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Abstract 

This paper quantifies the effects of equity tail risk on the US government bond market. 
We estimate equity tail risk as the option-implied stock market volatility that stems from large 
negative jumps as in Bollerslev, Todorov and Xu (2015), and we assess its value in reduced-
form predictive regressions for Treasury returns and an affine term structure model for interest 
rates. We document that the left tail volatility of the stock market significantly predicts one-
month-ahead excess returns on Treasuries both in- and out-of-sample. The incremental value 
of employing equity tail risk as a return forecasting factor can increase utility for mean-variance 
investors trading bonds. The estimated term structure model shows that equity tail risk is priced 
in the US government bond market. Consistent with the theory of flight-to-safety, we find that 
Treasury prices increase and funds flow from equities into bonds when the perception of tail 
risk is higher. Our results concerning the predictive power and pricing of equity tail risk extend 
to major government bond markets in Europe. 
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1 Introduction1

In times of financial distress, the disengagement from risky assets, such as stocks, and the

simultaneous demand for a safe haven, such as top-tier government bonds, generate a flight-

to-safety (FTS) event in the capital markets. A large body of literature examines the linkages

between the stock and bond markets during crisis periods and their implications for asset pricing,

see Hartmann et al. (2004), Vayanos (2004), Chordia et al. (2005), Connolly et al. (2005) and

Adrian et al. (2019a), among others. We add to this literature by studying how Treasury bond

prices and returns respond to changes in the perceived tail risk in the stock market. If top-tier

government bonds are a major beneficiary of the FTS flows occurring when the stock market is

hit by heavy losses, then we expect the downside tail risk of equity to affect bond risk premia and

determine both stock and bond prices during distress periods. We investigate this conjecture

by considering a Gaussian affine term structure model (ATSM) for US interest rates where the

pricing factors are the principal components of the yield curve combined with the risk-neutral

volatility of the US stock market that stems from large negative price jumps. Further, we add to

the empirical literature on bond return predictability by assessing the improvements in forecast

accuracy obtained with equity tail risk and examining whether they translate into higher risk-

adjusted portfolio returns. Although evidence of bond predictability based on measures of stock

market uncertainty and skew has previously been found (Feunou et al., 2014; Mueller et al.,

2017; Adrian et al., 2019a; Crump and Gospodinov, 2019), this is, to the best of our knowledge,

the first study to assess the statistical and economic gains of using equity tail risk for predicting

short-run bond risk premia and discuss the implications for pricing in a term structure model.

Understanding the dynamics of bond yields is particularly useful for forecasting financial and

macro variables, for making debt and monetary policy decisions and for derivative pricing. Most

1The authors are grateful to Piergiorgio Alessandri, Torben Andersen, Antonio Di Cesare, Nicola Fusari,
Motohiro Yogo, Riccardo Rebonato, Viktor Todorov, Fabrizio Venditti and seminar participants at the Bank of
Italy, for their constructive comments and suggestions. This paper has been written when Ruzzi was a Research
Fellow at the Bank of Italy. The views expressed in this paper are those of the authors and do not necessarily
reflect those of the Bank of Italy.
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of these applications require the decomposition of yields into expectations of future short rates

(averaged over the lifetime of the bond) and term premia, i.e. the additional returns required by

investors for bearing the risk of long-term commitment. Gaussian affine term structure models

have long been used for this purpose, see, e.g., Duffee (2002), Kim and Wright (2005) and

Abrahams et al. (2016). In the setup of a Gaussian ATSM, a number of pricing factors that

affect bond yields are selected and assumed to evolve according to a vector autoregressive (VAR)

process of order one. The yields of different maturities are all expressed as linear functions of

the factors with restrictions on the coefficients that prevent arbitrage opportunities, implying

that long-term yields are merely risk-adjusted expectations of future short rates.

The selection of pricing factors typically starts by extracting from the cross-section of bond

yields a given number of principal components (PCs), which are linear combinations of the rates

themselves. Since the seminal work of Litterman and Scheinkman (1991), the first three PCs

have been prime candidates in this regard as they generally explain over 99% of the variability

in the term structure of bond yields and, due to their loadings, may be interpreted as the level,

slope and curvature factor. As for the second principal component, Fama and Bliss (1987) and

Campbell and Shiller (1991) showed that variables related to the slope of the yield curve are

highly informative about future bond returns. Despite the important role of the level, slope and

curvature, it is well established in the literature that additional factors are needed to explain

the cross-section of bond returns. For this reason, the first five principal components of the

US Treasury yield curve are used as pricing factors in Adrian et al. (2013), while Malik and

Meldrum (2016) adopt a four-factor specification for UK government bond yields. Albeit the

higher order principal components of yields have predictive power for future bond returns, in

a recent study focused on the US bond market, Feunou and Fontaine (2018) show that a term

structure model that includes the first three principal components and their own lags delivers

better forecasts of excess returns than a specification using the first five principal components

of yields as risk factors. Furthermore, several studies suggest that a great deal of information
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about expected excess returns – the bond risk premium – can be found in factors that are not

principal components of the yield curve. For instance, Cochrane and Piazzesi (2005) discover

a new linear combination of forward rates which is a strong predictor of future excess bond

returns and, based on this evidence, Cochrane and Piazzesi (2008) use it in an ATSM along

with the classical level, slope and curvature factors. More recently, Cooper and Priestley (2008),

Ludvigson and Ng (2009), Duffee (2011), Joslin et al. (2014), Cieslak and Povala (2015), Eriksen

(2017) and Huang et al. (2019) show that valuable information about bond risk premia is located

outside of the yield curve and contained, for example, in macro variables that have little or no

impact on current yields but strong predictive power for future bond returns. In addition, the

very recent paper by Berardi et al. (2020) finds that bond predictability provided by forward

rates can be enhanced by integrating information arising from monetary policy actions, and in

particular from deviations of the natural rate of interest from the real Fed Funds rate.

This paper explores the use of factors, other than combinations of yields, to drive the curve

of US Treasury rates and explain bond returns. In contrast to the vast majority of previous

studies, however, we draw on the literature that deals with comovement in the equity and bond

markets and we consider the possibility that pricing factors of Treasury bonds are also linked

to the stock market. The findings of Connolly et al. (2005) and Baele et al. (2010) indicate that

measures associated with stock market uncertainty explain time variation in the stock-bond

return relation and have important cross-market pricing effects.2 Therefore, we select a risk

measure which is known to predict the equity risk premium and we examine its role in the

Treasury bond market. The existing literature suggests that the variance risk premium (VRP)

forecasts the stock market returns at shorter horizons than do other predictors like dividend

2Connolly et al. (2005) find that when the implied volatility from equity index options, measured by the VIX,
increases to a considerable extent, bond returns tend to be higher than stock returns (flight-to-quality) and the
correlation between the two assets over the next month is lower. Baele et al. (2010) show that the time-varying
and sometimes negative stock-bond return correlations cannot be explained by macro variables but instead by
liquidity factors and the variance risk premium, which represents the compensation demanded by investors for
bearing variance risk and is defined as the difference between the risk-neutral and statistical expectations of the
future return variation. Although the variance risk premium is a major contributor to the stock-bond return
correlation dynamics, Baele et al. (2010) find significant exposures to it only for stock but not for bond returns.
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yields or price-to-earning ratios, see Bollerslev et al. (2009), Bollerslev et al. (2014) and Bekaert

and Hoerova (2014), among others. In view of recent studies showing that the predictive power

of the VRP for the equity risk premium stems from a jump tail risk component that captures

the investors’ fear of a market crash (see, e.g., Andersen et al. (2015, 2019a), Bollerslev et al.

(2015) and Li and Zinna (2018)), we opt for the left jump volatility measure of Bollerslev et al.

(2015) to assess the impact of equity tail events on US Treasury bonds. Building on the findings

of Crump and Gospodinov (2019) that equity tail risk – as measured by the CBOE Skew Index

– has strong in-sample predictive power for future Treasury bond returns, we are interested in

understanding whether the forecast improvements afforded by equity tail risk continue to hold

in a realistic out-of-sample forecasting setting and whether equity tail risk is priced in the term

structure of US interest rates. Hence, our main contribution is to provide empirical support

that equity tail risk can generate economic value in bond return predictability and can be used

as a bond pricing factor in a no-arbitrage affine term structure model.3

As opposed to Crump and Gospodinov (2019), we do not rely on risk-neutral skewness to

measure equity tail risk as the computation of moments higher than the second is prone to

numerical errors and instability.4 Instead, we rely on the procedures put forth by Bollerslev

and Todorov (2011) to proxy investor fears for jump tail events. Specifically, we estimate equity

tail risk with the model-free measure of left tail volatility developed by Bollerslev et al. (2015)

and calculated from short-dated deep out-of-the-money put options on the S&P 500 market

index. By doing so, we gauge the market’s perception of jump tail risk over the following month

based on the risk-neutral expectation of future return volatility associated with large negative

3We stress that our pricing methodology differs from that of Farago and Tédongap (2018), who price Treasury
bonds (and many other types of assets) using a consumption-based general equilibrium model that includes a
non-risk-neutralized measure of downside risk.

4Liu and van der Heijden (2016) discuss the difficulties associated with the computation of risk-neutral
skewness using the method by Bakshi et al. (2003), on which the CBOE Skew Index is also based. They note
how different approaches to the implementation of the Bakshi et al. (2003) method have led to mixed results in
the literature of stock return predictability. With regard to this, the negative relationship between the Bakshi
et al. (2003) measure of skewness and future returns found by Bali and Murray (2013) and Conrad et al. (2013)
contrasts sharply with the positive relationship found by Rehman and Vilkov (2012) and Stilger et al. (2016).

8



price jumps.5 The equity tail risk factor so obtained is by construction a measure of downside

tail risk and in this it also differs from the CBOE VIX Index which is a symmetric risk measure

that reflects compensation for both diffusive and jump risk. With the Bollerslev et al. (2015)

measure in hand, we test whether equity tail risk is priced in the US term structure and examine

whether return predictability can yield substantial gains from an investment perspective.

Our empirical analysis relies on monthly data for the US zero-coupon bond yield curve

provided by Gürkaynak et al. (2007). Given the bond yield data, we construct non-overlapping

monthly excess returns on Treasuries with maturities up to ten years. Data is sampled at the

end of each month between January 1996 and December 2019. For the same time period, we

also compute monthly estimates of equity tail risk starting from daily observations of options

on the S&P 500 stock market index.6 The econometric framework consists of reduced-form

predictive regressions that use the measure of equity tail risk to forecast monthly excess Treasury

returns, and a Gaussian ATSM that uses equity tail risk to drive the curve of US interest rates.

