∑n
t=1 log(ft) −

n
2
log( 1

n

∑n
t=1

v2t
ft
) (see [11], p. 127, equation (3.4.9a)). Equivalently,

one can select the two parameters that minimize
∑n

t=1 log(ft) + n log( 1
n

∑n
t=1

v2t
ft
).

The estimation comes at very low computational costs and no convergence issues.

This aspect is a significant benefit of the structural Theta model, particularly when com-

pared to more sophisticated and computationally intensive methods.

2.2. Seasonality in the structural Theta model

The model in (1) does not incorporate seasonality explicitly and consequently de-

pends on an ”external” seasonal adjustment procedure, in which the data are seasonally

adjusted before conducting estimation and forecasting. Therefore, when deemed nec-

essary based on the results of a standard seasonality test, we employ the conventional

multiplicative decomposition approach. The same approach is used for the classic Theta

method in the M4-Competition, see Table 2 in [20].

That is, defining s the seasons (s 6= 1), and assuming s is even, the smoothed series

is given by y∗t =
∑ s

2

j=− s
2
wjyt−j with t = s

2
+ 1, . . . , n − s

2
− 1 where wj = 1

s
for

j = 0,±1, ...,±( s
2
− 1) and w−j = wj = 1

2s
for j = ± s

2
. The ratios yt

y∗t
are then

averaged over each season to give a set of seasonal factors. Dividing the original series

by these seasonal factors results in the seasonally adjusted series. The structural Theta

forecasts carried out on the deseasonalised series are finally multiplied by the seasonal

factors to obtain the seasonal forecasts.

3. The M4-Competition dataset

3.1. Overview

Forecast competitions have greatly influenced the field of forecasting over the years,

providing a solid basis for assessing different approaches and learning empirically how

to advance forecasting theory and practice [20].

The accuracy of the structural Theta model is tested on the M4-Competition dataset,

which provides a comprehensive collection of time-series data from various domains,
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including finance, economics, demographics, and industry. In addition, the dataset cov-

ers a broad range of frequencies, such as yearly, quarterly, monthly, weekly, daily, along

with hourly data, allowing for the assessment of forecasting methods across different

time horizons.

Table 1 provides several insights into the M4 dataset, offering details on various

aspects such as the distribution of the series across the different frequencies along with

the forecasting horizons per data frequency. The yearly, monthly, and quarterly series

collectively make up the vast majority of the dataset (95,000 time series), indicating

their substantial influence on the overall outcomes of the forecast competition.

Each time series in the dataset is partitioned into a training set, used to estimate

the different competing models, and a test/validation set that is employed to calculate

forecast errors and assess the accuracy of the models. The number of forecasts required

is 6 for yearly data, 8 for quarterly, 18 for monthly, 13 for weekly, 14 for daily and 48

for hourly.5

Table 1: Data used for the empirical evaluation (M4 dataset)

Frequency Number of series Forecasting horizon

Yearly 23,000 6

Quarterly 24,000 8

Monthly 48,000 18

Weekly 359 13

Daily 4,227 14

Hourly 414 48

5These forecasting horizons were chosen by the M4 organizers.
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3.2. Persistence and trend significance in M4 series

The ex-ante evaluation of time-series properties is crucial for formulating a reliable

forecasting model. Indeed, it ensures that the modelling approach aligns with the data

characteristics. In this Section, we focus primarily on two time-series properties of the

M4 dataset, namely, persistence and trend significance, see [30]. We claim that under-

standing these properties can help interpret the results of the forecast competition, also

in light of the fact that the structural Theta model is well-suited for handling unit root

data-generating processes. Although understanding the main time-series characteristics

of such a large dataset as M4 is challenging, incorporating them into the forecasting

framework is the key for successful forecasting.

The autoregressive (AR) process provides a clear, intuitive measure of persistence

[30]. [1] suggest using the sum of the AR coefficients in order to assess the degree of

persistence of a time series, based on the monotonic relation between the sum of the

AR coefficients and the cumulative impulse response, which is a useful summary of

the information contained in the impulse response function. Figure 1 thus illustrates

the empirical distribution of the sum of the coefficients of an AR(p) process estimated

on all the M4-Competition series in levels,6 previously seasonally adjusted if deemed

necessary based on the output of a standard seasonality test.

6The maximum order of the AR(p) process is set equal to the frequency of the data; for example,

the maximum p is equal to 4 for quarterly data and to 12 for monthly data. The analysis has also been

performed assuming an AR(1) process instead of an AR(p), resulting in very similar charts across all time

frequencies, which can be provided by the authors upon request.
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Figure 1: Distribution of the sum of the AR(p) coefficients estimated on the M4-Competition series across

yearly, quarterly, monthly and daily frequencies

Notes. This figure shows the histograms and the empirical distribution functions of the sum of the AR(p)

coefficients estimated on the time series of the M4-Competition across different frequencies (yearly, quar-

terly, monthly and daily).

Each chart refers to a single frequency (yearly, quarterly, monthly and daily) and

shows the histogram with density values on left y-axis. The corresponding empirical

cumulative distribution function is also added on the right y-axis in order to provide an
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alternative visualization of the sample distribution.

Focusing on yearly data, it can be seen that the empirical distribution of the sum of

the AR coefficients is left-skewed, with the majority of values falling within the range

[0.8, 1]. The same observation holds for the quarterly, monthly and daily frequencies,

which tend to have an even higher concentration of values in this interval.

Even at weekly and hourly frequencies the distribution of the sum of the autoregres-

sive coefficients is concentrated around one (Figure 2); yet, a non-negligible part of the

probability distribution lies in the [0, 0.8] interval.

Figure 2: Distribution of the sum of the AR(p) coefficients estimated on the M4-Competition series across

weekly and hourly frequencies

Notes. This figure shows the histograms and the empirical distribution functions of the sum of the AR(p)

coefficients estimated on the time series of the M4-Competition across the remaining frequencies (weekly

and hourly).

Overall, as also highlighted by [4], it is clear that the estimates of the sum of the

AR(p) coefficients cluster near unity most of the times, pointing to high persistence in

the data or near-unit root behavior.

