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Abstract 

I propose an affine discrete-time model, called Vector Autoregressive Gamma with volatility 
Bursts (VARG-B), in which volatility, in addition to frequent and small changes is 
characterized by periods of sudden and extreme movements generated by a latent factor, 
which evolves according to the Autoregressive Gamma Zero process. One key advantage of 
the discrete-time specification is that it makes it possible to estimate the model via the 
Extended Kalman Filter. Moreover, the VARG-B model leads to a fully analytic conditional 
Laplace transform, resulting in a closed-form option pricing formula. When estimated on 
S&P500 index options and returns, the new model provides more accurate option pricing and 
modelling of the IV surface compared with a number of alternative models. 
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1 Introduction1

The price of options depends on ”extreme” movements of the underlying asset price,

in addition to idiosyncratic asset changes. Since asset prices must follow semimartin-

gales to avoid arbitrage opportunities, the literature has mainly focused on continuous

time models. In this framework, extreme movements (typically associated with unex-

pected macroeconomic news announcements) are commonly modelled as discontinuities

in the price trajectories: jumps. Starting from the seminal paper of Merton (1976), meth-

ods to distinguish between volatility and jump risk were assessed to fit low frequency

data. However, the results provided in Christensen, Oomen, and Podolskij (2014) (COP

henceforth) weaken the consensus in the literature about the presence of jumps in asset

price! Using intraday data, COP examine the role of the jump component by applying

new econometric techniques to a set of individual order-level tick data. The authors find

that jumps account for only about 1% of quadratic price variation, which is substantially

smaller than what typically found by lower-frequency literature. Moreover, COP show

that the price continuity is often preserved. They suggest that sharp movements of asset

prices over short periods of time are generated by high volatility episodes instead of gen-

uine price jumps. The much reduced role for jumps and, consequently, the elevated role

for volatility process, calls for a stronger effort in modelling the volatility dynamics and

carries important implications for asset pricing models.

One goal of this paper is to replace jumps with volatility bursts in the dynamics of

the underlying and understand if this replacement carries over to option valuation! This

challenge is addressed in discrete time by specifying an affine discrete-time model, called

Vector Autoregressive Gamma with volatility Bursts (VARG-B), which is characterised

by a multifactor volatility specification. In the VARG-B model volatility experiences, in

addition to frequent and small changes, periods of sudden and extreme movements, i.e.

1I would like to thank Sergio Pastorello, Roberto Renó, Fulvio Corsi, Giacomo Bormetti and Cecilia
Mancini for their helpful comments and suggestions. The views expressed in this paper are those of the
author and do not necessarily reflect those of the Bank of Italy.
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volatility bursts. From a modelling perspective, the introduction of volatility bursts in

a discrete time setting requires an additional state variable in the volatility dynamics.

In this work, the volatility is assumed to be latent, and at each point in time, it is the

result of the sum of two independent random variables. The frequent and small changes

are generated by the first state variable, called continuous component, while the volatility

burst component generates the volatility changes due to extreme price movements. The

first variable is modelled as an Autoregressive Gamma process (ARG), see Gourieroux

and Jasiak (2006), while the second follows an Autoregressive Gamma Zero (ARG-Zero)

process. This last process is proposed in Monfort et al. (2014) to model the Zero Lower

Bound in the term structure of interest rate. The ARG-Zero process, whose introduction

into the volatility dynamics represents the main innovation of this paper, is a suitable

statistical channel for describing sudden volatility changes since it is coherent with non-

negative volatility bursts and it accommodates extended periods of zero or close-to-zero

values.

A key advantage of the proposed specification is that the model can be estimated us-

ing the Extended Kalman Filter, which allows filtering the time series of both volatility

components. Thanks to this flexible estimation strategy it is possible to understand the

relative contribution of both the volatility factors to the total conditional variance of log-

returns. Moreover, the VARG-B model leads to a fully analytic conditional Laplace trans-

form, thanks to its exponential affine form, which is mainly attractive for option pricing

purposes. Indeed, the change of measure is performed adopting an exponentially affine

stochastic discount factor which preserves all the analytical results in order to obtain a

closed-form option pricing formula. Finally, the affine discrete-time model presented in

this paper is intuitive and easy to estimate.

Specifically speaking, the VARG-B model extends the LHARG-RV model by Majew-

ski et al. (2015) in which the volatility does not display sudden, and large changes and is

perfectly observed through a realized measure (RM). More recently, Alitab et al. (2020) in-

troduce the jump variation in the volatility dynamics which is, also in this case, observed

in all its components through high frequency data-based estimators. To the best of my
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knowledge Caporin et al. (2015) and Caporin et al. (2017) represent the only attempt at

modelling the occurrence and the probability of volatility bursts in a discrete time setting.

Caporin et al. (2015) extend the HAR model of Corsi (2009) with a linear and additive

volatility burst factor (HAR-V-J, see Andersen et al., 2007 and Corsi et al., 2010) finding

a positive probability of volatility bursts which are more likely to happen during finan-

cial crises. Caporin et al. (2017) extend the MEM model of Engle and Gallo (2006) with

a multiplicative volatility burst factor (MEM-J). The authors find that the MEM-J signif-

icantly increases the model fit on the right tail of the volatility distribution2. In all these

papers the authors assume that the price process is characterised by jumps and except for

Alitab et al. (2020) which explicitly provide the jump variation component, they remove

the spikes in the RM time series using a local volatility estimator: the RM is assumed to

be the proxy of the returns integrated variation. Clearly, assuming the presence of jumps

in the price process, the ability to disentangle the two sources of risk, strictly depends on

the methodology employed for the jump identification and the results can be driven by

the method chosen.

This paper differs from this discrete time literature since the price process is assumed

to be free of jumps (following the COP intuition) and the extreme price movements being,

instead, a by-product of volatility bursts. Since volatility is assumed to be latent, informa-

tion about the state variables is recovered through a measurement equation introduced

in the estimation procedure.

The empirical results on a large sample of S&P500 Index options emphasise the supe-

rior ability of the VARG-B model in pricing options along moneyness and time to maturity

dimensions. These findings indicate the benefit of a multi-factor volatility specification

that allows for volatility bursts in addition to usual changes.

The paper is organised as follows. In Section 2, I develop the return process and

2Caporin et al. (2017) compare alternative MEM specification (no jumps, constant and time-varying jump
intensity) with respect to their ability in fitting the dynamics of the series analysing the dynamic properties
of the residuals. Moreover, the authors study the ability of the MEM specifications to correctly predict the
probability of tail events providing a Volatility-at-Risk exercise.

7



the volatility dynamics under the historical measure. Section 3 estimates the historical

process via pseudo maximum likelihood with Extended Kalman Filter. In Section 4, I

propose an economic application where I analyse the performance of the VARG-B model

in an option pricing exercise. In particular, I derive the change of measure for the new

model. I calibrate the model on options, provide the pricing and analyses its performance.

Finally, Section 5 concludes. The proofs of all propositions are provided in the appendix.

2 The VARG-B model

The goal of this section is to build a model for option valuation that allows for volatil-

ity bursts in the return dynamics. I develop a model in which volatility is latent in all its

components.

2.1 The VARG-B physical dynamics

The VARG-B model explicitly accounts for the probability of having large and sudden

movements in the volatility dynamics through an additive component modelled with a

new process, i.e. ARG-Zero.

