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THE MACROECONOMIC EFFECTS OF TEMPERATURE SURPRISE SHOCKS

by Filippo Natoli*

Abstract

The question of how climate change and weather fluctuations affect the economy is
high on the economic research agenda, but the quantification of the effects of temperatures at
infra-annual frequencies still remains an open issue. Using daily county-level data since 1970,
I construct quarterly temperature shocks for the United States that capture the average surprise
effect of very high and low temperatures in each county and quarter, isolating their
unanticipated component. Unfavorable temperature shocks are found to reduce GDP,
consumer prices and interest rates, pointing to a slowdown in aggregate demand.
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1. Introduction®

Understanding the multifaceted effects of climate change is of utmost importance for
the design of appropriate climate policies. A long standing literature explores the dif-
ferent implications of rising temperatures for advanced and developing countries or in
hot and cold regions, focusing on the low-frequency effects on GDP growth (see Dell
et al., 2014 and Carleton and Hsiang, 2016 for a review). This evidence has two po-
tential limitations. One is that high-frequency fluctuations in temperatures may be as
important as low-frequency trends, if not more (Kotz et al., 2021). The other one is
that observed temperature fluctuations have both a predictable and an unpredictable
component, and it is not obvious a priori that these affect economic outcomes in the
same way. While a nascent literature has started to investigate temperature impacts at
business cycle frequency, it has shown conflicting evidence on key outcomes such as the
inflationary or deflationary effects, impairing the still under-investigated evaluation of
their monetary policy implications. This lack of consensus lies on the identification of
the unexpected component of temperatures, a crucial element to capture the effects of
within-year fluctuations due to the existence of local trends and seasonal patterns.

I take up these issues and propose a new way to construct unexpected temperature
shocks using county-level data. For this purpose, I resort to a concept that is common
in the empirical macro literature, which is that of surprise shocks (see Ramey, 2016 and
Nakamura and Steinsson, 2018b). Using daily county-level temperatures, I obtain quar-
terly US-wide shocks in two steps. First, I compute quarterly temperature surprises in

each county as the number of extremely hot and cold days — relatively to the county and

LAn earlier version of this paper circulated under the title “Temperature surprise shocks”. I thank
Stephen Cecchetti and the E-axes prize committee. I also thank Max Aufhammer, James Cloyne, John
Cochrane, Christian Gollier, Lars Peter Hansen, Oscar Jorda, Diego Kénzig, Emi Nakamura, Brigitte
Roth Tran, Glenn Rudebusch, Joseph Shapiro, Jén Steinsson, Johannes Stroebel, Soroosh Soofi Siavash,
Mauricio Ulate, Reed Walker, Daniel Wilson, Luca Taschini, Piergiorgio Alessandri, Pietro Catte, Va-
lerio Ercolani, Fabrizio Ferriani, Valerio Nispi Landi, Fabrizio Venditti and seminar participants at UC
Berkeley, San Francisco Fed, European Central Bank, Banca d’Italia, E-axes webinar series, 4th Behav-
ioral Macro Workshop, the ESCB Research Cluster on Climate Change and WTSE 2022 for their helpful
comments and suggestions. I also thank Luca Missori for making textual analysis on FOMC meeting
transcripts. The views expressed in this paper are those of the author and do not necessarily reflect

those of the Bank of Italy. All the remaining errors are mine.



quarter of the year — in excess those agents expect at the end of the previous quarter,
based on past realized temperatures. Temperature beliefs are constructed over multi-year
spans reflecting the documented learning behavior regarding climate-related phenomena
(Kelly et al., 2005; Deryugina, 2013; Moore, 2017, among others), and updated yearly to
reflect salience of the most recent temperature realizations. Second, I average county-level
surprises based on counties’ weight on the national economy. By construction, the ob-
tained series of US-wide unanticipated shocks nets out any seasonal and secular variation
in the temperature distribution, including local (and potentially highly heterogeneous)
trends in temperature levels and volatility. Economically, such shock reflects the sur-
prise, at quarterly frequency, of a higher/lower number of extremes than expected, and
can be used as a way to quantify the effect of severe weather on the economy, above and
beyond any adapting behavior of agents to expected temperatures.

