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Abstract 

We propose a novel methodology for solving Heterogeneous Agent New Keynesian (HANK) 
models with aggregate uncertainty and the Zero Lower Bound (ZLB) on nominal interest 
rates. Our efficient solution strategy combines the sequence-state Jacobian methodology in 
Auclert et al. (2021) with a tractable structure for aggregate uncertainty by means of a two-
regime shock structure. We apply the method to a simple HANK model to show that: 1) in the 
presence of aggregate non-linearities such as the ZLB, a dichotomy emerges between the 
aggregate impulse responses under aggregate uncertainty against the deterministic case; 2) 
aggregate uncertainty amplifies downturns at the ZLB, and household heterogeneity increases 
the extent of this amplification; and 3) the effects of forward guidance are stronger when there 
is aggregate uncertainty. 
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1 Introduction1

The last two recessions in the US economic history were characterized by: 1) a
dramatic spike in aggregate uncertainty; 2) a sharp increase in the unemploy-
ment rate above its natural level; and 3) the collapse of monetary policy interest
rates to the Zero Lower Bound (ZLB). Figure 1 illustrates these developments by
reporting the VIX Index, the federal funds rate, and the difference between un-
employment rate and its natural level for the US economy from 1990 to present.
In this paper we investigate the macroeconomic interactions between aggregate
uncertainty, idiosyncratic risk, and the ZLB, by studying a standard Hetero-
geneous Agents New Keynesian (HANK) model. We propose a novel solution
strategy that allows us to efficiently simulate model economies with complex
household heterogeneity structures, aggregate occasionally binding constraints,
and a tractable structure of aggregate risk.

The literature has well documented that measures of aggregate uncertainty
(see Bloom et al. (2018) or Bloom (2014) for a survey) and of idiosyncratic in-
come risk increase during recessions (see Guvenen, Ozkan and Song (2014) and
Shimer (2005) among others). At the same time, it has been shown, both the-
oretically and empirically, that there are strong interactions between aggregate
uncertainty and the ZLB (see for instance Basu and Bundick (2016), Basu and
Bundick (2017), Caggiano, Castelnuovo and Pellegrino (2017)).

There is little work, however, in understanding the interactions between the
ZLB, idiosyncratic risk, and their policy implications. The literature that stud-
ies the interplay between uncertainty at the macro and micro levels is still at
its dawn, particularly because solving models that fully account for the total-
ity of non-linear interactions is very challenging. Recent developments in this
direction are Fernández-Villaverde et al. (2023) and Kase, Melosi and Rottner
(2022), who use neural networks techniques, and Schaab (2020), who develops
an adaptive grid methodology.

The main contribution of this paper is to provide a novel solution methodol-
ogy to heterogeneous agents models with aggregate uncertainty. Our approach
allows for rich heterogeneity at micro level and its efficiency grants a large flex-
ibility. We investigate if aggregate uncertainty can have economically relevant
effects in amplifying precautionary saving behavior, especially when the econ-
omy is up against aggregate non-linearities such as the ZLB. The methodology
can be easily used in the presence of aggregate non-linearities other than the

1The views expressed herein are those of the authors and do not necessarily reflect those of
the Bank of Italy, the Eurosystem, or their executive boards. For helpful discussions, we thank
Boragan Arouba, Guido Ascari, Edouard Challe, Jesus Fernandez-Villaverde, Tom Holden,
Leonardo Melosi, Matthias Rottner, seminar participants at Bank of Italy, European Central
Bank, 2023 NBER-SI (EFSF), SED 2023, SMYE, Dynare Conference 2023.
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Figure 1: VIX Index, Federal Funds Rate, and Cyclical Unemployment Rate

Notes: The figure reports the VIX index, the federal funds rate, and difference between
unemployment rate and its natural level for the US economy from 1990 to present. Shaded
areas indicate recessions as indicated by NBER. Source: FRED, CBOE, CBO.

ZLB. For instance, non-linear Phillips curves in the presence of inflationary
shocks (see Benigno and Eggertsson (2023) or Gitti (2023)), downward wage
rigidities (see Eggertsson, Mehrotra and Robbins (2019)), and aggregate finan-
cial constraints among others.

We study a HANK model with nominal interest rates subject to the ZLB
and aggregate uncertainty.2 The computational power required to solve those
models is typically large as the combination of multiple idiosyncratic and ag-
gregate states can easily lead to intractability due to the curse of dimensionality.
Our first contribution is to develop a fast simulation strategy that allows us to
efficiently simulate an economy that features simultaneously: 1) aggregate un-
certainty; 2) household heterogeneity and idiosyncratic risk; and 3) the ZLB to

2HANK models with the ZLB have been studied in the context of deterministic shocks. See,
for instance Guerrieri and Lorenzoni (2017) and McKay, Nakamura and Steinsson (2016).
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nominal interest rates. We consider a simple notion of aggregate uncertainty in
the form a Two-states Markov process in the spirit of Eggertsson et al. (2021).
This allows us to extend the existing solution strategy of Auclert et al. (2021)
and work around the curse of dimensionality in the aggregates. Our strategy
permits to retain rich household heterogeneity in both income and wealth with-
out the necessity to assume deterministic dynamics in the aggregate economy
(i.e. agents do not know with certainty the future). We calibrate the model to
U.S. macro (the output loss and inflation during the Great Recession) and micro
data, and study counterfactual scenarios to establish three novel results.

First, average dynamics, i.e. the Impulse Response Functions (IRF), are am-
plified by aggregate uncertainty if the economy is up against the ZLB. We begin
by showing that, absent the ZLB, the average effects of our Two-states Markov
shock (stochastic shock) are essentially identical to the deterministic effects of
the average of the same shock (deterministic shock). To illustrate our result, we
then consider the same comparison in the presence of the ZLB. We find large
differences: the aggregate uncertainty exacerbates the recession and produces
a longer expected duration of the liquidity trap. We quantify this difference by
considering the discounted IRF of output and find that the Two-states process
exacerbates the output loss by more than 120% relative to the deterministic
case.

The second result of our paper concerns the interactions between aggregate
uncertainty and idiosyncratic risk. To establish it, we begin by considering a
counterfactual Representative Agent economy (RANK) that matches the IRFs
obtained in our first exercise, in the absence of the ZLB. We then repeat the
first exercise by introducing the ZLB. We find that in the RANK economy at the
ZLB, the output loss is “only” 64% larger under aggregate uncertainty when
compared to the perfect foresight scenario. We then conclude that household
heterogeneity amplifies the effect of aggregate uncertainty at the ZLB. This re-
sult suggests that in times of low nominal rates, risk at the aggregate level mat-
ters quantitatively for individual choices, in particular for precautionary saving
motives.

Our third result concerns unconventional monetary policy evaluations. In
our model, we consider the effects of forward guidance and find that it is more
effective under the stochastic shock against the deterministic scenario.

The structure of the paper is as follows. Section 2 introduces a simple New
Keynesian model that highlights some of the interactions between aggregate
uncertainty, idiosyncratic risk, and the ZLB. Section 3 describes the quantita-
tive model, specifies the notion of aggregate uncertainty that we consider, and
reports the calibration we use. Section 4 explains the solution strategy. Section
5 compares impulse response functions of models under the stochastic shock
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against the deterministic counterpart with or without the ZLB, and establishes
our first two results. Section 6 studies forward guidance and compares the ef-
fects under the stochastic shock and the deterministic one. Section 7 concludes.

2 A Simple Model

This section describes a simple model that we use to illustrate some of the in-
teractions between a tractable stochastic shock, non-linearities such as the ZLB,
and idiosyncratic risk. Aggregate uncertainty has a simple Two-states struc-
ture and is confined to time 1. The simple model features a stylized structure
of household heterogeneity as in Campbell and Mankiw (1989), and Bilbiie
(2008).3 All of these features are present in a richer way in the quantitative
model as in section 3.

2.1 Simple Model - Environment

The economy is populated by infinitely lived households who make standard
intertemporal consumption-savings decisions to maximize their expected life-
time CRRA utility, with discount factor βt and relative risk aversion coefficient
σ . Every period, households are exogenously assigned to one of two types, con-
strained c or unconstrained u, according to a fixed transition matrix Q. In the
first case, households do not have access to financial markets and consume all of
their income. In the second case, households can take a non-negative position
in the liquid bond that pays a riskless interest rate. Households incomes are
based on their type and are a constant fraction of total income. Liquid bonds
are in zero supply. Prices are fully rigid. The economy is closed with a central
bank that chooses the gross nominal interest rate Rt following a simple interest
rate rule that reacts to output Yt and is subject to the ZLB.

2.2 Simple Model - Equilibrium

The equilibrium at any point in time is characterized by 2 equilibrium condi-
tions, an aggregate Euler equation and the interest rate rule:

Yt
−σ = βtRtz

σ
u

{
p (z−σu ) + (1− p)

[(1−λzu
1−λ

)−σ ]}
EtYt+1

−σ =
βtRt

βRss
EtYt+1

−σ , (1)

Rt = max
{
R,RssYt

φ
}
, (2)

3Other examples of works that belong to this two agents literature are Benigno, Eggertsson
and Romei (2020), Bilbiie (2020), Debortoli and Gali (2018), Eggertsson and Krugman (2012),
Gali, Lopez-Salido and Valles (2007), Hansen, Lin and Mano (2020), among others.
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where Et is the expectation operator, zu is the fraction of total income that con-
stitutes the income of an unconstrained household, p is the probability of re-
maining unconstrained in the next period conditional on being unconstrained
currently, λ is the stationary mass of unconstrained households, R is a lower
bound to gross nominal rates, φ governs the reactivity of the central bank and
is assumed to satisfy the Taylor principle, β is the steady state value of the dis-
count factor, and Rss = 1

β
{
p(z−σu )+(1−p)

[(
1−λzu

1−λ
)−σ ]} is the steady state gross interest

rate.4

For a given value of expected future marginal utility EtY
−σ
t+1, the solution is

as follows:

Yt =


(
βt
β EtYt+1

−σ
)− 1

σ+φ if βt ≤ β
(
Rss
R

) σ+φ
φ

(
EtY

−σ
t+1

)−1(
βt
β

R
Rss

EtY
−σ
t+1

)− 1
σ otherwise

, (3)

Rt =

Rss

(
βt
β EtYt+1

−σ
)− φ

σ+φ if βt ≤ β
(
Rss
R

) σ+φ
φ (EtYt+1

−σ )−1

R otherwise
. (4)

In particular, focusing on output, we will have a piece-wise non linear func-
tion Yt = f

(
EtY

−σ
t+1,βt

∣∣∣β,σ ,φ,R,Rss

)
. Clearly, the higher the expected future

marginal utility (or the higher the discount factor) the larger the current reces-
sion. We will therefore first focus on the effects of aggregate uncertainty on the
expected future marginal utility and then move to the actual effects on current
output. Notice that we can ignore the lower bound to interest rates as long as it
is set “low enough”.