Under the VARG-B specification the discrete-time stochastic volatility model for daily

log-returns is the following:

yt+1 := log

(
St+1

St

)
= rt+1 + λ ft+1 +

√
ft+1εt+1 (1)

where rt+1 denotes the risk-free rate at time t + 1, assumed to be exogenous, and where λ

is the market price of risk. The innovation εt+1 is i.i.d. N (0, 1). Moreover, the latent factor

ft+1 denotes the true volatility, and it is equal to the sum of two independent components:

ft+1 = f1,t+1 + f2,t+1. (2)
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Given the information set at time t, denoted Ft, the continuous volatility component

follows an Autoregressive Gamma (ARG) process:

f1,t+1|Ft ∼ γν(β1 f1,t, µ1) for ν > 0, β1 > 0, µ1 > 0 (3)

The process in (3) is defined by a shape parameter ν, a noncentrality parameter β1 f1,t

and a scale parameter µ1. The history of the process determines the entire noncentrality

coefficient β1 f1,t, which is written as a linear function of the lagged value of the process.

Since the ARG process is a discretized version of the Cox, Ingersoll Jr, and Ross (1985)

(CIR) model, it is sufficiently flexible to represent the volatility of financial asset.

Moreover, given Ft and f1,t+1, the volatility burst component follows an Autoregres-

sive Gamma Zero (ARG-Zero) process:

f2,t+1|Ft ∼ γ0(d2 + β2 f2,t, µ2) for d2 ≥ 0, β2 > 0, µ2 > 0 (4)

denoted as ARG0(d2 + β2 f2,t, µ2).

In (2) f1,t+1 allows for frequent and small changes that characterize the volatility dy-

namics and it is called continuous volatility component. f2,t+1 represents an ”exceptional”

volatility component that let volatility to experience periods of big and sudden changes.

The latter is the focus of this model and is called volatility burst component.

On the contrary of the ARG by Gourieroux and Jasiak (2006), the process in (4) is

characterised by a zero lower bound: f2,t+1 can take zero value with a strictly positive

probability, stay at zero for a more or less extended period of time and become positive

again. In order to understand the behaviour of an ARG-Zero process, I define its main

characteristics.

The conditional probability density function p( f2,t+1|Ft) of the ARG0(d2 + β2 f2,t, µ2)
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is given by:

p( f2,t+1|Ft; φ) =
+∞

∑
z=1

[
exp(− f2,t+1/µ2) f z−1

2,t+1

(z− 1)!µz
2

× exp[−(d2 + β2 f2,t)](d2 + β2 f2,t)
z

z!

]
1{ f2,t+1>0}

+ exp(−d2 − β2 f2,t)1{ f2,t+1=0}

(5)

where φ = d2, β2, µ2.

Moreover, ft+1 in (2) is stationary if and only if ρj = β jµj < 1 for j = 1, 2 3.

The zero-point mass in equation (5) which is allowed by the zero shape parameter em-

phasizes the key feature of the ARG-Zero process: the zero lower bound. In fact, the

probability of f2,t+1 of reaching zero is equal to the second term on the right hand side of

equation (5), i.e. exp(−d2 − β2 f2,t). Another important feature of the ARG-Zero process

is represented by the positive intercept, i.e. d2. The conditional probability of f2,t+1 of

remaining at the zero lower bound is exp(−d2). When d2 = 0, the zero lower bound be-

comes an absorbing state, since exp(−d2) = 1. On the contrary, the presence of a strictly

positive intercept prevents f2,t = 0 to be an absorbing state: if d2 > 0, than exp(−d2) < 1.

Indeed, the lower is d2, the greater is the conditional probability of having more extended

periods of zero values for f2,t+1.

The VARG-B model in (1)-(4) has an important advantage from the option pricing per-

spective: it leads to a fully analytic conditional Laplace transform. Despite the complexity

of the conditional density function in (5), the conditional Laplace transform is easy to ma-

nipulate, and it is equal to:

3The stationarity condition for the ARG-Zero process is illustrated in Corollary 2.1.2 in Monfort et al.
(2014). The stationarity condition for the ARG process is shown in Proposition 2 in Gourieroux and Jasiak
(2006).
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ϕt(u) : = E [exp(u1 f1,t+1 + u2 f2,t+1)|Ft]

= exp
[

u1µ1

1− u1µ1
β1 f1,t +

u2µ2

1− u2µ2
(d2 + β2 f2,t)− ν log(1− u1µ1)

]
for u1 <

1
µ1

and u2 <
1
µ2

(6)

I illustrate the relevance of the ARG-Zero process for volatility bursts modelling with

a simple simulation exercise. The dynamics of the volatility burst factor is given by the

ARG0 in (4) with d2 = 0.1 and µ2 = 0.01.

The chosen parameters are calibrated in such a way that the unconditional mean and

the unconditional variance of f2,t are about 0.2 and 0.4, respectively. Given these pa-

rameters, I simulate 1000 periods for the process. The conditional probability for f2,t of

remaining at zero is equal to exp(−d2) = exp(−0.1) = 0.9.

From Figure 1, f2,t is characterised by extreme and sudden changes as well as by many

episodes of periods of zero values. This behaviour of the ARG0 process is particularly

appealing to model the extraordinary nature of volatility bursts.

From an economic point of view, if the volatility burst component is modelled as an

ARG-Zero process, d2 identifies the average persistence of zero lower bound regimes.

Given the exceptional characteristic of the bursts, d2 should be greater than zero and small

in magnitude. The evidence provided in Section 3.3 confirms this theoretical feature.

3 Model estimation

In the previous section, I have laid out the general framework for incorporating volatil-

ity bursts when modelling return dynamics. In this section, I develop a Kalman filter-

based estimation method to estimate the physical (P) parameters using daily observations

on returns and information about volatility provided by the realized volatility measure

(Andersen and Bollerslev, 1998). I also briefly describe two alternative models that I es-
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Figure 1: Simulated path of the volatility burst factor defined by the following conditional
distribution: f2,t+1|Ft ∼ γ0(d2 + β2 f2,t, ν2). T is the total number of periods considered.

timate in order to have an idea of the relative VARG-B performance. The purpose of this

section is dual: to illustrate how to estimate physical parameters on real data, and to pro-

pose empirical support to the VARG-B specification in which price jumps are replaced by

volatility bursts.

3.1 Estimation strategy

The VARG-B model can be represented in a state-space form which can be estimated

via pseudo-maximum likelihood with the Extended Kalman filter. The pseudo maximum

likelihood is feasible since the first two conditional moments are available in closed-form.

The Kalman filter strategy is natural in this framework since the VARG-B model is affine

in the state variables.

The first measurement equation is directly obtained from the daily log-returns dynam-

ics in (1). Assuming that returns of financial assets arise through discrete observations

from an underlying continuous-time process, I augment the state space model with a sec-
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ond measurement equation. The latter measurement equation relates the latent volatility

to an ex-post estimator of daily quadratic variation of the log-price process over the pe-

riod t + 1, i.e. Realized Volatility (RV) by Andersen and Bollerslev (1998).

The transition equations are given by the factor dynamics, specified according to the

conditional mean and the conditional variance:

E( f jt+1|Ft) = µj(dj + β j f jt) + µjνj for j = 1, 2 (7)

V( f jt+1|Ft) = 2µ2
j (dj + β j f jt) + µ2

j νj for j = 1, 2 (8)

where ν1 = ν as defined in (3) and ν2 = 0 as in (4).

In what follows, I formally lay down the state space model.