Furthermore, we consider the novel three-pass method of Giglio and Xiu (2019), which delivers

an estimate of a factor’s risk premium that is robust to the omitted variable and measurement

error problems, as an alternative to the ATSM for estimating the market price of equity tail

risk and testing its relevance in the bond market.

Our results can be summarized as follows. First, there exist significant interactions between

the future one-month returns of the US government bond market and the option-implied left

tail volatility of the stock market.7 The frequency at which we uncover the predictive power of

5As a robustness check, we also used a simple alternative measure of downside risk perceptions, the S&P 500
implied volatility skew (or smirk), defined as the difference between the out-of-the-money put implied volatility
(with delta of 0.20) and the average of the at-the-money call and put implied volatilities (with deltas of 0.50),
both calculated from options with a tenor of 30 days (Xing et al., 2010; An et al., 2014). These results, which are
available upon request, are similar to those described here and obtained with the Bollerslev et al. (2015) measure.

6The option-implied left tail volatilities are computed daily and then the month-end value is recorded. To
minimize the impact of outliers and help smooth out the estimation error, we also considered monthly estimates
of equity tail risk obtained by averaging over the last five days of the month with the results being very similar
to the ones reported below for their end-of-month counterparts.

7Adrian et al. (2019a) find that a nonlinear function of the VIX can predict both stock and bond returns at
forecast horizons of about five months or longer. We show that the predictive power of the VIX for the future
one-month returns on bonds is completely subsumed by the equity tail factor. Our paper relates also to the works
of Feunou et al. (2014), Kaminska and Roberts-Sklar (2015), Mueller et al. (2017) and Crump and Gospodinov
(2019) who document the importance of the variance risk premium and risk-neutral skewness for the government
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equity tail risk for bond risk premia is considerably higher than that of the business cycle, which

is normally used to interpret return predictability over forecast horizons of one quarter or longer.

By contrast, the short-term predictability documented in this paper may be associated with the

instantaneous reactions of market participants that, fearing a stock market crash, flock to the

perceived safety of Treasuries.8 Second, the predictability afforded by the equity tail factor

continues to hold out-of-sample and can sometimes yield substantial economic value to a mean-

variance investor. In fact, it is possible to achieve sizeable gains in portfolio performance when

switching to a model that uses equity tail risk to predict bond returns. Third, turning to the

results of the term structure model, the response of Treasury bond prices to a contemporaneous

shock to the equity tail factor is shown to be positive and thus opposite to what happens in

the stock market. This observation confirms the role of US government bonds as a safe haven.

Fourth, equity tail risk is priced in the US term structure. We find evidence of a significant and

time-varying market price of equity tail risk that has been negative on average since 2001 when

Treasuries became hedges (David and Veronesi, 2013; Campbell et al., 2020). The equity tail

factor’s risk premium that we observe in the US government bond market is consistent with the

evidence in Longstaff (2004) and Krishnamurthy and Vissing-Jorgensen (2012), who document

the existence of a significant price for the safety and liquidity attributes of Treasuries. When

applying the novel framework proposed by Giglio and Xiu (2019), we reject the hypothesis

of weak factor for equity tail risk but we fail to find a significant market price of risk. We

view this insignificance as the result of the constant-risk-premium assumption underlying the

method of Giglio and Xiu (2019) that is incompatible with the estimated ATSM and empirical

evidence of time-varying risk compensation in the bond market.9 Fifth, large drops in short-

term bond yields and their embedded expectations of future short rates are attributable to

bond market. We show that at the one-month horizon, the predictive power of equity tail risk for US Treasury
returns persists even with the inclusion of the VRP of Bollerslev et al. (2014) and the CBOE Skew Index.

8The short-term predictability of the US term structure that we find is also in agreement with the fact that
the investors’ fear of a market crash decreases with the time horizon (Li and Zinna, 2018).

9See, for instance, Rebonato (2016) for a discussion on time-varying risk premiums in the bond market.
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equity tail risk. Therefore, while the Fed asset purchase programs have been a major force

in lowering longer-term yields since the global financial crisis (Kaminska and Zinna, 2018),

the reduction in shorter-term yields is likely to have been caused by the investors’ increased

appetite for safe assets. Sixth, the strong interest rate effect of equity tail risk shocks persists

even after controlling for the usual effect of monetary policy shocks and macroeconomic news

releases on domestic rates. Seventh, within a flows of funds analysis inspired by the recent

“Inelastic Market Hypothesis” of Gabaix and Koijen (2020), we find that equity outflows and

Treasury bond inflows are associated with contemporaneous spikes of equity tail risk. These

associations are observed not only at quarterly frequency with the total flows of all sectors in the

economy considered by Gabaix and Koijen (2020), but also at monthly frequency with the flows

of only mutual funds and exchange-traded funds, which display significant interactions with

both current and previous month’s level of equity tail risk. Finally, the strong and economically

important role of equity tail risk – estimated from both US and national index options – extends

to the Treasury bond market of the United Kingdom, Germany, Switzerland and France, while

the evidence is considerably weaker in Spain and non-existent in Italy.

The remainder of the paper is structured as follows. In Section 2 we describe the bond data

and the construction of the equity tail risk measure. In Section 3 we review the methodology

used to assess bond return predictability and we outline the term structure modeling approach

and the Giglio and Xiu (2019) three-pass method. Section 4 reports the in-sample and out-of-

sample empirical results on bond return predictability and the application of equity tail risk in

bond pricing. Evidence from international bond markets is also presented. Section 5 relates the

results to monetary policy and to flows in and out of equities and bonds. Section 6 concludes.

2 Data

In this section we present the data sources and methods used to construct the monthly time

series of excess Treasury returns and equity tail risk measure. All time series are generated over
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the period January 1996 to December 2019 with data recorded at the end of each month.

2.1 Bond Returns

We compute Treasury bond returns using the Gürkaynak et al. (2007) zero-coupon bond

yield curve derived from observed US government bond prices.10 We consider maturities up to

ten years, for which we construct non-overlapping one-month holding period returns.11 Follow-

ing the studies of Adrian et al. (2013), Abrahams et al. (2016) and Gargano et al. (2019), we

define the monthly return of the bond with maturity n (in months) as the return from buying

an n-maturity bond and selling it as an (n − 1)-maturity bond one month later. Setting the

risk-free rate equal to the n = 1 month yield, the monthly excess log-return at date t+ 1 (i.e.,

from the end of month t to the end of month t + 1) for the generic bond with maturity n at

time t gets computed as

rx
(n−1)
t+1 = − (n− 1)

12
y

(n−1)
t+1 +

n

12
y

(n)
t − 1

12
y

(1)
t , (1)

where y
(i)
t is the annualized (but not in percentage) continuously compounded yield on the

zero-coupon bond with maturity i at time t, provided by Gürkaynak et al. (2007).

Table 1 provides descriptive statistics for one-month excess returns on US Treasury bonds

with maturity n = 12, 24, 36, 48, 60, 84, 120 months.12 A quick inspection of Panel A reveals

that longer-term bonds are characterized by higher mean excess returns and higher volatility.

However, the reward-to-volatility ratio, also known as Sharpe ratio, declines with the bond

maturity. While all bond returns are leptokurtic, only returns on bonds with maturity up to 3

10The Gürkaynak et al. (2007) yield data are available at a daily frequency for annually spaced maturities
ranging from 1 to 30 years from the Federal Reserve website https://www.federalreserve.gov/pubs/feds/

2006/200628/200628abs.html . The parameters of the Nelson-Siegel-Svensson model used by Gürkaynak et al.
(2007) are also published, thus allowing to retrieve yields for any desired maturity, including the longer ones.

11The advantages of using non-overlapping one-month returns instead of the more conventional overlapping
one-year returns are explained in Gargano et al. (2019). Examples of these advantages include a greater number
of non-overlapping observations being studied and most importantly the identification of short-lived dynamics
like those characterizing the periods of stress that are at the heart of our work.

12Throughout the rest of the paper, the terms “returns” and “excess returns” are used interchangeably to
indicate excess returns unless otherwise indicated by the particular context.
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years display a strong positive skewness and a first-order autocorrelation coefficient above 0.1.

Finally, as shown in Panel B, the cross-sectional correlation between bond returns is always

above 0.5 with values well above 0.9 for maturities that are close to each other.

[ Insert Table 1 here ]

2.2 Equity Tail Risk

The equity tail risk factor of this paper corresponds to the Bollerslev et al. (2015) measure

of left jump tail volatility implied by short-dated deep out-of-the-money (OTM) put options on

the US stock market index.13 This measure is essentially model-free and exploits extreme value

theory to characterize the density of the risk-neutral return tails. The intuition behind it is

that short-maturity OTM options remain worthless unless the investors believe that a big jump

in the underlying price will occur before the option expires. Since diffusive risk does not affect

their price, these contracts are fundamentally suitable to estimate jump tail risk (Bollerslev

and Todorov, 2011, 2014). The calculation of the Bollerslev et al. (2015) measure is based on

two parameters that must be estimated period-per-period and represent two separate sources of

independent variation in the jump intensity process. The first parameter is α−t which controls

the time-varying rate of decay, or shape, of the left tail. Lower values of α−t are associated with a

slower rate at which the put option prices decay for successively deeper OTM contracts, implying

a fatter left tail of the risk neutral density. Bollerslev and Todorov (2014) and Bollerslev et al.

(2015) show that α−t can be estimated as follow,

α̂−t = arg min
α−

1

N−t

N−t∑
i=2

∣∣∣∣log

(
Ot,τ (kt,i)

Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)−1 − (1 + α−)

∣∣∣∣ , (2)

where Ot,τ (k) is the time t price of the OTM put option with time to expiration τ and (negative)

13The interested reader is directed to Bollerslev et al. (2015) for an in-depth description of the theoretical
framework since here we limit ourselves to highlighting the distinctive features and to discussing the estimation
and implementation procedures.
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log-forward moneyness k, and N−t is the total number of OTM puts used in the estimation with

moneyness 0 < −kt,1 < ... < −kt,N−t . The second source of variation in the jump tails comes

from parameter φ−t which shifts the level of the jump intensity process through time. Given an

estimate for α−t , the estimate of φ−t can be calculated as follows,

φ̂−t = arg min
φ−

1

N−t

N−t∑
i=1

∣∣∣∣log

(
ert,τOt,τ (kt,i)

τFt,τ

)
− (1 + α̂−t )kt,i + log(α̂−t + 1) + log(α̂−t )− log(φ−)

∣∣∣∣ ,
(3)

where rt,τ is the risk-free interest rate over the [t, t+ τ ] time interval, Ft,τ is the forward price

of the underlying asset at time t and with maturity date t + τ , and the rest of the notation is

as before. Following Andersen et al. (2019b), we estimate α−t at a weekly frequency, while we

allow φ−t , which is less sensitive to outliers, to vary each trading day. Furthermore, we pool

data across multiple maturities for more robust estimation of both parameters.

