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Abstract 

How do shifts in the supply of natural gas affect output and inflation? To answer this 
question, we construct an instrument for gas supply shocks using a large set of daily news on 
the European gas market over the 2010-2022 period and use the instrument within a Bayesian 
VAR model. We find that negative supply shocks are stagflationary and that their effects 
materialize over far longer horizons than those of oil supply shocks, with peaks (troughs) in 
core inflation (industrial production) that follow the shock by two years or more. This pattern 
is consistent with the structural features of the gas market, and it suggests that European 
economies are still grappling with the large price spikes that took place in 2022. 
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1 Introduction1

The procurement of natural gas has been a sticking point for European economies over
the last two years. The political tensions that built up in 2021, culminating in the Russian
invasion of Ukraine in February 2022, triggered dramatic jumps in gas prices and a
collapse in gas flows from Russia to Europe, turning a previously neglected commodity
into a key issue on the media and in policy debates. Yet, unlike oil, gas represents an
unknown from a macroeconomic perspective. There is scant evidence on how demand
and supply factors affect gas prices, or on the influence that gas prices have on inflation
and economic activity. Furthermore, the gas market has a number of peculiar features
that could in principle affect the propagation of the shocks: trading traditionally took
place through long-term contracts in fragmented markets, the contractual structures and
regulations weaken the link between wholesale and retail prices, and strong seasonality
characterizes natural gas consumption such that buyers maintain large storage capacities.2

A cursory look at the data suggests that these factors may matter from a macroeconomic
perspective. In Figure 1 we show the coefficients obtained from a simple regression
of the energy component of the Euro Area consumer price index on the level of gas
or oil prices observed in the previous months.3 The difference is stark: an increase in
wholesale oil prices is immediately incorporated into the energy price index, whereas
an increase in gas prices takes about one year to propagate fully, with a final impact
that is about 5 times larger than the initial impact. The estimates are suggestive of
heterogeneity in the propagation of gas and oil shocks. However, moving from the
correlations in Figure 1 to causal statements on the relevance of gas supply shocks is
not trivial. Distinguishing between supply and demand shocks in energy markets is
notoriously difficult; seasonality, regulation and contractual frictions further complicate
the identification of gas supply shocks, particularly for econometricians that are forced
to rely on relatively short samples that include the break caused by the Covid pandemic.

We take up the challenge by combining two tools that are widely used in empirical
macroeconomic studies: ‘narrative’ identification and Bayesian VAR models. To identify
supply shocks, we parse a large dataset of daily news about the European gas market
over the 2010-2022 period. We focus on dates in which the prices of gas futures recorded

1We thank Gabriele Cappadona for outstanding research assistance. This paper has benefited from
presentations at Banca d’Italia and feedbacks from Riccardo Cristadoro, Riccardo Degasperi, Fabrizio
Ferriani, Leonardo Melosi, Ivan Petrella, Fabrizio Venditti, Giovanni Veronese. All errors are our own.

2See Ason (2022) for a review of the contractual features of the natural gas market.
3The data is described in Section 2. The regression is a reduced-form local projection of (the log-levels

of) retail energy prices in month t + h on wholesale gas or oil prices in month t, with four lags of all
variables used as additional controls. The gas and oil coefficients are normalized to 1 for h = 1 to facilitate
the comparison.

5



large swings, and resort to a careful line-by-line analysis of the underlying daily news
to separate events that are clearly symptomatic of shifts in the supply of natural gas
(mostly but not exclusively from Russia) to those relating to changes in demand and
other confounding factors. Our definition of supply disturbances encompasses changes
in actual gas flows, news on future gas flows and variation in risk of future supplies. We
then use the change in prices in days driven by supply news as an external instrument or
proxy in a Bayesian VAR model that includes economic activity indicators and consumer
prices. The Bayesian setup allows us to (i) model the potentially ’long and variable’
lags that separate shocks and economic responses despite the relatively small size of
the sample; (ii) sterilize the confounding effect of the volatility caused by the Covid
pandemic (following Lenza and Primiceri, 2022); and (iii) obtain estimates that are robust
to the large fluctuations and non-stationarity displayed by gas prices in 2021 and 2022.

We find that negative shocks to gas supplies are stagflationary, and that their impact
on inflation is more gradual but ultimately larger than that of oil supply shocks. Oil
shocks cause a sudden increase in energy prices that propagates to the ’core’ component
of the consumer price index within a few months. Gas shocks, by contrast, cause a slow
increase in energy prices and an even slower increase in the price of core goods, with a
peak occurring almost 2 years after the shock. Quantitatively, a 5% increase in gas prices
ultimately leads to a 0.2% increase in core inflation; depending on the specification, gas
shocks account for a share of 35 to 50 per cent of the variance of core prices in our sample.
The overall pass-through to core inflation, defined as the ratio between the cumulative
responses of core and energy prices at the one-year horizon, is about 8% for gas shocks
and 4% for oil shocks. The results are robust to various departures from the baseline setup,
such as replacing the VAR with larger Factor-Augmented VAR (FAVAR) models, using
local projections, or resorting to an identification scheme based on heteroscedasticity (à
la Rigobon, 2003) that does not require the instrument to be exogenous. Although our
narrative instrument draws most of its power from the volatility caused by the war, the
results are also qualitatively similar in the pre-2022 or pre-2020 sample.

Related literature. Our work joins a debate on the relation between energy markets
and the macroeconomy that has recently gained significant visibility in both research
and policy fora. Researchers have traditionally focused on the oil market. The impact
of oil price shocks on GDP is relatively well established.4 The relation between oil and
inflation is more controversial. Earlier studies identified a significant influence of oil
or gasoline prices on both inflation and inflation expectations, pointing to rising fuel
prices as a key factor behind the puzzling behaviour of US inflation during the Great