A similar and stronger message arises when conducting unit root tests on the M4-
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Competition time series. Specifically, Table 2 presents the results of augmented Dickey-

Fuller tests, see [7], performed across all series for each time frequency, using a standard

significance level of 5%. The null hypothesis of the test assesses whether the time series

has a unit root as opposed to a stationary alternative hypothesis. The test can be executed

in three versions: the first version with no drift and no linear trend, the second with drift

but no linear trend, and the third with both drift and a linear trend. The results in Table

2 pertain to the second version.7

The findings reveal that a significant portion of the series exhibit a unit root, partic-

ularly at yearly, quarterly, monthly, and daily frequencies. The percentage of first-order

integrated time series is also notably high at the weekly frequency. However, for hourly

series, this proportion is closer to one-third. Overall, it is observed that more than 80%

of the 100,000 time series in the M4-Competition dataset contain a unit root at the 5%

significance level.

Table 2: Percentage of series with a unit root across the M4-Competition series

Frequency % series with a unit root

Yearly 94.857

Quarterly 88.892

Monthly 76.467

Daily 95.481

Weekly 64.067

Hourly 32.126

Notes. This table reports the percentage of series for

which the null hypothesis of a unit root is not rejected

at the 5% significance level, based on the output of an

augmented Dickey-Fuller test; see [7] and [6].

A closely related issue concerns the presence of a drift in the time series. Again, we

7Some preliminary ADF regressions have been tried on a number of selected time series with an

intercept and a linear time trend. Most of the times the linear trend is not found to be significant at the

5% statistical level.
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consider the standard augmented Dickey-Fuller equation with an intercept added to the

test regression. Then, for those series for which the null hypothesis of a unit root is not

rejected, it is possible to test the significance of the drift term given that the unit root is

present, see [8] p. 223 (Table 4.1). The outcome of these t-tests (ταµ) is summarized in

Table 3 here below.

Table 3: Percentage of series with a drift given a unit root across the M4-Competition series

Frequency % series with a drift given a unit root

Yearly 51.581

Quarterly 45.631

Monthly 33.801

Daily 19.530

Weekly 36.271

Hourly 21.452

Notes. This table reports the percentage of series for which the null

hypothesis of no drift given a unit root is rejected at the 5% significance

level, based on the output of an augmented Dickey-Fuller test; see [7]

and [6].

The percentage of series with a drift, given a unit root, is quite high at the yearly

and quarterly frequencies, where about half of those with a unit root also have a drift.

The percentage drops to one-third for the monthly series. Overall, however, it emerges

that more than 40% of the integrated series also have a drift at the 5% significance level.

This share is anything but marginal. This evidence represents the starting point that led

us to further investigate the prediction performance of the structural Theta model in the

framework of the M4-Competition.
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4. Monte Carlo study

This Section presents a Monte Carlo simulation that evaluates the forecasting per-

formance of the structural Theta model while controlling for the presence of the deter-

ministic drift and persistence in the data generating process (henceforth DGP).8

In this Monte Carlo experiment, data are simulated assuming either a trend station-

ary process (DGP 1) or a difference stationary process (DGP 2), following the seminal

work of [22]. These two classes of non-stationary processes imply different dynamics

and forecasts, thereby allowing us to validate the hypothesis of better performance of

the structural Theta in the presence of persistence and deterministic drift components in

the time series:

DGP 1 DGP 2

yt = α + βt+ ct (1− L)yt = β + dt t = 1, 2, . . . , n

(1− φL)ct = (1 + θL)ut (1− δL)dt = (1 + λL)ut ut ∼ NID(µu, σ2
u)

(4)

In DGP 1, α and β are fixed parameters, while ct follows a stationary ARMA(1,1)

process. DGP 1 exhibits a deterministic trend over time, but the fluctuations around

this trend are stationary; the trend component can be removed through differencing,

resulting in a stationary residual series. The variance of the series remains constant over

time once the trend is removed.

In DGP 2, yt is taken in first differences and dt is a stationary ARMA(1,1). There-

fore, DGP 2 accumulates an ARMA(1,1) over time, resulting in a degree of persistence

8The code developed for this simulation is available from the authors upon request.
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clearly higher than that of DGP 1.9 Differencing yt removes both the trend and any

other deterministic components, rendering the series stationary. Unlike DGP 1, DGP 2

may exhibit time-varying variance.

The sample size is 60 observations and the number of replications is 10,000.10 All

noises follow a Gaussian distribution. Data are simulated assuming random parame-

ters. That is, for each replication, α, β and all the autoregressive and moving average

coefficients are independently drawn from Uniform distributions. The use of random

– rather than fixed – parameters allows the simulation experiment to be general rather

than case-specific.

For each simulated series, six out-of-sample values are used as hold-out period

to compare the forecast performance of the structural Theta model to ETS and auto

ARIMA [13], two standard statistical benchmark methods also used in the original M4-

Competition. Both point forecasts and prediction intervals are considered.

Results are presented in Table 4, with the top part showing point forecasts and the

bottom part showing prediction intervals. Point forecast are compared using the Root

Mean Squared Scaled Error (RMSSE), see [15]. Prediction intervals are evaluated using

the Mean Scaled Interval Score (MSIS) metrics introduced by [10].

9DGP 2 can also be casted in state-space form:

yt = µt + χt

µt = µt−1 + β

χt = χt−1 + dt

(5)

and dt follows a stationary ARMA(1,1) process.
10The overall results were not significantly affected by variations in the sample size.
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Table 4: Monte Carlo averages of RMSSEs for point forecasts and MSISs for prediction intervals con-

structed using the competing methods

DGP 1 DGP 2

Root Mean Squared Scaled Error (RMSSE)

MSOE Theta ETS AutoARIMA MSOE Theta ETS AutoARIMA

h = 1 0.716 0.728 0.729 0.778 0.776 0.771

h = 2 0.840 0.856 0.857 1.033 1.040 1.038

h = 3 0.914 0.935 0.933 1.234 1.253 1.253

h = 4 0.972 0.999 0.994 1.404 1.438 1.437

h = 5 1.020 1.054 1.046 1.563 1.613 1.612

h = 6 1.062 1.103 1.090 1.709 1.779 1.776

Mean Scaled Interval Score (MSIS)

MSOE Theta ETS AutoARIMA MSOE Theta ETS AutoARIMA

85% 5.554 5.957 5.729 9.465 9.983 9.661

95% 7.115 7.569 7.294 12.686 12.595 12.593

Notes. The top part of this table refers to point forecasts, while the bottom part to prediction intervals. The benchmark

methods used for comparison purposes are ETS and auto ARIMA. The most accurate method in terms of RMSSE/MSIS is

highlighted in boldface.