I construct temperature shocks starting from the beginning of the most recent phase
of the global warming era (the 1970s), up to the end of 2019.% T then use these shocks
to explore their effects on the US economy in a local projection framework and I get
three main results. First, unfavorable temperature surprises have a significant negative
effect on economic activity Quantitatively, a one-standard deviation positive shock (i.e.,
about 4 severe weather days more than expected) causes real GDP to decrease in the
same quarter, with a maximum contraction of 0.3% after 2 years. Second, temperature
shocks act mainly on the demand side of the economy, as the consumer price index
also decreases following the shock. Moreover, investments and durable consumption fall
more than non-durable expenditures, which is consistent with unexpected weather events
raising awareness over future climatic risks (as in Choi et al., 2020 and Hong et al., 2020,
among others) and inducing adaptation measures and precautionary behavior. In line
with those impacts, short- and long-term interest rates on government bonds decrease,
pointing to an expansionary monetary policy reaction. Further evidence on the behavior
of the Federal Reserve, obtained by looking at the response of Greenbook forecasts to
the shocks and by analyzing discussions within the FOMC, suggests that temperatures
impact the Fed’s short-term economic projections and stimulate some debate during

official meetings. Third, the influence of temperature shocks change depending on the

2The years 1970s mark the beginning of the acceleration of global warming trends in the 20th century.



season and the type of surprise, as the effects are largest in summer and, on average,
when shocks originate in the left tail of the temperature distribution — surprises related
to cold days.

My contribution to the literature is twofold. First, I bring into the climate debate key
insights on identification developed in the macroeconomics literature. The temperature
surprise shocks I construct share the economic and econometric characteristics of other
popular shocks considered in the empirical macro field. Having a measure of unanticipated
weather-related shock can help tackle a wider range of questions than those faced in this
paper, and can be the basis of further climate research. The procedure I propose can
be easily replicated for other countries, geographical aggregation levels and weather-
related variables. Second, I quantify the aggregate short-term implications of unexpected
temperature fluctuations in the United States, including the extent of monetary policy
reaction. The comprehensive assessment of their economic impact made in this paper,
revealing a slowdown in aggregate demand, a medium-run fall in consumer prices and a
negative effect on interest rates, stands out in the literature. In this respect, looking at
temperature shocks in isolation is key, as temperatures impact the economy through a
set of transmission channels that can shape output, prices and interest rates differently
than other weather-related extreme events.

The paper is organized as follows. Section 2 reviews the theoretical and empirical
contributions related to our study. Section 3 illustrates the possible transmission mech-
anisms of temperature variations to the economy. Section 4 discusses the key issues
surrounding the identification of an exogenous temperature shocks and describes how the
shock is constructed. Section 5 presents the data used in the analysis and works out the
shock series. Section 6 proposes an empirical application to estimate the domestic effect
of temperatures on the US economy using the previously constructed shock. Section 7

and 8 provide robustness checks and additional findings, and Section 9 concludes.

2. Related literature

The effects of climate change on the economy are found to be multifaceted. Increasing
temperatures substantially raise mortality rates (Carleton et al., 2022) and reduce activity

and growth, especially in hot and poor countries (Dell et al., 2012; Burke et al., 2015;



Burke et al., 2018; Acevedo et al., 2020; Kiley, 2021; see Dell et al., 2014 and Carleton
and Hsiang, 2016 for a review of the literature). Advanced economies appear not to be
immune either, as more recent analysis points to a negative impact of temperatures even
in most G7 countries (Berg et al., 2021) and OECD economies (Ciccarelli and Marotta,
2021). Evidence of an impact of temperatures in the United States, initially mixed, is also
growing. Indeed, US output is negatively affected in a wide range of industries (Hsiang
et al., 2017; Colacito et al., 2019), with income per capita losses being concentrated during
business days (Deryugina and Hsiang, 2014).3 From a wider perspective, extreme weather
events are found to have increased their negative impact on the US economy in the most
recent decades, according to Kim et al. (2021). However, the propagation of the effects
of temperatures throughout the economy and their implications for consumer prices still
remain an open issue, especially in the case of the United States. For example, severe
weather (including extreme temperatures) are found to be, in the medium run, either
inflationary (Kim et al., 2021 and Makkonen et al., 2021) or deflationary (Faccia et al.,
2021), with radically different implications for the conduct of monetary policy. Moreover,
challenges in isolating the economic effects of temperatures remain, also because their
implications differ substantially in different seasons and sectors (Addoum et al., 2021).4
I contribute to this literature by shedding light on the impact of temperatures shocks on
the US economy, exploring their effects beyond aggregate output including consumption,
investment, consumer prices and bond yields.

From a methodological point of view, this paper contributes to the recent strand of
the literature that aims at quantifying the short-term impacts of climate change, notably
using temperature fluctuations. A common empirical approach is to retrieve shocks in
a recursively-identified structural VAR, with average temperatures included as the most

exogenous variable (Donadelli et al., 2017); the same logic has been applied to extrapo-

3A significantly negative effect is also found on agriculture (Fisher et al., 2012; Burke et al., 2015),

despite earlier evidence suggested no impact (Deschénes and Greenstone, 2007).
4While pointing to a detrimental effect on firm activity, micro evidence is still mixed. Some papers

do not find any consequence of high temperatures on firm sales and labor productivity (Addoum et al.,
2020), while others document negative effects on upstream firms in the supply chain (Custédio et al.,
2021; Pankratz and Schiller, 2021) and a reduction in the number of employees and firm establishments

in the medium run (Jin et al., 2021).