4Hamilton (1983), Kilian (2009), Baumeister and Hamilton (2019), Känzig (2021), Degasperi (2021).
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Recession;5 subsequent contributions suggest instead that the link is at best tenuous and
only relevant in the short run.6 This link is also relevant for the natural gas market, which
in the case of Europe is equally if not more important than oil.7 Our analysis documents
a clear pass-through from gas supply shocks to core inflation, and suggests that standard
identification schemes could fail to capture the slow and gradual propagation of these
shocks. Boeck and Zörner (2023) and Casoli et al. (2022) study the impact of gas supply
shocks in monthly VAR models identified through a mixture of sign and zero restrictions,
finding that the shocks have strong effects on output, inflation and inflation expectations
in Europe.8 The key advantage of our approach is that, by constructing an instrument
based on daily news, we can isolate the shock at a higher frequency and avoid prior
restrictions on the impact that disruptions to gas supplies may have on the economy. Both
factors are likely to be important in the light of the identification challenges associated
to the peculiar nature of the gas market (see Section 2). Our results also speak to the
policy side of the debate on energy markets. The calibration of monetary and fiscal
policy interventions requires reliable estimates of the economic impact of the war for
European countries, but these estimates are hard to agree on. Analysts suggested that
a 30% contraction in oil and gas supplies could reduce output by up to 14% in Europe
within two years9; recent model-based simulations indicate that a break in oil, gas
and coal imports could cost Germany – a country that depends on Russia for about
one third of its energy consumption – between 0.5% and 3% of its GDP.10 We provide
direct evidence on the magnitude of these channels. Our results show that gas shocks
affect inflation more than output and that their propagation requires in both cases a
long period of time, thus partly reconciling the large contraction estimated in macro
models with the resilience displayed by European economies in 2022 and 2023. Finally,
a better understanding of gas shocks could inform the introduction of energy markets
in macroeconomic models. Recent new-keynesian models with heterogeneous agents
typically treat energy as a single homogeneous good.11 The same is true of the workhorse
models employed by policy institutions such as the IMF, which typically assume full
substitutability between oil and natural gas. Our findings suggest that oil and gas
shocks have different implications for inflation, calling for a more articulated modeling
framework.

5Coibion and Gorodnichenko (2015); see also Conflitti and Cristadoro (2018) and Coibion et al. (2020).
6Kilian and Zhou (2022a), Kilian and Zhou (2022b).
7Oil and natural gas contributed respectively for 33% and 25% of primary energy consumption in the

EU in 2021, but gas prices determine the electricity price being the marginal fuel of electricity production.
8See also Nick and Thoenes (2014) and Rubaszek et al. (2021), which analyze the drivers of natural gas

markets rather than the macro-financial implications of gas supply shocks.
9Cook et al. (2022)

10Garicano et al. (2022), Bachmann et al. (2022), Lan et al. (2022).
11See e.g. Pieroni (2023) and the open-economy model of Auclert et al. (2023).
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Structure of the paper. The remainder of the paper is organized as follows. In Section
2 we discuss the identification strategy and illustrate the properties of the instrument
based on gas news. In Section 3 we study the impact of gas supply shocks on financial
indicators using simple daily regression models. In Section 4 we move to the VAR
analysis. Section 5 explores alternative empirical specifications. Section 6 focuses on
the comparison between gas and oil shocks. Section 7 concludes the paper. A detailed
description of the data employed in the paper is provided in appendix.

2 Empirical approach

2.1 The identification problem

Before explaining the details of our empirical strategy, we develop a simple example to
illustrate the identification problem that arises in disentangling supply-side and demand-
side drivers of natural gas prices (and potentially other commodity prices). Consider
estimating a small VAR that includes monthly observations on real gas prices (gas) from
the Title Transfer Facility (TTF - the main European benchmark), the core harmonized index
of consumer prices (core hicp) and industrial production (ip) for Europe over the period
January 2010 to December 2022.12 The model is estimated using Bayesian techniques.
We defer a more detailed explanation of our modeling and estimation strategy to Section
4. A simple option to quantify the impact of shocks to gas prices could be to compute the
impulse-response functions (IRFs) under a Cholesky identification. If gas is ordered first,
assuming the TTF to be unaffected by contemporaneous macroeconomic news, the gas
price shock is nothing but the reduced-form residual of the first equation of the VAR. The
impact of this shock is shown in Figure 2. The responses show a marked and persistent
increase in core hicp, but also a quick and persistent rise in ip, which increases on impact
and then barely turns into negative territory after two-to-three years. These dynamics
suggest that, under this naive identification scheme, the shock is likely to capture a
combination of demand and supply factors; the figure suggests that demand factors are
quantitatively more important, both in general and in shaping the short-run ip response.
As in the case of oil, demand shocks that are not commodity-specific are less interesting
because they lack a specific causal interpretation: they reflect changes in business cycle
conditions that have nothing to do with the gas market. Our strategy is designed to
identify genuine shocks to the supply of natural gas and gauge their consequences for
prices and economic activity in Europe.

12Our preferred measure of gas prices comes from the World Bank Pink Sheet, that combines TTF quotes
with prices in the UK trading hub gas market prior to 2015, while coincides with the TTF after 2015 (see
Section 4). Results are virtually identical if we use the TTF series over the whole sample.
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2.2 Narrative identification

To construct our instrument we examine a rich sample of daily news spanning the period
between January 1st 2010 and November 30th 2022. By using a relatively long sample
we reduce our reliance on the volatility caused by the Russian invasion of Ukraine in
2022 for identification. The period we consider includes for instance the conflict between
Russia and Ukraine in 2014, as well as phases of greater political and financial stability
prior to 2014 and between 2016 and 2021.13 We end the sample in November 2022
because on December 3rd the European Union agreed to cap the price of natural gas
to reduce the volatility created by the conflict. This unprecedented intervention may
have altered the market in non-trivial ways, rendering the most recent observations not
directly comparable to the historical data.

We construct the instrument in two steps. The first step consists of isolating days
that are characterized by quantitatively significant fluctuations in TTF futures. Defining
what ’significant’ means is not trivial because gas prices are much more volatile in the
last part of our sample. Table 1 reports the results of a non-parametric test of constant
variance for the TTF daily growth rate before and after 2019. The null hypothesis of a
constant variance is overwhelmingly rejected; the standard deviations of the series in
the two sub-samples are about 2 and 5.8 percentage points.14 Based on this evidence,
we pick all the dates for which the absolute value of the daily percentage change in the
front-month TTF future exceeds a threshold of, respectively, 5% in the pre-2019 data and
10% in the post-2019 data. This gives a set of 125 trading days that were characterized by
price shifts of two standard deviations or more within each regime. In order to focus on
persistent changes in price levels, we exclude from this sample 15 dates in which the
one-day ahead, front-month and one-year ahead futures move in different directions.15

The final sample thus consists of 110 dates.
In the second step we collect and carefully vet the news about the gas market

associated to each of these dates. We begin by extracting from Refinitiv all news in
English whose titles contain the strings ”TTF”, ”LNG” (for Liquified Natural Gas) and/or

13Russia and Ukraine officially ended the conflict by signing the Minsk II agreements on February 12th
2015. The agreement included inter alia the withdrawal of heavy weapons from the front line and an
OSCE-observed unconditional ceasefire from February 15th.

14The break in December 2019 allows us to account for the Covid pandemic as well as a significant
escalation in the political tensions between Russia and Ukraine; Ukraine was granted NATO Enhanced
Opportunity Partner status on 12 June 2020, and President Zelensky approved a new national security
plan with the explicit aim of joining NATO on 14 September 2020.