In terms of point forecasts, the structural Theta model tends to outperform the other

two competitors across all forecast horizons (except for h = 1 with DGP 2, when the

three models have an almost equal performance). Regarding prediction intervals, the

structural Theta is more accurate than both ETS and auto ARIMA, except for DGP 2 at

95%. These findings confirm that the structural Theta generally outperforms standard

and flexible benchmarks such as ETS and auto ARIMA whenever data are generated by

random walks or by stationary processes fluctuating around a deterministic trend.
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5. Empirical evaluation using the M4-Competition data

The previous Section has shown that the structural Theta model outperforms stan-

dard statistical benchmarks when using simulated data with varying degrees of persis-

tence and drift components. We now turn to the analysis of real-world time series and

compare the performance of the structural Theta with the main benchmark models used

in the M4-Competition dataset. These benchmarks encompass SES, Holt, Damped, and

the Comb model, which corresponds to the simple arithmetic average of the first three

models and was used for comparing all of the submitted methods; see Table 2 on page

57 in [20]. Furthermore, besides the classic Theta method, several alternative versions

and extensions of it are considered, like Auto Theta [29], the Dynamic Optimized Theta

Model [9], and the Random Walk with Drift plus AutoRegressive model (RWDAR), see

[27].

The focus is, initially, on point forecasts. We assess the prediction performance

using the same metrics adopted for the M4-competition (see [20]), that is, the symmetric

mean absolute percentage error (or sMAPE, introduced by [17]), the mean absolute

scaled error (or MASE, proposed by [15]) and the Overall Weighted Average (OWA),

which corresponds to the average of the previous two.

5.1. Results for the yearly, quarterly, monthly and daily series

Results for the yearly, quarterly, monthly and daily series are presented in Table 5.

At seasonal frequencies, whenever deemed necessary based on the output of a standard

seasonality test, models are estimated on the seasonally adjusted data and then the fi-

nal forecasts are reseasonalised following the procedure outlined in Section 2.2. Each

column refers to a model, while each row reports the sMAPE, MASE, OWA values

for evaluating the model’s forecast accuracy. The overall ranking obtained by applying

the OWA metric (calculated by expressing a model’s sMAPE and MASE as a ratio of

sMAPE and MASE achieved by the naive/random walk forecast) is also presented. The

best result in terms of OWA is marked in bold.

Focusing on the yearly data, the structural Theta stands up as the most accurate
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model, followed in the second position by the RWDAR [27], which is akin to a random

walk with drift plus an autoregressive term, and therefore shares many similarities with

model (1). Unreported results show that the structural Theta model exhibits very similar

predictive performance to the SSOE Theta variant, as largely anticipated, given their

observational equivalence. This finding holds true in general also for the other time

frequencies, not only for annual data.

The two extensions of the classic Theta (DOTM and Auto Theta) are positioned in

the third and fourth ranking. The DOTM performs very similarly to RWDAR, while

Auto Theta lags far behind. The Comb model ranks fifth, and the classic Theta method

follows immediately after, with an OWA equal to 0.872 (9% higher compared to the

structural Theta). All the other models/methods (SES, Holt and Damped) exhibit sig-

nificantly lower performance.

The quarterly dataset conveys a similar message. The structural Theta model yields

the lowest OWA, followed by DOTM and Auto Theta at a greater distance, and then by

the Comb method, which holds the third position. Both for yearly and quarterly series,

the structural Theta seems clearly superior in terms of forecast accuracy compared to

the Theta classic.

Turning to monthly data, the ranking is slightly different since the structural Theta

model comes in third position (0.916), anticipated by Auto Theta and the Theta classic.

These results align closely with those presented in Tables 2 and 3. Indeed, while for

yearly and quarterly frequencies we observe a strong presence of both persistence and

drift (nearly one series out of two), for monthly series we detect the same in only about

one series out of three. However, despite not being the top-performing model, the struc-

tural Theta model still displays strong forecasting capabilities when applied to monthly

time series.
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Table 5: Forecasting performance in terms of point forecasts across the Yearly, Quarterly, Monthly and

Daily M4 series

Methods MSOE SES Holt Damped Comb Theta DOTM Auto RWDAR

Theta classic Theta

Yearly

sMAPE 13.507 16.398 16.535 15.162 14.874 14.603 13.677 13.797 13.690

MASE 3.054 3.981 3.576 3.372 3.282 3.382 3.075 3.184 3.059

OWA 0.798 1.003 0.956 0.888 0.868 0.872 0.805 0.823 0.804

Rank (OWA) 1 9 8 7 5 6 3 4 2

Quarterly

sMAPE 10.023 10.600 10.955 10.243 10.197 10.312 10.089 10.125 10.312

MASE 1.165 1.340 1.199 1.175 1.174 1.232 1.185 1.179 1.181

OWA 0.880 0.970 0.935 0.893 0.891 0.917 0.890 0.890 0.899

Rank (OWA) 1 8 7 4 3 6 2 2 5

Monthly

sMAPE 13.271 13.618 14.828 13.473 13.434 13.003 13.321 13.125 13.368

MASE 0.969 1.020 1.010 0.972 0.966 0.970 0.977 0.960 0.969

OWA 0.916 0.951 0.989 0.924 0.920 0.907 0.921 0.906 0.919

Rank (OWA) 3 8 9 7 5 2 6 1 4

Daily

sMAPE 3.014 3.045 3.070 3.063 2.985 3.053 3.042 3.025 3.064

MASE 3.169 3.226 3.169 3.179 3.148 3.207 3.209 3.176 3.215

OWA 0.987 1.000 0.996 0.996 0.978 0.999 0.997 0.989 1.002

Rank (OWA) 2 7 4 4 1 6 5 3 8

Notes. The results are presented per data frequency. The most accurate method in terms of OWA is highlighted in boldface.

Moreover, our proposed approach ranks second using daily series, again, outper-

forming all variants of Theta.
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5.2. Weekly and hourly time series

On the other hand, for both hourly and weekly series it is evident that the perfor-

mance of the structural Theta model deteriorates, as shown in Table 6. This finding

is in line with the properties described in Section 3.2, with particular reference to the

integration order and presence of trends.

Table 6: Forecasting performance in terms of point forecasts across the Weekly and Hourly M4 series

Methods MSOE SES Holt Damped Comb Theta DOTM Auto RWDAR

Theta classic Theta

Weekly

sMAPE 8.939 9.012 9.706 8.867 8.947 9.094 9.089 8.987 8.548

MASE 2.547 2.685 2.413 2.400 2.429 2.637 2.583 2.488 2.543

OWA 0.946 0.975 0.964 0.916 0.926 0.971 0.961 0.938 0.924

Rank (OWA) 5 9 7 1 3 8 6 4 2

Hourly

sMAPE 18.661 18.094 29.474 19.277 22.114 18.138 18.093 17.754 14.093

MASE 3.418 2.385 9.380 2.947 4.585 2.455 2.388 1.807 2.253

OWA 1.221 0.990 2.760 1.140 1.559 1.006 0.991 0.860 0.854

Rank (OWA) 7 3 9 6 8 5 4 2 1

Notes. The results are presented per data frequency. The most accurate method in terms of OWA is highlighted in boldface.