late shocks from other weather series.” Other studies employ the so-called temperature
anomalies, constructed by re-scaling actual temperatures with averages of a pre-global-
warming (or pre-1970) reference period, and use them as a direct measure of exogenous
temperature variations (Makkonen et al., 2021, among others); finally, other works adopt
a down-scaled version of the panel framework used in the multi-country literature to an-
alyze the effect of average temperatures along the business cycle. I document potential
identification issues that arise by applying standard methods to retrieve shocks from tem-
perature variations, and propose a way to tackle them by using daily data and a granular
geographic coverage.® In particular, I propose a method to compute shocks that capture,
from a business cycle perspective, the unexpected component embedded in daily tem-
perature realizations. To take into account the fact that temperature events in different
areas and seasons can produce profoundly different aggregate effects, my application to
the US case is based on county-level data — as it is done by Moscona and Sastry (2022)
to study the technological response to climate change — and takes into account seasonal
patterns as in Colacito et al. (2019) and Addoum et al. (2021).7

My notion of temperature shock is based on the variation over time in the shape of the
distribution of local temperatures. In this respect, this paper connects to those studying
the economic implications of actual or expected temperature volatility (Kotz et al., 2021;
Donadelli et al., 2021; Alessandri and Mumtaz, 2021; Diebold and Rudebusch, 2022;
Bortolan et al., 2022). While these papers isolate changes in the second moment of the
temperature distribution, my shock is defined over the number of severe temperature days
experienced by agents, linking more closely to the thickness of the distribution’s tails.

The idea of constructing macroeconomic temperature surprises is inherited from the
empirical macro literature, in which the identification of shocks typically rely on extrap-

olating an exogenous component from policy announcements or decisions (see Nakamura

QGallic and Vermandel (2020) uses a de-trended version of the soil moisture index, a measure cap-
turing the combined effect of temperatures and precipitations, in a VAR model; Cashin et al. (2017)
includes deviation of the Southern Oscillation Index (SOI) from their historical averages in a Global

VAR framework.
6Concerns regarding the commonly used methods to estimate temperature effects — particularly with

panel data — are raised, for different reasons, by Berg et al. (2021).
"My analysis is focused on identifying economic impacts of weather variations. For a review of the

literature investigating the link with longer run climatic effects, see Kolstad and Moore (2020).



and Steinsson, 2018b for a review of the literature). For example, the notion of surprise
shocks related to monetary policy refers to the contemporaneous surprise component
of monetary policy announcements (Gurkaynak et al., 2005; Gertler and Karadi, 2015;
Nakamura and Steinsson, 2018a; Miranda-Agrippino and Ricco, 2021 among others);
regarding fiscal policy, government spending surprises can reflect the unanticipated com-
ponent of public spending decisions (Forni and Gambetti, 2016, among others). As in
the case of policy surprises, what matters here is defining agents’ ex-ante temperature
expectations in the correct way: in a quarterly setting, what agents expect in a given
year can be well proxied by temperatures directly experienced during the same period
in the most recent years, i.e. those agents are used to. Defining expectations based on
past temperatures connect to the literature on learning from climatic events (Kelly et al.,
2005; Deryugina, 2013; Moore, 2017; Kala, 2019; Choi et al., 2020; Pankratz and Schiller,
2021) and, more generally, to learning from direct experience (Malmendier and Nagel,
2015).

Last, my paper links to those investigating the effects of climate change on consumer
prices and the reaction of monetary policy. With respect to output effects, the impli-
cations for prices are less clear in the literature, sometimes providing opposite evidence
(Mukherjee and Ouattara, 2021; Faccia et al., 2021). This can be due to the fact that
temperatures might have relevant demand-side — other than supply-side — effects, which
might offset the final impact on consumer prices at some particular horizons. I find that
the effects of temperatures on prices are skewed towards a price fall in the medium run.
This price response is broadly in line with that found in Faccia et al. (2021) for a panel
of countries, for which the impact is initially positive and it becomes negative in the
longer term. On monetary policy, the literature has mainly focused on how changes in
the monetary stance might have implications for climate and how central banks might
cooperate to stimulate the low-carbon transition (Hansen, 2021, among others), almost
disregarding the effects of actual weather occurrences on its conduct. I fill this gap by
documenting that monetary policy responds to the economic damage caused by temper-
ature shocks by cutting short-term rates, with effects passing through the whole term

structure of government bond yields.
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3. Transmission channels

The economic effects of temperatures may unfold through different transmission mech-
anisms. The one that received most attention in the literature is the physical impact of
extreme temperatures on human health, the so called heat stress channel. As extreme
temperatures have the potential to cause several illnesses (e.g., heat strokes), they can
hit labor supply by shrinking hours worked and inducing a fall in individual productivity
in temperature-exposed working tasks (Cachon et al., 2012; Somanathan et al., 2021).