15This filter may somewhat weaken the power of the instrument, but it allows us to focus on shocks
that affect the level (rather than slope or curvature) of the future curve and are perceived to be persistent
by market operators. Hevia et al. (2018) document the quantitative relevance of level, slope, curvature
and stochastic seasonality in futures on heating oil and soy bean; Garratt and Petrella (2022) fit a similar
multi-factor model to over 20 commodities including natural gas.
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”GAZP” (for Gazprom; excluding this keyword has little impact on the results). The
search returns over 8,000 news. Upon cleaning the database from noisy information, the
total drops to 4,290 news, with a mean and median of respectively 39 and 29 news per
date. The frequency of gas-related news displays large fluctuations over time, with a
maximum of 150 entries (on September 7th 2022), a minimum of 2 entries (on August
28th 2014), and a standard deviation of about 30. We then examine the news individually,
considering the body as well as the title of each entry, and assign a ”demand” or ”supply”
flag to the items that have a clear interpretation. All remaining news are marked as
ambiguous or irrelevant; this residual category includes e.g. a large number of wires
that merely comment on data released in previous days, or report minor updates on
the routes followed by LNG tankers. This process isolates 50 daily supply shocks. The
remaining 60 dates are classified as (i) not sufficiently relevant, (ii) dominated by demand
shocks, or (iii) characterized by an ambiguous mixture of demand and supply shocks,
and excluded from the analysis. The classification is deliberately conservative: we rule
out all dates for which supply-side events might be polluted by concurrent changes in
demand in order to preserve the validity of the instrument.

Table 2 reports a selected sample of supply shocks, showing for each date the news
and the observed daily percentage change in one-month TTF future (further details are
available in the online annex). Negative shocks include the US government’s threat
to sanction North Stream 2 (June 2020), the invasion of Ukraine (February 2022), the
shutdown of the Yamal pipeline (March 2022) and Gazprom’s decision to only accept
payments in roubles (March 2022). A sequence of restrictive shocks occurs during
summer 2022, between June and August, in relation to the continuous decline in Nord
Stream gas flows. Positive shocks are often associated to conciliatory statements by
Gazprom or unexpected pickups in pipeline flows. As the table makes clear, we do not
discriminate between actual changes in gas flows, news on future flows and changes
in the uncertainty about future flows. These shocks are likely to have fairly similar
effects on macroeconomic outcomes. Discriminating among them could be interesting
in principle, but would require a larger database and a more subtle (and potentially
contentious) interpretation of the news. Figure 3 shows the instrument at the monthly
frequency. This is a simple monthly average of the TTF price changes observed around
the selected dates, and it is what we use in practice to instrument the residuals of the VAR
models used in the empirical analysis. The largest shocks take place in the build-up and
aftermath of the Russian invasion of 2022, but there are a number of significant episodes
in the sample that predates Covid (2014-2019) and the Crimean conflict (2010-2014). In
Figure 4, we compare the TTF price (orange line) to a counterfactual series obtained
by cumulating price changes stemming from supply events (blue line). Supply shocks
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capture very accurately the steep rise and subsequent decline of the TTF between 2020
and 2022. TTF futures were far less volatile before 2020: our analysis suggests that in
this period supply shifts were less frequent and the market mostly moved in response to
(smaller and potentially less powerful) shifts in demand.

There are clear trade-offs involved in constructing the instrument: an algorithm-based
textual analysis would allow us to expand the sample quantitatively, while focusing on
relatively few dates allows us to study the news in greater depth. We choose depth over
width for two reasons. One is that the data is noisy and some sources of noise would be
nearly impossible to spot through automated textual analyses.16 The other one is that
the nature of the news and the lack of pre-defined recurrent announcements (like the
OPEC announcements on oil production) creates a significant risk of misinterpreting
various important episodes. Consider the Fukushima accident on March 14th 2011 (the
first shock in Table 1). The accident forced Japan to abruptly increase its LNG imports to
replace nuclear energy, and this unexpected spike in demand caused a 5% increase in the
TTF: since production is fixed in the short run, exogenous shifts in demand in the rest of
the world (due e.g. to infrastructural breakdowns or abnormal temperatures) translate
into shifts in supply for European consumers. Exploiting this mechanism through textual
analysis could be difficult. September 7th 2022 (that does not appear in the table) provides
another good illustration of identification challenges. This is the date for which we
obtain a record of 150 gas-related news. President Putin announces that Russia’s gas
sales would stop altogether if the EU introduced a gas price cap: his remarks have a
significant resonance on the media, appearing in various forms in many of the 150 entries.
But Italy’s Shell and Germany’s Uniper sign new agreements on LNG supplies, and
news spread about an earlier-than-expected reactivation of Freeport (the second-biggest
US LNG export plant, shut in June). An algorithm would probably classify this episode
as a supply contraction, but there are good reasons to be skeptical about gas supply
expectations shifting at all.

16Price updates consisting of one-line comments (of the type ”gas prices in [country] increases by [x]% in
[reference period]”) would be easy to filter out automatically. News about LNG tankers are somewhat more
problematic because they typically look like boosts to European supplies, but (with a few exceptions of
re-routed cargoes) they are not really news in that they simply confirm destinations and arrival times of
scheduled gas deliveries. Repetitions can be particularly tricky. On 29/11/2022, for instance, the news of a
potential expansion of LNG supplies to Germany shows up in three different forms within 10 minutes
(Qatar to supply Germany with LNG as EU seeks secure energy options, FT, 14:14; Germany to get new Qatari
LNG flows through QatarEnergy - ConocoPhillips deal, RTRS, 14:20; The Qatar minister sees no upper limit to
LNG deliveries to Germany , RTRS, 14:22). On 26/7/2022, spikes in gas pressures are blamed sequentially on
Russia (Ukraine says Russia increased gas pipeline pressure without prior notice, 15:03) and Gazprom (Ukraine
Accuses Gazprom Of Sharply Hiking Gas Pipeline Pressure, 16:58). In these cases irregular time patterns and
changes in wording are likely to confound any unsupervised, machine-based processing of the data.
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2.3 Properties of the shocks

In exploiting changes in gas futures around key dates for identification we follow the
logic used by Känzig (2021) for the oil market. The key idea is that these fluctuations
in prices are driven by exogenous shifts in supply and are not related to changes in
business cycle conditions. To check the power of the instrument we regress the TTF
residual from the VAR model described in Section 2.1 on our set of shocks. The results
are shown in Figure 5, which compares the VAR residual and the instrument over the
entire sample (left panel) and more specifically in the 2021-2022 period (right panel). The
chart confirms that the instrument has a strong correlation with the unexpected changes
in gas prices obtained from the VAR. This first-stage regression gives an R2 coefficient of
0.26 and an F statistic of about 33, with a p-value that is extremely close to zero.