5.3. Overall performance

We now evaluate the average performance of the models across all the 100,000 M4

time series. Table 7 clearly shows that the structural Theta model outperforms all com-

petitors considered in our forecasting exercise. Additionally, the structural Theta model

performs very well even among all the 61 methods considered for point forecasts in the
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M4-Competition.11 Indeed, in terms of OWA, it ranks in the 10th position (we refer

to Table 4 in [20]). Noteworthy, the structural Theta model outperforms all bench-

marks (classic Theta, Comb, Damped, Holt, SES, Nave 2, Nave 1, Nave S, RNN, MLP)

and two standard methods (ARIMA, ETS). It also beats sophisticated extensions of the

classic Theta method, such as Auto Theta and DOTM. We believe that these points

emphasize the significance of our contribution.

How can such a simple and parsimonious model consistently outperform many sta-

tistically sophisticated competitors, even ranking among the top performers? We believe

that the answer lies in the descriptive analysis carried out in Section 3.2, which lays the

groundwork for the subsequent forecast evaluation. As observed, the prevalence of unit

roots and drifts in the series strongly supports our simple forecasting approach. Indeed,

these two factors seem to be particularly relevant for successful out-of-sample forecast-

ing.

Table 7: Forecasting performance in terms of point forecasts across all the M4-Competition series

Methods MSOE SES Holt Damped Comb Theta DOTM Auto RWDAR

Theta classic Theta

All frequencies

sMAPE 12.119 13.088 13.836 12.654 12.566 12.312 12.197 12.137 12.259

MASE 1.604 1.883 1.776 1.679 1.661 1.694 1.615 1.627 1.606

OWA 0.866 0.975 0.975 0.906 0.898 0.897 0.872 0.873 0.872

Rank (OWA) 1 7 7 6 5 4 2 3 2

Notes. The most accurate method in terms of OWA is highlighted in boldface.

11These 61 competitors include 49 submitted methods, 10 benchmarks, and two standard methods for

comparison.
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5.4. Multiple comparisons with the best (MCB)

In this Section, we implement the nonparametric Nemenyi test [23], which is com-

parable to the multiple-comparisons procedure described by [16] (multiple comparisons

with the best method, MCB). This test assesses the statistical significance of observed

accuracy differences between forecasts; see [5] and [12]. It ranks the performance of

methods for each time series, computes the means of those ranks (medians), and pro-

duces confidence intervals for those means. If the confidence intervals for different

methods overlap, it indicates that the means are not significantly different. Otherwise,

it identifies which method has a higher rank and which has a lower one.

The Nemenyi test is conducted separately for yearly, quarterly, monthly, and daily

series from the M4-Competition dataset, employing the Mean Absolute Scaled Error

(MASE) metric as used by [29], and the nemenyi function in the tsutils package

for R. The results of the Nemenyi test are presented in Figure 3 for each time frequency.

Figure 3 shows that at all frequencies the Friedman test rejects the null hypothesis of

no difference in accuracy among the forecast models. Thus, post-hoc analysis based on

the Nemenyi test is performed to evaluate which differences are significant. For yearly

data, the structural Theta model exhibits the best-ranked performance, which is not sta-

tistically different from that of RWDAR, DOTM, Auto Theta, and Comb. However, the

structural Theta model statistically outperforms all other methods above the reference

value without any overlap with the shaded area. A somewhat similar ranking emerges

for quarterly data, with the structural Theta model ranked first along with Comb. For

monthly data, the structural Theta is no longer the best model, but its performance is

not statistically different from the best forecasting method (Auto Theta). Even with

daily data, the structural Theta ranks third and consistently outperforms classic Theta,

DOTM, RWDAR, and SES.
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Figure 3: Comparison of forecast models using Multiple Comparisons with the Best Method

(a) Yearly series (b) Quarterly series

(c) Monthly series (d) Daily series

Notes. This figure shows the Nemenyi test using MASE as error measure separately for yearly, quarterly,

monthly and daily series. The confidence level used for the comparison is 5%. The models are ordered

based on their average ranks.

Drawing overall conclusions from this analysis, the previous results described in

Section 5.1 are broadly confirmed: the structural Theta model is found to perform well
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compared to other benchmark models in the M4-Competition dataset, with significant

improvements upon strong benchmark models and a stable performance across the main

time frequencies.

5.5. Prediction intervals

So far the predictive properties of the structural Theta model have been evaluated

in the M4 dataset focusing on point forecasts. This Section turns to prediction intervals

and probabilistic performance metrics.

Table 8 examines the performance of the structural Theta model with respect to

the average Mean Scaled Interval Score (MSIS) introduced by [10], which has also

been employed in the M4-Competition for ranking interval forecasts. The benchmark

methods used for comparison purposes are Naive, SES, Holt, Damped, DOTM and Auto

Theta.

The results demonstrate that the structural Theta model significantly outperforms

Naive, SES, and Holt benchmarks across yearly, quarterly, and monthly frequencies.

However, at the yearly frequency, Auto Theta emerges as the most accurate method,

outperforming the structural Theta. For quarterly data, Damped ranks first, followed

closely by Auto Theta and the structural Theta. Conversely, the structural Theta model

exhibits the highest accuracy at the monthly frequency, with DOTM and Auto Theta

following closely behind.

Overall, we conclude that the structural Theta model produces accurate forecasts

not only in terms of point forecasts but also in terms of prediction intervals, despite

some signs of underestimation of uncertainty, particularly when forecasting yearly time

series.
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Table 8: Forecasting performance in terms of precision of prediction intervals across the Yearly, Quarterly

and Monthly M4-Competition series

Yearly Quarterly Monthly

Naive 56.554 14.073 12.300

SES 56.038 13.595 10.923

Holt 47.427 11.833 11.385

Damped 43.419 11.258 10.439

MSOE Theta 46.777 11.741 9.576

DOTM 48.847 12.255 9.835

Auto Theta 33.127 11.464 9.830

Notes. The performances of the prediction intervals are eval-

uated using the MSIS. For each frequency, the most accurate

method in terms of MSIS is highlighted in boldface. A 95%

prediction interval framework for estimating the uncertainty

around the point forecasts has been adopted.