Using (7) and (8), the transition equations can be expressed as follows:

f1,t+1 = µ1ν + µ1β1 f1,t +
√

µ2
1(ν + 2β1 f1,t)υ

1
t+1 (9)

f2,t+1 = µ2d2 + µ2β2 f2,t +
√

µ2
2(2d2 + 2β2 f2,t)υ

2
t+1 (10)

where υ1
t+1 and υ2

t+1 are independent white noises with zero mean and unit variance.

The measurement equations describe the relationship between two types of observ-

able variables and both the latent volatility factors:

yt = rt + λ( f1,t + f2,t) +
√

f1,t + f2,tεt (11)

RVt = η0 + η1( f1,t + f2,t) + ζt (12)

ζt ∼ IIDN(0, σ2) and εt and ζt are independent.

The innovation term in (12) can be interpreted as a measurement error with zero mean

and constant variance. Indeed, the estimator RV is characterised by an attenuation bias

generated by the finite nature of the price sample (classic measurement problem) and by

the absence of trading during the night (overnight effect).

I estimate parameters in (9)-(12) via pseudo-maximum likelihood with the Extended
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Kalman filter. This estimation strategy allows to deal with two problems which makes

us depart from the case where the linear Kalman filter is optimal. First, the conditional

distribution of the factors in (9) and (10) is not normal but, if the conditional mean and

variance of both state variables are correctly specified, I could expect that the estimates

obtained from the Kalman filter to be consistent with the QML principle. From a practi-

cal point of view this means that the true log-likelihoods derived from conditional non-

central Gamma distributions are replaced by Gaussian distributions. Second, the model

is nonlinear since the conditional variance of the factors in (9) and (10) depends on the

current values of both factors. Since this nonlinearity, the usual Kalman filter cannot be

applyied. However, an approximate filter can be obtained by linearizing the model, i.e.

applying the Extended Kalman filter. The application of this estimation strategy repre-

sents a strength of the VARG-B model. The availability of a state-space model makes

the implementation of such a procedure straightforward, letting data dictate the relative

contribution of both factors to the total volatility.

3.2 Alternative models

The VARG-B model is a discrete time specification in which the volatility dynamics is

given by the sum of two independent factors.

First, by setting f2,t+1 = 0 in (2), I obtain the standard ARG model by Gourieroux and

Jasiak (2006).

Second, I can shut down the volatility burst component, and I can allow for long-

memory in volatility, providing the HAR specification of Corsi (2009) for the non-central

parameter in (3). In this case, I obtain the HARG model proposed in Corsi et al. (2013).

Coherently with the basic idea of Corsi et al. (2013) and Majewski et al. (2015), in both

the alternative specifications, the volatility (continuous component only) is assumed to

be observed through the RV measure. In this way, the original estimation strategy is

maintained and the RV-based option valuation framework is not distorted.

Finally, following the main motivation of this paper, I consider the LHARG-ARJ by
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Alitab et al. (2020). The LHARG-ARJ extends the LHARG-RV model by Majewski et al.

(2015) by adding a jump component in the log-return dynamics. To guarantee a fair com-

parison, I dismiss the leverage component from the volatility dynamics and I consider an

autoregressive gamma process of order one for the volatility. In this way I can focus on

the role of the jump component and the volatility burst factor in generating extreme price

movements and, in turn, in pricing options.

3.3 Parameter estimates

The dependent variable in the first measurement equation is defined using daily re-

turns of the S&P500 Index from January 5, 1996 to September 12, 2017. The RV time series

in the second measurement equation is obtained using returns on the S&P500 Index from

January 5, 1996 to September 12, 2017 sampled at 5 minutes frequency which represents

the trade-off between accuracy and microstructure noise (Madhavan, 2000, Biais et al.,

2005 and McAleer and Medeiros, 2008 for surveys on this topic).

Based on the two measurement equations (11)-(12) provided in the state space model,

daily observations are used to filter both state variables, i.e. continuous and volatility

burst. Table 1 shows the estimated parameters, and the relative standard errors for the

VARG-B model and the alternative models presented in Section 3.2. According to the esti-

mates, all VARG-B coefficients are statistically different from zero. Note that a significant

and small value for the intercept d2 translates in an increasing ability of the ARG-Zero

process to describe extraordinary and exceptional changes in the volatility, thus support-

ing the proposed specification. On the one hand, a small value for the intercept in (4)

increases the probability of having extended periods of zero values after sudden move-

ments. These unexpected changes have a specific persistence given by µ2β2. On the other

hand, a strictly positive value for d2 prevents the zero lower bound of being an absorbing

state. These are the two main features that most motivate a model specification for bursts

in the volatility dynamics.
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Table 1: Estimate of the parameters under the historical measure and standard errors (in
parenthesis) for the VARG-B, ARG, HARG and LHARG-ARJ model. The parameters re-
ported in the first column are estimated via pseudo maximum likelihood with Extended
Kalman filter. The parameters of both ARG and HARG models are estimated using Max-
imum Likelihood. The historical data for all models are daily RV computed on 5-minutes
data and daily returns of the S&P500 Index from January 5, 1996 to September 12, 2017.

VARG-B ARG HARG LHARG-ARJ

Parameter Parameter Parameter Parameter

λ -0.0792 λ 1.4350 λ 1.4350 λc 1.9000
0.00002256 1.6132 1.6132 0.000213

ν 0.0195 µ 0.2831 µ 0.2485 λj 1.2500
0.000149 0.0084 0.0077 0.000184

d2 0.1865 βd 1.1656 βd 1.1029 θ 0.2974
0.0001996 0.01060 0.01059 0.000207

β2 0.8987 ν 2.3694 βw 1.6070 k 0.0001
0.00000068 0.0862 0.2024

β1 0.8195 βm 0.9730 βd 2.3184
0.0000418 0.1496 0.00000004

σ 0.0078 ν 0.3480 Λ -0.0004
0.0000393 0.1014 0.0000007

η0 0.2228 δ 0.0023
0.0000286 0.000191

η1 0.4380 ω̄ 0.0125
0.0000127

ξ 0.7400
0.000185

ζ 0.0040
0.000191

Log-likelihood -12375 -33286 -32951 -15209

This result is in line with the updated4 time series of both volatility factors reported

in Figure 2. Indeed, f1,t in (3) describes the small and frequent volatility changes while

f2,t in (4) allows volatility to experience extraordary movements due to unexpected news.

Figure 3 shows the RV and the updated values for ft = f1,t + f2,t. The VARG-B model fits

4At each point in time, the current value of the state variable is updated on the basis of the observations
of both returns and RV.
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volatility changes, measured ex-post by RV. As explained before, the measurement error

in (12) can be linked to the attenuation bias characterising RV. Indeed, augmenting the

state space model with a relation between state variables and observed data deals with

the usual errors-in-variables problem.

Figure 2: This figure shows the updated time series of the continuous ( f1,t, green line) and
the burst ( f2,t, blue line) factors which are obtained applying the estimation procedure
based on the Kalman filter. The sample consists of S&P500 Index data from January 5,
1996 to September 12, 2017.

The model selection approach based on both the AIC (Akaike, 1998) and the BIC

(Schwarz et al., 1978) select the VARG-B to model volatility. In particular, for both in-

formation criteria, the VARG-B model registers the smallest value. Indeed among the

models presented in this section, the VARG-B offers the best goodness of fit.
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Figure 3: This figure shows the comparison between RVt (top figure) and the updated
time series of ft (bottom figure). The sample consists of S&P500 Index data from January
5, 1996 to September 12, 2017.