The validity of the instrument is notoriously trickier to corroborate. In principle the
shock should not overlap with other structural shocks. To investigate this issue, we first
check how the volatility of gas prices and the volatility of other commodity and asset price
indicators change on shock dates vis-a-vis non-shock dates. If (i) our identification picks
up shocks that truly originate in the gas market (as opposed to generic macro-financial
disturbances), and (ii) these shocks have a larger impact on gas prices than on the other
indicators, then the variance of the TTF should increase on shock dates more than the
variance of the other series. The results are shown in Table 3. The table reports the ratio
between the volatility of TTF on shock- and no-shock dates (column 1) and a range of
analogous ratios computed using oil prices, coal prices, wheat prices, equity prices, the
VSTOXX volatility index, the 3-month Euribor rate and the geopolitical risk index (GPR,
from Caldara and Iacoviello, 2022) (columns 2 to 7). The volatility of TTF futures is
25 times larger on shock dates. No other indicator displays a comparable increase in
variance except for the coal price. However, since coal is a partial substitute of natural gas
for power generation in Europe, volatility could arise in this case precisely as a response
to gas supply shocks.17 This pattern emerges clearly in the pre- and post-2020 samples:
in both cases the TTF is the only indicator for which volatility is one order of magnitude
larger on shock dates. The results are particularly interesting for the oil price and the GPR
index. Oil prices are actually 40% less volatile around the shock dates included in the
2020-2022 time window, confirming that gas and oil markets followed largely different
patterns over this period and that the risk of capturing combinations of energy shocks
of different kinds is low. The potential overlap between gas shocks and geopolitical
shocks is another potentially important concern, as the conflict between Russia and
Ukraine certainly caused a widespread increase in uncertainty and a deterioration in

17See for instance Di Bella et al. (2022), OIES Quarterly Review 19 and OIES demand response to high
gas prices where gas prices are typically compared to coal prices, rather oil prices, at energy content parity.
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business conditions after 2022. However, the volatility of the GPR index also turns out
to be lower on shock dates, suggesting that at the daily frequency geopolitical events
are not systematically synchronized with (what we identify as) changes in gas supply.
Our robustness tests deliver additional evidence on this point, showing that -despite a
significant loss of power- the instrument delivers qualitatively similar estimates of the
response of output and inflation to gas shocks in the pre-2022 sample (see Section 5).
As a further diagnostic test, we compute the correlations between the instrument and a
range of other structural shock estimates available in the literature, focusing again on
shocks that relate to energy markets and geopolitical risk. The results are reported in
Table 4. The correlations between our instrument and oil, carbon or geopolitical risk
shocks are both small (between -0.03 and 0.13) and statistically insignificant (with an
average p-value of about 0.4). We provide a final piece of evidence on the validity of
the identification procedure in Section 4, showing that macroeconomic and financial
variables have no predictive power over our proxy of gas supply shocks. All in all, the
tests consistently corroborate the conclusion that the shocks we identify are exogenous,
unexpected and specific to the gas market.

3 The financial effects of gas supply shocks

Before moving to the VAR analysis we study the impact of gas prices on various financial
indicators using local projection models based on daily data. Besides being interesting
per se, these models also offer an indirect way to validate our identification strategy. The
local projection coefficients measure the conditional correlations between gas futures and
other asset or commodity prices at various horizons. As such, they capture the impact
of gas shocks on those prices (in line with our identification), but potentially also the
common response of the indicators to unobserved shocks of a different nature (which
would be a worrying sign that our identification fails): one can use theory and common
sense to discriminate between the two possibilities.

The impulse-response based on daily LP models are shown in Figure 6. On impact, an
increase in TTF (top left corner) is associated to a drop in the Eurostoxx equity index, a rise
in VSTOXX, and a rise in the prices of Asian LNG and UK gas and electricity. Oil prices
(Brent) respond only mildy consistently with the mild substitutability between the two
fuels in Europe. Conversely, coal prices respond strongly in line with the higher coal-gas
substitutability in Europe discussed in Section 2.3. These responses are consistent with
our instrument capturing genuine shocks to gas supply, that cause a repricing of the
profitability and risk for European firms as a result of the increased energy costs faced
by households and firms. Furthermore, both VIX and oil prices do not move much and
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the GPR index that is basically flat, suggesting that the potential overlap with other
shocks is limited. Over time, the shock is also followed by an increase in US gas prices
and a drop in carbon emission prices, potentially pointing to pressures on US supplies
and a slow-down of carbon-intensive activities. Finally, our gas supply shock elicits an
increase in the short-term interest rate and inflation swaps, i.e. an implicit measure of
inflation expectations. The stronger magnitude of the response in the 1-year inflation
swaps compared to longer-duration contracts signal that agents believe most of the effect
on inflation will be concentrated in the short-term.18

4 The macroeconomic effects of gas supply shocks

4.1 Econometric framework

Consider the standard VAR model:

yt = a + A1yt−1 + · · ·+ Apyt−p + ut (1)

where p is the lag order, yt is a n×1 vector of endogenous variables, ut is a n×1 vector
of reduced-form innovations with covariance matrix Var (ut) = Σ, a is a n× 1 vector of
constants, and A1, . . . , Ap are n× n matrices. The innovations ut can be expressed as a
linear combination of the structural shocks εt under the assumption of invertibility:

ut = Bεt

Var (εt) = Ω is diagonal as the structural shocks are by construction uncorrelated.
Conversely, Σ = BΩB′ is not diagonal as, generally, the reduced-form residuals are
correlated. We are interested in estimating the causal impact of a unique shock in the
system, i.e. the gas supply shock ε1,t. The task amounts at recovering a single column b1

of the impact matrix B.
Bayesian VAR estimation. Due to the large fluctuations in our relatively short-sample

related in particular to the Covid pandemic and to the energy crisis, we employ Bayesian
methods to estimate the VAR model in eq.(1). We impose a standard Minnesota prior
on the parameters of the BVAR according to which all univariate equations behave as a
random walk. To fix the volatility induced, especially in measures of economic activity,
by the Covid shock, we re-scale the size of the reduced form residuals in March, April and

18The more forward looking measure of inflation expectations are the 2y5y and 5y5y, i.e. the 2 years
forward expectations inflation starting 3 years ahead and the 5 year forward expected inflation starting 5
year ahead.
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May 2020 as suggested in Lenza and Primiceri (2022). The hyper-parameters that control
the prior and the scaling factors for the residuals are determined by jointly optimizing
the marginal data density. Our results are virtually identical if we control for the Covid
shocks by including in the VAR Covid cases and deaths as suggested by Ng (2021).

Identification via external instruments. Underlying the VAR identification via
external instruments lies the assumption that, given the series zt

E [ztε1,t] = α , 0 (relevance)

E [ztε2:n,t] = 0 (exogeneity)
(2)

where ε1,t is the gas supply shock and ε2:n,t are the remaining structural shocks.19

Under those conditions the column b1 is correctly estimated, up to scale and sign as

b1 ∝
E [ztut]

E [ztu1,t]
′ (3)

We employ the narrative series of gas supply shifts described in Section 2.2 as an
external instrument as in Mertens and Ravn (2013).