6. Empirical evaluation using the M5-Competition data

One could raise concerns about whether the excellent forecasting performance of

the structural Theta model is solely attributable to its application in the M4-competition

dataset. To address this issue, we decided to evaluate its prediction performance in the

M5-competition, which followed the M4-competition and exclusively focused on retail

sales forecasting. The M5 dataset contains 42,840 hierarchical sales records from Wal-

mart, covering stores in three US states (California, Texas, and Wisconsin). It includes

item-level, department, product category, and store details for a period of 5 years, start-

ing from January 29, 2011, to April 24, 2016. The goal of the M5 competition is to

forecast daily sales for the next 28 days, until May 22, 2016; see [21] for additional

details. The hierarchical aggregation structure of the dataset makes it feasible to pro-

duce forecasts using a bottom-up approach or a top-down approach. Specifically, it is

possible to forecast the series at the most disaggregated level and derive the aggregated

forecasts using a bottom-up approach, or rather forecast the most aggregated series and

compute the remaining series using proportions (top-down approach).
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One of the main features of the M5-competition dataset is the widespread presence

of zeros. This presents a challenge for standard time-series models, as they can hardly

accommodate the presence of many zeros in their specifications. Despite this challenge,

Table 9 reports the performance achieved by the structural Theta model in terms of point

forecasts, as measured by both the overall accuracy and across the 12 aggregation levels,

using the Weighted Root Mean Squared Scaled Error (WRMSSE) metrics. Table 9 also

presents the performance of the structural Theta model in terms of prediction intervals,

based on the Weighted Scaled Pinball Loss (WSPL) metrics.

Regarding point forecasts, the structural Theta model provides accurate predictions

when compared to other standard benchmarks, such as Naive, seasonal Naive, simple

exponential smoothing (SES), ARIMA, ARIMAX, etc.12 On average, the top-down

(TD) structural Theta ranks fifth among the 24 benchmark methods, while the bottom-

up (BU) structural Theta ranks third, even outperforming ARIMAX models and combi-

nations. This is not surprising given that the best performing benchmark (Exponential

Smoothing bottom-up) is a similar method, except for the presence of a drift.

However, the most relevant results pertain to the uncertainty competition (WSPL

measure). Our approach outperforms all six benchmarks, including Naive and seasonal

Naive, ETS, SES, ARIMA and empirical quantile estimation (Kernel).

While these results are promising, they should be interpreted with caution as the

structural Theta model is not primarily designed to handle intermittent data. Neverthe-

less, they demonstrate that the structural Theta model can perform reasonably well even

when applied to retail sales from the M5-Competition dataset, which exhibit intermit-

tency.

12We refer to the complete set of results and benchmarks used in the M5-Competition as reported at

https://github.com/Mcompetitions/M5-methods
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Table 9: Forecasting performance of the structural Theta in the M5-competition in terms of WRMSSE

(accuracy) and WSPL (uncertainty)

Aggregation levels Average

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Accuracy competition (WRMMSE)

TD 0.442 0.538 0.609 0.478 0.562 0.603 0.700 0.665 0.753 1.043 0.984 0.916 0.691

BU 0.443 0.531 0.597 0.489 0.564 0.590 0.662 0.665 0.736 1.016 0.971 0.916 0.681

Uncertainty competition (WSPL)

TD 0.144 0.149 0.168 0.151 0.173 0.166 0.192 0.181 0.207 0.314 0.297 0.302 0.203

Notes. The results are presented at both the aggregation level, as described in [21], and overall. “Average” is the average of

all aggregation levels.

7. Conclusions

The Theta stands as a well-established forecasting method, having found widespread

application in forecast competitions over the past two decades. This paper discusses the

MSOE version of the Theta method in its state-space form, belonging to the family of

structural time series models. The proposed model corresponds to a random walk plus

constant with an additional error term and its forecast function is equal to a random

walk update plus a constant linear trend. An extensive examination of its out-of-sample

forecasting capabilities has been conducted using the M4-competition dataset.

Results highlight that the structural Theta model provides a simple yet effective

approach to forecasting, especially when the data exhibit both persistence and drift

components. Indeed, using the M4-dataset, this model consistently outperforms all the

Theta variants and other competitors across 100,000 time series. These results are con-

firmed by simulations. Even when evaluated on the M5-competition dataset, which

consists of hierarchical sales data known for its intermittent and unpredictable patterns,

the structural Theta model continues to exhibit remarkably strong forecasting perfor-

mance. Thus, given its notable forecasting accuracy and robust performance in M4

and M5, the structural Theta emerges as a highly suitable model and a reference point

to serve as a benchmark in the context of forecast competitions. Another merit of the
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structural Theta model is that it is fully replicable and can be estimated with minimal

computational effort. In light of this, we believe that this particular variant of the Theta

model holds the potential for valuable application in economic and business forecasting.
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[18] Spyros Makridakis and Michèle Hibon. The m3-competition: results, conclusions

and implications. International Journal of Forecasting, 16(4):451–476, 2000. The

M3-Competition.

[19] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Predict-

ing/hypothesizing the findings of the m4 competition. International Journal of

Forecasting, 36(1):29–36, 2020. M4 Competition.

30



[20] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4

competition: 100,000 time series and 61 forecasting methods. International Jour-

nal of Forecasting, 36(1):54–74, 2020.

[21] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m5

competition: Background, organization, and implementation. International Jour-

nal of Forecasting, 38(4):1325–1336, 2022.

[22] Charles R. Nelson and Charles I. Plosser. Trends and random walks in macroecon-

mic time series: Some evidence and implications. Journal of Monetary Economics,

10(2):139–162, 1982.

[23] Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton Univer-

sity, 1963.

[24] Kostas I. Nikolopoulos and Dimitrios D. Thomakos. Forecasting with the Theta

Method: Theory and Applications. John Wiley and Sons, Ltd, 2019.

[25] Kum Hwa Oh, Eric Zivot, and Drew Creal. The relationship between the

Beveridge-Nelson decomposition and other permanent-transitory decompositions

that are popular in economics. Journal of Econometrics, 146(2):207–219, October

2008.

[26] Robert Rossana and John Seater. Temporal aggregation and economic time series.

Journal of Business & Economic Statistics, 13(4):441–51, 1995.

[27] Giacomo Sbrana and Andrea Silvestrini. The rwdar model: A novel state-space ap-

proach to forecasting. International Journal of Forecasting, 39(2):922–937, 2023.

ISSN 0169-2070.