4 Model evaluation

In this section, I show how the VARG-B model developed under the physical measure

can be used for option pricing. I first derive the moment generating function under the

P measure for the VARG-B model and show that it is affine. I then define a stochastic

discount factor which implies that the risk-neutral (Q) moment generating function is of

the same form as its physical counterpart. Then I approximate option prices using the
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COS efficient scheme5 by Fang and Oosterlee (2008). All the propositions presented in

this section are directly derived from the theoretical results presented in Majewski et al.

(2015). Empirical results and VARG-B pricing performance follow.

4.1 The historical moment generating function

Equations (1) and (3)-(4) completely characterize the VARG-B model under the P mea-

sure. A great advantage of the VARG-B model is that its Moment Generating Function

(MGF) satisfies the affine property.

Proposition 1. The setup in Section 2.1 satisfies the Assumption 1 in Majewski et al. (2015):

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
(13)

= exp
[
A(z, b) + B(z, b)′ · ft

]
for some functions A : R×Rk ×Rk → R,B : R×Rk ×Rk → Rk given in (A.9) and (A.10).

Proof. See Appendix A.

Proposition 1 implies that the moment generating function of log(ST/St) under the P

measure is given by a recursive relation in terms of the functions A and B.

Proposition 2. Let yt,T = log(ST/St), under P, the MGF for the VARG-B model has the fol-

lowing form

ϕP
t,T,z = EP[ezyt,T |Ft] = exp

(
at + b′tft

)
(14)

with z ∈ R, b ∈ R2 and where

5The COS method is an option pricing numerical method for European options based on the Fourier-
cosine series. It takes advantage of the relation of the characteristic function with the series coefficients of
the Fourier-cosine expansion of the density function. It is available once the characteristic function of the
log-asset price is known and it has been proved to be fast and efficient.
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as = as+1 + zr− νW1,s+1 + d2V2,s+1 (15)

b′s = b′s+1 + (V1,s+1, V2,s+1)β (16)

with

xh,s+1 = xh(z, bs+1) = b′s+1 + zλ +
z2

2
, h = 1, 2

subject to the initial conditions:

aT = 0, b′T = 0

The functions V and W are defined as follows:

Vh,s+1 = Vh(xh,s+1, µh) =
xh,s+1µh

1− xh,s+1µh
, h = 1, 2

W1,s+1 = W1(x1,s+1, µ1) = log [1− x1,s+1µ1]

Proof. See Appendix D

The parameters under P are given by

ψ = [λ, ν, µ1, µ2, d2, β1, β2] (17)

Apart from λ, all of them are assumed to be nonnegative.

4.2 The VARG-B risk-neutral dynamics

I introduce an assumption on the Stochastic Discount Factor (SDF) that allows to ob-

tain the risk neutral distribution and, therefore, to compute option prices. In specifying
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the SDF, I follow Majewski et al. (2015)6:

Mt,t+1 =
exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)

EP[exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)|Ft]
(18)

This SDF is a very flexible specification since it identifies two risk premia, i.e. δ11 and δ12

in addition to the usual equity premium, i.e. δ2.

More precisely, δ11 compensates for the continuous volatility while δ12 compensates for

the burst source of risk7.

Proposition 3. Under the model specification in (1) and (3)-(4) with the SDF specified as in (18),

the VARG-B satisfies the no-arbitrage condition if and only if

δ2 = λ +
1
2

(19)

Proof. See Appendix B

Given the result in Proposition 3 and the market incompleteness, δ11 and δ12 are free pa-

rameters to be calibrated while δ2 is considered as fixed. So, the no-arbitrage condition

fixes the level of the equity risk premium, while both the continuous and burst variance

risk premia are free parameters to be calibrated on the option prices sample.

The SDF in (18) belongs to the family of the exponential-affine factors. Indeed, it is possi-

ble to compute a recursion under the Q measure analogous to that given under P.

Corollary 4. Under Q, the MGF for the VARG-B model has the following form:

ϕQ
δ2,δ1

(t, T, z) = EQ (ezyt,T |Ft) = exp
(
a∗t + b∗′t ft

)
(20)

6Corsi et al. (2013) introduce a SDF involving both the log-returns and Realized Volatility, applying a
modified version of the standar discrete-time exponential affine SDF applied in Gourieroux and Monfort
(2007). Majewski et al. (2015) present a more general and flexible version.

7Many authors (see Gagliardini et al., 2011,Christoffersen et al., 2013, Corsi et al., 2013 and Majewski
et al., 2015) recognized the importance of variance-dependent risk premia in SDF in reconciling the time
series properties of asset returns with the cross-section of option prices.
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where:

a∗s = a∗s+1 +A(z− δ2, b∗s+1 − δ1)−A(−δ2,−δ1) (21)

b∗s = b∗s+1 + B(z− δ2, b∗s+1 − δ1)−B(−δ2,−δ1) (22)

with terminal conditions: a∗T = 0,b∗T = 0 andA(·, ·), B(·, ·) as in (A.9) and (A.10), respectively.

Proof. See Appendix C

The comparison between the physical and the risk-neutral MGFs provides a one-to-

one mapping between the set of parameters under P and the set of parameters under

Q.

Proposition 5. Under the risk-neutral measure, Q the latent volatility still follows a VARG-B

process with parameters

dQ
2 =

d2

1− y∗2µ2
βQ

1 =
β1

1− y∗1µ1
µQ

1 =
µ1

1− y∗1µ1

βQ
2 =

β2

1− y∗2µ2
µQ

2 =
µ2

1− y∗2µ2
νQ = ν

(23)

where y∗h = −δ1h − δ2λ +
δ2

2
2 for h = 1, 2.

Proof. See Appendix E

The result proved in Proposition 5 and the analytical tractability of the VARG-B process

simplify the computation of the risk-neutral MGF. In fact, the latter is obtained starting

from the MGF under P and substituting the parameters under P with those under Q.

Corollary 6. Under Q the MGF for the VARG-B model has the same form as in (14) with equity

risk premium

λQ = −1
2 and dQ

2 , βQ, µQ
1 , µQ

2 , νQ as in (23).

Therefore, ft is still a VARG-B process under the Q measure and the two risk premia

δ11 and δ12 are the only parameters to be calibrated on option prices, as explained in
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Section 4.4. Once the values of δ11 and δ12 are calibrated, all the parameters in (23) can be

computed in closed-form following Corollary 6.

4.3 Data and stylized facts

The data used in this exercise consist of European call option prices written on the

S&P500 Index for the same time period of data used in Section 3.3. The observations for

the option prices range from January 5, 1996 to December 30, 2005. I only use Wednesday

options data8 yielding a total of 30061 observations. As it is customary in the literature

(see Barone-Adesi et al., 2008, Corsi et al., 2013, Majewski et al., 2015), I filter out op-

tions with time to maturity less than 10 days or more than 360 days, implied volatility

larger than 70% or prices less than 0.05. To perform the analysis, I split options into

different categories according to time to maturity and moneyness. Moneyness (m) is de-

fined as the underlying index level divided by the option strike price. A call option is

defined as DOTM (deep out-of-the-money) if m≤ 0.94, OTM if 0.94 <m≤ 0.97, ATM if

0.97 <m≤ 1.03, DITM if 1.03 <m≤ 1.06 and ITM if m> 1.06. Based instead on the time

to maturity (T), options are classified in four categories: short maturity if T≤50, medium-

short maturity if 50 <T≤ 90, medium-long if 90 < T≤ 160 and long maturity if T> 160.

Table 2 reports some descriptive statistics for the options classified by the moneyness and

maturity definitions given above. From Panel A, the DOTM call options are heavly traded

especially at longer maturity. According to the summary statistics in Panel B and Panel C,

the observed implied volatility increases as option intrinsic value increases. Hence, ITM

(DITM) calls are more expensive compared to OTM (DOTM) calls.