When defining left jump tail variation, Bollerslev et al. (2015) focus on asset price moves

that are unusually large relative to the current level of risk in the economy. To this end, they

use a time-varying cutoff kt for the log-jump size that identifies, for each trading day, the start

of the left tail based on the market volatility level. In our study we let kt be the threshold for a

negative tail jump at the one-month horizon and we fix it at three times the maturity-normalized

30-day at-the-money Black-Scholes implied volatility at time t.14 By substituting α̂−t , φ̂−t and

kt in the expression proposed by Bollerslev et al. (2015) for the predictable risk-neutral left

jump tail variation, we construct the equity tail risk measure of this paper as,

TR
(eq)
t =

√
φ̂−t e

−α̂−t |kt|(α̂−t kt(α̂
−
t kt + 2) + 2)/(α̂−t )3 . (4)

14The threshold that we use for the log-jump size, although smaller than that of Bollerslev et al. (2015)
and Andersen et al. (2019b), is still able to define as jumps asset price moves of greater magnitude than those
corresponding to the levels of moneyness used in Bollerslev and Todorov (2011) and considered sufficiently “deep”
in the tails to guarantee that the effect of the diffusive price components is minimal, and that the extreme value
distribution provides a good approximation to the jump tail probabilities. Nevertheless, we also considered larger
values for the tail cutoff, resulting in similar, but less significant, interactions between the left tail volatility of
the stock market and future bond returns. These results are available upon request.
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To compute the equity tail risk measure in (4), which represents the (annualized) volatility

that stems from negative return jumps greater than a threshold kt, we rely on daily data reported

by OptionMetrics IvyDB US for the European style S&P 500 equity-index options. We apply

the following standard filters to our dataset. We discard options with a tenor of less than eight

days or more than forty-five days. We discard options with missing prices, options with non-

positive bid prices and options with non-positive bid-ask spread. The price of the surviving

contracts is obtained as the average of bid and ask quotes. For each day in the sample, we

retain only option tenors for which we have at least five pairs of call and put contracts with the

same strike price. We exploit these cross sections to derive, via put-call parity, the underlying

asset price adjusted for the dividend yield that apply to a given option tenor on a given day.15

We discard all in-the-money options and we retain only out-of-the-money put options with

volatility-adjusted log-forward moneyness less than or equal to −2.5. Finally, we omit any

out-of-the-money options for which the price does not decrease with the strike price. Using the

data obtained from the filtering process, we compute the end-of-month values of the S&P 500

option-implied left tail volatility TR(eq), which we plot in Figure 1 against the 3-month moving

average of the Chicago National Activity Index (CFNAI) and the National Bureau of Economic

Research (NBER) based recession periods.

[ Insert Figure 1 here ]

From Figure 1 it is clear that our equity tail risk measure is higher during periods of economic

contraction. However, we note that TR(eq) spikes also in periods when the CFNAI is above its

mean level, for instance during the Russian financial crisis in 1998 and the intensification of the

European sovereign debt crisis in 2010 and 2011. We take this as first evidence that equity tail

risk might contribute to explaining the dynamics of the US yield curve in a manner that is not

15The risk-free rates used in the estimation of TR
(eq)
t come from the Gürkaynak et al. (2007) dataset described

in Section 2.1. Data for the 30-day at-the-money implied volatility used to calculate kt is from the volatility
surface file of IvyDB OptionMetrics.
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redundant with what is explained by macroeconomic variables. Now turning to the descriptive

statistics reported in Table 1, we find that the annualized left tail volatility of the stock market

is on average 10%.16 We also observe that equity tail risk is positively correlated with the one-

month-ahead Treasury returns. The correlation coefficient is about 0.2 across all maturities. In

the next sections, we use TR(eq) to gauge the market’s perception of jump tail risk and examine

the response of US Treasury bonds to the downside tail risk of the stock market.

3 Econometric Framework

In this section we describe the techniques and evaluation criteria used to investigate the

predictive content of equity tail risk for future bond returns and assess the pricing of equity tail

risk in the US government bond market.

3.1 Reduced-form Predictive Regressions

The econometric framework that we adopt to evaluate bond return predictability is based on

reduced-form predictive regressions that include the equity tail risk measure in (4) and, possibly,

a certain number of PCs of bond yields that control for the forecasting information contained in

the yield curve.17 With respect to the yield predictors, we consider both the traditional level,

slope and curvature factors, which are standard in the literature on bond return predictability,

and the two higher-order principal components used by Adrian et al. (2013) to explain Treasury

16When comparing our equity tail risk measure to the VIX, we find a strong coherence between the two series
but we also note that TR(eq) is far more persistent during post-crisis periods. We refer the reader to Section 6.1
in Bollerslev et al. (2015) for a detailed discussion of the differences between left jump tail variation and the VIX.

17In Section 4 we assess the in-sample explanatory power of equity tail risk for bond risk premia by controlling
for other successful return predictive factors found in the literature. Specifically, we consider the Cochrane and
Piazzesi (2005) bond return predictor obtained as a linear combination of forward rates, the Cieslak and Povala
(2015) risk-premium factor obtained from a decomposition of Treasury yields into inflation expectations and
maturity-specific interest-rate cycles, and the orthogonal component of the CBOE VIX with respect to TR(eq).
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return variation. Therefore, our bond return prediction models take the following form,

rx
(n−1)
t+1 = β0 + β1 TR

(eq)
t + εt+1 , (5a)

rx
(n−1)
t+1 = β0 + β1 TR

(eq)
t + β2 PC1t + β3 PC2t + β4 PC3t + εt+1 , (5b)

rx
(n−1)
t+1 = β0 + β1 TR

(eq)
t + β2 PC1t + β3 PC2t + β4 PC3t + β5 PC4t + β6 PC5t + εt+1 , (5c)

where TR(eq) represents the perceived tail risk in the US stock market, and PC1–PC5 are the

first five principal components estimated from an eigenvalue decomposition of the variance-

covariance matrix of zero-coupon bond yields. We include in the analysis the univariate model

of equation (5a) not only because it is a quick and inexpensive method to gauge the strength

and sign of the relation between bond returns and equity tail risk, but also because simpler

models might generate more accurate out-of-sample forecasts. In the following, we will assess

the forecasting performance of model (5a) relative to that of the Expectation Hypothesis (EH)

model. The EH assumes no predictability of bond risk premia, implying that the out-of-sample

model forecasts of bond returns are equal to a recursively updated constant based on the

historical return mean. The performance of models (5b) and (5c) will be compared to that of

a model that includes, respectively, the first three and five PCs of bond yields alone.

The relationship between equity tail risk and bond risk premia is firstly assessed by testing

the statistical significance of the coefficient of TR(eq) over the full sample period. The test of

β1 = 0 is carried out not only by means of conventional inference, for which we compute the

Newey-West p-values with a 12-lag standard error correction, but even with the more robust

inference method developed by Bauer and Hamilton (2018). The latter addresses the small-

sample distortions in bond return predictive regressions that are induced, among others, by the

high persistence of the predictive variables. Bauer and Hamilton (2018) propose a parametric

bootstrap that generates yield curve data assuming that a given factor structure underlies the

bond yields and that the relevant predictive information for bond returns is entirely contained in

17



the yield curve. We compute Bauer and Hamilton (2018) p-values with 5,000 artificial samples

and two separate 1-month VAR processes for TR(eq) and the principal components of yields.18

To check whether the in-sample interactions between one-month-ahead bond risk premia

and equity tail risk translate into positive real-time predictive ability, we consider an out-of-

sample exercise in which forecasts are recursively generated at a monthly frequency based on

information available only at the forecast time. We estimate the models in (5a), (5b) and (5c)

– and corresponding benchmarks that do not include TR(eq) – recursively over expanding and

rolling samples, where the first half of observations (1996:01-2007:12) constitutes the initial

estimation period and the second half (2008:01-2019:12) constitutes the forecast evaluation

period. Within this out-of-sample setting, we follow the approach used by Eriksen (2017) and

Gargano et al. (2019), among others, and we assess both the statistical and the economic value

of bond return predictability with equity tail risk. We evaluate statistical significance with

the Campbell and Thompson (2008) R2
OS statistic that measures the percentage reduction in

mean squared prediction error (MSPE) for the out-of-sample forecasts generated by a given

model relative to a benchmark. For each one of the preferred models in (5a), (5b) and (5c), we

compute the Campbell and Thompson (2008) statistic as,

R2
OS = 1−

T∑
t=1

(
rx

(n−1)
t+1 − r̂x(n−1)

t+1

)2

T∑
t=1

(
rx

(n−1)
t+1 − r̃x(n−1)

t+1

)2
, (6)

where r̂x
(n−1)
t+1 and r̃x

(n−1)
t+1 denote, respectively, the forecasts from one of the preferred models

that include TR(eq) and the forecasts from its benchmark (either the PCs-only or EH model),

and T is the number of out-of-sample forecasts. Positive values of R2
OS indicate higher predictive

18As a robustness check, we have also evaluated the strength of the relationship between equity tail risk and
future Treasury bond returns using the inference method recently proposed by Crump and Gospodinov (2019).
This is a non-parametric bootstrap that accounts for the time-series and cross-sectional dependence in bond yields
and generates data while remaining agnostic about the exact factor structure in the data. Based on the Crump
and Gospodinov (2019) p-values computed with resampled data from 999 boostrap replications, we continue to
observe statistically significant relationships at the 0.10 level or lower across all maturities considered. Because of
space considerations, these results are not reported in the paper, but are available upon request from the authors.
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accuracy for the bond return prediction model that includes equity tail risk. We formally test

for predictive superiority of the preferred models using the Clark and West (2007) test. This is

a statistical test of the null hypothesis of R2
OS ≤ 0 against the one-sided alternative of R2

OS > 0.

Significant predictive superiority of the model that includes equity tail risk is found in case of

rejection of the null. We conduct the Clark and West (2007) test by estimating the t-statistic

of regressing

CWt+1 =
(
rx

(n−1)
t+1 − r̃x(n−1)

t+1

)2
−
[(
rx

(n−1)
t+1 − r̂x(n−1)

t+1

)2
−
(
r̃x

(n−1)
t+1 − r̂x(n−1)

t+1

)2]
, (7)

on a constant term, and then computing its p-value according to the Newey-West and Bauer and

Hamilton (2018) inference procedures described above.19 The statistic in (7) is the difference

in the preferred and benchmark model’s squared prediction errors adjusted for the upward bias

induced by having to estimate the additional parameter β1 that is 0 under the null hypothesis.