However, temperatures might also hit the economy from the demand side. Indeed,
some papers have documented significant behavioral effects, according to which extreme
temperatures would discourage open air activities: perception of waiting time worsens
in hot days (Baker and Cameron, 1996) and social interactions with strangers are felt
as more unpleasant (Griffit and Veitch, 1971), reducing time allocated to outdoor leisure
(Graff Zivin and Neidell, 2014). These effects can put downward pressure on consumer
spending, for example through a decrease in shop retail sales (Starr-McCluer, 2000;
Roth Tran, 2022). Another demand-side effect works through an expenditure chan-
nel. Upward trending temperatures will raise electricity demand (McFarland, 2015),
increasing energy expenditures for households and firms. For the latter, the need of cool-
ing /heating down work spaces or production processes in times of exceptional highs and
lows might entail unanticipated expenses, reducing the available liquidity and, possibly,
eroding profits. A third channel of transmission, which also works through the demand
side, is related to the uncertainty over future climatic developments. Temperature oscil-
lations, if wide or frequent enough, can raise attention towards the future repercussions
of climate change — wake-up call effect — thereby influencing decision making: this is doc-
umented in Choi et al. (2020), who link extreme temperature episodes to larger financial
investments in green than brown assets. As in the case of financial investors, temperatures
can induce preference shifts among households and firms, who can modify their attitude
to hedge against the future consequences of climate change. For example, forward-looking
entrepreneurs might undertake adaptation investments to make their business more re-
silient to temperatures, which can be detrimental for short-run firm performance if this

crowds out other productive investments.®

81n the longer run, the overall effects of temperatures might be heterogeneous across firms depending
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All in all, the economic effects of temperature oscillations can be diverse, potentially
impacting both the consumption and investment components of output. In what follows,
I explain how my shock is constructed, starting from methodological issues and insights,

and test its effects on GDP, consumer prices and interest rates.

4. Constructing the shock

4.1. Key points

Using temperatures to quantify the economic effect of weather variations has some
clear advantages with respect to other weather events: temperatures are continuously
recorded and collected simultaneously across the country, allowing to compute high-
frequency statistics with granular geographic detail. However, constructing shocks using
temperaturespresents non-trivial challenges: temperatures are a very local phenomenon,
they have strong seasonal components and are pretty unforecastable beyond very short
time spans.

In order to quantify their economic impact at infra-annual frequencies, the literature
has so far adopted one of the following empirical strategy: (1) estimating country-level
shocks in a time-series framework, where shocks are retrieved within VAR models based
on fluctuations in country-averaged temperatures levels (or temperature anomalies); (2)
estimating local impacts using fixed-effect panels at sub-national level, where local shocks
are identified as deviations of average temperatures — or the count of days with tempera-
tures beyond certain thresholds — from their long-run means. Both of these methods rest
on some problematic assumptions. For example, average temperatures are not suitable
to construct “shocks” based only on their positive/negative time variations, as those can
be either good or bad for the economy depending, for example, on temperature levels
— passing from 50°F to 60°F and from 85°F to 95°F can have even opposite economic
effects. As what can be labeled as severe weather varies across location and over time,
using statistics based on the occurrence of temperatures beyond fixed thresholds (eg.,
85°F in all locations and seasons) is also problematic. A different issue related to the use

of anomalies or fixed effects is that deviations of temperatures vis-a-vis long-run averages

on whether adaptation measures spur innovation and technological progress, as explored in Cascarano

et al. (2022).
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may not be unexpected, as agents can adapt over time to higher and more volatile tem-
peratures and update their beliefs accordingly. Last, when dealing with the country-level
dimension, shocks built on country-averaged temperatures may not properly reflect the
aggregation of local shocks, as the latter may depend non-linearly from local temperature
variations.

To overcome these issues, macroeconomic shocks based on temperatures should be
defined at the most granular geographic dimension as possible, to identify their economic
impact on top of any expectations about the incidence of “good” and “bad” tempera-
tures in each localities and periods. As stated in Ramey (2016), a shock should represent
“either unanticipated movements in exogenous variables or some news about future move-
ments in the exogenous variable”. Finally, identified temporary local shocks need to be
compounded to get an aggregated macro shock.