2.3 A Stochastic Shock

We consider the following chain of events. The economy begins at t = 0 where
households enter with no wealth and the respective masses across different
types are the stationary ones (λ and 1 − λ as implied by the transition matrix
Q).5 Households know their discount factor β0 ≥ β and βt = β for any t ≥ 1.
They also know that there is a probability µ that the discount factor at t = 1 will
be β1 = β1L > β, β1 = β otherwise.6

4The notation R generalizes the possibility of an effective lower bound (ELB) as opposed to
the ZLB.

5Notice that in this simple model, the fraction λ is constant and exogenous. We will relax
this assumption in section 3, where the fraction of households that are financially constrained
will be time varying and endogenously determined.

6This implies that a household who is unconstrained at t = 0, knows that at t = 1 she will be
unconstrained with a large discount factor with probability µp, she will be unconstrained with
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The assumption on the stochastic structure allows us to divide into only two
possible paths that the economy can follow in the aggregate: 1) the history in
which at t = 1 the discount factor is back to its stationary level, β1 = β, or 2) the
one in which agents are more patient with β1 = β1L. We will refer to the first case
as contingency 1, indicating the time at which the exogenous discount factor,
or shock, dissipates. Similarly, the second history is denoted as contingency 2
because the discount factor goes back to its steady state level at t = 2.

2.4 Solution - Outside the ZLB

The model is purely forward looking and simple enough that the solution at
t = 2 is the steady state, meaning that, in both contingencies,

Y2 = Yss = 1,
R2 = Rss.

Now consider the solution at a generic t = 1 under the assumption that the
lower bound on interest rates does not exist (equivalently R = −∞). One can
show that solution will be a function of the discount factor at t = 1 only. We
write it in terms of marginal utility:

Y −σ1 =
(
β1

β

) σ
σ+φ

.

Let us now consider the solution at time t = 0. One can show that solution can
be written as follows:

Y −σ0 =
(
β0

β

) σ
σ+φ [

µY −σ1L + (1−µ)Y −σss

]
=

(
β0

β

) σ
σ+φ

µ(
βL1

β

) σ
σ+φ

+ (1−µ)

︸                     ︷︷                     ︸
E0Y

−σ
1

, (5)

where Y1L denotes the output at t = 1 in contingency 2. The top-left panel in
figure 2 shows the equilibrium marginal utilities at t = 1 as a function of the
discount factor β1. A larger the discount factor leads to a larger marginal utility,
in turn implying a larger output loss. The plot also reports the expected future
marginal utility on the red dotted line, corresponding to a linear combination
between the marginal utilities in the two contingencies.

a steady state discount factor with probability (1−µ)p, knows that she will be constrained with
a large discount factor with probability µ(1 − p), and constrained with a steady state discount
factor otherwise.
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2.5 The deterministic counterpart

We want to consider the effects of a stochastic shock and compare them to those
of a deterministic one. To do that we consider a similar economy whose only
difference is the discount factor at t = 1 will be β1DET with probability 1. We
choose this discount factor so that the effect at t = 0 is the same, meaning that
the expected future marginal utility is equalized:

µY −σ1L + (1−µ)Y −σss = Y −σ1DET

µ

(
βL1

β

) σ
σ+φ

+ (1−µ) =
(
β1DET

β

) σ
σ+φ

,

as reported in the top-left panel of figure 2. Obviously, the effects on the equi-
librium at t = 0 under the stochastic or the deterministic shocks are identical
by construction, as shown in the bottom-left panel of figure 2, which relates
output Y0 to the expected future marginal utility E0Y

−σ
1 . Given the concavity

of the marginal utility, the discount factor at t = 1 in the deterministic case does
not need to be as high to produce the same expected marginal utility as in the
stochastic case, hence the result that β1DET < E0β1.

2.6 The Effects of the ZLB

In the previous part of this exercise, we have constructed two economies that
differ in terms of shock structure, but yield the same effect on the expected
future marginal utility E0Y

−σ
1 , hence the same effect on output on impact Y0.

We now show that the introduction of non linearities such as the ZLB can
actually generate a dichotomy between the two economies, implying a mean-
ingful interaction of aggregate uncertainty and the ZLB itself. To do this, we
again consider the effects on expected future marginal utility, using the same
shocks used in the previous exercise but setting R = 1.7 One can show that once
the ZLB is hit, the slope of equation (3) becomes steeper (the slope looks flatter
as the axis are inverted), as shown in the top-right panel of figure 2.

In the most interesting scenario, the ZLB happens to bind at t = 1 in contin-
gency 2, which dramatically increases the expected future marginal utility. On
the contrary, the equilibrium in the deterministic counterpart is unaffected.8 As
a consequence, the equilibrium at t = 0 will be significantly different between

7This assumption is convenient for algebraic purposes, but the actual level of the ELB has
no impact on the argument we make.

8This is one possible scenario. However, one can show that even if the ZLB was to bind in the
deterministic economy, the overall effect on expected future marginal utility would be smaller
than under the stochastic scenario.
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Figure 2: Equilibrium in the Simple Model

(a) Outside the ZLB: R = −∞

Y −σ1

β1

Y −σss

β

Y −σ1L

β1L

E0β1

E0Y
−σ
1 ,

Y −σ1DET

β1DET

E0Y
−σ
1

Y0

E0Y
−σ
1

Y0

(b) With the ZLB: R = 1

Y −σ1

β1

Y −σss

β

Y −σ1L

β1L

E0Y
−σ
1

E0β1

Y −σ1DET

β1DET

E0Y
−σ
1

Y0

Y −σ1DET

Y0P F

E0Y
−σ
1

Y0

Y0NZ

Notes: The figure shows the equilibrium of the simple model without the ZLB (left column,
R = −∞) and with the ZLB (right column, R = 1). The top panels report the equilibria at
t = 1. The blue solid lines show the relationship between the discount factor β1 on the
y-axis and the corresponding marginal utility Y −σ1 on the x-axis. They also report the
corresponding expected value E0Y

−σ
1 , obtained with a linear combination along the red

dotted line. The blue dotted line on the top-right panel is reported for comparison. The
bottom panels report the equilibria at t = 0. The blue solid lines show the relationship
between output Y0 on the y-axis and expected future marginal utility E0Y

−σ
1 on the x-axis.

The blue dotted line on the top-right panel is reported for comparison.
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Figure 3: Equilibrium at t = 1 in the Simple Model - Effects of Heterogeneity

Y −σ1

β1

Y −σss

β

Y −σ1L

β1L

E0Y
−σ
1

E0β1

Y −σ1DET

β1DET

Notes: The figure shows the equilibrium of the simple model with the ZLB (R = 1) and
the effects of household heterogeneity. The figure reports the equilibrium at t = 1 under
the RANK model, where idiosyncratic risk is shut down. The green dotted line show the
relationship between the discount factor β1 on the y-axis and the corresponding marginal
utility Y −σ1 on the x-axis. We also report the corresponding expected value E0Y

−σ
1 , ob-

tained with a linear combination along the red dotted line. The blue lines are reported for
comparison and correspond to the model with idiosyncratic risk.

the stochastic and deterministic case, as shown in the bottom-right panel of fig-
ure 2. The plot reports three possible outcomes at t = 0: 1) the deterministic
one Y0P F ; 2) the stochastic one in which the ZLB does not bind at t = 0, Y0NZ ;
and 3) the stochastic one in which the ZLB does bind at t = 0, Y0.

The fact that introducing the ZLB could cause one of two outcomes at t = 0
depending on the severity of the shock, stresses that there is a possible com-
pounding chain that amplifies the overall effects of a stochastic shock. First, the
stochastic shock interacts with the ZLB by significantly affecting the expected
future marginal utility. Second, if this effect happens to be large enough, it also
leads the economy to the ZLB at t = 0, creating a sort of cascading effect.

2.7 The Role of Household Heterogeneity

The mechanism that we explained shows that there exists an economically rel-
evant interaction between the ZLB and the aggregate uncertainty as defined in
the simple example. However, our discussion has not yet touched upon the role
of household heterogeneity.

There are two main channels through which household heterogeneity affects
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our result. First of all, in the presence of idiosyncratic risk, households display
precautionary savings behavior decreasing the interest rate level in the steady
state. In this simple model, this is equivalent to a decrease in Rss. As the interest
rate gets closer to the ZLB, the risk of entering a liquidity trap increases, or in
other words, smaller shocks will lead to the ZLB. Conversely, in a model with-
out idiosyncratic risk (the RANK version of the simple model), the threshold
level for the discount factor β1 that triggers the liquidity trap increases.

Second, the presence of idiosyncratic risk steepens the aggregate response
once the ZLB is hit thanks to the presence of high marginal propensity to con-
sume agents. In other words, conditional on hitting the ZLB, the marginal effect
of a change in the discount factor is smaller under the RANK model as opposed
to the model with idiosyncratic risk.

To reiterate, from an economic perspective, these two effects mean that the
presence of idiosyncratic risk brings a level effect (by pushing the economy
closer to the ZLB) and a marginal effect (by making the economy more reac-
tive once the ZLB is hit). All of these effects are shown in figure 3, which shows
how the effect on expected future marginal utility is mitigated in the model
without idiosyncratic risk. It then follows that all the cascading effects men-
tioned before are also attenuated in the RANK version of the simple model.
Equivalently, the presence of idiosyncratic risk contributes in amplifying the
interaction between aggregate uncertainty and ZLB.

3 A HANKModel with Aggregate Uncertainty

In the previous section we used a simple model to establish the main mecha-
nisms at the origin of the interactions between aggregate uncertainty, idiosyn-
cratic risk, and the ZLB. This section describes a richer HANK model that we
use to illustrate our solution strategy and results, formally explains the notion
of aggregate uncertainty that we use, and introduces the notational convention
that we use in later sections.

3.1 Model

The model economy is populated by a continuum of infinitely-lived households,
intermediate producers, a final good aggregator, and the government sector that
comprises the fiscal and monetary authorities.

Households There is a continuum of measure 1 of infinitely lived households
i who maximize their discounted lifetime utility (of constant relative risk aver-

sion form) from consumption, Et
∑∞

s=t

(∏s
j=t βj

) c1−σ
it

1−σ . Households inelastically
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supply the labor amount nt required by firms and receive labor income zitwtnt,
where wt is the real wage rate per efficient hour and zit is the household idiosyn-
cratic productivity, which can take one of nz values. The matrix Qt (·) disciplines
the transition between idiosyncratic productivity states.9 The productivity level
also determines dividend payments zitdt and taxation zittt, where dt and tt are
aggregate profits from the firm sector and aggregate taxation from the fiscal
authority. Those assumptions imply that the income flow is proportional to ag-
gregate output Yt net of taxation, zit (Yt − tt). Households can save in nominal
riskless bonds ait, whose price is the (inverse of) risk-free gross nominal interest
rate Rt and are subject to a borrowing constraint a.

Consider a household with idiosyncratic state zit and initial savings ait−1,
whose real value is depreciated by current inflation Πt. The maximization prob-
lem is represented by the following value function.

Vt (zit, ait−1) = max
cit ,ait

c1−σ
it

1− σ
+ βtEtVt+1 (zit+1, at) (6)

s.t. cit +
ait
Rt

=
ait−1

Πt
+ zit (Yt − tt)

ait ≥ a

where the time dependence of the value function captures all the variations in
prices (Yt, Πt, Rt, and tt) and in aggregate exogenous shocks (βt). The expecta-
tion operator Et embeds the uncertainty at both the aggregate and idiosyncratic
level. The aggregate shock process, which corresponds to exogenous move-
ments in the discount factor, will be specified later.