Finally, we examine the economic value of the predicting capability of the models in (5a),

(5b) and (5c) by looking for sizeable risk-adjusted returns in asset allocation. To this end, we

conduct a portfolio exercise with a mean-variance investor that every month allocates his or her

wealth between a 1-month Treasury (risk-free) bond and an n-month Treasury (risky) bond.

By solving the same expected utility maximization problem as in Eriksen (2017), at time t, the

investor optimally allocates a proportion of:

w
(n)
t =

1

γ

Et

[
rx

(n−1)
t+1

]
Vart

[
rx

(n−1)
t+1

] , (8)

of his or her wealth to the n-month bond, and (1 − w(n)
t ) to the 1-month bond. Et

[
rx

(n−1)
t+1

]
denotes the conditional expectation of the n-month bond return, for which the investor can

use the out-of-sample forecasts generated either by one of the models that include TR(eq) or by

19We use the Bauer and Hamilton (2018) procedure to also bootstrap the p-values of the R2
OS statistic.

19



its benchmark that does not use the equity tail factor as predictor. Vart

[
rx

(n−1)
t+1

]
denotes the

conditional variance of the n-month bond return, which we estimate with the sample variance

of the returns observed over the past 10 years. γ represents the investor’s level of risk aversion.

Following Thornton and Valente (2012) and Gargano et al. (2019), we assume a risk aversion

coefficient of γ = 5 but we also consider a less risk-averse investor characterized by γ = 3.

Furthermore, as in the study of Huang et al. (2019), we prevent extreme positions by restricting

the weight w
(n)
t on the risky bond to lie in the interval [−1, 5], which amounts to a maximum

short-sale of 100% and a maximum leverage of 400%. The investor’s portfolio return realized

at time t+ 1 is given by

r
(n)
P,t+1 = y

(1)
t + w

(n)
t rx

(n−1)
t+1 . (9)

where y
(1)
t is the yield of the zero-coupon bond with 1-month maturity. The certainty equivalent

return (CER) of the portfolio, which is defined as the average utility realized by the investor

from using the optimal weights w
(n)
t , is given by

CER
(n)
P = µ

(n)
P −

γ

2
σ

2 (n)
P , (10)

where µP = T−1
∑T

t=1 r
(n)
P,t+1 and σ

2 (n)
P = T−1

∑T
t=1

(
r

(n)
P,t+1 − µP

)2
. In order to establish

whether an investor that relies on the investment signals generated by TR(eq) is able to improve

upon the economic utility realized by an investor whose portfolio allocations do not rely on

equity tail risk, we compute the difference between the CER for the investor that uses one of the

preferred models in (5a), (5b) and (5c) and the CER for the investor that uses the corresponding

benchmark. This difference, which we denote by ∆(n) and we express in terms of an annualized

percentage CER gain, can be interpreted as the portfolio management fee that an investor is

willing to pay for the bond return forecasts produced with equity tail risk. Following Thornton

and Valente (2012), Eriksen (2017) and Huang et al. (2019), we assess portfolio performance

using also the manipulation-proof performance (MPP) measure of Goetzmann et al. (2007). For
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each of the preferred models, we compute the MPP improvement relative to its benchmark as

Θ(n) =
1

1− γ

[
ln

(
T−1

T∑
t=1

[
1 + r

(n)
P,t+1,1

1 + y
(1)
t+1

]1−γ)
− ln

(
T−1

T∑
t=1

[
1 + r

(n)
P,t+1,0

1 + y
(1)
t+1

]1−γ)]
, (11)

where r
(n)
P,t+1,1 and r

(n)
P,t+1,0 are the realized portfolio returns associated with the preferred and

benchmark models. As with the CER gain, we report annualized percentage values for Θ(n).

3.2 Term Structure Modeling

We now introduce the term structure framework adopted in this paper and we present its

estimation procedure. To set up the model, we rely on the approach suggested by Adrian et al.

(2013), which has the advantage that the pricing factors of bonds are not restricted to linear

combinations of yields. Factors can indeed also be of different origin, such as the equity tail

risk measure TR(eq) defined in Section 2.2. After deriving the data generating process of log

excess bond returns from a dynamic asset pricing model with an exponentially affine pricing

kernel, Adrian et al. (2013) propose a new regression-based estimation technique for the model

parameters. The linear regressions of this simple estimator avoid the computational burden of

maximum likelihood methods, which have previously been the standard approach to the pricing

of interest rates.

The formulation and estimation of the Gaussian ATSM in Adrian et al. (2013) can be

summarized as follows. A K × 1 vector of pricing factors, Xt, is assumed to evolve according

to a VAR process of order one:

Xt+1 = µ + φXt + vt+1 , (12)

where the shocks vt+1 ∼ N (0,Σ) are conditionally Gaussian with zero mean and variance-

covariance matrix Σ. Letting P
(n)
t denote the price of a zero-coupon bond with maturity n at
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time t, the assumption of no-arbitrage implies the existence of a pricing kernel Mt+1 such that,

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
. (13)

The pricing kernel Mt+1 is assumed to have the following exponential form:

Mt+1 = exp
(
− rt −

1

2
λ
′
tλt − λ

′
tΣ
−1/2vt+1

)
, (14)

where rt = − lnP
(1)
t is the continuously compounded one-period risk-free rate and λt is the

K × 1 vector of market prices of risk, which are affine in the factors as in Duffee (2002):

λt = Σ−1/2(λ0 + λ1Xt) . (15)

The log excess one-period return of a bond maturing in n periods is defined as follows,

rx
(n−1)
t+1 = lnP

(n−1)
t+1 − lnP

(n)
t − rt . (16)

After assuming the joint normality of {rx(n−1)
t+1 ,vt+1}, Adrian et al. (2013) derive the return

generating process for log excess returns, which takes the form20,

rx
(n−1)
t+1 = β(n−1)′(λ0 + λ1Xt)−

1

2
(β(n−1)′Σβ(n−1) + σ2) + β(n−1)′vt+1 + e

(n−1)
t+1 , (17)

where the return pricing errors e
(n−1)
t+1 ∼ i.i.d. (0, σ2) are conditionally independently and identi-

cally distributed with zero mean and variance σ2. Letting N be the number of bond maturities

available and T be the number of time periods at which bond returns are observed, Adrian

20For the full derivation of the data generating process see Section 2.1 in Adrian et al. (2013).
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et al. (2013) rewrite equation (17) in the stacked form,

rx = β
′
(λ0ι

′
T + λ1X )− 1

2
(B∗vec(Σ) + σ2ιN )ι

′
T + β

′
V + E , (18)

where rx is an N ×T matrix of excess bond returns, β =
[
β(1) β(2) ... β(N)

]
is a K×N matrix

of factor loadings, ιT and ιN are a T × 1 and N × 1 vector of ones, X = [X0 X1 ... XT−1] is a

K × T matrix of lagged pricing factors, B∗ =
[
vec(β(1)β(1)′) ... vec(β(N)β(N)′)

]′
is an N ×K2

matrix, V is a K × T matrix and E is an N × T matrix.

The main novelty of the approach taken by Adrian et al. (2013) to model the term structure of

interest rates is the use of ordinary least squares to estimate the parameters of equation (18).

In particular, the authors propose the following three-step procedure:

1. Estimate the coefficients of the VAR model in equation (12) by ordinary least squares.21

Stack the estimates of the innovations v̂t+1 into matrix V̂ and use this to construct an

estimator of the variance-covariance matrix Σ̂ = V̂V̂
′
/T .

2. From the excess return regression equation rx = aι
′
T + β

′
V̂ + cX + E, obtain estimates

of â, β̂ and ĉ. Use β̂ to construct B̂∗. Stack the residuals of the regression into matrix Ê

and use this to construct an estimator of the variance σ̂2 = tr(ÊÊ
′
)/NT .

3. Noting from equation (18) that a = β
′
λ0 − 1

2(B∗vec(Σ) + σ2ιN ) and c = β
′
λ1, estimate

the price of risk parameters λ0 and λ1 via cross-sectional regressions,

λ̂0 = (β̂β̂
′
)−1β̂

(
â +

1

2
(B̂∗vec(Σ̂) + σ̂2ιN )

)
, (19)

λ̂1 = (β̂β̂
′
)−1β̂ĉ . (20)

The analytical expressions of the asymptotic variance and covariance of β̂ and Λ̂ = [λ̂0 λ̂1],

which we do not report here to save space, are provided in Appendix A.1 of Adrian et al.

21For estimation purposes, Adrian et al. (2013) advise to set µ = 0 in case of zero-mean pricing factors.
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(2013). From the estimated model parameters, Adrian et al. (2013) show how to generate a

yield curve. Indeed, within the proposed framework, bond prices are exponentially affine in the

pricing factors. Consequently, the yield of a zero-coupon bond with maturity n at time t, y
(n)
t ,

can be expressed as follows,

y
(n)
t = − 1

n
[an + b

′
nXt] + u

(n)
t , (21)

where the coefficients an and bn are obtained from the following no-arbitrage recursions,

an = an−1 + b
′
n−1(µ− λ0) +

1

2
(b
′
n−1Σbn−1 + σ2)− δ0 , (22)

b
′
n = b

′
n−1(φ− λ1)− δ

′
1 , (23)

subject to the initial conditions a0 = 0, bn = 0, a1 = −δ0 and b1 = −δ1. The parameters δ0 and

δ1 are estimated by regressing the short rate, rt = − lnP
(1)
t , on a constant and contemporaneous

pricing factors according to,

rt = δ0 + δ1Xt + εt , εt ∼ i.i.d. (0, σ2
ε ) . (24)

By setting the price of risk parameters λ0 and λ1 to zero in equation (22) and (23), Adrian

et al. (2013) obtain aRN
n and bRN

n , which they use to generate the risk-neutral yields, y
(n) RN

t .

These yields reflect the average expected short rate over the current and the subsequent (n−1)

periods and are computed as follows,

y
(n) RN

t =
1

n

n−1∑
i=0

Et[rt+i] = − 1

n
[aRN
n + bRN′

n Xt] . (25)

Given equation (21) and (25), the term premium TP
(n)
t , which is the additional compensation

required for investing in long-term bonds relative to rolling over a series of short-term bonds,
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can be calculated as follows,

TP
(n)
t = y

(n)
t − y(n) RN

t . (26)

In the next sections we specify and estimate a term structure model for US interest rates

following the procedure outlined above. The difference between the Gaussian ATSM in Adrian

et al. (2013) and ours is that we use a different set of pricing factors. Indeed, we include in Xt

not only the PCs of bond yields but also the equity tail factor TR(eq) described in Section 2.2.