I use daily temperatures in each US county to construct a nation-wide shock at the
quarterly frequency. The shock design is based on the following arguments. First, as
science suggests, temperatures turning very hot or cold in a short period of time can
be considered as exogenous to current and recent past economic activity, as feedback
effects to local temperatures from human-generated CO2 emissions unravel only in the
longer term. Second, very high ad low temperatures are intrinsically undesirable and,
as documented in the literature, generate mostly detrimental effects on the economy.
Indeed, while the direction of the impact can be different by season and depend on the
type of business exposed, studies recognize that, overall, both extremes are bad for the
economy. At the hearth of this outcome lies, for example, the U-shaped relationship
between temperatures and mortality documented for the United States by Deschenes
(2014) and Barreca et al. (2016), among others.” Third, I argue that while agents can be
able to find a workaround to isolated extreme temperature episodes, e.g., by rescheduling
working tasks or outdoor activities, exposure to very hot or cold temperatures could
become impossible to avoid if these events are frequent enough within a short time span,
with negative effects on human and firm activity accumulating over time. This might be

so because there are limits to adaptation in the short run, and time constraints (notably

9A similar U-shaped relationship is found with respect to the impact on crop yields, see Schlenker

and Roberts (2009).
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in business) that impede to postpone any important activity.!”

All these arguments suggest that a shock to temperatures can be inferred by looking
at the incidence of multiple extreme temperature episodes within a specific period of
time. I choose to work at quarterly frequency for different reasons. One reason is that
quarterly performance matters in firm’s business — e.g., publicly-traded companies file
reports quarterly — so substitution of work activities over time, for example due to un-
favorable temperatures, might be less feasible across quarters. Another reason, from an
empirical point of view, is that quarterly frequency is convenient to explore the effects of
temperature shocks on official GDP figures. Last, and most important, quarters roughly
coincide with calendar seasons, which are quite homogeneous in terms of temperatures.
In this respect, it is important to note that temperature highs or lows in each seasons
can be damaging even if they do not reach extreme levels in absolute terms. For exam-
ple, the impact of an exceptionally cold summer, while not reaching winter lows, can be
nonetheless material for tourism. If this is so, to be surprising extreme realizations need
to be evaluated with respect to what the distribution of temperatures is expected to be
for that period.

In this perspective, as the shape of the entire temperature distribution changes over
time, a proxy of agents’ beliefs on current temperatures must be based on past realizations
that cannot go too far back in time. One reason for that, from an economic viewpoint, is
that agents have memories and learn from their past experience: this form of experience-
based Bayesian learning, which takes multiple years, has been documented to drive the
dynamics of beliefs also related to global warming (Kelly et al., 2005; Deryugina, 2013;
Moore, 2017; Kala, 2019; Choi et al., 2020; Pankratz and Schiller, 2021). In my shock
computation, I assume that the reference distribution for each quarter rolls over time,
in order to compare current values with updated temperature beliefs. This identifica-
tion procedure marks a stark difference with all past approaches based on temperature
anomalies or on deviations from historical averages, which implicitly assume that agents

anchor their beliefs to some average values and do not update them over time. According

10For households, although available at very short horizons, daily weather forecasts may in principle
help to cope with undesirable temperatures: however, evidence shows that an anticipatory behavior of
future temperatures — inducing protective actions — is limited at best (Morss et al., 2010; Graff Zivin

and Neidell, 2014).
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to those metrics, observing a larger number of extreme realizations than in the pre-1970
period would always imply a positive shock, even though agents can be, in fact, used to
them: therefore, outdated beliefs may lead to overestimate the size of the most recent
shock. In the following section I provide the formula to recover my shock at local level,

as well as the procedure to aggregate it to country level.

4.2. A US-wide temperature shock

According to a very general framework, country-level shocks at time ¢ can be thought

as the weighted average of county-level temperature expectation errors

N

Wi [T = B f(T)| 1)

i=1 e /

~
expectation error in county i

where f(T!) is the value of a temperature statistics for county i = 1,...,k and quarter
t; E;_1f(T?) is the expectation about f(T!) made at the end of the previous quarter; wi
are the weights to aggregate local errors to a country-level shock. In order to define
f(T!) in the case of the United States, I first collect average temperatures in each county
at daily frequency. For each series, I group observations by quarter and compare the
within-quarter distribution of temperatures to a reference distribution, which is made by
pooling daily observations recorded in the same quarter of the past years: this reference
distribution is the one over which E;_{f(T?) are constructed. As five years is a sufficiently
long period for agents to learn about the shape of the underlying temperature distri-
bution, I construct the reference distribution based on that time span.!! The reference
distribution rolls over time, i.e. it is updated every year for each quarter. In each period,
I compute the 10th and 90th percentiles, which are taken as upper and lower thresholds
for current temperatures, i.e. the values beyond which actual observations are labeled as
very high or low. In order to be perfectly aligned with expectations, I posit that the share
of extreme days in current quarter must be the same of that distribution: differently, a
larger number of extremes represent a positive surprise, while a lower number makes a

negative one.