The optimization problem yields the standard Euler equation optimality
condition and individual asset demand, which we write in the individual state
space.

ct (zit, ait−1)−σ

Πt
≥ βt

Rt

Πt
Et

[
ct+1 (zit, ait−1)−σ

1
Πt+1

]
(7)

at (zit, ait−1) = Rt

[
ait−1

Πt
+ zit (Yt − tt)− ct (zit, ait−1)

]
(8)

Let us define the distribution Dt (zit, ait−1) over the individual states space at the
beginning of the period. The household problem yields two aggregate objects,

9We consider a special case for the transition probabilities: we assume a time-invariant tran-
sition matrix which implies that individual risk is acyclical. Equivalently, the variance of log-
incomes is time invariant in our model. This is a rather conservative assumption since it does
not intrinsically generate recessions amplifications. Empirically, idiosyncratic risk is procycli-
cal (see Schaab (2020) for some empirical evidence on the search and matching probabilities
over the business cycle).
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consumption and asset demand, defined as follows:

Ct ≡
∫

ct (zit, ait−1)dDt,

At ≡
∫

at (zit, ait−1)dDt.

Supply Side The supply side follows the New Keynesian tradition with a con-
tinuum of intermediate producers with monopolistic power and quadratic price
adjustment costs, a competitive final good producer, and labor supply entity
(“union”) that decides the labor to be supplied based on a wage schedule that
resembles that of a Representative Agent. We assume that there is a sales sub-
sidy to eliminate monopolistic distortions in the intermediate sector, and that
they are rebated lump-sum to the firms.

The supply side conveniently aggregates to the New Keynesian Phillips curve,
where the labor supply schedule has a Frisch elasticity ω, and the slope param-
eter κ is inversely related to the degree of price adjustment. The reader can
refer to the appendix in Lin (2020) for more details on the supply side.

(
Πt −Π

)
Πt = Etβt

(
Yt+1

Yt

)1−σ (
Πt+1 −Π

)
Πt+1 +κ

[
Yω+σ
t − 1

]
(9)

Fiscal Policy The government imposes lump-sum taxes to ensure a balanced
budget and to hold real debt to a fixed amount.10

tt +
bt
Rt

=
bt−1

Πt
(10)

bt = b (11)

Monetary Policy The Central Bank follows a standard Taylor rule, reacting to
deviations of inflation and output from their respective steady state values, Π
and Y , and is subject to the ZLB.

Rt = max

R,R
(
Πt

Π

)φπ (Yt
Y

)φy

 (12)

10The assumption on fiscal policy can be relaxed with a different fiscal policy but local
stability must be ensured. For example, the fiscal policy could follow a tax policy so that
tt = t +φt

(
Yt −Y

)
, where if φt > 0, we have a case with countercyclical fiscal policy.
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Market Clearing Conditions Assets and goods markets clearing conditions
follow.

bt = At (13)
Ct = Yt (14)

3.2 Equilibrium (generic)

An equilibrium in this economy is represented by a series of stochastic pro-
cesses for the aggregate variables Xt = {Yt,Πt,bt, tt,Rt}, a series of stochastic
functions for the individual choices gt (zit, ait−1) = {ct (zit, ait−1) , at (zit, ait−1)}, given
an initial distribution D0 and a stochastic process for the discount factor βt, such
that:

• individual policy functions solve the household maximization problem
(6);

• the distribution law of motion is consistent with individual policy func-
tions (7) and (8);

• equations (9)-(14) hold at all times.

Traditional solution methodologies for models similar to ours are typically bur-
densome for several reasons. First, the individual distribution is an infinitely
dimensional object that needs to be kept track since it is a state variable in the
economy.11 Second, the possibility of many different possible trajectories for the
economy increases the complexity in the aggregate variables (since one need to
consider many possible future realizations for a variable at a certain period) and
exacerbates the first problem. Third, the presence of aggregate non-linearities
such as the ZLB make standard perturbation inaccurate.

Below we specify the stochastic process for the discount factor β, explain its
economic implications, and describe how it allows us to define the equilibrium
in a more compact way.

3.3 Aggregate Uncertainty

In this subsection we introduce our notion of aggregate uncertainty, a Two-
states Markov process with an absorbing state. We explain how this structure

11There are a few exceptions to this problem. Acharya and Dogra (2020) and Acharya, Challe
and Dogra (2023) work around it by assuming CARA utility functions, which allows for linear
aggregation of individual policies. There is also a strand of the literature that uses continuous
time techniques to work around some of the computational hurdles. See for instance Achdou
et al. (2022), Ahn et al. (2018), and Kaplan, Moll and Violante (2018) among others.
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allows us to significantly reduce the severity of the computational burdens de-
scribed above.

Motivation Most recessions can be viewed as a consequence of an unexpected
event whose precise duration is unknown from an ex-ante perspective. Once
such shock dissipates, then the economy moves “back on track”.

One prominent example is COVID-19. On the onset of the pandemic, the
timing frame for the availability of vaccines was far from clear. However, the
consensus was that, once a considerable portion of the population would be
vaccinated, normalcy would be restored and the economy would recover to pre-
crisis levels.12 A second example is the Great Recession, in which uncertainty
about the speed of recovery was also high, but there was no disagreement about
the fact that the economy would eventually be back on track.13

Assumptions We assume that the economy begins at its stationary equilib-
rium and at time t = 0 the discount factor unexpectedly becomes βL > β. Every
period there is a fixed probability that it reverts back to its steady state value.14

Formally we have the following expression for the discount factor:

βt =


β if βt−1 = β

β w.p. (1−µ) if βt−1 = βL
βL w.p. µ if βt−1 = βL

, (15)

where µ ∈ [0,1] is the reversal probability from the crisis state to the normal
times state. Figure 4 represents the shock in a graphical way. Each blue line
represents one possible profile for the discount factor, and the thickness of
the line corresponds to the unconditional probability of said profile. The red
line represents the unconditional expectation.15 The figure also reports a black

12See for instance https://www.theatlantic.com/family/archive/2020/03/coronavirus-
social-distancing-over-back-to-normal/608752/.

13In both cases, the uncertainty regarding aggregate dynamics was unprecedented and we
argue that our solution strategy is able to capture meaningful economic effects, as opposed to
standard techniques.

14This aggregate shock structure is not novel. Eggertsson and Woodford (2003) and Eggerts-
son et al. (2021) are other examples that have similar settings. A more structured shock process
(a convolution of an AR(1) process together with a Two-states Markov process) can be found in
Lin (2020).

15To construct the unconditional expectation we weight each possible profile by its corre-
sponding probability. This is also what applies to households, that is, they have rational ex-
pectations. In principle, our solution strategy allows us to depart from rational expectations
but only in the particular way in which agents just apply a different probability than µ to the
aggregate process.
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Figure 4: Graphical Representation of Shock

t

βt

Notes: The figure represents the shock structure and its average (red line). The black
dashed line being the deterministic counterpart.

dashed line which represents a deterministic counterpart to the whole stochas-
tic structure.16 It is worth mentioning that the stochastic structure in our setup
is essentially different from the standard shock structure present in most DSGE
models, where every period there is a random disturbance drawn from a normal
distribution, as in Kase, Melosi and Rottner (2022), Fernández-Villaverde et al.
(2023), and Schaab (2020). In those setups, there is a notion of aggregate risk in
the long-run, while in our case, shocks will dissipate leading the economy to a
deterministic steady state.

Notation and Terminology We refer to a contingency as the time τ when the
shock switches back to its steady state value as well as the equilibrium dynamics
of the economy following such event.17 As an example, if the discount factor
in our model switches back to its steady state value β at time 8, the aggregate
economic trajectory following this event is what we refer to as contingency 8,
i.e. τ = 8.

We use the notation xτt to indicate the value of variable x, at time t, under
contingency τ , and xt to indicate the value of variable x, at time t, when the
shock has not yet reverted.18 Those are essentially different economic objects.
For a concrete example, consider inflation at time t = 2. In our setup, there are

16In the case of the shock, the deterministic counterpart coincides with the unconditional
expectation. However, as the reader will later see, this is not necessarily true for endogenous
variables.

17Note that there is no such thing as contingency 0.
18Note that it must be that t ≥ τ .
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three distinct “inflation-at-time-2” economic objects that are relevant: inflation
at time 2 in contingency 1, Π1

2; inflation at time 2 in contingency 2, Π2
2; and

inflation at time 2 in any contingency larger than 2, Π2.
We also define the collection of aggregate prices at time t before the shock

regime reverts as Xt ≡ {Yt,Πt,Rt, tt,bt} and the same set of objects in contingency
τ at time t as Xτ

t ≡ {Y τ
t ,Π

τ
t ,R

τ
t , t

τ
t ,b

τ
t }.

Finally, from now on we use the same notation to denote the distribution
over the idiosyncratic states at the beginning of the period t in contingency τ ,
Dτ
t , and at the beginning of period t, when the shock has not yet reverted, Dt.

The same holds for the value functions, V τ
t and Vt.

Implications of the Two-State Shock Structure The shock structure assump-
tion has three main implications in our model. First, the assumption of the
Two-states structure significantly reduces the numerosity of the economic ob-
jects. Specifically, it implies that there are only t+1 possible values for a certain
aggregate variable at time t.

The second implication concerns the fact that once in a contingency, prede-
termined variables such as the initial distribution Dτ

τ , or past aggregate vari-
ables Xτ−1, can be taken as given and the economy becomes deterministic in
the aggregate. We can then adapt some of the techniques introduced by Au-
clert et al. (2021) to account for different initial conditions (see section 4). The
implied gains in computing time are large since this procedure can be easily
parallelized.

The third implication of the shocks structure pertains forward-looking vari-
ables during the periods in which the shock has not reverted yet, in which case
we need to explicitly take the uncertainty into account. The simple structure
allows us to write expectations in a compact way. Consider inflation at t = 1,
from the perspective of t = 0. The expectation of one period ahead inflation can
be compactly written as µΠ1 + (1−µ)Π1

1. Now consider the consumption Euler
equation (7) at time 0, when households are aware of the uncertainty:

c0 (z,a−1)−σ

Π0
≥ β0

R0

Π0

(1−µ)

∑
z′

Qz,z′c
1
1 (z′, a)−σ

1

Π1
1

+µ

∑
z′

Qz,z′c1 (z′, a)−σ
1
Π1


 ,

where Qz,z′ indicates the probability of moving from productivity level z to z′.