8The first motivation for using Wednesday data is that Wednesday is the day of the week least likely to
be a holiday. Therefore, it is less likely than other days to be affected day-of-the-week effects (see Bakshi
et al., 1997, Christoffersen et al., 2008).
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Table 2: Summary statistics for the S&P500 Index option data. The observations refer to
each Wednesday during January 5, 1996 to December 30, 2005. Panel A shows the number
of option contracts sorted by moneyness and maturity. Panel B shows the average option
prices classified by moneyness and maturity. Panel C shows the average implied volatili-
ties sorted by moneyness and maturity. Implied volatilities are calculated using the Black
& Scholes formula. T refers to the number of days to maturity while m represents the
moneyness defined as the underlying index level divided by the option strike price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160 All

Panel A: Number of Contracts

m≤0.94 2419 2212 1426 2550 8607
0.94<m≤0.97 2370 1341 540 665 4916
0.97<m≤1 2940 1640 605 799 5984
1<m≤1.03 2362 1115 446 622 4545
1.03<m≤1.06 1345 472 259 247 2323
m>1.06 1615 844 550 625 3634
All 13051 7624 3826 5508 30009

Panel B: Average Option Prices

m≤0.94 0.93 3.28 7.08 17.19 7.37
0.94<m≤0.97 3.72 11.17 23.35 46.51 13.70
0.97<m≤1 12.37 25.23 40.67 65.73 25.88
1<m≤1.03 29.28 42.04 56.23 82.08 42.28
1.03<m≤1.06 53.39 65.26 81.13 103.61 64.23
m>1.06 117.26 152.84 182.53 197.01 149.12
All 28.95 35.45 50.65 59.38 38.95

Panel C: Average Implied Volatility

m≤0.94 0.1753 0.1570 0.1496 0.1475 0.1581
0.94<m≤0.97 0.1407 0.1385 0.1486 0.1558 0.1430
0.97<m≤1 0.1466 0.1503 0.1610 0.1625 0.1512
1<m≤1.03 0.1601 0.1627 0.1650 0.1670 0.1622
1.03<m≤1.06 0.1848 0.1791 0.1759 0.1776 0.1819
m>1.06 0.2628 0.2359 0.2287 0.2042 0.2413
All 0.1716 0.1633 0.1662 0.1606 0.1668
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4.4 The calibration of risk premia

Given the estimates of the parameters under the P measure obtained via the procedure

described in Section 3.1, the risk premium parameters in (18) need to be calibrated to

derive the risk-neutral dynamics.

Specifically, δ2 is determined by the no-arbitrage condition in the Proposition 3, and

δ11 and δ12 are calibrated on observed option prices. The purpose of the calibration is

the selection of risk premia such that the model implied unconditional volatility under

the risk-neutral measure matches the unconditional risk-neutral volatility. Notice that

it is not possible to directly observe the latter, then I follow the same strategy used in

Corsi et al. (2013). The market-observed implied volatility (IV) is used as an instrument

to be matched with the model-generated IV since both depend on the volatility under Q

measure. The two risk premia, δ11 and δ12, are calibrated by minimising the loss function

which measures the distance between the model generated IV for two options and the

market IV corresponding to the same two options in the sample:

f (δ11, δ12) =

√
1
2
[
(IVmkt

1 − IVmod
1 )2 + (IVmkt

2 − IVmod
2 )2

]
× 100 (24)

where IVmkt
i,t is the market IV of the option i, IVmod

i,t is the IV computed from the model

for the same option, with i = 1, 2. In order to deal with the risk premia calibration for the

VARG-B model, I randomly select two ATM options from the most liquid ones, observed

in two different days 9.

Then, I proceed in pricing options: first I map the parameters of the model estimated

under P into the parameters under Q according to Proposition 5; second I approximate

option prices by the COS method introduced by Fang and Oosterlee (2008), using the

9For the alternative models, ARG and HARG, the motivation behind the calibration is the same but,
since the risk premium to be calibrated is only δ11, I select just one option from the sample. To avoid the
problem of a possible unfair comparison among models, I randomly choose one of the two options used to
minimise the objective function in (24). I also calibrate both ARG and HARG models on the latter option
(the option that is not randomly selected at the beginning), and the results are comparable in terms of
pricing performance.
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MGF formula in Proposition 2 with the parameters in Proposition 5. Finally, I compute

the IVs for each model. As expected10, both δ11 and δ12 are negative and equal to -0,8197

and -0,2386, respectively.

4.5 Option pricing performance

As it is customary in the literature, I analyse the option pricing performance of each

model in terms of the Root Mean Square Error on the percentage IV:

RMSEIV =

√√√√ 1
N

N

∑
i=1

(IVmkt
i − IVmod

i )2 × 100 (25)

where IVmkt
i,t is the market IV of option i, IVmod

i,t is the IV computed from the model for

the same option, with i = 1, 2, . . . N and N is the total number of options in the sample.

For completeness I report the performance results also for the Root Mean Square Error on

option prices:

RMSEP =

√√√√ 1
N

N

∑
i=1

(Pmkt
i − Pmod

i )2 (26)

where Pmkt
i,t is the market price of the option i, Pmod

i,t is the price computed from the model

of the option i, for i = 1, 2, . . . N. The former metric represents an intuitive weighting

of options across strikes and maturities. The latter gives more weight to options with

high intrinsic value (DITM) and time value (longer maturity) but has the advantage of

interpreting RMSE as $ errors.

Table 3 reports the global option pricing performance on the S&P500 call options from

January 5, 1996 to December 30, 2005. The first row shows the absolute RMSEIV and the

RMSEP for the VARG-B model, computed over the entire sample. The remaining rows

display an indicator for the VARG-B relative performance with respect to the alternative

10Options are volatility-sensitive investments. They typically pay off in adverse states of nature, i.e. when
the marginal utility of wealth is high. This means that such investment is negative-beta and, in turn, are
characterised by negative risk premia.
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models which is computed as the ratio between the RMSEIV (RMSEP) of the VARG-B and

that of the ARG, HARG and LHARG-ARJ, respectively. Note that this indicator is a ratio

between two loss functions, indeed a value less than one indicates an outperformance of

the model set as the numerator, i.e. VARG-B model.

A comparison between the ARG and the VARG-B model illustrates the importance

of a multifactor specification of volatility in pricing options. By comparing the VARG-

B with the HARG model, I can shed some light on the importance of volatility bursts

in fitting medium/long-term part of the implied volatility surface, especially for at-the-

money options, with respect to the long-memory feature. Finally, a comparison between

the LHARG-ARJ and the VARG-B model can clarify the role of volatility bursts or price

jumps in causing the extreme price movements, highlighting the importance of volatility

burst factor for the correct description of the volatility surface.

Table 3: Global option pricing performance. The first row shows the implied volatility
root mean square error and the price root mean square error. RMSEIV and RMSEP are
both expressed in percentage. The second and the third rows show the RMSEIV and
RMSEP of the competitor models relative to the VARG-B. A ratio smaller than 1 indicates
an outperformance of the VARG-B model. I use the parameter estimates from Table 1 and
S&P500 call options from January 5, 1996 to December 30, 2005.