[28] Evangelos Spiliotis, Vassilios Assimakopoulos, and Konstantinos Nikolopoulos.

Forecasting with a hybrid method utilizing data smoothing, a variation of the theta

method and shrinkage of seasonal factors. International Journal of Production

31



Economics, 209:92–102, 2019. The Proceedings of the 19th International Sympo-

sium on Inventories.

[29] Evangelos Spiliotis, Vassilios Assimakopoulos, and Spyros Makridakis. General-

izing the theta method for automatic forecasting. European Journal of Operational

Research, 284(2):550–558, 2020.

[30] Evangelos Spiliotis, Andreas Kouloumos, Vassilios Assimakopoulos, and Spyros

Makridakis. Are forecasting competitions data representative of the reality? In-

ternational Journal of Forecasting, 36(1):37–53, 2020. M4 Competition.

[31] Dimitrios D. Thomakos and Konstantinos Nikolopoulos. Forecasting multivariate

time series with the theta method. Journal of Forecasting, 34(3):220–229, April

2015.

[32] Mark W. Watson. Univariate detrending methods with stochastic trends. Journal

of Monetary Economics, 18(1):49–75, 1986.

[33] Holbrook Working. Note on the correlation of first differences of averages in a

random chain. Econometrica, 28(4):916–918, 1960.

32



(*) Requests for copies should be sent to: 
Banca d’Italia – Servizio Studi di struttura economica e finanziaria – Divisione Biblioteca e Archivio storico – Via 
Nazionale, 91 – 00184 Rome – (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

RECENTLY PUBLISHED “TEMI” (*)

N. 1431 – Monetary and fiscal policy responses to fossil fuel price shocks, by Anna Bartocci, 
Alessandro Cantelmo, Pietro Cova, Alessandro Notarpietro and Massimiliano 
Pisani (December 2023).

N. 1432 – Do female leaders choose women? Evidence from visible and hidden appointments, 
by Andrea Cintolesi and Edoardo Frattola (December 2023).

N. 1433 – Monetary policy tightening in response to uncertain stagflationary shocks: a 
model-based analysis, by Anna Bartocci, Alessandro Cantelmo, Alessandro 
Notarpietro and Massimiliano Pisani (December 2023).

N. 1434 – Inflation, capital structure and firm value, by Andrea Fabiani and Fabio Massimo 
Piersanti (December 2023).

N. 1435 – Announcement and implementation effects of central bank asset purchases, 
by Marco Bernardini and Antonio M. Conti (December 2023).

N. 1436 – Connecting the dots: the network nature of shocks propagation in credit markets, 
by Stefano Pietrosanti and Edoardo Rainone (December 2023).

N. 1437 – Inflation expectations and misallocation of resources: evidence from Italy, 
by Tiziano Ropele, Yuriy Gorodnichenko and Olivier Coibion (December 2023).

N. 1438 – Women in economics: the role of gendered references at entry in the profession, 
by Audinga Baltrunaite, Alessandra Casarico and Lucia Rizzica. (February 2024).

N. 1439 – Procuring survival, by Matilde Cappelletti, Leonardo M. Giuffrida and Gabriele 
Rovigatti. (February 2024).

N. 1440 – Estimating the returns to occupational licensing: evidence from regression 
discontinuities at the bar exam, by Omar Bamieh, Andrea Cintolesi and Mario 
Pagliero. (February 2024).

N. 1441 – Household perceived sources of business cycle fluctuations: a tale of supply and 
demand, by Clodomiro Ferreira and Stefano Pica. (February 2024).

N. 1442 – Aggregate uncertainty, HANK, and the ZLB, by Alessandro Lin and Marcel Peruffo 
(March 2024).

N. 1443 – Monetary policy under natural disaster shocks, by Alessandro Cantelmo, Nikos 
Fatouros, Giovanni Melina and Chris Papageorgiou (March 2024).

N. 1444 – Endogenous job destruction risk and aggregate demand shortages, by Nicolò 
Gnocato (March 2024).

N. 1445 – Carbon taxes around the world: cooperation, strategic interactions, and spillovers, 
by Alessandro Moro and Valerio Nispi Landi (March 2024).

N. 1446 – Nowcasting Italian GDP growth: a Factor MIDAS approach, by Donato Ceci, 
Orest Prifti and Andrea Silvestrini (March 2024).

N. 1447 – The green sin: how exchange rate volatility and financial openness affect green 
premia, by Alessandro Moro and Andrea Zaghini (March 2024).

N. 1448 – Oil price shocks in real time, by Andrea Gazzani, Fabrizio Venditti and Giovanni 
Veronese (March 2024).

N. 1449 – Market perceptions, monetary policy, and credibility, by Vincenzo Cuciniello 
(March 2024).

N. 1450 – Energy price shocks, unemployment, and monetary policy, by Nicolò Gnocato 
(March 2024).

N. 1451 – The impact of hydrogeological events on firms: evidence from Italy, Stefano Clò, 
Francesco David and Samuele Segoni (April 2024).

N. 1452 – Measuring households’ financial fragilities: an analysis at the intersection 
of income, financial wealth and debt, by David Loschiavo, Federico Tullio  
and Antonietta di Salvatore (April 2024).

N. 1453 – Unconventionally green, Andrea Zaghini (April 2024).



"TEMI" LATER PUBLISHED ELSEWHERE 
 

2022 
 

ANDINI M., M. BOLDRINI, E. CIANI, G. DE BLASIO, A. D’IGNAZIO and A. PALADINI, Machine learning in the 
service of policy targeting: the case of public credit guarantees, Journal of Economic Behavior & 
Organization, v. 198, pp. 434-475, WP 1206 (February 2019). 

ANGELICO C., J. MARCUCCI, M. MICCOLI and F. QUARTA, Can we measure inflation expectations using 
twitter?, Journal of Econometrics, v. 228, 2, pp. 259-277, WP 1318 (February 2021). 

BARTOCCI A., A. NOTARPIETRO and M. PISANI, Covid-19 shock and fiscal-monetary policy mix in a monetary 
union, Economic challenges for Europe after the pandemic, Springer Proceedings in Business and 
Economics, Berlin-Heidelberg, Springer, WP 1313 (December 2020). 

BOTTERO M., C. MINOIU, J. PEYDRÒ, A. POLO, A. PRESBITERO and E. SETTE, Expansionary yet different: 
credit supply and real effects of negative interest rate policy, Journal of Financial Economics, v. 146, 
2, pp. 754-778, WP 1269 (March 2020). 