3.4 Calibration

The main calibration we use is summarized in table 1. In the steady state quar-
terly output is normalized to 1, the annualized inflation rate is set to 2%, and
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Table 1: Calibration

Parameter Value Source Note

σ 1.5 Smets and Wouters (2007) EIS
β 0.9805 Calibrated Discount Factor
ω 1 Standard Frisch elasticity
κ 0.01

ω+σ Calibrated Phillips Curve
Π 1.020.25 Standard Inflation target
φπ 1.5 Standard Monetary Policy
φy 0.125 Standard Monetary Policy
z McKay, Nakamura and Steinsson (2016) Idiosyncratic Shocks
Q McKay, Nakamura and Steinsson (2016) Idiosyncratic Shocks

µ 0.9 Eggertsson et al. (2021) Switching Probability
βL 0.993 Calibrated Shock

Notes: the table reports the calibration used in the paper. See text for more details.

the supply of liquid bonds equals 25% of yearly GDP. The discount factor is set
to clear the asset market, β = 0.9805.

The CRRA utility parameter is set to 1.5 as in Smets and Wouters (2007).
The Frisch elasticity is set to ω = 1. We set the monetary policy parameters
to standard values, φπ = 1.5 and φy = 0.125. The idiosyncratic risk process is
taken from McKay, Nakamura and Steinsson (2016).

We calibrate the shock size βL = 0.993 and the slope of the New Keynesian
Phillips curve (κ (ω+ σ )) to 0.01 to obtain initial output and inflation, in the
HANK model with the ZLB, that match those of the Great Recession.19 The
shock reversal parameter µ is taken from Eggertsson et al. (2021).

4 Solution Approach

Our solution approach integrates recent developments to jointly deal with rich
household heterogeneity (Auclert et al. (2021)), endogenously determined oc-
casionally binding constraints (Guerrieri and Iacoviello (2015)), and aggregate
uncertainty induced by the type of shock described above (Eggertsson et al.
(2021)). In particular, we restrict our attention to shocks in which there is a
fixed reversal probability (µ) to the absorbing state. Furthermore, we assume
that the economy returns to its initial steady state over the long run.

Both for exposition and because it is crucial for our solution method, we
group the types of paths the economy can take into two: the Two-state regime

19In a representative agent model, the shock decreases the natural rate by 4.8% on an annu-
alized basis.
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Figure 5: Representation of the Economy under the Two-State Shock Structure

(henceforth TS), in which the uncertainty has yet to be resolved, and the set of
perfect-foresight paths (henceforth PF), in which the shock (regime) has already
reverted.

Figure 5 illustrates the classification. The TS path is represented by the
diagonal line, highlighted in red, whereas the PF paths are highlighted in green.
In the diagram, the vertical axes represents the contingency τ , time at which the
shock reverts, whereas the horizontal axis indicates actual time t.

The economy is initialized in its steady state, represented in the upper-left
node, marked by 0. An unexpected shock then materializes, and, in each period,
the economy can revert towards its deterministic path towards the steady-state
value with probability 1 − µ. In case it does not, the economy follows the diag-
onal TS path to the circle marked by 1. Alternatively, if the shock reverts, the
economy then moves horizontally, entering a deterministic path.

As can be seen in the diagram, we impose two technical, albeit harmless, as-
sumptions to be able to implement our methodology. First, we impose a period
τmax at which the shock reverts with probability one. And second, we assume
that the economy returns to its steady state T periods after the regime reversion.

Before proceeding to the solution methodology, we need to define further
notation. Along the TS branch, we define X

T S as the (stacked) vector of equilib-
rium objects {Xt}τ

max−1

t=0 , DT S as a matrix made of τmax distributions over idiosyn-
cratic states {Dt}τ

max−1

t=0 , and V
T S as a matrix of τmax value functions {Vt}τ

max−1
t=0 .

For the PF contingencies, we let Xτ , Dτ , and V
τ respectively represent the set

of equilibrium objects
(
{Xτ

t }
T+τ−1
t=τ

)
, distributions

(
{Dτ

t }
T+τ−1
t=τ

)
, and value func-

tions
(
{V τ

t }
T+τ−1
t=τ

)
along contingency τ . Furthermore, we denote X

P F , DP F , and
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V
P F as respectively the complete set of the equilibrium objects

(
{Xτ }τmax

τ=1

)
, dis-

tributions
(
{Dτ }τmax

τ=1

)
, and value functions

(
{V τ }τmax

τ=1

)
along the entire set of PF

branches. Lastly, we denote X
T S
ss and X

P F
ss to be the (stacked) vectors of steady-

state values with respective dimension 5τmax × 1 and 5T × 1. Refer to appendix
A for a more detailed overview on our notation.

Broad Overview of the Methodology Our solution methodology successively
iterates between solutions of the TS and the PF paths until a fixed point of all
state variables - including the entire distribution of households over idiosyn-
cratic states - along the diagonal path is achieved. A brief description is pro-
vided in algorithm 1 below:

Algorithm 1 Broad Overview of the Solution Methodology

1. Provide a guess for the economy’s states at the initial period in each PF path,{
{Dτ

τ }τ
max

τ=1 , {Xτ }τ
max−1

τ=0

}n
, with n = 0.

2. The guess consists of a set of initial conditions in each PF path. Conditional
on those, solve for the equilibrium in each of the contingencies. In particular,
collect the relevant forward looking variables for each node along the diagonal
path,

{
{V τ

τ }τ
max

τ=1 , {Xτ
τ }τ

max

τ=1

}
.

3. Keeping the forward looking variables fixed, solve for the equilibrium along the
TS path. In particular, obtain a new set of initial conditions for each PF path,{
{Dτ

τ }τ
max

τ=1 , {Xτ }τ
max−1

τ=0

}n+1
.

4. If the newly obtained state variables are sufficiently close to the guess, an equi-
librium for the economy is found. Otherwise, return to step 2.

Before delving into details of each of the steps above, we need lay out some
notation to illustrate how our economy can be treated as a (large) system of
equations to be solved using our novel methodology.

4.1 General Equilibrium in Our Setup

Let Z
TS = {Zt}τ

max−1
t=0 represent the dynamics of exogenous disturbances along

the diagonal path. In our baseline model, this is given by βt = βL for t ∈
{0,1..., τmax−1}. To simplify our exposition, we have assumed that once the shock
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reverts the shock is immediately back to its steady-state value.20 Following Au-
clert et al. (2021), the general equilibrium in our model can be expressed by the
system of equations:

F
(
X

TS,XPF,ZTS
)

= 0, (16)

In the model laid out in section 3, F(·) consists of equations (9)-(13) at each
period of both the TS and the PF paths.

Although we do not necessarily solve the system of equations (16) using a
first-order approximation, as we will see below, our methodology does make
use of perturbation techniques to solve the system of equations. In particular,
it requires the computation of the Jacobians of equilibrium conditions (9)-(13).
For the subset of those equations that can be written analytically, these deriva-
tives have an analytical representation and thus their computation is straight-
forward. However, in the case of our baseline model, household heterogeneity
introduces one numerical equilibrium condition – equation (13) – whose deriva-
tives must also be obtained numerically, which in turn can be computationally
burdensome. We address this challenge by drawing on the methodology in-
troduced by Auclert et al. (2021), and extending it to account for aggregate
uncertainty.

The system of equations (16) is of high dimension, due to all the possi-
ble combinations of time and contingencies. In particular, its dimensions are
(nE × (T + 1) × τmax, where nE represents the number of equilibrium equations
in each period in the model. In our case, we have nE = 5 and set τmax = 100
and T = 300 in our basic implementation, meaning that F(·) is a vector with
around 150 thousand rows. Accordingly, the Jacobian with respect to the gen-
eral equilibrium inputs would contain more than 90 million entries. However,
the structure of our shock allows us to divide the equilibrium conditions in two
groups, one corresponding to the TS branch, and one corresponding to the en-
tire set of PF branches, which in turn dramatically reduces the computational
burden for solving the model. We now introduce further notation required to
explain our solution method, making the distinction between the TS and the PF
subsections of the economy explicit.

From inputs to outputs. We now recast the representation of a heterogeneous-
agent model with aggregate uncertainty of the type proposed in section 3 as a

20This is not necessary for our solution strategy to be valid. First, our methodology eas-
ily adapts to arbitrary shocks on the diagonal path. Second, it also accommodates arbitrary
shock values once the contingency is revealed. In this case, equation (16) would instead read
F
(
X

TS,XPF,ZTS,ZPF
)

= 0.
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mapping from aggregate inputs Xt and Xτ
t into outputs Yt and Yτ

t . Each compo-
nent of Xt, as well as Xτ

t , has nx inputs, while each component of Yt, as well as
Yτ
t , displays ny outputs. As in Section 3.1 of Auclert et al. (2021), we define vt

and vτt as the vector representation of the value function (6), respectively in the
TS and in the PF contingencies, and assume the existence of functions y(·) and
yT S(·), functions v(·) and vT S(·), and transition matrices Λ(·) and ΛT S(·) such
that, conditional on the initial distribution D0, the set of outcomes Y ≡ {Yt,Yτ

t }
solve the following system of equations:21

vt = vT S
(
vt+1,v

t+1
t+1,Xt

)
(17)

Dt+1
t+1 = Dt+1 = ΛT S

(
vt+1,v

t+1
t+1,Xt

)′
Dt (18)

Yt = yT S
(
vt+1,v

t+1
t+1,Xt

)′
Dt (19)

vτt = v
(
vτt+1,X

τ
t
)

(20)

Dτ
t+1 = Λ

(
vτt+1,X

τ
t
)′Dτ

t (21)

Yτ
t = y

(
vτt+1,X

τ
t
)′Dτ

t (22)

Equations (20)-(22) are analogue to equations (10)-(12) in Auclert et al. (2021).
However, in our case, because there is uncertainty regarding when the regime
will revert the economy can follow τmax possible perfect-foresight paths, in-
dexed by τ . Equation (20) translates future value functions and current inputs
into current value functions; equation (21) in turn provides a (linear) mapping
between today’s and tomorrow’s distributions, through the matrix Λ

(
vτt+1X

τ
t

)
;

and equation (22) computes (aggregate) outcomes Yτ
t based on individual deci-

sions y
(
vτt+1,X

τ
t

)
aggregated using the distribution over individual states.

Equations (17)-(19), on the other hand, are unique to our setup and repre-
sent the part of the economy in which the uncertainty has yet to be resolved.22

They explicitly take uncertainty into account: the first two arguments of the
functions vT S(·), ΛT S(·), and yT S(·) correspond to the two distinct future value
functions, on the TS path and on the “t+1” PF path respectively. In addition,
note that the future distribution determined by equation (18) will be the same
if the economy continues in the TS branch (Dt+1) or if the shock reverts (Dt+1

t+1 ).
Example - One Asset HANK Model - In the model presented in section 3,

21As explained in Auclert et al. (2021), vt and vτt do not necessarily need to be vector repre-
sentations of (6), but can also be in the form of its derivative, which allows the application of
the endogenous grid method as in Carroll (2006).