3.3 Alternative Risk Premium Estimation

In this section we briefly review the method of Giglio and Xiu (2019), GX hereafter, to

estimate the risk premium of an observable factor – equity tail risk in our case – which is valid

even when the observed factor is measured with noise and the model does not fully account

for all priced sources of risk in the economy. The new GX three-pass methodology combines

principal component analysis (PCA) with two-pass regressions (Fama and MacBeth, 1973) to

consistently estimate the risk premium of any observed factor. The estimator relies on a large

cross section of test assets and is valid as long as PCA can recover the entire factor space of test

asset returns. Unlike the term structure model described above where the pricing kernel is an

exponentially affine function of the state variables and the market prices of risk are time-varying,

Giglio and Xiu (2019) assume a linear stochastic discount factor and constant risk premiums.

Working with a linear asset pricing model they can exploit the so-called “rotation invariance”

property that allows them to estimate the risk premium γg of an observable factor gt without

necessarily observing or knowing all the true factors vt entering the pricing kernel. Written in

matrix form, the GX model consists of the following two equations:

R̄ = βV̄ + Ū , (27)

Ḡ = ηV̄ + Z̄ , (28)
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where R̄ is the n×T matrix of demeaned excess returns of the test assets, V̄ is the p×T matrix

of demeaned true factors, β is the n× p matrix of factor risk exposures, Ū is the n× T matrix

of idiosyncratic errors, Ḡ is the d×T matrix of demeaned observed factors, the risk premium of

which has to be estimated, η is the d× p matrix of the loadings of the observed factors on the

unobserved true factors, and Z̄ is the d× T matrix of measurement errors. The GX estimator

proceeds in three steps which can be summarized as follows:

1. PCA step. The first pass consists of estimating the true factors and factor risk exposures

by extracting the first p principal components and their respective loadings from the cross

section of test asset returns.22 The estimators can therefore be written as:

V̂ = T 1/2(ξ1 : ξ2 : ... : ξp)
ᵀ and β̂ = T−1R̄V̂ ᵀ , (29)

where ξ1, ..., ξp are the eigenvectors corresponding to the largest p eigenvalues of n−1T−1R̄ᵀR̄.

2. Cross-sectional regression step. The second pass consists of estimating the risk premia of

the latent factors by running a cross-sectional ordinary least square regression of average

realized excess returns, r̄, onto the previously estimated factor loadings, β̂:

γ̂ = (β̂ᵀβ̂)−1β̂ᵀr̄ . (30)

3. Time-series regression step. The third pass consists of estimating the risk premia of the

factors of interest by first running a time series regression of the demeaned candidate

factors onto the space of the latent factors and then combining these estimates with those

of the second step. The estimator η̂ of the loadings on the latent factors and the estimator

22Giglio and Xiu (2019) propose a consistent estimator of p in their Online Appendix I.1. They also demon-
strate that as long as the number of principal components used is greater than or equal to the true number of
factors, the estimator of the risk premium is consistent. In our empirical analysis we report results with respect
not only to the number of principal components selected with the Giglio and Xiu (2019) criterion but also to
higher numbers of factors to ensure robustness of the estimates.
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γ̂g of the risk premia of the observed factors of interest can therefore be written as:

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1 , (31)

γ̂g = η̂γ̂ . (32)

Due to space considerations, we do not provide analytical expressions for the asymptotic variance

of the risk-premium estimates and we refer the reader to Section 4 in Giglio and Xiu (2019).

Another important aspect considered in the GX procedure is the noise that is contained in the

observable factors and that is uncorrelated with the test asset returns. The higher the noise,

the more weakly the factor is reflected in the cross section of test assets. To understand whether

the factor of interest has low exposure to the fundamental factors (η is small) or whether it

is dominated by noise (zt is large), Giglio and Xiu (2019) define the R2 of the time-series

regressions in the third-pass, R2
g = η̂V̂ V̂ ᵀη̂ᵀ

ḠḠᵀ . Furthermore, they provide a Wald test for the null

that the observed factor g is weak by formulating the hypotheses H0 : η = 0 vs H1 : η 6= 0.

In our paper we apply the GX three-pass method to the whole term structure of Treasury

bond returns to estimate and test the significance of the risk premium of equity tail risk. As

it is standard in the literature, we use AR(1) innovations in TR(eq) as the observable factor g.

We also report the R2
g and Wald p-value for the strength of the observed factor g with respect

to the cross section of Treasury returns.

4 Empirical Results

In this section we present our empirical results. We first consider in Section 4.1 the full-

sample least-squares estimates for the bond return prediction models with equity tail risk. We

empirically show that the equity tail factor TR(eq) significantly predicts monthly bond returns

in- and out-of-sample and the more accurate forecasts can be of economic importance for an

investor facing portfolio decisions. In Section 4.2 we discuss the estimates of the Gaussian ATSM
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which allow to explore in detail the effects of equity tail risk on bond prices and determine

whether TR(eq) is a priced source of risk in the term structure of US interest rates. In Section

4.3 we use the GX three-pass regressions as an alternative method for exploring the strength

and pricing of the equity tail factor TR(eq). Finally, Section 4.4 investigates to what extent

equity tail risk affects the government bond market of countries other than the United States.

4.1 Bond Return Predictability

We start by examining the interactions between the one-month returns of US Treasury bonds

and the S&P 500 option-implied volatility that stems from large negative price jumps, TR(eq).

Using the full sample (1996:01-2019:12) of monthly data, we run the predictive regressions in

(5a), (5b) and (5c), for which we report in, respectively, Panels A, B, and C of Table 2 the

least-squares estimates of the slope coefficients and their corresponding p-values. Numbers at

the bottom of each panel correspond to the adjusted R-squared of the predictive regressions that

include and exclude TR(eq) as predictor, and to the p-value of an F -test of the null hypothesis

that the regression that includes TR(eq) does not give a significantly better fit to the data

than does a regression without it. In order to ease interpretation of the results, all predictors,

including those discussed later, have been normalized to have a zero mean and a standard

deviation of one. Here and in the rest of this section, evidence is presented for returns on the

one-, two-, three-, four-, five-, seven- and ten-year Treasury bonds (n = 12, 24, 36, 48, 60, 84, 120

months, respectively). The results of the analysis for other maturities are available upon request.

[ Insert Table 2 here ]

Consider first the results of the univariate model (5a) presented in Panel A. The one-month-

ahead returns of US Treasury bonds exhibit strong interactions with the perceived tail risk in

the US stock market. The coefficient of the S&P 500 option-implied tail risk measure TR(eq)

is statistically significant at well below the 0.05 level across the whole yield curve. Looking at
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the size of the coefficient, we observe that the impact of equity tail risk on bond risk premia is

monotonically increasing with the bond maturity. Our estimates suggest that a one standard

deviation increase in the equity tail factor raises the expected annualized return on the 1-year

and 10-year Treasury bonds by about 0.4% and 6%, respectively. Furthermore, we note that for

all maturities considered, the sign of the coefficient is positive. This result is in sharp contrast

with that obtained by Crump and Gospodinov (2019) with a conceptually very different measure

of equity tail risk. It can however be explained in light of the opposite movements observed in

equity and bond prices in times of stress and the considerations raised by previous studies that

found a negative relation between future stock returns and option-implied volatility measures,

see, e.g., Xing et al. (2010) and An et al. (2014). That is, if we believe that informed traders

with negative news choose the option market to trade first, then a tail risk increase is later

accompanied by lower and higher prices on, respectively, the equity and bond markets, which

are slow in incorporating the information embedded in the option volatility surface. At the very

least, we provide validation of this in Section 5 by showing that the funds (meaning invested

moneys) of mutual funds, exchange-traded funds and households, which are known to be slow

or in any case not the first to rebalance portfolios when market conditions change, flow out of

equities and into Treasuries in both initial and subsequent months of an equity tail risk increase.

Since the literature on bond return predictability is more often interested in the forecasting

power of a variable beyond that of the information contained in the yield curve, we now discuss

the results reported in Panels B and C of Table 2. When controlling for yield curve factors

with the first 3 and 5 PCs, the coefficient associated with TR(eq) remains positive and highly

significant for all bond maturities.23 We find strong significance not only with the standard

Newey-West p-values but also with the more robust p-values computed with the bootstrap

procedure of Bauer and Hamilton (2018). Furthermore, we note that the inclusion of equity tail

23In results available upon request, we also considered specifications of the regression equations (5b) and (5c)
that make use of the orthogonal component of TR(eq) with respect to the principal components. The coefficient
in front of the equity tail factor continues to be statistically significant at the 0.05 level or lower for all maturities.
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risk in the predictive regressions determines sizeable changes in the adjusted R2s, which nearly

double in Panel B and increase by about 50% in Panel C. Finally, the F -test results confirm

the importance of TR(eq) for explaining the one-month-ahead variation in bond risk premia.

In addition to our baseline regressions in (5a), (5b) and (5c), we examine whether equity tail

risk remains a strong predictor of future bond returns even when controlling for other successful

return forecasting factors found in the literature. Specifically, we report in Panels D and E of

Table 2 the results of regressions that use the equity tail factor in combination with, respectively,

the Cochrane and Piazzesi (2005) and Cieslak and Povala (2015) factors. The Cochrane and

Piazzesi (2005) bond return predictor is obtained as a linear combination of forward rates,

while the Cieslak and Povala (2015) risk-premium factor is obtained from a decomposition of

Treasury yields into inflation expectations and maturity-specific interest-rate cycles. Due to

the low correlation that exists between the covariates, Treasury risk premia continue to exhibit

significant interactions with both the successful predictors found in previous studies and the

equity tail factor of this paper. Finally, we report in Panel F of Table 2 the estimates of

a regression that includes TR(eq) in combination with the CBOE VIX unspanned by TR(eq),

the equity variance risk premium of Bollerslev et al. (2014) and the CBOE Skew Index as

predictors.24 The immediate point that stands out here is that the VIX components that are

not related to our equity tail factor, i.e. continuous return variation and right jump variation,

are highly insignificant for all bond maturities along the term structure. Based on this result,

we can state that the VIX does not have predictive power over-and-above TR(eq) for future

bond returns. Furthermore, our finding that higher values of TR(eq) forecast higher next-month

returns on Treasuries is robust to the inclusion of the VRP and the CBOE Skew Index, which,

according to the estimates presented, have a negative effect on bond risk premia.25

24It is worth mentioning that the equity tail factor TR(eq) can be thought of as the VIX stripped of the
diffusive part of volatility and the risk of positive price jumps. Hence, we deemed it appropriate to include the
orthogonal component of the VIX as a predictor that controls for the implied volatility not captured by TR(eq).