Baseline specification. Our baseline specification, already introduced in Section 2.1,
includes gas, core hicp, ip and 12 lags. The variables enter in log-levels following Sims
et al. (1990). gas and core hicp are seasonally adjusted using the Census X13. gas is the
Pinksheet World Bank series for european natural gas prices, that complements the TTF
prices with additional information prior to 2015. Results obtained by using the TTF
are nonetheless very similar. We estimate the VAR for European economy on monthly
data spanning from January 2010 to December 2022. We focus on this sample because
this is the period for which our series of external instrument for gas supply shocks is
available. However, results are robust to extending backwards the sample to January
2004 while setting the proxy to zero when not available as shown in Noh (2018). Our
external instrument passes the invertibility test, the null of no Granger causality from the
VAR residuals to the proxy cannot be rejected (p-value 0.27).

4.2 Main results

Impulse Response Functions. Figure 7 reports the IRFs of the three endogenous variables
to a gas supply shock identified via the external instrument approach. gas respond
strongly to the shock corroborating the evidence on the strength of the instrument already
provided in Section 2.3. Both core hicp and ip respond with delay to the gas supply shock,

19A third conditions is actually required as shown in Miranda Agrippino and Ricco (2018) but we
abstract from it in the present exposition.
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consistently with the lagged pass-through from wholesale to retail prices that strongly
characterize the gas market and that would make alternative identification approaches,
such as sign restrictions, unsound. The effect of gas supply shocks on core hicp peaks after
two years and gradually reverses, reaching zero after four years. The negative response
of ip takes even more time to build, peaking at about three years. Quantitatively, a 5%
increase in gas leads to a 0.2% peak increase in core hicp and a 0.6% fall in ip. Differently
from the Cholesky identification in Figure 2, ip does not increase on impact, suggesting
that we are correctly removing any fluctuation in demand from our measure of supply
shocks.

Forecast error variance. Figure 8 displays the contribution of gas supply shocks to
fluctuations of the endogenous variables of the VAR through a forecast error variance
decomposition (FEVD). The shock accounts in the long term for about 50% of the variance
of TTF futures. It also explains a non-negligible and statistically significant share of the
variance of both industrial production (30%) and core inflation (45%). These large variance
shares may reflect two distinct issues. First, these figures may be related the specific
nature of our sample, in which (specially after 2021) the fluctuations in gas supply were
fairly large, and particularly critical for European economies, in particular for inflation,
after several years of subdued dynamics. Second, the validity of the FEVD hinges on
the full invertibility of the gas supply shocks in our three-variable. VAR information
insufficiency may introduce a bias in the forecast error variance decomposition (Forni
et al., 2019). To alleviate this concern, in the robustness analysis we estimate a FAVAR
model that includes a far larger set of variables; in this setup the contributions of the
shock are smaller but still sizable and statistically significant (see Section 5).

5 Robustness and extensions

In this section we replicate the analysis modifying our empirical strategy along many
dimensions, including identification scheme, specification of the VAR model, sample
period, treatment of the Covid-19 break. The results of the tests are available in the annex
or upon request.

Identification via heteroskedasticity. Our results are virtually unchanged if we lift
our assumption on the exogeneity of the instrument and employ instead an identification
scheme based on heteroskedasticity. The assumption underlying this strategy is that
the relative variance of supply and demand shocks changes over time (Rigobon, 2003;
Rigobon and Sack, 2004; Känzig, 2021, 2022). More formally, suppose that – besides being
a noisy proxy of gas supply shocks, as commonly assumed in the literature – our external
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instrument is potentially contaminated by shocks that are not related to gas supply:

zt = ε1,t +
∑
j>1

εj,t + νt (4)

Although the exogeneity assumption is violated, we can still identify the supply shocks
by mixing the external instrument approach with identification via heteroskedasticity. In
essence, we compare the dates in which TTF swings are predominantly caused by shifts
in supply (T) to a control group of dates in which prices move under the influence of
demand factors or unknown combinations of demand and supply factors (C) (that, as
such, are excluded in our baseline analysis). The identification assumption is that the
ratio of the variances of supply and demand shocks varies between T and C:

σ2
ε1,T

σ2
εj,T
,

σ2
ε1,C

σ2
εj,C

for j = 2, . . . ,n

σ2
v,C = σ2

v,T

(5)

If this condition holds, the impact of gas supply shocks can be recovered as

b1 =
ET [ztut] − EC [ztut]

ET [z2
t] − EC [z2

t]
(6)

Rigobon and Sack (2004) show that the coefficient can be equivalently recovered
through an IV approach as b1 = (z̃′z)−1 (z̃′u), where z̃ = (z′

T ,−z′
C)

′ and z = (z′
T , z′

C)
′.

This procedure delivers results that are virtually identical to our baseline estimates – see
Figure A1.

Alternative VAR specifications. Replacing industrial production with the unemploy-
ment rate has no implications for the baseline results: the inflationary impact of the shock
is virtually unchanged and the unemployment rate responds positively, reaching its peak
about 30 months after the shock. The same is true if we replace the core component of the
HICP (which excludes food and energy) with the headline HICP (which includes all items)
or with the producer price index. We stick to core consumer inflation in our baseline
model because this measure is more directly relevant for monetary policy decisions; the
relation between energy and core prices is interesting in its own right and we study it
in detail in Section 6. Most of our sample period overlaps with the Russo-Ukrainian
war, that reached a climax in 2022 but began with the invasion of Crimea in 2014. In
order to control for the confounding effect of the uncertainty associated to the conflict,
we estimate larger VAR models that include either the geopolitical risk index of Caldara
and Iacoviello (2022) (GPR, in its global or Russia-specific version - Figure A4) or the
New York Fed Global Supply Chain Pressure Index (GSCPI - Figure A5). None of these
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specifications generates results that differ significantly from those of the baseline model.
The results are also unchanged if we account for the influence of the Covid pandemic by
explicitly including health-related variables in the VAR instead of allowing for breaks
in variances, as suggested by Ng (2021).20 In our setup, we can thus remain agnostic
on whether the pandemic represented a shift in the distribution of pre-existing shocks
(Lenza and Primiceri, 2022) or the emergence of new shocks of a different type (Ng, 2021).