"Ppankratz and Schiller (2021) test learning periods of five, ten, and fifteen years length. As a
robustness check, I construct an alternative version of the shock using a 10-year learning window as in

Choi et al. (2020), see Section 8.
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In formulas, let Té: . being average daily temperatures in day d, quarter g and year
y, recorded in county i, for i=1,...,K counties. Denote with Fqiy = {T;qy_j, ji=1,...,5}
the empirical cumulative distribution function of the reference temperature distribution

for quarter g and year y, totalling N, , days. The reference temperature values are

ut(q), =F, (0.9 vV g={al,q2,q3,q4} (2)

lt(q)y =F,;'(0.1) ¥V g={al,q2,q3,q4} (3)

where ut(g)!, and 1t(g)}, are yearly series for upper (lower) thresholds for county i, quarter
g and year y. By combining threshold values together by quarter, I get quarterly series

of upper and lower thresholds for each county, i.e.
ut; = {ut(q)}, ¢ =aql,...,q4}

lt; = {lt(q);ﬁ q = q.17 cte 7q4}

The same can be done with the size of the reference distribution, yielding N, = {N(q),, ¢ =
ql,...,q4}. Note that I change notation for the quarter (from g to ) as ¢ denotes quarters
in yearly series, while t indicates quarterly frequency. Denoting with n, the number of
days in quarter ¢, county surprises are then evaluated as the number of beyond-threshold
days in the current quarter in excess of those in the reference distribution. Provided that,
by construction, the share of extreme days in the reference distribution is 20 percent, and
that this number must be rescaled to a single quarter dimension, county surprises can be

expressed as

1t

county surprise! = Z [I(Tjt <UD +I(T), >uth)| =N, x0.2x0.2 i €k (4)
— ’ ’
& ~ - E,_1f(T})
£(T7)

where I(x) is an indicator function that values 1 if x is true, 0 otherwise. County surprises
are the difference between the number of hot and cold days in quarter t and the number
of “extremes” in the reference distribution for that quarter. The underlying idea is that
the reference distribution, which updates quarterly, represents the information set of
economic agents, who directly experienced a range of temperatures for that season in the

past. As they have no reason to foresee any significant change in the distribution with
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respect to the very recent past, agents expect that the same number of hot and cold days
also occur in current quarter. In this setting, temperatures go beyond expectations if the
number of extreme days exceed (or is below) what agents expect.

In order to make a US-wide surprise shock, I make a weighted average of county-level

surprises occurred in the k counties by quarter:

K
US_ shock; , = Z (countyisurprisej X W’y_l) (5)
i=1

where w are county-level weights, proxying counties’ vulnerability to temperatures, which
vary at annual frequency. Weights are lagged to capture the ex-ante exposure to temper-

atures.

4.3. Insights

The constructed shock presents the following characteristics. First, it is designed to
have an unambiguous economic effect: a positive shock, meaning an unexpected increase
in the occurrence of severe daily temperatures, should impact the economy in one direc-
tion (eg., weigh negative on output), while a negative one — milder temperatures than
expected — in the opposite way. Second, it is season-specific, as surprises are measured
within the same season. Therefore, the largest economic effects during the year do not
necessarily come in winter and summer when temperatures show record lows and highs,
as what matters is how temperatures deviate from their seasonal norm. Third, as the
shock is measured with respect to updated expectations, it nets out longer-run phenom-
ena such as the intensification of climatic trends — upward-drifting and increasing volatile
temperatures — and adaptation to extreme temperatures: agents learning about the evo-
lution of temperatures can continuously adjust their resilience to them. Last, the shock
is two-sided and surprises coming from extremely hot and cold days are treated as equiv-
alent. This can be considered as a neutral assumption, as taking a stance on which tails
matter more in each season is not straightforward (Addoum et al., 2021).12

Overall, the shock measures the size of the variation in the distribution of temper-
atures in the short run. Being an aggregation of county-level surprises, it will depend

more on counties that have a higher weight in the US economy. As explained in Section

2Tn a robustness exercise, I decompose the US-wide shock into heat and cold shocks and explore their

effects separately by season using local projections, see Section 8.
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5.1, T follow the literature and propose alternative methods to rank counties based on
the potential economic damage due to unfavorable temperatures, and use them to weight

county-level surprises to get the US-wide shock.