22Note that, in fact, v
(
vτt+1,X

τ
t

)
= vT S

(
vτt+1,v

τ
t+1,X

τ
t

)
, and there are analogue representations

for equations (21) and (22).
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there are five inputs, with Xt = {Yt,Πt,bt, tt,Rt} (and similarly for Xτ
t ).23 For

the output, we select aggregate savings, as this is the relevant object for market
clearing. Thus Yt = ya(vt+1,vt+1

t+1,Xt)′Dt, with ya representing the asset policy
function (and similarly for Yτ

t ). Finally, the asset market clearing is given by
bt = Yt (and bτt = Yτ

t ).
Our goal is find the set of inputs that ensures that the system (16) holds,

given the set of equations that translates inputs into outputs ((17)-(22)). In our
standard HANK model, F

(
X

TS,XPF,ZTS
)

consists of 5× (T + 1)× τmax (stacked)
equilibrium conditions, given by expressions (9)-(13). The solution thus re-
quires 5× τmax inputs from X

T S and 5× τmax × T inputs XP F .
We are now ready to explain each step of our algorithm in further detail.

4.2 Solving for the Equilibrium in Perfect Foresight

Consider the situation in which the shock just reverted at time τ (i.e. we are at
time t = τ and agents know the economy is under contingency τ). The state of
the economy in the first period of contingency τ is characterized by the vector
of inputs Xτ−1 and the distribution Dτ

τ . We can then represent an equilibrium
in a generic contingency τ by the following system of equations:

FPF (Xτ |Dτ
τ ,Xτ−1) = 0. (23)

As each contingency features distinct initial conditions, the set of inputs Xτ

that solves (23) in each of them is different. Thus, we are faced with solving
τmax different perfect-foresight equilibria. Therefore, our structure is distinct
to the one proposed in Auclert et al. (2021), as our problem augmented by the
fact that initial conditions are not necessarily the steady-state ones. To deal
with this, we treat the initial state of the economy similarly to the way we treat
inputs, as an argument of FP F . In other words, one could say that we treat the
initial conditions as “shocks” to the system (23).

We begin by solving (23) via perturbation. The methodology easily extends
the solution to an exact (non-linear) perfect-foresight equilibrium, and we will
return to it at the end of this section. The first-order approximation of (23)
around the steady state reads:

FP FX dXτ +FP FD dDτ
τ +FP FXτ−1

dXτ−1 = 0. (24)

In the equation above, differentials (d) are taken relative to the steady state, i.e.
dXτ = X

τ −Xss, dDτ
τ = Dτ

τ −Dss, and dXτ−1 = Xτ−1 − Xss. FP FX represents the

23In practice, the dimension of Xt could be reduced using a directed acyclical graph (DAG)
representation. See Auclert et al. (2021) for details.
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Jacobian of equilibrium conditions with respect to the entire path of inputs in
contingency τ , whose dimension is nx × T , evaluated at the steady state. The
term FP FD dDτ

τ evaluates how equilibrium conditions at each period of the con-
tingency are impacted by changes in the distribution Dτ

τ only, while the term
FP FXτ−1

dXτ−1 evaluates the impact of pre-determined inputs Xτ−1.
Rearranging expression (24), we obtain:

dXτ = FP FX
−1 (

FP F
D dDτ

τ +FP FXτ−1
dXτ−1

)
(25)

The expression above is quite intuitive. It states that in order to compute equi-
librium changes in inputs dXτ , we need to understand two elements: first, how
changes in initial conditions affect equilibrium conditions, which is represented
by the expression in parenthesis; second, we compute how changes in inputs
will affect equilibrium conditions, which is given by the Jacobian FP F

X .
As at this step of our algorithm we are considering a perfect-foresight path,

we directly employ the methodology in Auclert et al. (2021) to compute FP FX .
The novelty of our method involves the term in parenthesis for us it to compute
the terms FP FD dDτ

τ and FP FXτ−1
dXτ−1.

We compute the term FP FD dDτ
τ numerically, making use of the interpretation

provided above. In other words, we obtain the impact of a change in the distri-
bution D (relative to the steady state) on equilibrium conditions by computing:

FP FD dDτ
τ ≈ FP F

(
X

P F
ss |Dτ

τ ,Xss

)
−FP F

(
X

P F
ss |DssXss

)
(26)

The expression above yields a vector consisting of ny×T entries, each one repre-
senting the evaluation of one (out of ny) equilibrium condition at a given period
in the perfect-foresight path τ .

Note that to obtain (26), one possibility is to simulate the economy along
the entire contingency τ , conditional on the initial distribution Dτ

τ and steady-
state inputs. As we need to repeat this step at τmax times for each iteration of
algorithm 1, this approach in practice is slow. Instead, we again follow a key
insight from Auclert et al. (2021): as we treat changes in initial conditions as a
one-time shock, we use insights from lemma 3 and proposition 1 to efficiently
compute the derivative of equilibrium conditions with respect to this shock at
all horizons along the PF path.

In the case of our one-asset HANK model, changes in the initial distribution
of households over states will only directly affect the total supply of savings at
all periods in a given contingency τ , as this is the only endogenous household
decision the model features. Let Fτ

t be one entry of FP F representing the asset
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market clearing condition at time t, contingency τ :

Fτ
t (Xτ ,Dτ

τ ) = ya
(
vτt+1,X

τ
t
)′Dτ

τ − bτt
≡ Yτ

t − bτt

The term bτt equation above is independent of the heterogeneous-agent block.
The function ya represents the individual policies for asset holdings. Our diffi-
culty thus relies on computing derivatives of the first term. For that, we use:

dYτ
t = yass

′(Λ′ss)
t−τdDτ

τ (27)

The expression above is similar to the first column of equation (26) in Auclert
et al. (2021), and computes the asset demand for when households display their
steady-state policies, but the initial distribution has changed to Dτ

τ .24 The intu-
ition for expression (27) is the following: even though at date zero, the idiosyn-
cratic distribution of households over states is different than the steady-state
one, moving forward households maintain policies, and thus the distribution
D converges back to the Dss over time, the convergence being dictated by the
transition matrix Λss.

The key advantage of exploiting equation (27) is that for each t, the linear
transformation yass

′(Λ′ss)
t−1 can be pre-computed and stored, and therefore recy-

cled at each iteration of step 1 in algorithm 1 (see Lemma 3 in Auclert et al.
(2021)). This way, by computing heterogeneous-agents Jacobians with the use
of (27), we can efficiently compute expression (26).

Because of our assumed fiscal rule, our baseline model does not feature pre-
determined variables other than the distribution over idiosyncratic states, and,
thus, we relegate the discussion of the computation of the last term in (26) to
the appendix.

In the numerical implementation of the model presented, we discretize D
using na points for assets and nz points for labor productivity, so D is a na ·
nz × 1 vector. To compute the equilibrium in each contingency, we take the
pre-determined (guessed) distribution at each τ and compute (26) as described
above. This step is not computationally demanding, as we pre-compute the T
matrices yass

′(Λ′ss)
t−τ in advance.

Occasionally Binding Constraints - The Zero Lower Bound. Our solution
methodology can also accommodate the presence of non-linearities on the be-
havior of the (macro) economy. In our applications, the Central Bank is con-
strained by the ZLB on nominal interest rates. Other applications of our solu-
tion algorithm include, but are not limited to, aggregate financial constraints,

24Specifically, we are considering the first column of the “fake news” matrix.
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downward wage rigitidies (see Eggertsson, Mehrotra and Robbins (2019)), or
non-linear Phillips curves (see Benigno and Eggertsson (2023), Comin, Johnson
and Jones (2023), or Gitti (2023)), which might be of particular relevance in
applications studying the recent inflation surge.

To deal with occasionally binding constraints we follow the approach of
Guerrieri and Iacoviello (2015): in each branch, we first compute dXτ with-
out imposing the bound. This gives us the shadow rates SRτ ≡ {SRτ

t }T+τ−1
t=τ - the

nominal rates the Central Bank would select if it were unconstrained. Finally,
we then reset Rτ

t = 1 at each period in which SRt ≤ 1 and readjust the Jacobian
to account for the fact that the central bank is constrained in those periods. We
repeat the approach until the set of periods in which the ZLB binds is stable.25

We are now ready to detail each step of step 2 of Algorithm 1.

Algorithm 2 Occasionally Binding Constraints on PF Contingencies. Given
{Dτ

τ }τ
max

τ=1 and {Xτ }τmax−1
τ=0 , initialize the set of periods in which the ZLB binds on = ∅,

n = 0.

1. Compute dXτ following expression 25 in each contingency.

2. Compute the shadow rates SRτ
t for each t and τ

3. Compute on+1 = {t,τ} such that SRτ
t ≤ 1. In the set of model equilibrium

equations, substitute the Taylor Rule for all {τ, t} ∈ o for Rτ
t = 1. Modify the

Jacobian FP F
X accordingly.

4. If o , on+1, return to 1.

5. Proceed to step 3 in Algorithm 1.

Note that, conditional on the set on, in the algorithm above the solution to
each PF contingency is obtained via first-order perturbation. We explain how
we find their exact solution below. Finally, also note that, given initial conditions
Dτ
τ and Xτ−1, the steps 1-5 above are independent across contingencies, and

thus fit to parallelization.

4.2.1 Exact Equilibrium

Equation (25) computes the equilibrium inputs in each contingency using a
first-order perturbation, which approximates the solution to the system of equa-
tions (23).26 Because the asset demand function is non-linear on X, there might

25See Ascari and Mavroeidis (2022) and Holden (2023) for a discussion on existence and
uniqueness of equilibrium at the ZLB under perfect foresight.

26The other equilibrium conditions will be exactly satisfied, as we use their linearized version.
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be an approximation inaccuracy. This is particularly likely to happen if the
initial distribution Dτ

τ is too distant from the steady-state one, or with strong
non-linearities in the behavior of the economy, as in the case of the zero lower
bound. We discuss the accuracy of first-order solutions in further the detail at
the end of this section, when we discuss the implementation of algorithm 1.

It is straightforward to test if our approximated solution, given by X
τ ≡

X
P F
ss +dXτ , is accurate, i.e. approximates well the solution to the system (23). We

can forward-simulate the economy along each contingency τ and evaluate the
whole set of equilibrium conditions. This, however, can be a burdensome step,
as it involves the computation of several transition matrices Λ along each ot the
τmax PF paths. On the other hand, the procedure is also fit to parallelization,
as, for a given X

τ , τ ∈ {1,2, ..., τmax}, the branches are completely independent.
Moreover, we can exploit the Jacobian F

P F
X to devise a quasi-Newton method

and solve for the exact equilibrium along each perfect-foresight branch. This
requires repeated iterations of algorithm 2. In fact, algorithm 2 consists of the
first step of a quasi-Newton method where further iterations make use of the
Jacobian FP F

X . The complete algorithm for finding the exact equilibrium (with
the possibility of a binding ZLB) along each PF branch is the following.

Algorithm 3 Perfect Foresight Contingencies - Exact Equilibrium with ZLB
Given {Dτ

τ }τ
max

τ=1 and {Xτ }τmax−1
τ=0 , initialize the set of periods in which the ZLB binds

on = ∅, n = 0.

1. Perform steps 1-5 in Algorithm 2, obtaining X
τ,0 = Xss + dXτ

2. Compute FPF (Xτ |Dτ
τ ,Xτ−1) by forward-simulating the economy along all con-

tingencies.