25As an additional robustness check, we also considered the risk aversion proxy and uncertainty index of
Bekaert et al. (2013) and Bekaert et al. (2019). The results, which are available upon request, indicate that the
predictive power of TR(eq) survives the inclusion of these additional controls.
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We now discuss the out-of-sample performance of the models in (5a), (5b) and (5c), which

predict bond returns with the S&P 500 option-implied tail risk measure TR(eq). The accuracy

of the bond return forecasts of model (5a) is measured relative to the recursively updated

forecasts from the EH model that projects returns on a constant, while the accuracy of the

forecasts of models (5b) and (5c) is measured relative to the forecasts of the models that only

include the principal components as predictors. Table 3 reports the Campbell and Thompson

(2008) out-of-sample R2
OS values for each model, alongside the p-value of the Clark and West

(2007) MSPE-adjusted statistic for testing H0 : R2
OS ≤ 0 against H1 : R2

OS > 0. We report

results for both increasing and rolling windows of past data used in the estimation method. The

out-of-sample period is 2008:01–2019:12.

[ Insert Table 3 here ]

Overall, the results in Table 3 suggest that the good in-sample fit provided by TR(eq) and

discussed above translates into positive out-of-sample performance. For instance, when the

benchmark is the EH model, we find that equity tail risk improves the out-of-sample bond return

predictions across all maturities. The gains are in the range of 1.4% to 4.3% for both window

estimations, with the largest improvements observed for medium-maturity bonds. We note that

with the robust inference method developed by Bauer and Hamilton (2018) the increases in the

R2
OSs are statistically significant at the 0.05 level for bond maturities greater than 2 years,

while the p-values of the Clark and West (2007) MSPE-adjusted statistic are lower than 10%

for maturities of 5 years or longer. Similarly, we observe positive values of R2
OS in Panels B

and C indicating higher predictive accuracy for the bond return prediction models that include

TR(eq) compared to their PCs-only benchmark specifications. Except for the 10-year bond, the

bootstrap p-values of both R2
OS and Clark and West (2007) MSPE-adjusted statistic are below

0.1, thus proving the statistical significance of the results.

Next, we examine the economic value of using equity tail risk to make one-month-ahead pre-
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dictions of Treasury bond returns. Table 4 reports values for the CER gain (∆) and Goetzmann

et al. (2007) MPP improvement (Θ) that an investor can achieve by switching from a benchmark

to a model that uses the equity tail factor TR(eq) to predict bond returns. For completeness

we also present the Sharpe ratio of the portfolios associated with the two competing models.

Results are based on the out-of-sample model forecasts produced for the period 2008:01–2019:12

with predictive models that are recursively estimated with a rolling window approach.

[ Insert Table 4 here ]

From an investment perspective, the results in Table 4 indicate that predicting bond returns

with equity tail risk can generate substantial risk-adjusted returns. This is particularly the

case for an investor that can use TR(eq) alongside the first 5 PCs of bond yields to predict

the one-month-ahead returns of Treasuries with maturities in the range of two to seven years.

Specifically, we find that the investor is willing to pay from 60 up to 370 basis points per

year to switch from the 5 PCs-only benchmark to the model that forecasts bond returns also

with equity tail risk. The Sharpe ratio of the portfolio associated with this model is always

greater than the benchmark. To help visualize these asset allocation gains, Figure 2 displays

the cumulative returns of the two trading strategies available to an investor with a risk aversion

of γ = 5 that predicts bond returns with TR(eq) and/or the first 5 PCs of yields. By examining

Panels A and B of Table 4, we see that even when the benchmark is the EH or 3 PCs-only

model an investor trading some specific medium-term bonds is substantially better off following

the return forecasts based on equity tail risk. In fact, the 5-year bond investor is willing to pay

a fee of up to 100 basis points per year to switch to the predictive model with equity tail risk.

[ Insert Figure 2 here ]

Finally, we briefly discuss how the forecast performance of the models in (5a), (5b) and (5c)
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is related to the real economy. Panels A and B of Table 5 report contemporaneous correlations

between the out-of-sample forecasts of one-month-ahead Treasury bond returns and the CFNAI

and the macroeconomic uncertainty index (UMACRO) constructed by Jurado et al. (2015). We

note that the bond risk premia implied by any of the three models are countercyclical as they are

negatively correlated with macroeconomic condition. This is a common result found in the liter-

ature on bond return predictability and is consistent with economic theories in which investors

require compensation for bearing business cycle risk, see, e.g., Eriksen (2017) and references

therein. In order to understand whether the models that include TR(eq) as predictor perform

well in recessions or expansion periods, Panels C and D of Table 5 report contemporaneous

correlations between the models’ relative forecast and portfolio performance and the CFNAI.

The relative forecast performance is defined as the difference in cumulative squared prediction

error (DCSPE), while the relative portfolio performance is defined as the difference in cumula-

tive realized utilities (DCRU). As we can see, the forecasting performance of the three models

tends to be positively correlated with the CFNAI, indicating superior model performance in

good times when the CFNAI is high. Looking at the relative portfolio performance gives less

clear-cut results since the correlations vary substantially across maturities. In fact, asset allo-

cation gains seem to be achievable during expansion periods for short- and medium-term bonds

and during recessions for long-term bonds.

[ Insert Table 5 here ]

4.2 Bond Pricing in ATSM

On the basis of the significant interactions observed between future Treasury returns and

the equity tail factor TR(eq), it is of interest to examine to what extent the left tail volatility

of the stock market also affects the current level of bond prices. Figure 3 shows the time trend

of Treasury bond yields against periods of elevated equity tail risk, corresponding to when
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TR(eq) is above its historical 85-th percentile. As it can be seen in the graph, many of the most

remarkable declines in Treasury rates occurred at times of elevated equity tail risk. In fact, the

average contemporaneous correlation between bond yields and TR(eq) is about -0.15.

[ Insert Figure 3 here ]

To investigate the role of equity jump tail risk in pricing US government bonds, we now estimate

the Gaussian ATSM of Section 3.2 with the inclusion of our equity tail factor in the vector of

state variables. In addition to TR(eq), however, we also need pricing factors that summarize

the information contained in the yield curve. To this end, we extract the first five principal

components of the US yield curve, which have proven to be remarkably effective in fitting the

cross-section of bond yields and returns in Adrian et al. (2013). Based on this evidence, we let

these PCs drive the interest rates of our model as well, but with a slight modification of the

methodology. Indeed, in order to have pricing factors that are uncorrelated with each other,

we follow Cochrane and Piazzesi (2008) and extract the principal components not from the

conventional yields, but instead from the yields orthogonalized to the extra factor, which in our

study is TR(eq). By doing so, we obtain yield curve factors that are unrelated to the pricing of

tail risk in the stock market, which is entirely ascribed to the TR(eq) factor. In view of these

considerations, we employ the following set of pricing factors in our Gaussian ATSM,

Xt =
[
TR

(eq)
t , PC1t, PC2t, PC3t, PC4t, PC5t

]′
, (33)

where TR(eq) is the S&P 500 option-implied measure of left tail volatility, and PC1–PC5 are the

first five principal components estimated from an eigenvalue decomposition of the covariance

matrix of zero-coupon bond yields of maturities n = 3, 6, ..., 120 months, orthogonal to TR(eq).

All factors have mean zero and unit variance, and they are plotted in Figure 4. The panels of

PC1–PC5 also present the principal components of the conventional non-orthogonalized bond
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yields. We find that estimates of the factors extracted using the two yield curves track each

other quite closely, with the largest differences occurring for PC2 and PC3 at the onset of the

financial crisis.26 Therefore, the orthogonalization of the rates with respect to TR(eq) does not

appear to significantly alter the interpretation and role of the principal components in describing

the characteristics of the US Treasury yield curve.

[ Insert Figure 4 here ]

Given the vector of state variables in (33), we estimate our Gaussian ATSM using the

method put forward by Adrian et al. (2013) and discussed in Section 3.2. In particular, we use

one-month excess returns for Treasury bonds with maturities n = 6, 12, ..., 120 months to fit

the cross-section of yields. The summary statistics of the pricing errors implied by our term

structure model, which accounts for equity tail risk, and a benchmark model based on only the

first five PCs of the yield curve are provided in Table 6. Overall the results indicate a good fit

between the data and the proposed model with equity tail risk. Indeed, both the mean and the

standard deviation of our yield pricing errors remain well below a basis point for all maturities

and they never exceed, in absolute value, those of the benchmark. As for the return pricing

errors, we notice that explicitly including the equity tail risk factor TR(eq) in a Gaussian ATSM

can improve the fit especially to the short end of the US yield curve. Moreover, consistent

with the way Adrian et al. (2013) construct their framework for the term structure of interest

rates, we observe a strong autocorrelation in the yield pricing errors and a negligible one in the

return pricing errors, except for the 3-year bond. The success of our model in fitting the yield

curve is shown graphically in the left panels of Figure 5. In these plots, the solid black lines

of observed yields are visually indistinguishable from the dashed gray lines of model-implied

yields. Similarly, the right panels of Figure 5 display the tight fit between actual and fitted

26In results available upon request, we have found significant relationships only between TR(eq) and PC2 and
PC3 of the conventional non-orthogonalized bond yields. Both correlation coefficients were around −0.24.
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excess Treasury returns. The dashed red lines plot the model-implied dynamics of bond term

premia in the left panels and of the expected component of excess returns in the right panels.

[ Insert Table 6 here ]

[ Insert Figure 5 here ]

The estimation approach proposed by Adrian et al. (2013) allows for direct testing of the

presence of unspanned factors, i.e. factors that do not help explain variation in Treasury returns.

The specification test is implemented as a Wald test of the null hypothesis that bond return

exposures to a given factor are jointly equal to zero. Letting βi be the i-th column of β
′
, the

Wald statistic, under the null H0 : βi = 0N×1, is defined as follows,

Wβi = β̂
′
iV̂−1
βi

β̂i
α∼ χ2(N) , (34)

where V̂βi is an N×N diagonal matrix that contains the estimated variances of the β̂i coefficient

estimates.27 The results of the Wald test on the pricing factors of both the proposed ATSM

with equity tail risk and the benchmark PC-only specification are shown in Table 7. As we can

see, we strongly reject the hypothesis of unspanned factor for each of our state variables. This

means that the data support the use of the equity tail factor TR(eq), together with the yield

curve factors indicated by Adrian et al. (2013), for pricing government bonds in the US market

over the period 1996 – 2019.