BRONZINI R., A. D’IGNAZIO and D. REVELLI, Financial structure and bank relationships of Italian multinational 
firms, Journal of Multinational Financial Management, v. 66, Article 100762, WP 1326 (March 2021). 

CANTELMO A., Rare disasters, the natural interest rate and monetary policy, Oxford Bulletin of Economics and 
Statistics, v. 84, 3, pp. 473-496, WP 1309 (December 2020). 

CARRIERO A., F. CORSELLO and M. MARCELLINO, The global component of inflation volatility, Journal of Applied 
Econometrics, v. 37, 4, pp. 700-721, WP 1170 (May 2018). 

CIAPANNA E. and G. ROVIGATTI, The grocery trolley race in times of Covid-19. Evidence from Italy, Italian 
Economic Journal / Rivista italiana degli economisti, v. 8, 2, pp. 471-498, WP 1341 (June 2021). 

CONTI A. M., A. NOBILI and F. M. SIGNORETTI, Bank capital requirement shocks: a narrative perspective, 
European Economic Review, v.151, Article 104254, WP 1199 (November 2018). 

FAIELLA I. and A. MISTRETTA, The net zero challenge for firms’ competitiveness, Environmental and Resource 
Economics, v. 83, pp. 85-113, WP 1259 (February 2020). 

FERRIANI F. and G. VERONESE, Hedging and investment trade-offs in the U.S. oil industry, Energy Economics, 
v. 106, Article 105736, WP 1211 (March 2019). 

GUISO L., A. POZZI, A. TSOY, L. GAMBACORTA and P. E. MISTRULLI, The cost of steering in financial markets: 
evidence from the mortgage market, Journal of Financial Economics, v.143, 3, pp. 1209-1226,  
WP 1252 (December 2019). 

LAMORGESE A. and D. PELLEGRINO, Loss aversion in housing appraisal: evidence from Italian homeowners, 
Journal of Housing Economics, v. 56, Article 101826, WP 1248 (November 2019). 

LI F., T. MÄKINEN, A. MERCATANTI and A. SILVESTRINI, Causal analysis of central bank holdings of corporate 
bonds under interference, Economic Modelling, v.113, Article 105873, WP 1300 (November 2020). 

LOBERTO M, A. LUCIANI and M. PANGALLO, What do online listings tell us about the housing market?, 
International Journal of Central Banking, v. 18, 4, pp. 325-377, WP 1171 (April 2018). 

MIRENDA L., M. SAURO and L. RIZZICA, The economic effects of mafia: firm level evidence, American 
Economic Review, vol. 112, 8, pp. 2748-2773, WP 1235 (October 2019). 

MOCETTI S., G. ROMA and E. RUBOLINO, Knocking on parents’ doors: regulation and intergenerational 
mobility, Journal of Human Resources, v. 57, 2, pp. 525-554, WP 1182 (July 2018). 

PERICOLI M. and M. TABOGA, Nearly exact Bayesian estimation of non-linear no-arbitrage term-structure 
models, Journal of Financial Econometrics, v. 20, 5, pp. 807-838, WP 1189 (September 2018). 

ROSSI P. and D. SCALISE, Financial development and growth in European regions, Journal of Regional 
Science, v. 62, 2, pp. 389-411, WP 1246 (November 2019). 

SCHIVARDI F., E. SETTE and G. TABELLINI, Credit misallocation during the European financial crisis, 
Economic Journal, v. 132, 641, pp. 391-423, WP 1139 (September 2017). 

TABOGA M., Cross-country differences in the size of venture capital financing rounds: a machine learning 
approach, Empirical Economics, v. 62, 3, pp. 991-1012, WP 1243 (November 2019). 

 
 

2023 
 

APRIGLIANO V., S. EMILIOZZI, G. GUAITOLI, A. LUCIANI, J. MARCUCCI and L. MONTEFORTE, The power of text-
based indicators in forecasting Italian economic activity, International Journal of Forecasting, v. 39, 2,  
pp. 791-808, WP 1321 (March 2021). 

BARTOCCI A., A. NOTARPIETRO and M. PISANI, Non-standard monetary policy measures in non-normal times, 
International Finance, v. 26, 1, pp. 19-35, WP 1251 (November 2019). 



"TEMI" LATER PUBLISHED ELSEWHERE 
 

CAPPELLETTI  G. and P. E. MISTRULLI, The role of credit lines and multiple lending in financial contagion and 
systemic events, Journal of Financial Stability, v. 67, Article 101141, WP 1123 (June 2017). 

CECI  D. and A. SILVESTRINI, Nowcasting the state of the Italian economy: the role of financial markets, Journal 
of Forecasting, v. 42, 7, pp. 1569-1593, WP 1362 (February 2022). 

CIAPANNA E, S. MOCETTI and A. NOTARPIETRO, The macroeconomic effects of structural reforms: an empirical 
and model-based approach, Economic Policy, v. 38, 114, pp. 243-285, WP 1303 (November 2020). 

CORNELI F., Sovereign debt maturity structure and its costs, International Tax and Public Finance, v. 31, 1, pp. 
262-297, WP 1196 (November 2018). 

DAURICH D, S. DI ADDARIO and R. SAGGIO, The macroeconomic effects of structural reforms: an empirical and 
model-based approach, Review of Economic Studies, v. 90, 6, pp. 2880–2942, WP 1390 (November 
2022). 

DI ADDARIO S., P. KLINE, R. SAGGIO and M. SØLVSTEN, The effects of partial employment protection reforms: 
evidence from Italy, Journal of Econometrics,v. 233, 2, pp. 340-374, WP 1374 (June 2022). 

FERRARI A. and V. NISPI LANDI, Toward a green economy: the role of central bank's asset purchases, 
International Journal of Central Banking, v. 19, 5, pp. 287-340, WP 1358 (February 2022). 

FERRIANI F., Issuing bonds during the Covid-19 pandemic: was there an ESG premium?, International Review 
of Financial Analysis, v. 88, Article 102653, WP 1392 (November 2022). 

GIORDANO C., Revisiting the real exchange rate misalignment-economic growth nexus via the across-sector 
misallocation channel, Review of International Economics, v. 31, 4, pp. 1329-1384, WP 1385 
(October 2022). 

GUGLIELMINETTI E., M. LOBERTO and A. MISTRETTA, The impact of COVID-19 on the European short-term rental 
market, Empirica, v. 50, 3, pp. 585-623, WP 1379 (July 2022). 

LILLA F., Volatility bursts: a discrete-time option model with multiple volatility components, Journal of Financial 
Econometrics, v. 21, 3, pp. 678-713, WP 1336 (June 2021). 