3. If ||FPF (Xτ |Dτ
τ ,Xτ−1) || ≤ ϵ for a given ϵ > 0, conditional on on, the exact equi-

librium is found (up to the tolerance ϵ). If not, update the endogenous variables
in each contingency according to the formula:

X
τ,m+1 = X

τ,m −FP FX
−1
FPF (Xτ |Dτ

τ ,Xτ−1)

and return to step 2.

4. Using the resulting X
τ , perform steps 2-3 in algorithm 2.

5. If on , on+1, return to step 1. Else, Xτ represents the exact equilibrium inputs
for contingency τ , given on pre-set initial conditions.

We now proceed to step 3 in Algorithm 1.
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4.3 Solving for the Equilibrium with Aggregate Uncertainty

In step 3 of algorithm 1, the perfect-foresight paths the economy can pursue af-
ter leaving the two-state branch are taken as given. In fact, due to the recursive
nature of consumer’s problem, solving the equilibrium in the TS branch only re-
quires knowledge of the the value functions and the set of inputs in the initial
period of each perfect-foresight contingency. We denote the (stacked) vector of
value functions ({V τ

τ }τ
max

τ=1 ) in the initial period of each contingency by V
P F

1 and
the analogue stacked vector of inputs ({Xτ

τ }τ
max

τ=1 ) by X
P F
1 . The equilibrium in the

T S branch is characterized by:

FTS
(
X

T S ,ZT S
∣∣∣XP F

1 ,V P F
1

)
= 0, (28)

given that the initial conditions D0 = Dss and X0 = Xss.
In the TS branch, the model outputs are characterized by equations (17)-

(19). This step of the algorithm takes future values V t+1
t+1 as given and solves the

system of equations for Xt. As before, we first describe how we solve find the
equilibrium in TS by perturbation. To a first order:

FT SX dXT S +FT SZ dZT S +FT S
X

dXP F
1 +FT S

V
dV P F

1 = 0

And rearranging:

dXT S = (F T S
X )−1

(
FT S
Z

dZ+FT S
X

dXP F
1 +FT SV dV P F

1

)
(29)

In the TS branch, we treat future conditions the same way we treat initial con-
ditions in equation (24): as shocks, i.e. we take them as given. In fact, the last
two terms on the right-hand-side of (29) are somewhat analogue to the last two
terms of equation (24), in the sense that they are conditioned upon.

The last term in equation (29) represents the impact of changes in house-
holds’ future value functions - at the initial period of the PF branches - on equi-
librium conditions along the TS branch. Once again, we compute it making use
of the following:

FT S
V

dV P F
1 ≈ FT S

(
Xss,Zss|Xss,V

P F
1

)
−FT S

(
X

T S
ss ,Zss|XT S

ss ,Vss

)
,

where Zss represent a stacked vector of shocks at their steady-state values.
The computation of the expression above is done by solving the households’
problem and forward-simulating the economy along the two-state branch in
response only to the changes in V

T S
1 , with all other inputs at their steady-state

values. At each iteration of algorithm 1, it has to be done once.
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Changes in future inputs (Xτ
τ ) on current household policies can only have an

effect through changes in households’ future value functions (see equations (17)
and (20)). More generally, inputs can impact current equilibrium conditions via
forward-looking terms in analytical equilibrium conditions, which is captured
by FT S

X
dXP F

1 . This term can, therefore, be computed analytically.
In the case of our baseline model, the only analytical equilibrium equation

with a forward-looking term is the New-Keynesian Phillips Curve (equation
(9)). Solving explicitly the expectations term in this expression along the TS
branch yields:

(
Πt −Π

)
Πt = βtµ

(
Yt+1

Yt

)1−σ (
Πt+1 −Π

)
Πt+1+

+ βt(1−µ)
(
Y t+1
t+1

Yt

)1−σ (
Πt+1

t+1 −Π
)
Πt+1

t+1 +κ
[
Yω+σ
t − 1

]
We can then use the expression above to compute how changes in the initial
period of each PF branch (in this case Πt+1

t+1 and Y t+1
t+1 ) impact equilibrium con-

ditions on the TS branch.
Returning to equation (29), the term F

T S
Z

dZT S corresponds to the impact of
shocks, conditional on inputs being at their steady-state values. Computing this
term is done in two steps. For the heterogeneous agent block, a shock is treated
as an input, i.e. we apply the same methodology used to compute F

T S
X . In a

second, we analytically derive the Jacobian of aggregate equilibrium conditions
with respect to shocks.27

One of the innovations of our methodology is in computing the term F
T S
X .

For the equilibrium conditions with analytical representation, the correspond-
ing Jacobian entries can also be computed analytically.28 Our contribution in-
stead concerns adapting the method by Auclert et al. (2021) to compute hetero-
geneous agents Jacobians under aggregate uncertainty.

We only require a simple adaptation of first step of the “Fake News Algo-
rithm”. Following Auclert et al. (2021), this step first requires simulating the
response of households to an announced shock s periods ahead using a single
backward iteration. As with their case, we also only need to simulate the econ-
omy once, but here households do take the aggregate uncertainty in account. In
particular, there is a probability 1−µ that the economy will leave the TS branch

27In the baseline version of the model, the second step is skipped since shock Z is summarized
by the discount factor shock to households and is assumed to only affect the heterogeneous
agent block.

28This procedure is essentially different from Eggertsson et al. (2021), where the expectation
is explicitly solved by properly weighing transition matrices.
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at any point in time, and react accordingly.29 The remaining steps of the “Fake
News Algorithm” are unchanged.

Intuitively, aggregate uncertainty affects the reaction of households to news
regarding changes in future inputs. In particular, because households attribute
a probability µs < 1 that a node in the TS branch s periods ahead will be reached,
they under-react to future news, relative to the case in which µ = 1.

Figure 6 shows how uncertainty affect the heterogeneous-agents Jacobians.
It plots the response of aggregate savings to changes in output, i.e. a partial
equilibrium “shock” in Ys, at different horizons s, for different degrees of un-

certainty µ. In particular, in line plots the derivatives
{
dYt
dYs

}τmax−1

t=0
, with Yt rep-

resenting aggregate savings. Recall that changes in output Ys have a direct im-
pact on individual labor income, as household i’s gross earnings is given by
ziYs. Because contemporaneous change in input are certain, different values for
the uncertainty parameter µ do not have a different impact on the change in
households savings decisions with respect to changes in Y0.

At horizons s > 0, though, the uncertainty matters. Recall that agents are
told that there is a state of the world in which GDP is higher at some future
point s, so in the times leading to such period, they start consuming part of this
future income by tapping on their savings stock. The lower µ is, the weaker
is the reduction in savings in anticipation of changes in output, as households
attribute low probabilities to that event. The anticipation is particularly muted
for distant horizons. This can be seen, for instance, in the solid red line: there is
essentially no reaction to news of a change in output happening 25 periods in
the future, because the perceived probability of this event actually happening
is negligible. On the contrary, in the case of µ = 1 (dotted line), households
immediately react to the certain expectation of a change in output happening
even 25 periods ahead.

As opposed to a reduced anticipatory response to future shocks, when the
shock materializes the impact on savings is stronger with aggregate uncertainty,
relative to the case when µ = 1. This can be seen by comparing the solid and
dashed blue and red lines with their dotted counterparts. The intuition is that,
when µ = 1, households front-load the consumption a relatively large portion
of the expected income windfall. Instead, with uncertainty, consumption front-
loading is relatively muted, and a relatively larger portion of the windfall is
consumed after it materializes.

Zero Lower Bound and Exact Equilibria. Along the TS branch, we deal with
occasionally binding ZLB in exactly the same way as in the PF branches, by

29The exception is τmax, in which the economy leaves the TS branch with certainty.
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Figure 6: Asset Market Clearing Jacobian
(
dYt
dYs

τmax−1

t=0

)
for Distinct µ’s

following Guerrieri and Iacoviello (2015) (see algorithm 2). In addition, to
compute the exact equilibrium along the TS branch, the steps are analogue to
algorithm 3.

We now proceed to further details regarding the implementation of our al-
gorithm.

4.4 Results - Implementation Details

To solve the household problem in the model described in section 3, we dis-
cretize the asset grid in na points and the income grid in nz points, and employ
the endogenous grid method proposed by Carroll (2006).

In table 2 we show the running times for each distinct specification, together
with the maximum deviation of equilibrium condition (16) in each distinct
setup. The benchmark model features nz = 3 and na = 200. In addition, we
include a case with nz = 15 grid points and na = 500. In this specification, we
impose that earnings follow an AR1 process whose innovation is drawn from
a mix of normal distributions, and calibrate the parameters as in Mendicino,
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Nord and Peruffo (2021), matching high-order moments of the distribution of
earnings changes.30 We keep the aggregate shock structure the same as in the
benchmark. The tolerance within successive iterations of algorithm 1 is set to
10−9, the steady-state general equilibrium tolerance is set to 10−12, the tolerance
for computing the exact equilibria is set to 10−8, with the max norm. Codes are
written in Matlab and were ran on an ASUS laptop with 1.80Ghz processor,
16GB RAM, and 8 cores.

Table 2: Running Times

Specification Benchmark MNP
Step Time Max. Err. Time Max. Err.

Steady State 0.7 - 6 -
All Jacobians 4 - 179 -
Algor. 1 - First-Order 20 0.5% 144 0.5%
Algor. 1 - Exact only on TS 26 0.008% 216 0.002%
Algor. 1 - Exact Equilibrium 116 0.00000006% 7735 0.00000002%

Notes: Times are given in seconds. “Benchmark” refers to the model calibrated as in section 3,
with nz = 3 and na = 200, while “MNP” stands for the model calibrated as in Mendicino, Nord
and Peruffo (2021), with nz = 15 and na = 500. The row “Algorithm 1 - First-Order” refers to
the solution of both PF and TS branches via first-order perturbation. The row “Algorithm 1 -
Exact only on TS” refers to the solution of PF paths via perturbation but the exact equilibrium
computed in the TS branch. The row “Algorithm 1 - Exact Equilibrium” solves for the exact
equilibrium in the economy. Maximum errors correspond the maximum absolute value of the
asset market clearing equilibrium condition, given as a percentage of steady-state total asset
holdings.

From table 2, we see that under all scenarios the maximum errors are small,
even with the first-order solution; for the other two cases, errors are negligi-
ble. In practice, the main results do not change across the three scenarios: for
instance, the initial impact of the shock on output equals -8.02% in the first-
order approximation and -8.10% in the other two cases.

Finally, it is worth highlighting that the low running times allow us to com-
pute counterfactual simulation multiple times, which let us, for instance, con-
sider distinct policy counterfactuals. We will exploit this advantage of our so-
lution methodology further in sections 5 and 6.