[ Insert Table 7 here ]

We now examine whether the risk factors that we use in our Gaussian ATSM are priced in

the cross-section of Treasury returns. To this end, we follow Adrian et al. (2013) and perform

27See Appendix A.1 in Adrian et al. (2013) for the analytical expressions of the asymptotic variance of the
estimators.
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a Wald test of the null hypothesis that the market price of risk parameters associated with a

given model factor are jointly equal to zero. Letting λ
′
i be the i-th row of Λ = [λ0 λ1], the

Wald statistic, under the null H0 : λ
′
i = 01×(K+1), is defined as follows,

WΛi = λ̂
′
iV̂−1
λi

λ̂i
α∼ χ2(K + 1) , (35)

where V̂λi is a square matrix of order (K + 1) that contains the estimated variances of the

λ̂i coefficient estimates.28 In addition, in order to test whether the market prices of risk are

time-varying, Adrian et al. (2013) propose the following Wald test which focuses on λ1 and

excludes the contribution of λ0. Letting λ
′
1i

be the i-th row of λ1, the Wald statistic of this

second test, under the null H0 : λ
′
1i

= 01×(K), is defined as follows,

Wλ1i
= λ̂

′
1iV̂
−1
λ1i

λ̂1i
α∼ χ2(K) . (36)

In Table 8, we report the estimates and t-statistics for the market price of risk parameters in

the proposed Gaussian ATSM, together with the Wald statistics and p-values for the two tests

just described. Examining the first row of the table, we note that equity tail risk, as measured

by exposure to TR(eq), is strongly priced in our term structure model with a p-value of 9.2%.

We detect statistically significant time variations in the market price of equity tail risk, which

are mostly explained by the level and curvature components of bond yields. Furthermore, when

looking at the t-statistics in the second column of the table, we note that TR(eq) is an important

driver of the market price of level risk. Finally, we observe that PC2 carries a significant price

of risk in our term structure model. This result, together with the fact that Adrian et al. (2013)

find a significant market price of slope risk only after adding an unspanned real activity factor

to their framework, corroborates the hypothesis that valuable information about bond premia

28See Appendix A.1 in Adrian et al. (2013) for the analytical expressions of the asymptotic variance of the
estimators.
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is located outside of the yield curve.

[ Insert Table 8 here ]

The vector λt defined in equation (15) contains the time-t compensation for facing the risk

introduced by each of our state variables. Figure 6 displays the time series of the estimated

market price of equity tail risk. When this measure is negative (resp. positive), a positive shock

to the equity tail factor TR
(eq)
t corresponds to an unexpectedly high (resp. low) marginal value

of consumption, that is a bad (resp. good) state of the economy. In this case, assets with

value that increases in equity tail risk shocks earn negative (resp. positive) risk premia. In our

empirical analysis we find that the sensitivity of bond prices to equity tail risk shocks, i.e. the

β
(n−1)
i coefficients, is positive across all maturities and the market price of equity tail risk is

negative on average in the post-2001 period. These findings are compatible with Treasury bonds

hedging equity tail risk shocks and earning a negative risk premium over the same period that

previous studies have documented a negative stock-bond return correlation on average, see,

among others, David and Veronesi (2013) and Campbell et al. (2020).

[ Insert Figure 6 here ]

We now discuss the impact of the state variables of our Gaussian ATSM on the pricing

of Treasury bonds. The loadings of the yields on all model factors are reported in Figure 7,

whereas the loadings of the expected one-month excess returns are displayed in Figure 8. From

an examination of the state variables that are in common with the work of Adrian et al. (2013),

we can see that our results are broadly consistent with the well-established role of these factors.

Indeed, given the sign of the yield loadings on PC1, PC2 and PC3, we can argue that the first

three principal components of yields preserve in our study the interpretation of, respectively,

level, slope and curvature of the term structure. Moreover, the yield loadings on PC4 and PC5
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are both quite small, reflecting the modest variability of bond rates explained by these factors.

As can be seen from Figure 8, however, all the principal components, including the higher

order ones, are important to explain variation in Treasury returns. Specifically, in line with

previous findings concerning the predictability of bond returns with yield spreads, our evidence

suggests that an increase in the slope factor forecasts higher expected excess returns on bonds

of all maturities. Now turning to the new pricing factor that we propose in this paper, we

observe from the top left panel of Figure 7 that the yield loadings on TR(eq) are negative across

all maturities. These results imply that bond prices, which move inversely to yields, rise in

response to a contemporaneous shock to the equity left tail factor. And since, by construction,

TR(eq) is associated with a downturn in the stock market, we confirm the hypothesis that US

Treasury bonds benefit from flight-to-safety flows during periods of turmoil.29 Judging by the

magnitude of the coefficients, the immediate flight-to-safety effect is stronger on shorter-term

bonds. We find that a one standard deviation increase in the TR(eq) factor is associated with

a reduction of about 40 basis point in the yields of Treasuries with maturities ranging from six

months to three years. Further, it is worth noting that, according to the size of the loadings,

the contemporaneous effect of the equity left tail factor on the yield curve is not negligible

compared to that of the first three principal components. The expected return loadings on

TR(eq) displayed in the top left panel of Figure 8 confirm the previously established positive

relation between the left tail volatility of the stock market and the one-month-ahead risk premia

of the US government bond market. These loadings, due to the convenient orthogonalization of

pricing factors described at the start of this section, are equivalent to the coefficient estimates

reported in Panel A of Table 2. In fact, a one standard deviation increase in the TR(eq) factor

raises the annualized expected excess return by approximately 1% for the 2-year bond and 6%

for the 10-year bond. The effect of a shock to the equity tail factor on the bond risk premia is

29In results available upon request, we found that the contemporaneous correlation between TR(eq) and the
Fama and French (1993) market factor is -0.35. Also, there is a negative but insignificant relation between TR(eq)

and the one-month-ahead stock market returns, as measured by the Fama and French (1993) market factor.
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linearly related to the bond maturity.

[ Insert Figure 7 here ]

[ Insert Figure 8 here ]

We conclude this section by discussing how equity tail risk has affected the trend of yields,

risk-neutral rates and term premia over the course of time. To this end, we calculate the

component of fitted yields in equation (21) and the component of their risk-neutral counterparts

in equation (25) that the model attributes to the equity left tail factor TR(eq). Similarly, we

determine the contribution of equity tail risk to the bond term premia in equation (26) as

the difference between the component of fitted yields and the component of their risk-neutral

counterparts that the model ascribes to TR(eq). The left panels of Figure 9 illustrate the effect

of the equity left tail factor TR(eq) on the dynamics of the 1-, 5- and 10-year Treasury yields,

whereas the right panels display the effects on the expected future short rate and term premium

embedded in those rates. The following remarks can be made by observing Figure 9. The effect

of equity tail risk is much smaller (in absolute value) for the bond term premium than for the

expectation of future short rates. Therefore, when the equity left tail factor TR(eq) increases, the

reduction in the expected future short rate more than offsets the increase in the term premium.

As a result, bond yields fall in periods of elevated equity tail risk. However, it is interesting to see

that, although the same pattern is observed for all yields in Figure 3, the equity left tail factor

TR(eq) has influenced the downward trend of rates differently depending on the bond maturity.

Indeed, from the left panels of Figure 9, it appears that the dynamics of short-maturity bond

yields was strongly affected by equity tail risk, whereas the response of longer-maturity rates

was consistently negligible. This further corroborates our previous conclusion that short-term

bonds provide a more effective shelter against equity market losses than long-term bonds do.

[ Insert Figure 9 here ]
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To better visualize how the impact of equity tail risk varies across maturities and in time,

Figure 10 shows the effect of the TR(eq) factor for the whole term structure calculated on selected

dates: August 1998, October 2008, September 2011, and May 2013. Interest rates fell on all

dates except for May 2013, when yields markedly rose with the announcement of the Federal

Reserve’s “taper tantrum”. On that occasion, as it can be seen from the figure, TR(eq) did not

play any role in the yield changes. On the other hand, at the peak of the 2008-09 financial crisis,

we measure the impact of equity tail risk on bond yields to be larger than -200 basis points for

Treasuries with maturities up to four years, while it is reduced to only -65 basis points for the

10-year Treasury. The rates showed strong downward oscillations also in the summer of 1998

and the second half of 2011, when the equity left tail factor increased in response to, respectively,

the collapse of Long Term Capital Management fund and the intensification of the European

sovereign debt crisis. In both these instances, the extent of the reduction in short-term bond

rates that can be credited to equity tail risk is approximately 100 basis points.

[ Insert Figure 10 here ]

In conclusion, we can state that equity jump tail risk has been a dominant factor for the

evolution of the short end of the US Treasury yield curve. In particular, while the unconventional

monetary policies introduced by central banks to mitigate the severity of the financial crisis have

been a major force in lowering longer-term yields (Kaminska and Zinna, 2018), the reduction in

shorter-term yields can be associated with the investors’ increased fear of a stock market crash.

4.3 Three-Pass Method Estimates

We now try to provide further evidence that equity tail risk matters for bond pricing using

an alternative methodology to the ATSM discussed above. This is done by testing for weak

factor and estimating the risk premium of equity tail risk with the novel three-pass procedure

of Giglio and Xiu (2019). The results of the GX three-pass method applied to the whole term
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structure of Treasury bond returns with AR(1) innovations in TR(eq) are reported in Table 9.

[ Insert Table 9 here ]

We start by examining the results reported in column p = 5, which corresponds to the number

of principal components of bond returns selected with the criterion of Giglio and Xiu (2019).30

For this number of latent factors, we find that the estimated risk premium of TR(eq) in the

US government bond market is positive but not statistically different from 0 at the 10% level.

We view this insignificance as the result of the constant-risk-premium assumption underlying

the method of Giglio and Xiu (2019) that is incompatible with our and previous findings of

time-varying risk compensation in the bond market. Nevertheless, we find evidence against

the hypothesis that TR(eq) is measured with noise or weakly reflected in the cross section of

government bond returns. In fact, the R2 of the time-series regression in the third-pass of the

GX procedure amounts to 0.08 and we reject, at the 5% significance level, the null of TR(eq)

being a weak factor. If we now look at the estimates obtained with a higher number of latent

factors, we observe robustness of our empirical results with respect to the choice of p. Even

when using eight principal components, the market price of equity tail risk is still insignificant

at the 0.1 level and we still reject the null of weak factor at the 0.05 level. Furthermore, we

note that including the principal components beyond the sixth one does not result in further

noticeable improvement in the regression R2. On the other hand, we find that much of the

information about equity tail risk is contained in the slope factor, with the R2 that jumps from

0.01 to over 0.07 when the second principal component is included in the model.

4.4 International Evidence

In this subsection, we extend our empirical analysis of bond pricing and return predictability

to the Treasury market of United Kingdom, Germany, Switzerland, France, Italy and Spain.