5. Data

5.1. Temperature data

To construct my shock, I rely on two data sources. The first one is the gridded air
temperature database for continental US taken from the Northeast Regional Climate
Center. From that source I extract daily temperatures, i.e. the mean value of temper-
atures recorded during the 24 hours, averaged at county level. I consider data starting
from Jan 1, 1970, i.e. when the human-induced global warming trend started to rein-
force, and ending on Dec 31, 2019. To construct the weights to aggregate county-level
surprises, I take annual data on US counties’ economies from the Census Bureau, from
1969 to 2018. In the baseline formulation of the shock, I consider county-level population
and construct weights as the county share over nation-wide values. The rationale for
this choice is that the higher the population, the higher the incidence of agents that are
exposed to extreme temperatures, so the higher the potential impact on human health
and the economy. As a robustness, I also consider land extension — used as an alternative
to population in Colacito et al. (2019) — and other weighting schemes such as the number
of employed people, personal income or county GDP to weight temperature surprises:
while population, employed people and land extension also reflect temperature exposure,
personal income and county-level GDP proxy counties’ economic weight in the US econ-
omy, independently from their exposure. Merging the two datasets yields time series of
temperatures and weights for 3053 counties. This sample is highly representative of the
US economy, covering more than 98% of the country’s population, jobs and personal

income as of 2019.

5.2. County-level statistics

Figure 1 represents county-level statistics over geographic maps of the United States.
Panel 1 shows the growth rate of temperatures in the years 2010s with respect to the
1960s. On average, temperature grew by 1.7%, but climatic trends have been quite

diverse, with some counties experiencing temperatures rising by more than 8%, while
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Figure 1: Within country comparison
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Notes: The figure shows county-level statistics of temperatures, surprises and population.
Panel (1) shows the historical growth rate of temperatures in the most recent phase of
the global warming era (post-1970), computed by comparing average temperatures in the
years 2010s with average temperatures in the 1960 decade. Panel (2) shows the time series
variance of county-level surprises, a measure of their average historical size, computed for

the period 1975q1-2019q4. Panel (3) displays population levels in 2019.

others in which temperatures decreased by 5%. Overall, northeastern counties and the
west coast experienced the steepest temperature increase. The picture looks different

when evaluating the size of county-level surprises occurred over time, which depend on the
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evolution of the entire temperature distribution: surprise shocks in northeastern counties
have been small on average, while they have been very large in the south (Panel 2).
Overall, what matters is the combination of shocks and weights: even small surprises can
be important if occurred in highly exposed (or rich) counties. Panel 3 shows counties’
population in 2019. At that time, the 20 most populated counties, covering about 20

percent of US population, were mostly in California, Texas, New York and Florida.

5.3. The shock series

The time series of the US-wide shock is displayed in Figure 2. The shock is expressed
as the total number of surprisingly hot and cold days per quarter, and reaches a minimum
at -9 and a maximum at 14. The shock embeds the basic econometric requirements to
be used in empirical analysis: it is zero-mean and serially uncorrelated (see Appendix
Appendix A). From an economic point of view, it features the three characteristics,
explained in Ramey (2016), which make it suitable for macroeconomic applications: it
is exogenous with respect to current and lagged outcome variables, it can be considered
as uncorrelated with other exogenous economic shocks and it represents unanticipated

movements in an exogenous variable.

Figure 2: US-wide temperature shock
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Looking at the plotted series, one thing that catches the eye is that temperature
shocks have not been particularly large in the last 15 years with respect to the earlier
period. Indeed, the volatility of the shock series computed on a rolling 10-year window
slightly decreases throughout the sample, from a peak of 5 to about 3.5 days. It suggests

that adjustments in the shape of the temperature distribution have been largest — induc-
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ing greater surprises — in the early part of the sample than in recent times. This evidence
reverses the common wisdom that climate change is generating shocks of increasing size.
In fact, my shock dynamics is not in contrast with the intensification of climate-related
weather events (including temperatures extremes), as climate indicators such as the Ac-
tuaries Climate Index show.'® As I take out predictable climatic trends to capture the
unexpected component of temperature fluctuations, it is well possible that large weather
episodes with respect to the pre-1970 period have become increasingly frequent, but also
less surprising than in the past.'4

As explained, shocks are computed with respect to temperature expectations that
are backward-looking and based on the closest, past temperature data. These features
are tested in two separate robustness exercises (see Appendix Appendix B and Section
7.1). Regarding the first one, results suggest that publicly available temperature forecasts
cannot be of help in forming expectations for the quarter because days that are labeled
as surprisingly hot or cold under this procedure are also more difficult to predict at one-
and two-day horizons, as an exercise using Washington DC data shows. The second
exercise reveals that, if expectations are modeled as anchored at some pre-sample level
(eg., the average of temperatures in 1970-1974 in the same quarter), the incidence of
positive shocks — and the role of heat over cold surprises — are increasingly overestimated
over time.