30Specifically, we target the cross-sectional variance of log annual earnings, the standard de-
viation, the skewness and kurtosis of log annual earnings changes, and the ratio of the 90th to
the 10th percentile of log changes.
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5 Aggregate Uncertainty at the ZLB

Our main economic results from the simple model carry over to the more quan-
titative HANK structure: aggregate uncertainty interacts with the ZLB, and
this interaction is amplified with idiosyncratic risk. In this section, we per-
form three experiments to illustrate those results by comparing effects on im-
pact and discounted impulse response functions for inflation and output, i.e.
E0

∑∞
t=0β

t
(
Πt −Π

)
and E0

∑∞
t=0β

t
(
Yt −Y

)
. First, we use the quantitative model

described in section 3 and compare the effects of a stochastic shock and its de-
terministic counterpart in the absence of the ZLB. The shocks are calibrated to
match the same output and inflation responses (on impact) as in the Great Re-
cession, in the model with aggregate uncertainty and the ZLB. This experiment
confirms that without the ZLB, the effects of the stochastic and deterministic
shocks are identical. Second, we repeat the experiment with the imposition of
a lower bound, i.e. R = 1. This experiment quantifies the interaction between
aggregate uncertainty and the ZLB. Third, after constructing a RANK economy
whose demand shocks imply observational equivalence with the HANK model
without lower bound, we repeat the experiment of introducing the ZLB. This
analysis quantifies the role of idiosyncratic risk in determining the interaction
between aggregate uncertainty and the ZLB.

5.1 IRFs when the Central Bank is not constrained

The first exercise concerns the validation of the certainty equivalence under
our specified shock structure. We consider our HANK economy subject to the
stochastic shock, as described by equation (15), and compare it against the same
economy subject to a deterministic shock. In the second case, agents know with
certainty the whole sequence of demand shocks. To make them comparable,
we set the sequence of demand shocks in the deterministic case to be equal to
the unconditional expectation of the stochastic case. Formally, we set βDET

t =
µtβL +

(
1−µt

)
β.31

Figure 7 shows the effects on output, inflation, and nominal rates, of the
stochastic and deterministic shocks, plotting contingencies (blue solid lines),
the IRF of the stochastic shock (red dotted line), and the IRF of the deterministic
shock (black solid line). Notably, the impulse responses under the two shocks
are essentially identical, with a 3.75% recession on impact and inflation at 0.8%

31This step is slightly different from the one described in section 2, since we are not targeting
the same effects here. It can be interpreted as a first-order approximation to what we do in the
simple model, but nevertheless we consider this to be a rather conservative assumption, since
it implies a larger effect under the deterministic shock, as can be seen in the top-right panel of
figure 2.
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(below the 2% target). Those effects are reached with nominal interest rates
actually becoming negative, as shown in the third panel. Since the average
responses are the same, their discounted sums are also identical, as we report in
the first column of figure 11, which plots the discounted IRFs for output (left)
and inflation (right) relative to the corresponding ones under a deterministic
shock (blue bar, first column).

This result confirms that certainty equivalence holds in our model, despite
the non-linearities at the individual level. In other words, the impact of a
stochastic shock can be well approximated by simulating the response of the
economy to its expected value. This equivalence result partly relies on the fact
that the response of aggregate variables in the model are approximately linear.
In the next exercise, we show that the introduction of the ZLB under the same
shocks breaks the equivalence result.

5.2 Introducing the ZLB

To assess the interaction between aggregate uncertainty and the ZLB, we repeat
the previous experiment with the only difference that the lower bound to nom-
inal rates is now set to 0 (R = 1). As shown in the bottom panel in figure 7,
nominal rates were to be negative in reaction to the shocks. Introducing the
ZLB will make nominal interest rates higher than otherwise, further depress-
ing aggregate demand, and eventually amplifying the recession. The economic
mechanisms at work are the same as in McKay, Nakamura and Steinsson (2016).

Figure 8 plots the effects on output, inflation, and nominal rates, of the
stochastic and deterministic shocks, plotting contingencies (blue solid lines),
the IRF of the stochastic shock (red solid line), and the IRF of the deterministic
shock (black dotted line). It shows our first result: introducing the ZLB gener-
ates a dichotomy between the impulse responses under the two shocks. Chiefly,
the recession on impact under the stochastic shock (8%) is about double the size
of that under the deterministic shock (4%). Similarly, while the price dynam-
ics implies an inflation level of 0.7% under the deterministic shock, the model
predicts a mild deflation on impact under the stochastic shock.

The second column of each panel in figure 11 plots the corresponding dis-
counted IRFs for output (left) and inflation (right), under the deterministic
(blue bar) and stochastic (red bar) shock, relative to the corresponding dis-
counted IRF under the deterministic shock in the model without the ZLB. The
introduction of the ZLB increases the expected loss in terms of output by 4.5%
in the deterministic case and by 125% in the stochastic case (for inflation the
effects are 1.9% and 127%). Those results establish that the ZLB can break
certainty equivalence and, crucially, confirm that there is a strong economic
interaction with aggregate uncertainty.
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Figure 7: IRF and Contingencies - Outside the ZLB

0 5 10 15 20 25 30 35 40 45 50

time

-0.08

-0.06

-0.04

-0.02

0

y

0 5 10 15 20 25 30 35 40 45 50

time

0

10

20

10
-3

0 5 10 15 20 25 30 35 40 45 50

time

-0.01

0

0.01

0.02

R

Notes: The figure reports the effect of a stochastic demand shock as defined in equation (15)
(each blue line corresponds to one individual contingency, with thickness proportional to
its unconditional probability, the red solid line is the impulse response function obtained
as a weighted average across all contingencies) and its deterministic counterpart (black
dotted line), in our baseline HANK model ignoring the ZLB (i.e. imposing R = −∞). The
first panel reports the effects on output, in deviation from steady state. The second and
third panels correspond to annualized inflation and nominal interest rate levels. The x-
axis in all panels measures time in quarters.
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Figure 8: IRF and Contingencies - With the ZLB
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Notes: The figure reports the effect of a stochastic demand shock as defined in equation (15)
(each blue line corresponds to one individual contingency, with thickness proportional to
its unconditional probability, the red solid line is the impulse response function obtained
as a weighted average across all contingencies) and its deterministic counterpart (black
dotted line), in our baseline HANK model with the ZLB (i.e. imposing R = 1). The first
panel reports the effects on output, in deviation from steady state. The second and third
panels correspond to annualized inflation and nominal interest rate levels. The black ver-
tical solid line reports the expected duration of the ZLB under the stochastic shock. The
x-axis in all panels measures time in quarters.
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A smaller point must be made about the plots on nominal interest rates. If
one is interested in understanding the expected duration of the liquidity trap
under a deterministic scenario, it suffices to focus on the time at which the black
dotted line for nominal rates lifts-off from its lower bound. The same cannot
be said under the stochastic shock. By merely looking at the IRF for nominal
rates, one would be easily misled to believe that with the stochastic shock, the
expected duration of the liquidity trap would be 0. Instead, if one computed
the actual expected duration, one would find that it is at least twice as large
when compared to the deterministic case. This can be seen in the bottom panel
of figure 8, where the vertical line corresponds to the expected time of lift-
off for policy rates under the stochastic case and is about twice as large when
compared to the deterministic case.

An alternative way to assess the strength of the economic interaction be-
tween aggregate uncertainty and the ZLB is by comparing the effects of dif-
ferently sized shocks. We consider the same exercises as done so far, but for
varying shock sizes. This is simply achieved by lowering βL towards β for the
stochastic scenario ( and adjusting the deterministic shock accordingly). We run
the simulations with and without the ZLB, as in in section 5.1 in Fernández-
Villaverde et al. (2023). Figure 9 plots effects on output (top) and inflation
(bottom) on impact as a function of the shock size βL − β. As the shock size
increases, the effects on impact increase (generating a larger recession and im-
posing downward pressure on inflation) in the four cases considered. The effect
is linear in the shock size, but most importantly identical in the stochastic (red
solid line) and deterministic case (black dotted line) when we ignore the ZLB.
On the other hand, once the ZLB is taken into account, the linearity breaks
once the economy enters the liquidity trap. Consistent with the example in the
simple model in section 2, there are shock values that trigger the liquidity trap
under the stochastic shock (red circles) but not under the deterministic shock
(black stars). In other words, the threshold shock value such that the central
bank becomes constrained is lower with aggregate uncertainty. Furthermore,
the marginal effects are much larger under the stochastic shock, as can be seen
by the steeper slope of the red circles when compared to the black stars. This is
a compound effect of the more complex uncertainty structure of our quantita-
tive model as opposed to the simple model.
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Figure 9: Effects on Output and Inflation on Impact
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Notes: The figure plots the effects on output (in deviation from steady state) and inflation
(in annualized levels) of a demand shock as described in equation (15). The shock size, βL−
β, varies on the x-axis. The red solid (black dotted) line corresponds to the HANK model,
with the stochastic (deterministic) shock and without the ZLB. The red circles (black stars)
correspond to the HANK model, with the stochastic (deterministic) shock and with the
ZLB.
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5.3 The Role of Heterogeneous Agents

What is the role of household heterogeneity in the results above? We now quan-
tify the role of heterogeneity by studying a RANK model and replicating the
experiments done in the previous two subsections. To do that, we substitute
the model block that entails household heterogeneity and substitute it with
a standard intertemporal optimization condition, i.e. the consumption Euler
equation:

C−σt = βRANK
t RtEt

C−σt+1

Πt+1
. (30)

To make models comparable, we calibrate the discount factors βRANK under
the stochastic case so that they perfectly match the effects on output and infla-
tion in the corresponding contingencies of the HANK model. As a deterministic
shock, we consider the unconditional expectations of the stochastic shocks, as
done in the previous exercise.32

When we ignore the ZLB, the resulting simulations in the representative
agent model are identical to the corresponding ones in the HANK model, both
under the stochastic shock (by construction) and deterministic shock (due to
certainty equivalence). Once we introduce the ZLB, the effects that materialize
on output and inflation are similar: a dichotomy emerges between the impulse
responses under the two shocks. Similar to what happens in the HANK model,
the recession on impact under the stochastic shock (6%) is larger than that un-
der the deterministic shock (4%), while the price dynamics implies an inflation
level of 0.7% under the deterministic shock, the model predicts 0 inflation on
impact under the stochastic shock.

The third column of each panel in figure 11 plots discounted IRFs for out-
put (left) and inflation (right) of the RANK model with ZLB, under the deter-
ministic (blue bar) and stochastic (red bar) shock, relative to the corresponding
discounted IRF under the deterministic shock in the HANK model without the
ZLB.33 The introduction of the ZLB in the RANK model increases the expected
loss in terms of output by 2.3% in the deterministic case and by 66.7% in the
stochastic case (for inflation the effects are 0.45% and 67.3%). However, the ef-
fects are significantly smaller than those in the HANK economy (about halved),
meaning that the presence of idiosyncratic risk strongly amplifies the interac-
tion between aggregate uncertainty and the ZLB.

32The resulting shock process is slightly different from a purely Two-states Markov process, in
that the discount factor levels now take more than just values across all contingencies and times.
The shock structure does retain the uncertainty structure with the same fixed probability of
reversal µ. Once the shock is over, this process can be rationalized as a deterministic sequence.