Alternative sample periods. Our sample starts in 2010 (reliable data on gas prices
in Europe are harder to find before then, see Section 2) and it includes both the Covid
pandemic of 2020-2021 and the bout of volatility caused by the Russian invasion in 2022.
To assess the stability of the results we run two experiments. In the first case we extend
the sample back to 2004, setting the value of the instrument to zero when it is missing
(as shown in Noh, 2018), and truncate it in February 2022 (Russia invaded Ukraine
on February 22nd, the largest price rises materialized from March onward and prices
peaked in August). The responses are extremely similar to the baseline in terms of both
magnitudes and statistical significance (see Figure A7). In the second case we restrict the
sample to 2014-2019 to totally exclude the EU energy crisis (since 2021). We are forced to
start the sample for this exercise in 2014 given that, prior to this year, our IV provides very
little variation for identification which is not compensated by the post-Covid years as in
the baseline. This test is particularly demanding because the sample is shorter and the
instrument looses most of its power due to the omission of the post-2019 observations.21

The uncertainty around the estimates is much larger in this setup, particularly at long
horizons, and the impact of the shock on gas prices is less persistent, suggesting that the
shocks observed in 2020-2022 are somewhat different from those observed in normal
times. Nevertheless, the shock is again followed by a slight decline in IP and an increase
in core inflation (see Figure A11).

Local projections. Estimating local projections (LPs) that mimic the specification
of our baseline VAR makes little sense because these regressions would completely
ignore the structural break caused by Covid. However, the strategy suggested by Ng
(2021) can be easily deployed in the LP context too. We thus estimate LPs that include
lags of the number of Covid cases and Covid-related deaths among the controls (along
with inflation, industrial production and gas prices), instrumenting the gas price with
our news-based instrument. The results are shown in Figure A2. The LP-IV approach
confirms the results of the Proxy-SVAR, generating IRFs that are very similar in terms of
both shape and magnitude. Importantly, the LPs estimate a slow and delayed response
of HICP core to the shock, confirming that this is a genuine feature of the data that does

20We use data on the number of Covid cases and Covid-related deaths obtained from the European Centre
for Disease Prevention and Control.

21See Figure 5. The inference is in this case based on Montiel Olea et al. (2021).
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not depend in any way on the parametric restrictions imposed by VAR models.22

FAVAR. A potential limitation of the baseline VAR model is that it includes a small
set of variables. However, our results are confirmed by a Bayesian FAVAR model that
includes four principal components extracted from a set of 54 macrofinancial indicators
(see annex for details; we report a selection of the responses in Figure A13). The FAVAR
shows that EuroCoin, a synthetic indicator of economic activity in the Eurozone, is more
responsive than ip. It also provides a richer description of the propagation of negative
gas supply shocks: the shocks cause a drop in gas import and consumption, a slight
temporary depreciation of the euro and an increase in 3M-Euribor rates that seems
consistent with a stagflationary scenario. Oil prices do not comove with gas prices on
impact, suggesting that the identification strategy is successful in isolating shifts in the
supply of natural gas from shocks that affect the oil market. The results from the FAVAR
are also robust to extending the sample backwards to 2004, varying the number of factors
between 2 and 6, and extending the number of lags to 24 to directly estimate the IRFs over
longer horizons. The FEVD obtained from the FAVAR is displayed in Figure A3. The
model gives a more conservative assessment of the quantitative relevance of gas supply
shocks compared to the baseline VAR: in the long run, the shock accounts for about 20%
of the variance of industrial production and 30% of the variance of core inflation.

Country-specific results. When re-estimating the baseline model with country-level
data, we find that negative supply shocks generate a drop in industrial production and
a rise in prices almost everywhere but magnitude and significance of the responses
vary across European countries (see Figures A14 to A17). Output contracts relatively
more in Italy, Greece and Spain, and it expands in Norway (an important gas exporter).
Consumer prices rise significantly in Poland, in the Netherlands and in Greece, but
remain unchanged in Finland. There is a positive cross-sectional relationship between
the magnitude of the responses and the intensity of gas usage: both industrial production
and inflation respond more to the shock in countries where gas accounts for a larger
share of the overall primary energy consumption (see Figure A18). The correlation
is far from perfect because there are obviously many additional factors that affect the
overall propagation of the shocks, including for instance the nature and size of the fiscal
measures adopted between 2019 and 2022 in response to Covid and/or the energy crisis
itself. However, the pattern of the responses is intuitive and it provides further evidence
in support of the validity of the identification strategy.

22To cross-check the estimates we also constructed a counterfactual dataset where the first 6 months of
2020 are replaced by the forecasts produced by the baseline VAR model in December 2019. This procedure
replaces the actual observations for 2020H1 with the data that would have been observed (presumably)
without the Covid shock. On this dataset, LP models that only include gas, ip, and HICP core deliver
responses that are very similar to those shown in figure A2.

19



6 Are all energy shocks the same?

One important question is to what extent gas shocks resemble oil shocks in terms
of impact and propagation mechanisms.23 To investigate this issue, we re-estimate
the FAVAR model instrumenting oil instead of gas prices and compare the dynamics
generated by the two shocks. The instrument for oil supply shocks is the variation in
the price of Brent oil futures around OPEC announcements, as in Känzig (2021). Since
the instrument is weak in our baseline 2010-2022 sample and small-scale VAR model,
we perform the comparison exploiting the longer 2004-2022 sample and the FAVAR
model. The responses of industrial production, energy prices and core inflation to oil
and gas supply shocks are reported respectively in Figure 9 and Figure 10. Like gas
shocks, oil shocks cause a slowdown in ip and an increase in both HICP energy and
HICP core. However, the dynamics differ in two interesting ways. The rise in energy
inflation is significantly faster for oil shocks. In the case of an oil shock, HICP energy
increases significantly on impact and peaks after about 10 months. In the case of a gas
shock, the initial response is muted and the peak occurs about 16 months after the shock.
HICP core takes even longer to adjust, peaking after more than 20 months, and responds
relatively more to gas shocks. The literature on oil shocks does not provide obvious
benchmarks for these estimates because it mostly focuses on the US economy and on
different (typically longer) time periods24. However, our results are consistent with the
conclusion by Giannone et al. (2014) and Conflitti and Luciani (2019) that in the Euro
Area oil shocks affect mostly if not only the energy component of the HICP, with limited
spillovers on the price of non-energy goods.

The elasticity of core to energy prices. The IRFs suggest that the timing of the responses
differ and that the spillover or pass-through from energy to core prices might be stronger
for gas supply shocks. To investigate this issue, we use the IRFs to calculate horizon- and
shock-specific measures of passthrough (PT) based on the following definition:

PTs
h =

∑
1:h IRFsh(HICP core)∑

1:h IRFsh(HICP energy)
(7)

(where h is the horizon in months and s denotes either oil or gas supply shocks). PTs
h is

23Notable differences exist in several dimensions of the two markets. First, the contractual structure
differs greatly: the gas market is mainly based on long-term contracts indexed to past prices and retail prices
are regulated and adjust with lags to wholesale prices; the oil market is typically based on spot-contracts
and the transmission to gasoline is relatively fast. Second, the usage of the two commodities is extremely
heterogeneous: in the EU transportation absorbs about 65% of oil consumption while 15% is employed as
non-energy production input in industry; conversely, natural gas affects directly or indirectly (through
electricity, of which is a crucial fuel for production, and whose price is determined by gas prices since gas
is considered the marginal fuel of production 65% of the final energy consumption in the industrial sector.