LOBERTO M., Foreclosures and house prices, Italian Economic Journal / Rivista italiana degli economisti, 
 v. 9, 1, pp. 397-424, WP 1325 (March 2021). 

LOMBARDI M. J., M. RIGGI and E. VIVIANO, Worker’s bargaining power and the Phillips curve: a micro-macro 
analysis, and wages, Journal of the European Economic Association, v. 21, 5, pp. 1905–1943, WP 1302 
(November 2020). 

NERI S., Long-term inflation expectations and monetary policy in the Euro Area before the pandemic, European 
Economic Review, v. 154, Article 104426, WP 1357 (December 2021). 

ORAME A., Bank lending and the European debt crisis: evidence from a new survey, International Journal of 
Central Banking, v. 19, 1, pp. 243-300, WP 1279 (June 2020). 

RIZZICA L., G. ROMA and G. ROVIGATTI, The effects of shop opening hours deregulation: evidence from Italy, 
The Journal of Law and Economics, v. 66, 1, pp. 21-52, WP 1281 (June 2020). 

TANZI G. M., Scars of youth non-employment and labour market conditions, Italian Economic Journal / Rivista 
italiana degli economisti, v. 9, 2, pp. 475-499, WP 1312 (December 2020). 

 
 

2024 
 

BRANZOLI N., R. GALLO, A. ILARI and D. PORTIOLI, Central banks' corporate asset purchase programmes and 
risk-taking by bond funds in the aftermath of market stress, Journal of Financial Stability, v. 72, Article 
101261, WP 1404 (March 2023). 

BRANZOLI N., E. RAINONE and I. SUPINO, The role of banks' technology adoption in credit markets during the 
pandemic, Journal of Financial Stability, v. 71, Article 101230, WP 1406 (March 2023). 

BUONO I, F. CORNELI and E. DI STEFANO, Capital inflows to emerging countries and their sensitivity to the global 
financial cycle, International Finance, v. 27,2, pp. 17-34, WP 1262 (February 2020). 

DEL PRETE S, G. PAPINI and M. TONELLO, Gender quotas, board diversity and spillover effects. Evidence from Italian 
banks, Journal of Economic Behavior & Organization, v. 221, pp. 148-173, WP 1395 (December 2022). 

DE MARCHI R. and A. MORO, Forecasting fiscal crises in emerging markets and low-income countries with 
machine learning models, Open Economies Review. v. 35, 1, pp. 189-213, WP 1405 (March 2023). 

FERRARI A. and V. NISPI LANDI, Whatever it takes to save the planet? Central banks and unconventional green 
policy, Macroeconomic Dynamics, v. 28, 2, pp. 299-324, WP 1320 (February 2021). 

FLACCADORO M., Exchange rate pass-through in small, open, commodity-exporting economies: lessons from 
Canada, Journal of International Economics, v. 148, Article 103885, WP 1368 (May 2022). 

MORO A. and V. NISPI LANDI, The external financial spillovers of CBDCs, Journal of Economic Dynamics and 
Control, v. 159, Article 104801, WP 1416 (July 2023). 



"TEMI" LATER PUBLISHED ELSEWHERE 
 

 
 
 

FORTHCOMING 
 

BALTRUNAITE A., M. CANNELLA, S. MOCETTI and G. ROMA, Board composition and performance of state-owned 
enterprises: quasi experimental evidence, The Journal of Law, Economics, and Organization, WP 1328 
(April 2021). 

BENVENUTI M. and S. DEL PRETE, The evolution of banking competition in italian credit markets using a profit 
elasticity approach, Italian Economic Journal / Rivista italiana degli economisti, WP 1237 (October 2019). 

CIANI E., A. GROMPONE and E. OLIVIERI, Jobs for the long-term unemployed: place-based policies in depressed 
areas, Italian Economic Journal / Rivista italiana degli economisti, WP 1249 (November 2019). 

CUCINIELLO V. and N. DI IASIO, Determinants of the credit cycle: a flow analysis of the extensive margin, 
Journal of Money, Credit and Banking, WP 1266 (March 2020). 

FLACCADORO M., Exchange rate pass-through in small, open, commodity-exporting economies: lessons from 
Canada, Journal of International Economics, WP 1365 (April 2022). 

GAUTIER E., C. CONFLITTI, R. FABER, B. FABO, L. FADEJEVA, V. JOUVANCEAU, J.-O. MENZ, T. MESSNER, P. 
PETROULAS, P. ROLDAN-BLANCO, F. RUMLER, S. SANTORO, E. WIELAND and H. ZIMMER, New facts 
on consumer price rigidity in the euro area, American Economic Journal: Macroeconomics, WP 1375 
(July 2022). 

LOSCHIAVO D., F. TULLIO and A. DI SALVATORE, Measuring households' financial fragilities: an analysis at the 
intersection of income, financial wealth, and debt, Review of Income and Wealth, WP 1452 (April 2024). 

MICHELANGELI V. and E. VIVIANO, Can internet banking affect households' participation in financial markets 
and financial awarness?, Journal of Money, Credit and Banking, WP 1329 (April 2021). 

MISTRETTA A., Synchronization vs transmission: the effect of the German slowdown on the Italian business 
cycle, International Journal of Central Banking, WP 1346 (October 2021). 

MODENA F., S. PEREDA-FERNANDEZ and G. M. TANZI, On the design of grant assignment rules, Politica 
economica/Journal of Economic Policy, WP 1307 (December 2020). 

MORO A., Optimal policies in a small open economy with an environmental externality and shallow foreign 
exchange markets, Portuguese Economic Journal, WP 1348 (October 2021). 

RAINONE E., Reservation rates in interbank money markets, Journal of Money, Credit and Banking, WP 1160 
(February 2021). 

RAINONE E., Real-time identification and high frequency analysis of deposits outflows, Journal of Financial 
Econometrics, WP 1319 (December 2017). 

ROPELE T., Y. GORODNICHENKO and O. COIBION, Inflation expectations and misallocation of resources: evidence 
from Italy, American Economic Review: Insights, WP 1437 (December 2023). 

 


	Structural_Theta_Sbrana_Silvestrini.pdf
	Structural_Theta_title_page_Sbrana_Silvestrini
	Structural_Theta_main_text_Sbrana_Silvestrini

	Structural_Theta_Sbrana_Silvestrini.pdf
	Structural_Theta_title_page_Sbrana_Silvestrini
	Structural_Theta_main_text_Sbrana_Silvestrini