33We omit the bars that correspond to the RANK model without ZLB as they are identical to
the ones in the first column.
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Figure 10: IRF and Contingencies - With the ZLB
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Notes: The figure reports the effect of a stochastic demand shock calibrated as described
in the text (each blue line corresponds to one individual contingency and its thickness is
proportional to its unconditional probability, the red solid line is the impulse response
function obtained as a weighted average across all contingencies) and its deterministic
counterpart (black dotted line), in a standard RANK model with the ZLB (i.e. imposing R =
1). The first panel reports the effects on output, in deviation from steady state. The second
and third panels correspond to annualized inflation and nominal interest rate levels. The
black vertical solid line reports the expected duration of the ZLB under the stochastic
shock. The x-axis in all panels measures time in quarters.
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Figure 11: Discounted IRF - Output and Inflation
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Notes: The figure reports the implied discounted impulse response functions for output
(left panel) and inflation (right panel) under the HANK model without the ZLB (first col-
umn), the HANK model with the ZLB (second column), and the RANK model with the
ZLB (third column). Within each column, the blue (red) bar corresponds to the determin-
istic (stochastic) case. All bars are relative to the one in the HANK model without the ZLB,
under the deterministic shock (left most blue bar).

6 Unconventional Monetary Policy and HANK

In this section we perform a policy exercise that the model and our solution
strategy permits: we study the effect of forward guidance in our HANK model
and the differential effects between the stochastic and deterministic environ-
ment. This analysis, as the one highlighted in figure 9 requires multiple simu-
lations of our model, which is rendered feasible by our solution methodology.

We consider the following forward guidance policy. The central bank cred-
ibly announces that it will set the nominal interest rate to 0 for q additional
quarters, relative to what would be implied by the Taylor rule. The extra stim-
ulus q is unconditional on the specific contingency realization, implying that
this policy increases the expected duration of the liquidity trap exactly by q
quarters. This analysis is similar to what McKay, Nakamura and Steinsson
(2016) label as extended policy (where they choose q to minimize output loss
on impact in a RANK economy) and to some extent goes in the direction of
the state-contingency mentioned by Woodford (2012). Under the determinis-
tic shock, such policy also corresponds to the “fixed length forward guidance”
policy in Eggertsson et al. (2021). However, the equivalence does not hold with
the stochastic shock.

Figure 12 shows the effects, on the discounted impulse response of output, of
forward guidance under the deterministic (blue bars) and stochastic (red bars)
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Figure 12: Discounted IRF and Forward Guidance - Output
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Notes: The figure reports the implied discounted impulse response functions for output
under the HANK model with the ZLB, in the forward guidance experiment. The order of
the columns corresponds to the quarters of extra stimulus under the forward guidance pol-
icy. Within each column, the blue (red) bar corresponds to the deterministic (stochastic)
case. All bars are relative to the one in the HANK model with the ZLB, under the deter-
ministic shock and with no extra stimulus (left most blue bar).

shocks as a function of the q quarters of extra stimulus.34 All bars are relative
to the no forward guidance policy under the deterministic case (in fact, the
first column in the figure is exactly the same as the first column in figure 11).
The plot reveals that forward guidance is more effective under the stochastic
case: with the calibrated shock, it takes 6 quarters of extra stimulus to actually
flip the output loss to an output gain. The same does not happen under the
deterministic shock, despite the fact that the output loss is smaller under the
deterministic shock than under the stochastic shock to begin with. A similar
result holds for inflation (we report the figure in the appendix).

7 Conclusions

We develop a novel methodology to solve heterogeneous agents models with
aggregate uncertainty and a Zero Lower Bound on nominal interest rates. By
considering a Two-states Markov shock structure as in Eggertsson et al. (2021),
we are able exploit and expand on the techniques proposed by Auclert et al.
(2021). The efficiency and flexibility of our methodology let us consider several
counterfactual scenarios.

34See the Appendix for the analogue figure for inflation.
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Our main application involves studying the interaction of aggregate and id-
iosyncratic uncertainties. We show that at the Zero Lower Bound, aggregate
uncertainty amplifies a demand shock, and this amplification is much stronger
if we consider a heterogeneous agent economy. If however the monetary author-
ity is unconstrained, no amplification takes place. We illustrate the mechanisms
behind these results with a simple model that accommodates an analytical so-
lution.

We exploit our solution methodology to study the impact of forward guid-
ance. The model simulations indicate that the marginal effects of a promise to
keep interest rates at 0 for an extra quarter are larger when there is aggregate
uncertainty.

We hope that our methodology allows future researchers to better under-
stand the interactions between uncertainty in the micro and macro level, the
role of other types of policy such as government transfers, as well as the im-
pact of other non-linearities at the macro level such as occasionally binding
constraints in the financial sector (as in, e.g., Gertler and Kiyotaki (2015)). Our
solution strategy can also be employed to evaluate monetary policy normaliza-
tion in the current economic environment, characterized by large uncertainty
both at the aggregate and individual levels.
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Appendix

A Notation List

• Xt and Xτ
t are vectors of 5 entries (GDP, inflation, R, t, b)

• Dt and Dτ
t are vectors of nz x na entries, representing the distribution AT

THE BEGINNING of the t period

• Vt and V τ
t are vectors of nz x na entries, representing the value function

AT THE BEGINNING of the t period

• X
T S is a stacked vector made of τmax vectors of 5 entries representing

inputs along the TS branch. In loose sense X
T S = {Xt}τ

max−1

t=0

• D
T S is a stacked vector made of τmax vectors of na×nz entries representing

the distribution at the beginning of each period along the TS branch. In
loose sense D

T S = {Xt}τ
max−1

t=0

• V
T S is a stacked vector made of τmax vectors of na x nz entries represent-

ing the value functions the TS branch. In loose sense V
T S = {Vt}τ

max−1
t=0

• X
τ is a stacked vector made of T vectors of 5 entries representing inputs

along one of the PF branches. In loose sense X
τ = {Xτ

t }
T+τ−1
t=τ

• D
τ is a stacked vector made of T vectors of na × nz entries representing

the distribution at the beginning of each period of the perfect foresight
branch. In loose sense D

τ = {Dτ
t }

T+τ−1
t=τ

• V
τ is a stacked vector made of τmax vectors of na x nz entries repre-

senting the value functions in one of the PF branches. In loose sense
V

τ = {V τ
t }

T+τ−1
t=τ

• X
P F = {Xτ }τmax

τ=1

• D
P F = {Dτ }τmax

τ=1

• V
P F = {V τ }τmax

τ=1

• X
P F
1 = {Xτ

τ }τ
max

τ=1 is the collection 5x1 vectors of inputs in the first period of
each PF path.

• V
P F

1 = {V τ
τ }τ

max

τ=1
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B Technical Details

B.1 Aggregate State Variables

One of the arguments in equation (25) is the realization of aggregate variables
Xτ−1, during the period right before the contingency is revealed. Those are ef-
fectively initial conditions for the τ-th PF branch under consideration. Given
the dynamic programming structure for the households’ problem, those initial
conditions do not enter the Heterogeneous Agent block. However, they might
enter some aggregate equilibrium conditions. One example is the stock of pub-
lic debt bτ−1. This is an initial condition that should be taken into account
under a more general fiscal policy rule. We account for the effects of aggregate
state variables in equation (25) by deriving the (analytical) Jacobian of aggre-
gate equilibrium conditions with respect to these variables.

B.2 Lags

In our model economy, there were no significant variables that entered with a
lag larger than 1. This might not be true for more complex models. For in-
stance, if one was to study the new Average Inflation targeting framework of
the Federal Reserve, the model should keep track of many past levels of infla-
tion. And in particular, once entering a contingency τ , it would not be enough
to carry over the information in Xτ−1. The solution is to define an aggregate
variable which at time t takes the value of the lag variable of interest. To give a
practical example, if the model requires to keep track of inflation 2 periods in
the past, define ΠLag2,t = Πt−2 and use this as another structural equation.

B.3 Leads

The story is slightly more complicated for leads. Some models might require
to form expectations of future variables with lead larger than 1. Suppose that
you are interested in considering in the equilibrium conditions the expectations
for a variable x in l quarters in the future. The solution is to define l auxiliary
variables as follows. AUX1t = EtAUX2t+1, AUX2t = EtAUX3t+1,..., AUXlt =
Etxt+1. The variable AUX1t will be the one that in the equilibrium conditions
substiutes Etxt+l .

For a concrete example, consider inflation 2 periods ahead. This example
only considers the TS branch, as for any PF branch the problem is trivial. Define
AUX1t = EtAUX2t+1 = µAUX2t+1 + (1 − µ)AUX2t+1

t+1 and AUX2t = EtΠt+1 =
µΠt+1 + (1− µ)Πt+1

t+1. We want to show that AUX1t is the correct expectation of
inflation in 2 periods. Consider for simplicity time t = 0, we want that AUX10 =
E0Π2.

AUX10 = (1−µ)AUX21
1 +µAUX21

= (1−µ)Π1
2 +µ(1−µ)Π2

2 +µµΠ2
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C Other Figures

Figure C.1 reports the discounted impulse response functions of inflation as a
function of the quarters of forward guidance, as described in Section 6. The
bars are normalized with respect to the deterministic shock with no forward
guidance (i.e. q = 0).

Figure C.1: Discounted IRF and Forward Guidance - Inflation
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Notes: The figure reports the implied discounted impulse response functions for inflation
under the HANK model with the ZLB, in the forward guidance experiment. The order of
the columns corresponds to the quarters of extra stimulus under the forward guidance pol-
icy. Within each column, the blue (red) bar corresponds to the deterministic (stochastic)
case. All bars are relative to the one in the HANK model with the ZLB, under the deter-
ministic shock and with no extra stimulus (left most blue bar).

Figure C.2 reports the decompositions for the discounted impulse response
functions of total consumption. We feed either the equilibrium wealth distri-
bution (middle column) or all the equilibrium prices (right column) into the
individual policy functions of the households. The first case, that is equivalent
to applying the steady state consumption policy function across the equilib-
rium wealth distributions, isolates the effects of the latter ones. The second
case does the reverse, repeatedly applying the equilibrium consumption policy
functions to the steady state wealth distribution and isolating the effect of the
equilibrium prices.

In a similar fashion, Figure C.3 decomposes the impulse response function
of total consumption by applying one aggregate price or shock at a time. The
yellow bar correspond to a counterfactual experiment where agents live in a
deterministic world and are given the average aggregate dynamics obtained in
the aggregate uncertainty case as inputs.
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Figure C.2: Discounted IRF - Decomposition - D and g
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Notes: The figure reports the implied discounted impulse response functions for consump-
tion under the HANK model with the ZLB. The columns correspond to the full effects, the
effects of the distribution, and the effects of the individual policies. Within each column,
the blue (red) bar corresponds to the deterministic (stochastic) case. All bars are relative
to the one in the HANK model with the ZLB, under the deterministic shock and with no
extra stimulus (left most blue bar).

Figure C.3: Discounted IRF - Decomposition - Prices
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Notes: The figure reports the implied discounted impulse response functions for consump-
tion under the HANK model with the ZLB. The columns correspond to the full effects, the
effects of nominal rate, discount factor, inflation, taxes, incomes. Within each column, the
blue (red) bar corresponds to the deterministic (stochastic) case. The yellow bar corre-
sponds to a deterministic counterfactual where agents are given the average of the prices
in the stochastic case. All bars are relative to the one in the HANK model with the ZLB,
under the deterministic shock and with no extra stimulus (left most blue bar).
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