24See e.g. the recent contributions by Coibion et al. (2020); Kilian and Zhou (2022a,b)
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nothing but the HICP core response scaled by the HICP energy response observed in the
same months. As such, the ratio represents the response of the core price index that one
would expect to see in period h after a one unit increase in energy prices stemming from
a contration in oil or gas supplies.25 The results, reported in Figure 11, show that the gas
PT is almost twice as large as the oil PT. The dynamics of the IRFs and the PT ratios are
obviously constrained by the parametric nature of the FAVAR model. However, the PTs
obtained from LP-IV estimates of the IRFs (which impose no restrictions on the timing of
the responses) are very similar: see Figure 12.

FEVD and historical decomposition. Variance decompositions provide an alternative
way to measure the spillovers from energy to core prices. The FEVDs indicate that gas
supply shocks explain a share of about 35% of the variance of core prices, nearly double
the share explained by oil shocks (about 20%; see figures 13 and 14). On average, gas
shocks clearly played a more important role in the sample we consider. Figures 15 and 16
display historical decompositions and counterfactual inflation series obtained assuming
alternatively gas or oil supply shocks to be the only source of macroeconomic volatility.
The shocks closely fit the behavior of the TTF and Brent series, confirming that ’supply
matters’ in both markets. However, their performances in replicating the pattern of HICP
energy and HICP core are very different. Oil shocks explain most high-frequency changes
in HICP energy but fail to capture the low-frequency fluctuations of the series, and miss
almost entirely the rise and subsequent decline in energy prices observed in 2021-2022
(Figure 16). Gas shocks, in contrast, capture the cyclical component of HICP energy and
closely match the behavior of the series in the last two years of the sample (Figure 15). A
similar pattern emerges for HICP core. Gas shocks fit the rise in core inflation after 2021
surprisingly well, whereas oil shocks have virtually nothing to do with it. The figures
clearly show the predominance of gas as a driver of European inflation over the past two
years.

7 Conclusions

The Russian invasion of Ukraine in February 2022 placed natural gas – a previously
somewhat neglected commodity – at the centre of heated policy debates in Europe and
elsewhere. However, little is known about the relation between the natural gas market
and the business cycle. In order to fill this gap, we identify gas supply shocks through a

25The indicator is reminiscent of the ’multipliers’ that are often calculated in the fiscal policy literature
scaling the GDP response by the response of public expenditure (G). One of its advantages is that it puts the
shocks on an equal footing because, by normalizing the core response on the basis of the energy response, it
makes the (unobserved) size of the shocks less relevant.
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narrative approach and estimate their impact on Euro Area economies using Bayesian
VAR and local projection methods. Our identification and estimation strategies are
designed to cope with the specificity of the setup, where short-samples, breaks and the
instabilities associated to Covid and the Ukraine war significantly complicate the task
of separating demand- and supply-side factors. We find that negative shocks to gas
supplies are stagflationary, leading to a drop in economic activity and a significant rise in
both energy and core consumer prices. We also find that their influence is more gradual,
but ultimately larger and more long-lasting than that of oil shocks. Oil shocks generate
sharp responses in economic activity and energy prices in the short run, but these abate
quickly leaving core inflation relatively unaffected. Gas shocks have little impact in the
short run, but significantly increase energy and core prices over longer horizons. After a
year, the pass-through to core inflation is almost twice as large for gas shocks than for oil
shocks. Our estimates suggest that the scarcity of gas caused by the war was a key driver
behind the surge in inflation in Europe in 2022, and that its repercussions are likely to be
felt well into 2023.
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Sample Observations Mean Std
2019-2022 874 0.175 5.783
2010-2018 939 0.007 1.996
Pooled 1813 0.088 4.264
Levene’s statistic (absolute) 227.4
Degrees of freedom 11811
p-value 0

Table 1: Test of equality of variances (Levene test). The test compares the volatility in
the TTF growth rate across the samples 2010-18 and 2019-2022.

event date key headline %∆TTF

14-Mar-2011 Japan boosts LNG demand to substitute nuclear energy after Fukushima disaster 5.6
03-Mar-2014 Tensions piling up between Russia and Ukraine 9.5
29-Aug-2014 Gazprom accuses Ukraine of stealing gas 15.9
28-Apr-2016 Gazprom hopes Nord Stream 2 avoids problems with Brussels faced by predecessor -9.6
10-Sep-2019 EU court ruling against Gazprom on Opal Pipeline 17.7
29-Jun-2020 US threaten to sanction EU on NS2 15.6
03-Aug-2020 Tensions between Poland and Gazprom 12.9
05-Oct-2021 Putin declaration: ”Gazprom will prioritize domestic market” 20.0
28-Oct-2021 Gazprom declares it can pump gas into EU storage -10.9
29-Oct-2021 Gazprom reaches agreement with ENI and Moldova -23.3
24-Feb-2022 Russia invades Ukraine 51.1
25-Feb-2022 Reassurances from Gazprom on gas flows -30.7
02-Mar-2022 Yamal stops; Sanctions on EU-Russian gas joint-ventures 36.1
09-Mar-2022 Gazprom books Yamal transit -27.3
10-Mar-2022 Regular Gazprom supply to EU -18.9
23-Mar-2022 Gazprom will require payments in rubles 18.5
14-Jun-2022 Nord Stream 1 limited capacity due to turbine stuck in Canada 16.4
15-Jun-2022 Nord Stream 1 volumes drop further; implications of Freeport LNG Fire Continue to Grow 24.0
04-Jul-2022 Gazprom may ask for rubles payment also for LNG exports; Norway flows drop by 13% due to strike 10.3
25-Jul-2022 Gazprom announced Nord Stream flows cut due to renew dispute on Siemens turbine 10.5
26-Jul-2022 Nord Stream flows drop to 20% of capacity 13.2
22-Aug-2022 Three days stop to Nord Stream announced 13.2
25-Aug-2022 Gazprom states that turbines are not being repaired in Canada 10.0
29-Aug-2022 Flows to Ukraine increase; Yamal flows regularly -19.6
02-Sep-2022 Data signals Nord Stream 1 flows to resume -11.7
05-Sep-2022 New halt to Nord Stream1 flows 14.7

Table 2: Examples of natural gas supply events
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Sample TTF Brent Coal Wheat EuroStoxx VStoxx Euribor-3m Geopol. Risk
2010-2022 25.2** 1.5 22.1** 2.6** 2.3** 1.7** 3.3 0.70**
2010-2019 14.3** 2.5 1.6 1.1 1.4 1.7 0.5 0.76
2020-2022 12.3** 0.6 10.7** 2.6** 2.0** 1.4 1.4 0.59**

Table 3: Volatilities on shock and no-shock dates. For each indicator the table reports
the ratio between the volatility observed on days that are characterized by shocks to gas
supply and the volatility on the remaining dates in the sample. The ratios are computed
over the full sample as well as the 2010-2019 and 2020-2022 subsamples. ** denote a ratio
statistically different from 1 at the 1% level; * at the 5% level.