The peaks in Figure 2, i.e. largest positive values of the shock, are recorded in
1977q1, 1989q4, 20004 and 2003ql. For a description of the main events surrounding
those dates, see Appendix Appendix C. All of them were mainly due to abnormally
cold periods. However, heat-related surprises have also been frequent in the history of
US temperatures. To have a flavor on how both extremes contribute in shaping US-wide

shocks, T inspect the incidence of surprisingly hot and cold days in the shock series within

I3The Actuaries Climate Index is a composite indicator of the frequency of a set of climate-related
natural events including extreme temperatures, precipitation, wind, drought and sea level rise (Ameri-
can Academy of Actuaries, Canadian Institute of Actuaries, Casualty Actuarial Society and Society of
Actuaries, 2020). The components are constructed as anomalies, i.e. in difference with respect to a fixed

reference period in the past (1961-1990).
14This higher predictability speaks to the evidence of an upward trend in annual temperature volatility

found for a panel of countries in Alessandri and Mumtaz (2021), over which the US economy may have

adapted over time.
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each quarter. Figure 3 displays positive US shocks in a bar plot where observations are
labeled as orange or blue depending on whether surprisingly hot or cold days prevailed at
each point in time. Abnormally hot and cold quarters have been almost equally frequent,
with the former being slightly more (55% of times). Moreover, their incidence has been
mostly balanced throughout the sample, with no apparent clusters in the most recent
period. This finding also dispels the myth that, in a global warming era, abnormally hot
days largely predominate over cold ones. In Section 8, I break down the US-wide shock
into heat and cold shocks and estimate the economic effect of each component separately,

finding comparable albeit not equal effects.

Figure 3: Hot vs. cold quarters
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Notes: Positive shocks only. Orange (blue) bars: quarters in which surprisingly hot (cold) days pre-

dominate.

6. The impact of temperature shocks on the US economy

In this section I use the constructed shock to evaluate the effect of temperature sur-
prises on the US economy. In the following, I describe my approach and comment on the

main findings.

6.1. Impulse-response analysis

I estimate the response of US domestic variables to the previously constructed shock

using the local projections framework of Jorda (2005). Impulse response functions (IRFs)
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are obtained from the following linear regressions:

Vits = O+ By US_shock; + Wy (L)X, —1 + vy v s=0,1,2,....H (6)

where t are quarters, y is the target variable and X; is a vector of controls.'® Estimates
are made separately for each time horizon s and for each dependent variable. IRFs are
defined by the sequence {,Bs}?zo, and inference is performed with Newey-West standard

eITors.

6.2. Target variables

In my baseline estimates, I test the effects of temperature shocks on the following
set of domestic dependent variables: GDP, private consumption and investment (all in
real terms); the CPI index, 3-month interest rate and the 10-year Treasury yield.'® On
the right hand side of Equation 6, I include a tight set of controls: linear, quadratic and
cubic time trends, seasonal dummies, eight lags (up to 2 years) of the shock and of the
aforementioned variables, and the 1-year less 3-month yield to control for the impact on
the short-term portion of the yield curve.!” A summary of all data used in this paper
is reported in Appendix Appendix D. Impulse responses are estimated on a 16-quarter
horizon, and displayed with 68% and 90% confidence bands. The baseline estimates are
carried out on the full sample, going from 1975 Q1 to 2019 Q4.

6.3. Results

Impulse response functions from a one-standard deviation shock are displayed in Fig-
ure 4. In response to a positive (unfavorable) temperature surprise, real GDP in the
United States significantly declines on impact, with the effect becoming larger over time
reaching a trough between 1 and 2 years after the shock. Both private consumption and
investment shrink, with investment being much more impacted — response is five times

larger at the trough.'® With some lag, the CPI index also decreases after the shock,

5 Note that, with respect to previous notation, I here suppress subscript y to indicate years.

16 Al variables except the 3-month rate and the 10-year yield are expressed in natural logarithm.
I7In the set of controls, variable lags are reduced to 4 in estimates made on shorter samples.

18The latter also sees some rebound, possibly due to an increase in climate adaptation investments,

which is not enough to significantly raise output in the longer term.
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suggesting that demand-side effects dominate over supply-side ones. Coherently with the
slowdown in both output and prices, short-term interest rates also decline, suggesting an
expansionary monetary policy response. This effect passes through the long end of the
government yield curve, as the 10-year yield also falls significantly.

In terms of size, the economic effects can be quantified as follows: a positive shock in
a single quarter by one standard deviation, which is equal to 4.3 days (5% of the days
in the quarter), entails a decrease in real GDP by 0.1% on impact, which increases up
to -0.3% in about two years, when also lagged effects come into play.® Temperature
effects growing over time speak to the findings in Lemoine (2021), showing that weather
shocks induce different forms of adaptation adding up dynamically to the direct effects
of the shocks. However, as temperatures are found to eventually reduce consumer prices,
there should also be other explanations for such persistent effect, pointing to a drag
on aggregate demand. Looking beyond GDP effects, the shock also implies an overall
decrease in real private consumption by 0.2%, in real investment by 1.2% and in the CPI
index by 0.2%. Reg