Model RMSEIV RMSEP

VARG-B 6.804 0.008

VARG-B/ARG 0.665 0.118
VARG-B/HARG 0.897 0.992
VARG-B/LHARG-ARJ 0.642 0.829

At first sight, the VARG-B model outperforms all the alternatives, both via RMSEIV

and RMSEP. Specifically, looking at the RMSEIV (RMSEP), the VARG-B model improve-

ment is about 35% (80%) over ARG and around 36% (18%) over LHARG-ARJ model.

Instead, the VARG-B model has a performance very similar to that of the HARG, in terms

of both loss functions.
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In order to get a deeper understanding of the VARG-B pricing performance, Table 4

(Table 5) reports the results in terms of RMSEIV (RMSEP) disaggregated for different ma-

turities and moneyness11. The results in Table 4 confirm that modelling the occurrence

and the probability of having bursts in the volatility carries advantages over option eval-

uation. The VARG-B model offers a flexible volatility specification that translates in an

increasing ability to capture the volatility smile.

Panel B of Table 4 compares the performance of VARG-B and ARG. It shows the advan-

tage of providing an extraordinary burst factor in the volatility dynamics. Improvement

for short maturities T ≤ 90 and moneyness 1 < m ≤ 1.06 reaches more than 50% while

for DOTM options at longer maturity (T > 90) the two models share approximately the

same degree of underpricing.

The relative performance between VARG-B and HARG is displayed in Panel C of Ta-

ble 4. In this comparison, I focus on the long-term part of the IV surface, where the per-

sistence of the volatility process plays a fundamental role. Note that the heterogeneous

structure for the volatility in the HARG model is introduced to mimic the long-memory

characterising the volatility process. The advantage of volatility burst component yields

accurate pricing also for longer maturities even if the improvement slowly trickles away

as the time to maturity increases, remaining around 30% in the left part of the volatility

surface (m > 1.06 and T > 160). This is a common feature of stochastic volatility option

pricing models that do not allow for an enough degree of persistence and flexibility in the

volatility dynamics. However, the VARG-B model is able to improve pricing along the

DITM calls (corresponding to DOTM puts), which have proven difficult to price in the

literature.

The results recorded in the Panel D of Table 4 favorite the VARG-B model with respect

to a model with jumps in return dynamics, i.e. LHARG-ARJ model. The improvement

increases moving from ATM to ITM call options, independently from the time to maturity

11The results recorded in Table 5 are in line with those reported in Table 4. For this reason, I will discuss
only the pricing performance in terms of RMSEIV .
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dimension. The difference in perfomance suggests that extreme price movements can be

considered as a by-product of volatility burst, in the spirit of COP intuition.

Indeed, the ability of the VARG-B model to reproduce higher level of persistence per-

mits this more flexible model to outperform the HARG model and to improve pricing

over the long-term part of the IV surface.

To summarise, the proposed VARG-B model is better able to reproduce the IV level for

options along both the moneyness and the time to maturity dimensions. It improves upon

all the alternative models, especially for DITM - ITM and short maturities. The volatility

burst component appears to be an important and necessary ingredient for a more accurate

option pricing and modelling of the IV surface.

5 Conclusion

In this paper, I propose an affine discrete-time model, labelled VARG-B, in which

volatility experiences, in addition to frequent and small changes, periods of sudden and

extreme movements, i.e. volatility bursts. The former changes are generated by a state

variable, called continuous component while the volatility burst component generates

the volatility changes due to extreme price movements. The total volatility is equal to the

sum of these two independent factors which are both assumed as latent. The continuous

component is modelled as an Autoregressive Gamma (ARG) while the volatility burst

factor follows an Autoregressive Gamma Zero (ARG-Zero) process.

A great advantage of VARG-B is represented by the estimation strategy which allows

to filter the time series of both the volatility components and to understand the relative

contribution of both the factors to the total conditional variance of log-returns. The state

space is augmented with a measurement equation that relates the latent volatility to an ex-

post estimator of daily quadratic variation of the log-price process, i.e. Realized Volatility.

The VARG-B model leads to a fully analytic conditional Laplace transform (that is, ex-

ponential affine), which is particularly attractive for option pricing purposes. Indeed, the

change of measure is performed adopting an exponentially affine stochastic discount fac-
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tor which preserves all the analytical results in order to obtain closed-form option pricing

formula.

The proposed VARG-B model is better able to reproduce the IV level for options along

both the moneyness and the time to maturity dimensions with respect to some alterna-

tives. The greatest improvement is registered for short-maturity options and for DITM

and ITM call options. For these option categories, the VARG-B model outperforms alter-

native models and provides an improvement also for ATM options.

The more flexible volatility specification allows the VARG-B model to reproduce higher

level of persistence, which improves the pricing along the long-term part of the IV sur-

face.

From the evidence reported in this paper, the volatility burst component is an impor-

tant and necessary ingredient for a more accurate option pricing and modelling of the IV

surface.

The VARG-B model can be extended to include leverage effect in the volatility dynam-

ics as well as a dependence between volatility components. I leave the possibility to study

these features to future research.
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Table 4: Option pricing performance via the percentage implied volatility root mean
square error (RMSEIV). The table shows the RMSEIV for the VARG-B model and the
alternative models sorted by moneyness and maturity. A ratio smaller than 1 indicates
an outperformance of the VARG-B model. I use the parameter estimates from Table 1 and
S&P500 Call options from January 5, 1996 to December 30, 2005. T refers to the number
of days to maturity while m represents the moneyness defined as the underlying index
level divided by the option strike price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160

Panel A: VARG-B Implied Volatility RMSE

m≤0.94 9.6488 8.6095 8.1006 7.9106
0.94<m≤0.97 7.0031 6.7457 6.3341 6.4132
0.97<m≤1 4.7940 5.1940 4.9464 5.7442
1<m≤1.03 4.0642 4.3103 4.8010 5.4614
1.03<m≤1.06 4.2700 4.3579 4.5079 4.7901
m>1.06 7.3998 10.1113 8.4294 5.4600

Panel B: VARG-B/ARG Implied Volatility RMSE

m≤0.94 0.9183 0.9410 0.9926 1.0212
0.94<m≤0.97 0.8266 0.8186 0.8123 0.6974
0.97<m≤1 0.5540 0.5986 0.6014 0.6705
1<m≤1.03 0.4311 0.4520 0.5393 0.5790
1.03<m≤1.06 0.3988 0.4182 0.4714 0.4665
m>1.06 0.3981 0.6509 0.5851 0.4679

Panel C: VARG-B/HARG Implied Volatility RMSE

m≤0.94 1.4156 1.5618 1.8791 1.9598
0.94<m≤0.97 0.8337 0.9565 1.2987 1.4700
0.97<m≤1 0.5591 0.7874 1.0531 1.3720
1<m≤1.03 0.5006 0.7016 0.9624 1.2590
1.03<m≤1.06 0.5187 0.7057 0.8528 1.0546
m>1.06 0.4962 0.8842 0.8612 0.6936

Panel D: VARG-B/LHARG-ARJ Implied Volatility RMSE

m≤0.94 1.9480 2.0336 2.3302 2.0619
0.94<m≤0.97 1.5581 1.4904 1.4083 1.1642
0.97<m≤1 0.9533 1.0366 0.8976 0.8643
1<m≤1.03 0.6297 0.6949 0.7064 0.6306
1.03<m≤1.06 0.2841 0.3650 0.3723 0.3734
m>1.06 0.2670 0.4133 0.3633 0.2764
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Table 5: Option pricing performance via the percentage price root mean square error
(RMSEP). The table shows the RMSEP for the VARG-B model and the alternative models
sorted by moneyness and maturity. A ratio smaller than 1 indicates an outperformance of
the VARG-B model. I use the parameter estimates from Table 1 and S&P500 Call options
from January 5, 1996 to December 30, 2005. T refers to the number of days to maturity
while m represents the moneyness defined as the underlying index level divided by the
option strike price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160