Correlation PValue Observations
Kanzig (2021) oil supply shocks -0.03 0.70 156
Kanzig (2022) carbon policy shocks 0.13 0.14 120
Baumeister and Hamilton (2019) oil supply shocks -0.03 0.68 156
Baumeister and Hamilton (2019) demand shocks 0.07 0.34 156
Caldara and Iacoviello (2022) GPR global - AR(1) residual 0.07 0.37 156
Caldara and Iacoviello (2022) GPR Russia - AR(1) residual 0.09 0.22 156

Table 4: Correlation with other shocks in the literature.
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Figure 1: Pass-through from gas and oil prices to consumer energy prices.
The figure shows the estimated βh coefficients from a local projection of the form
Yt+h = αh +βhpt + θh ′Xt−1 + ϵt,t+h, where Y is the energy component of the Euro Area
consumer price index, p is the wholesale gas or oil price and X includes four lags of Y
and p (all in logarithms). The sample runs from January 2012 to November 2022.
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Figure 2: Impact of gas supply shocks under a naive Cholesky identification
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Figure 3: Monthly instrument. The figure shows the monthly average of the gas supply
shocks obtained through narrative identification. Each monthly observation is obtained
by averaging the daily changes in one-month futures on natural gas observed on the
dates that are characterized by restrictions to gas supply. The dates are identified auditing
a large daily news dataset obtained from Refinitiv (see Table 2).
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Figure 6: Daily IRFs - LPIV

10 20 30 40

-50

-40

-30

-20

-10

0

10

20

TTF

10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

HICP core

10 20 30 40

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

IP

Figure 7: Impact of gas supply shocks - baseline VAR model
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Figure 8: Forecast Error Variance Decomposition - baseline VAR model
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Figure 9: Impact of oil supply shocks in the FAVAR model
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Figure 10: Impact of gas supply shocks in the FAVAR model
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Figure 13: FEVD for gas supply shocks in the FAVAR model
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Figure 15: Historical decomposition, role of gas supply shocks in the FAVAR model
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Table A1: Main data source

Mnemonic Description Source

Commodity and asset prices
ETMCS00 TTF - front contract Refinitiv
ETMC.01 TTF - 1m ahead Refinitiv
ETMC.02 TTF - 2m ahead Refinitiv
ETMC.03 TTF - 3m ahead Refinitiv
ETYC.01 TTF - 1y ahead Refinitiv
TRNLTTD TTF - spot Refinitiv
Natural gas, Europe European gas price World Bank - Pinksheet
DJSTOXX EuroStoxx600 Refinitiv
oilbrnp Brent spot Refinitiv
NHNCS00 Henry Hub US gas price Refinitiv
NJKCS00 Asian LNG gas price Refinitiv
TRGBNBD BNP UK gas price Refinitiv
VSTOXXI VSTOXXI Refinitiv
eexpeak EU electricty price Refinitiv
EIBOR3M Euribor-3m Refinitiv
MLB110L MLB110L Refinitiv
CBOEVIX CBOEVIX Refinitiv
LWHCS00 Wheat price Refinitiv
LMCCS00 EU coal price Refinitiv
JPEUEEN NEER Refinitiv
CBOEVIX VIX Refinitiv
EUSWI1 BGN Curncy Euro inflation-swap 1-year Bloomberg
EUSWI1 BGN Curncy Euro inflation-swap 2-year Bloomberg
EUSWI5 BGN Curncy Euro inflation-swap 5-year Bloomberg
EUSWI10 BGN Curncy Euro inflation-swap 10-year Bloomberg

Macroeconomic variables - Euro Area 19

EKCPCOREF HICP core Refinitiv
EKESCPENF HICP energy Refinitiv
EKCPHARMF HICP all Refinitiv
EKIPTOT.G Industrial production - excluding construction Refinitiv
EKESUNEMO Unemployment rate Refinitiv
EMECOIN.Q EuroCoin Refinitiv
EMPMIA..Q PMI Output Refinitiv
EMPMIS..Q PMI Business Activity Refinitiv
EMPMIANOQ PMI New Orders Refinitiv
NGTOTWP EU Gas Storage Refinitiv
Z8ESW40KP EU Gas Imports Refinitiv
U5ESZHCEP EU Gas Consumption Refinitiv
EKESTUNPO Unemployment Refinitiv
EKPROPRCF PPI Refinitiv
EKESPPCEF PPI ex. energy Refinitiv
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Figure A1: IRFs based on identification via heteroskedasticity
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Figure A2: IRFs based on instrumented local projections (LP-IV)
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Figure A3: Forecast Error Variance Decomposition - FAVAR model
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Figure A4: IRFs - VAR including GPRI
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Figure A5: IRFs - VAR including NY Fed bottlenecks indicator (GSCPI)
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Figure A6: IRFs - VAR including Covid health variables
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Figure A7: IRFs to a gas supply shock - sample until February 2022
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Figure A8: IRFs to a gas supply shock in the Pre-Covid sample
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Figure A9: Impact of gas supply shocks. VAR including headline HICP
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Figure A10: IRFs to a gas supply shock - VAR including unemployment rate
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Figure A11: IRFs to a gas supply shock - VAR including PPI
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Figure A12: IRFs to a gas supply shock - VAR including EuroCoin

43



20 40

-50

0

50

TTF

20 40

-0.6

-0.4

-0.2

0

0.2

0.4

HICP core

20 40

-6

-4

-2

0

2

4

HICP energy

20 40

-6

-4

-2

0

2

4

IP

20 40

-40

-20

0

20

Brent

20 40

-0.3

-0.2

-0.1

0

0.1

0.2

Euribor

20 40

-0.5

0

0.5

1

NEER

20 40

-10

-5

0

5

EUSTOXX600

20 40

-0.2

-0.1

0

0.1

0.2

0.3

EuroCoin

20 40

-4

-2

0

2

4

PMI Output

20 40

-4

-2

0

2

4

PMI Business Act.

20 40

-4

-2

0

2

4

PMI New Orders

20 40

-5

0

5

10

Gas Imports

20 40

-10

0

10

20

Gas Consumption

20 40

-5

0

5

IP Aluminium

Figure A13: FAVAR IRFs
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Figure A14: Country-level IRFs, consumer prices
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Figure A15: Country-level IRFs, industrial production
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Figure A16: Country-level IRFs, consumer prices
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Figure A18: Country level responses and natural gas dependence
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