Panel A: VARG-B Price RMSE

m≤0.94 0.0036 0.0059 0.0092 0.0126
0.94<m≤0.97 0.0043 0.0077 0.0113 0.0154
0.97<m≤1 0.0043 0.0072 0.0107 0.0165
1<m≤1.03 0.0042 0.0068 0.0113 0.0187
1.03<m≤1.06 0.0039 0.0071 0.0136 0.0198
m>1.06 0.0038 0.0076 0.0154 0.0258

Panel B: VARG-B/ARG Price RMSE

m≤0.94 0.0619 0.1116 0.1242 0.2055
0.94<m≤0.97 0.0914 0.1251 0.1501 0.2567
0.97<m≤1 0.0849 0.1600 0.1643 0.2232
1<m≤1.03 0.0960 0.1460 0.1366 0.2096
1.03<m≤1.06 0.0739 0.1097 0.1568 0.1900
m>1.06 0.0350 0.0493 0.0653 0.1126

Panel C: VARG-B/HARG Price RMSE

m≤0.94 1.4191 1.4505 1.8192 1.7446
0.94<m≤0.97 0.7241 0.8498 1.1843 1.1635
0.97<m≤1 0.5222 0.7087 0.9124 1.0470
1<m≤1.03 0.4848 0.6507 0.8371 0.9601
1.03<m≤1.06 0.5153 0.7048 0.7863 0.8663
m>1.06 0.7075 0.8185 0.9667 1.2291

Panel D: VARG-B/LHARG-ARJ Price RMSE

m≤0.94 2.6634 2.3463 1.9082 1.2849
0.94<m≤0.97 1.4804 1.3473 1.0030 0.6780
0.97<m≤1 0.8920 0.8903 0.6109 0.5086
1<m≤1.03 0.6544 0.6055 0.5061 0.4337
1.03<m≤1.06 0.4851 0.4568 0.4044 0.3399
m>1.06 0.4401 0.3709 0.3570 0.3463
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A Proof of Proposition 1

The Assumption 1 in Majewski et al. (2015) is the following:

EP
[
exp(zyt+1 + b′ft+1 + c′lt+1)|Ft,Lt

]
(A.1)

= exp

[
A(z, b, c) +

p

∑
i=1
Bi(z, b, c)′ · ft+1−i +

q

∑
j=1
Cj(z, b, c)′ · lt+1−j

]

for some functionsA : R×Rk×Rk → R,Bi : R×Rk×Rk → Rk and Ci : R×Rk×Rk →

Rk, where b, c ∈ Rk and · stands for the scalar product in Rk. Indeed:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
(A.2)

= exp
[
A(z, b) + B(z, b)′ · ft

]
For the setup in Section 2.1, assumption (A.2) is satisfied with lt = 0 for t = 1, . . . , T and

p = 1. Without loss of generality I assume rt+1 = r for t > 0, since rt+1 is predetermined

(that is, known at t).

To derive the expressions for At(z, b, c) and Bi(z, b, c), I write:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= EP

[
exp(zr + zλ ft+1 + z

√
ft+1εt+1 + b1 f1,t+1 + b2 f2,t+1)|Ft

]
= ezrEP

[
exp[(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 + z

√
ft+1εt+1]|Ft

]
= ezrEP {exp [(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1]

×EP
[
exp

[
z
√

ft+1εt+1

]∣∣∣ f1,t+1, f2,t+1,Ft

]∣∣∣Ft

}
where ft+1 = ( f1,t+1, f2,t+1)

′.

To compute the inner expectation I now use the following property: if Z ∼ N (0, 1)

and Y = aZ, then

E{exp[xY]} = exp
[

1
2
(xa)2

]
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Hence:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= ezrEP

{
exp

[
(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 +

z2

2
ft+1 ]

∣∣∣∣Ft

}
= ezrEP

{
exp

[
(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 +

z2

2
f1,t+1 +

z2

2
f2,t+1 ]

∣∣∣∣Ft

}
= ezrEP {exp [x1(z, b) f1,t+1 + x2(z, b) f2,t+1]| Ft}

where:

x1(z, b) = b1 + zλ +
z2

2
(A.3)

x2(z, b) = b2 + zλ +
z2

2
(A.4)

In what follows I will sometimes simplify the notation using x1 (resp. x2) instead of

x1(z, b) (resp. x2(x, b)). I now use the following property of the noncentral Gamma-Zero

distribution: if Z ∼ γ0(θ, µ), then

E[exp(xZ)] = exp
[

xµ

1− xµ
θ

]
.

Since f2,t+1|Ft ∼ γ0(d2 + β2 f2,t, µ2), defining θ2t = d2 + β2 f2,t, I get:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= ezrEP

{
exp[x1(z, b) f1,t+1]E

P [exp (x2(z, b) f2,t+1)| f1,t+1,Ft]
∣∣∣Ft

}
= ezr x2µ2

1−x2µ2
θ2tEP {exp [x1 f1,t+1]| Ft}

= ezr+V2(x2,µ2)θ2tEP {exp [x1 f1,t+1]| Ft}

where:

V2[x2, µ2] =
x2(z, b)µ2

1− x2(z, b)µ2
(A.5)
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I now use the following property of the noncentral Gamma distribution: if Z ∼ γν(θ, µ),

then

E[exp(xZ)] = exp
[

xµ

1− xµ
θ − ν log(1− xµ)

]
.

Since f1,t+1|Ft ∼ γν(β1 f1,t, µ1), defining θ1t = β1 f1,t, I get:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= exp

{
zr + V2(x2, µ2)θ2t − ν log(1− x1µ1) +

x1µ1

1− x1µ1
θ1t

}
= exp {zr− νW1(x1, µ1) + V1(x1, µ1)θ1t + V2(x2, µ2)θ2t} (A.6)

where

W1[x1, µ1] = log[1− x1(z, b)µ1] (A.7)

V1[x1, µ1] =
x1(z, b)µ1

1− x1(z, b)µ1
(A.8)

Substituting the expressions for non-centrality parameters in (A.6) and collecting terms,

it is easy to check that Assumption A.2 is satisfied, with:

A(z, b) = zr− νW1(x1, µ1) + V2(x2, µ2)d2 (A.9)

B(z, b)′ = [V1(x1, µ1) , V2(x2, µ2)] β (A.10)

where β = (β1, β2)
′.

B Proof of Proposition 3

The assumed SDF is

Mt,t+1 =
exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)

EP[exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)|Ft]
(B.11)
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The no-arbitrage conditions are

EP[Ms,s+1|Fs] = 1 for s ∈N (B.12)

EP[Ms,s+1eys+1 |Fs] = er for s ∈N (B.13)

The first condition is satisfied by definition of Mt,t+1.

Let δ1 = (δ11, δ12)
′. To enforce no arbitrage, I use Proposition 2 in Majewski et al. (2015),

which shows that the second condition is equivalent to:

A(1− δ2,−δ1) = r +A(−δ2,−δ1)

B(1− δ2,−δ1) = B(−δ2,−δ1)

These equalities are implied by

x1(1− δ2,−δ1) = x1(−δ2,−δ1)

x2(1− δ2,−δ1) = x2(−δ2,−δ1).

For this to hold, it is easy to check that it is sufficient to impose

δ2 = λ +
1
2

(B.14)

C Proof of Corollary 4

Let yt,T = log(ST/St) I have to show that:

ϕQ
δ2,δ1

(t, T, z) = EQ (ezyt,T |Ft) = exp
(
a∗t + b∗′t ft

)
(C.15)
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where:

a∗s = a∗s+1 +A(z− δ2, b∗s+1 − δ1)−A(−δ2,−δ1) (C.16)

b∗s = b∗s+1 + B(z− δ2, b∗s+1 − δ1)−B(−δ2,−δ1) (C.17)

subject to the terminal conditions:

a∗T = 0, b∗T = 0

The above relation is derived using the expression for the SDF in (18) repeatedly and

using the tower law of conditional expectation:

ϕQ
δ2,δ1

(t, T, z)

= EQ [ezyt,T |Ft]

= EP [Mt,t+1 . . . MT−1,Tezyt,T |Ft]

= EP
[

Mt,t+1 . . . MT−2,T−1ezyt,T−1EP [MT−1,TeyT |FT−1] |Ft

]
= EP

[
Mt,t+1 . . . MT−2,T−1ezyt,T−1EP

[
e−δ2yT−δ11 f1,T−δ12 f2,T+zyT

EP
[
e−δ2yT−δ11 f1,T−δ12 f2,T |FT−1

] |FT−1

]
|Ft

]
= EP

[
Mt,t+1 . . . MT−2,T−1ezyt,T−1−A(−δ2,−δ1)−B(−δ2,−δ1) f T−1EP

[
e(z−δ2)yT−δ1 f T |FT−1

]
|Ft

]
= EP

[
Mt,t+1 . . . MT−2,T−1ezyt,T−1−A(−δ2,−δ1)−B(−δ2,−δ1) f T−1+A(z−δ2,−δ1)+B(z−δ2,−δ1) f T−1 |Ft

]
= EP

[
Mt,t+1 . . . MT−2,T−1ezyt,T−1+a∗T−1+b∗T−1 f T−1 |Ft

]
= EP

[
Mt,t+1 . . . MT−3,T−2ezyt,T−2+a∗T−1EP

[
MT−2,T−1ezyT−1+b∗T−1 f T−1 |FT−2

]
|Ft

]
= EP

[
Mt,t+1 . . . MT−3,T−2ezyt,T−2+a∗T−1−A(−δ2,−δ1)−B(−δ2,−δ1) f T−2+A(z−δ2,b∗T−1−δ1)+B(z−δ2,b∗T−1−δ1) f T−2 |Ft

]
= . . .

= e(a∗t +b∗′t ft)
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I now specialize these expression for the setup outlined in Section 2.1. Consider equation

(C.16). Using (A.9), I get

a∗s = a∗s+1 + zr− ν(W∗1,s+1 −Wy
1 ) + d2(V∗2,s+1 −Vy

2 ) (C.18)

where:

x∗h,s+1 = xh(z− δ2, b∗s+1 − δ1), h = 1, 2

y∗h = xh(−δ2,−δ1) = −δ1h − δ2λ +
δ2

2
2

, h = 1, 2

V∗h,s+1 = Vh(x∗h,s+1, µh), h = 1, 2

Vy
h = Vh(y∗h, µh), h = 1, 2

W∗1,s+1 = W1(x∗1,s+1, µ1)

Wy
1 = W1(y∗1 , µ1)

Using (A.10), equation (C.17) becomes:

b∗′s = b∗′s+1 + (V∗1,s+1 −Vy
1 , V∗2,s+1 −Vy

2 )β (C.19)

D Proof of Proposition 2

To compute the MGF of yt,T under P, I simply need to plug δ2 = 0 and δ1 = 0 in the

expression of ϕQ
δ2,δ1

(t, T, z) in (C.15):

ϕQ
0,0(t, T, z) = EP[ezyt,T |Ft] = exp

(
at + b′tft

)
(D.20)

where

as = as+1 + zr− νW1,s+1 + d2V2,s+1 (D.21)

b′s = b′s+1 + (V1,s+1, V2,s+1)β (D.22)
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with

xh,s+1 = xh(z, bs+1) = bs+1 + zλ +
z2

2
, h = 1, 2

and

Vh,s+1 = Vh(xh,s+1, µh) =
xh,s+1µh

1− xh,s+1µh
, h = 1, 2

W1,s+1 = W1(x1,s+1, µ1) = log(1− x1,s+1µ1)

subject to the initial conditions:

aT = 0, b′T = 0

E Proof of Proposition 5

The MGFs ϕQ
δ2,δ1

(t, T, z) and ϕP
0,0(t, T, z) derived above depend on the parameters un-

der P, ψ defined in (17), and on the risk premium parameters δ = (δ2, δ′1)
′ introduced in

the SDF (18). I now show that the MGF under Q can be rewritten as the MGF under P

using a new set of parameters ψQ i.e. the risk-neutral ones

ψQ = [λQ, νQ, µQ
1 , µQ

2 , dQ
2 , βQ] (E.23)

To derive the expression of ψQ as a function of ψ and δ, I match the parameters using the

identity:

ϕQ
δ2,δ1

(t, T, z; ψ, δ) = ϕP
0,0(t, T, z; ψQ) (E.24)

It is useful to denote

xQ
h,s+1 = xh(z, b∗s+1; ψQ), h = 1, 2

VQ
h,s+1 = Vh(xQ

h,s+1, µQ
h ), h = 1, 2

WQ
1,s+1 = W1(xQ

1,s+1, µQ
1 )

39



For (E.24) to hold, (C.18) needs to be matched with (15) and (C.19) with (16) , where

(15) and (16) are evaluated at VQ
1,s+1, VQ

2,s+1 and WQ
1,s+1. Note that since I start from the

same initial conditions (E.24) requires

ν(W∗1,s+1 −Wy
1 ) = νQWQ

1,s+1 (E.25)

d2(V∗2,s+1 −Vy
2 ) = dQ

2 VQ
2,s+1 (E.26)

(V∗1,s+1 −Vy
1 , V∗2,s+1 −Vy

2 )β = (VQ
1,s+1 , VQ

2,s+1)βQ (E.27)

for all s.

Consider (E.25). This requires

ν[log(1− x∗1,s+1µ1)− log(1− y∗1µ1)] = νQ log(1− xQ
1,s+1µQ

1 )

Sufficient conditions for this equality to hold are

νQ = ν, µQ
1 =

µ1

1− y∗1µ1
and xQ

1,s+1 = x∗1,s+1 − y∗1 .

In turn, it can be checked that the latter equality is valid if I pose

λQ = −1
2

.

Note that under these conditions I also have xQ
2,s+1 = x∗2,s+1 − y∗2 .

Now turn to (E.26):

d2

(
x∗2,s+1µ2

1− x∗2,s+1µ2
− y∗2µ2

1− y∗2µ2

)
= dQ

2

xQ
2,s+1µQ

2

1− xQ
2,s+1µQ

2

.

If I substitute for xQ
2,s+1 the expression obtained above, I get:

dQ
2 =

d2

1− y∗2µ2
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Its validity is guaranteed if µQ
2 is:

µQ
2 =

µ2

1− y∗2µ2

Note that these solutions also imply that VQ
2,s+1 = (1− y∗2µ2)(V∗2,s+1 −Vy

2 )

Finally, I turn to (E.27) which implies:

βQ
h =

βh
1− y∗hµh

, h = 1, 2

Note that under this condition VQ
1,s+1 = (1− y∗1µ1)(V∗1,s+1 −Vy

1 ).
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