30See Online Appendix I.1 in Giglio and Xiu (2019) for a consistent estimator of p.
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First, we explore to what extent the S&P 500 option-implied tail risk measure TR(eq) affects

the Treasury market of countries other than the United States. Then, we estimate country-

specific measures of equity tail risk and investigate the relation between these measures and the

government bond market in the corresponding European country. To compute the one-month

holding period returns on Treasuries in Europe, we construct a data set of end-of-month zero-

coupon interest rates that extends from January 1996 to December 2018. We collect data for

the United Kingdom (UK) from the Bank of England, for Germany (DE) from the Bundesbank

and BIS database, for Switzerland (CH) from the Swiss National Bank and BIS database, for

Italy (IT) and Spain (ES) from the BIS database, while for France (FR) we fit a Nelson-Siegel-

Svensson model to the constant maturity yields from Datastream. As for the country-specific

measures of equity tail risk, we follow the methodology outlined in Section 2.2 and estimate

option-implied volatility that stems from large negative price jumps using daily data reported

by OptionMetrics IvyDB Europe for the European style FTSE 100 (UK), DAX 30 (DE), SMI

(CH), CAC 40 (FR), FTSE MIB (IT), and IBEX 35 (ES) equity-index options. Data is available

from January 2002 to December 2018 for UK, DE and CH, from January 2007 to December 2018

for IT and FR, and from May 2007 to December 2018 for ES. We use option-implied left tail

volatilities recorded at the end of the month for UK, DE and CH, while we use the average value

over the last five days of the month for FR, IT, and ES since their less liquid option markets

yield a much noisier measure of equity tail risk. Figure 11 displays the time series of these

international equity tail risk measures along with the S&P 500 option-implied measure TR(eq).

Comparing the left tail volatility of the US stock market to that of the UK, German, Swiss and

French stock markets, we note a strong coherence between the series with all the correlation

coefficients above 0.70. At the same time, however, there are also some important differences.

In particular, we note that in 2002-03 the UK, DE and CH tail risk measures attained higher

values and remained elevated for a much longer period of time than TR(eq), which however

exhibits more pronounced peaks in the aftermath of the global financial crisis. With regard to
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the equity tail risk measures of Italy and Spain, their series diverge quite substantially from

that of the US measure with correlation coefficients of only 0.50 and 0.20, respectively.

[ Insert Figure 11 here ]

We begin by assessing the predictive power of the left tail volatility of the US stock market

for future one-month returns on the government bond market of the European countries. To

this end, we estimate the predictive regressions in (5a), (5b) and (5c) using international bond

returns on the left hand side of the equations and TR(eq), combined with the principal compo-

nents of the country-specific yield curves, on the right hand side. For each Treasury market,

Table 10 reports the full-sample estimates of the coefficient of TR(eq) and the corresponding

p-values computed with both Newey-West and Bauer and Hamilton (2018) inference procedures.

[ Insert Table 10 here ]

Overall, the results in Table 10 indicate that the perceived tail risk in the US stock market

has significant explanatory power for future returns on Treasury bonds in the UK, Germany,

Switzerland and France. When we do not control for yield curve factors in the return predictive

regressions, the coefficient of TR(eq), assessed with the robust inference method developed by

Bauer and Hamilton (2018), is statistically significant at the 0.05 level or lower for all maturities

of UK, DE and CH bonds, and at the 0.10 level or lower for all maturities of FR bonds.

Controlling with the first three or five principal components of bond yields does not change the

results for the UK and DE Treasuries, while it reduces the significance for the longer maturities

of CH and FR bonds. Consistent with the results in Table 2, the sign of the coefficient is positive,

implying that higher equity tail risk is associated with an increase in the one-month-ahead bond

risk premia. In contrast to the results obtained with the UK, DE, CH and FR bonds, the equity

tail risk factor TR(eq) does not seem to help explain time variations in the bond risk premia
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of Italy and Spain. In fact, the explanatory power of TR(eq) is never statistically significant at

the 10% level for IT bonds with maturity greater than one year, and is at most significant at

that level for the short-term ES bonds. These results point to the possible role that country

risk may play in the identification of a safe asset when the equity market tumbles. It is indeed

possible that, in periods of stress, international investors shift their holdings into instruments

like the “safe” German Bund rather than debt issued by fiscally weak sovereigns, such as Italy

and Spain. This is further corroborated by the fact that TR(eq) is strongly positively correlated

with the current level of prices of DE Treasuries, while contemporaneous correlations with IT

and ES bond prices are negative. Due to the mostly insignificant interactions observed in-sample

between TR(eq) and Treasury bonds of Italy and Spain, we do not consider the out-of-sample

forecast improvements afforded by equity tail risk for bond returns in these two countries. For all

other countries, Table 11 reports the out-of-sample relative forecast and portfolio performance

of the models in (5a), (5b) and (5c), which predict international bond returns with the S&P 500

option-implied tail risk measure TR(eq). Results are based on the out-of-sample setting described

in Section 3.1, with predictive regressions that are recursively estimated with a rolling window

approach and the assumption that the investor’s level of risk aversion is γ = 5.

[ Insert Table 11 here ]

From an examination of the Campbell and Thompson (2008) out-of-sample R2
OSs in Table 11,

we note that the models that include equity tail risk systematically outperform the benchmarks

in predicting returns of the UK and Germany Treasury markets. The same holds true for short-

and medium-maturity bonds in Switzerland and France. The reductions in the MSPE for the

forecasts generated by the model that includes TR(eq) are in the range of 4% to 24% for UK

bond returns and in the range of 0.5% to 11% for DE bond returns. On the basis of the Clark

and West (2007) test results, however, the gains of predictability in international bond returns

are only marginally statistically significant. When assessing the portfolio performance afforded
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by equity tail risk, we observe that TR(eq) can generate substantial risk-adjusted returns for

investors trading bonds in all four countries, but especially in the UK and Germany. For

instance, when the benchmark is the 3 PCs-only model, we find that an investor trading the

5-year UK (DE) Treasury bond is willing to pay approximately 165 (213) basis points per year

to switch from the benchmark to the model that predicts bond returns with equity tail risk.

Having identified significant associations between the left tail volatility of the US stock

market and the future returns on some of the major international government bond markets,

the natural question that arises is whether equity tail risk is also a key determinant of the

current level of prices of those bonds. To answer this question, we estimate the risk premium

of TR(eq) by applying the GX three-pass method to the term structures of Treasury bonds in

the UK, Germany, Switzerland, France, Italy and Spain. The results are reported in Table 12.

[ Insert Table 12 here ]

As we did for the US term structure, we assess robustness of the estimates by reporting results

also for a higher number of latent factors than those selected with the Giglio and Xiu (2019)

criterion, which points to 5 principal components for all Treasury markets except for the UK

where 4 factors are selected. Examining the significance of the risk premium estimates γg, we

can see that TR(eq) carries a significant price of risk in the Treasury bond market of the UK,

Germany, Switzerland and France, which are the same countries that displayed strong return

predictability with equity tail risk. For those countries we also tend to reject at the 0.10 level or

lower the null of TR(eq) being a weak factor. Furthermore, it can be seen from the time-series

regression R2s that the equity left tail factor is mostly spanned by the second and, in some

cases, the third principal components of the Treasury returns. As for the Italian and Spanish

government bond markets, we confirm the lack of a strong connection with equity tail risk.

We end this section by relating the returns of the international government bond markets

to the perceived tail risk in the stock market of the home country. We do this by running the
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predictive regressions in (5a), (5b) and (5c) with the country-specific equity tail risk measures

displayed in Figure 11 and estimating their risk premium with the GX three-pass procedure.

Due to the limited availability of option data on the European stock market indices, we only

consider the in-sample performance of the predictive models in (5a), (5b) and (5c). The full-

sample estimates of the coefficients of the country-specific equity tail risk measures are reported

in Table 13 while the results of the GX three-pass regression procedure are shown in Table 14.

[ Insert Table 13 here ]

[ Insert Table 14 here ]

A quick inspection of Table 13 reveals that the future one-month returns of UK, DE and CH

Treasury bonds are strongly associated not only with the S&P 500 option-implied left tail factor

TR(eq) but also with the corresponding country-specific measure of equity tail risk. On the other

hand, we do not find any statistically significant relationship between the FR, IT and ES bond

returns and the perceived tail risk in the stock market of the home country.31 Finally, the

results in Table 14 support our previous observations on the existence of a significant market

price of equity tail risk in the Treasury bond market of UK, Germany, Switzerland and France.

In conclusion, our findings concerning the predictive power and pricing of equity tail risk

are robust to alternative data sets. In fact, there is clear evidence that equity tail risk carries

significant information about the dynamics of Treasury bond yields and returns not only in the

US but also in major government bond markets in Europe.

31For reference, we also provide in Table 15 the in-sample results for predictive regressions that include both
the US equity tail risk measure TR(eq) and the country-specific equivalent, orthogonalized to TR(eq). In short,
these results suggest that the information contained in the country-specific equity tail risk measures is completely
subsumed by the US equity tail factor.
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5 Economic Interpretation

In this section, we relate our results of US bond pricing and return predictability based on

equity tail risk to two strands of influential literature that explore factors affecting asset prices.

First, since small flows lead to big and persistent price moves (Gabaix and Koijen, 2020), we

consider the flows of funds (meaning invested moneys) between stocks and bonds to establish

to what extent and for how long high values of our equity tail risk factor are associated with

outflows from the equity market and inflows to the government bond market. Within this flows

of funds analysis, we also try to characterize the sectors that buy Treasuries in times of elevated

equity tail risk. Second, since we know that bond prices respond to monetary policy actions and

statements, many of which happen as a result of financial stress, we consider how our equity

tail risk factor is related to monetary policy shocks in order to see if the former continues to

have a significant effect on interest rates after controlling for the latter.

5.1 Flows of Funds

In order to provide direct empirical evidence for a flight-to-safety interpretation of the find-

ings in the previous sections, we study the contemporaneous and predictive relationships of our

equity tail risk measure with the flows of funds (meaning invested moneys) into and out of

the equity and Treasury markets.32 We analyze flows data on two time scales: monthly and

quarterly. For the monthly time scale we rely on flows provided by the Investment Company

Institute (ICI) for US-domiciled open-end mutual funds and exchange-traded funds over the

period 2000 to 2019. Specifically, we collect mutual funds data for Domestic Equity, World Eq-

uity, Hybrid, and Government Bond investment objectives, and ETF data for Equity, Hybrid,

32A related analysis to the one of this section is performed by Adrian et al. (2019a) and Adrian et al. (2019b),
who focus only on the contemporaneous relationships between (a non-linear transformation of) the VIX index
and monthly flows from two sectors, namely Mutual Funds and Money Market Funds. As described later, our
analysis also involves monthly flows from the Exchange-Traded Fund (ETF) sector and quarterly flows from all
sectors in the US Economy and from the Foreign Sector, including the issuance and buybacks of equities. Our
analysis documents also lagged relationships at the monthly time scale.
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and Government Bond investment objectives.33 These data have the advantage of being readily

available at the same (monthly) frequency as the Treasury returns and equity tail risk factor of

this paper, but they only represent a rather small component of the ecosystem.34 For this rea-

son, we also analyze data on total flows from all sectors in the US economy and from the foreign

sector to US equities and Treasuries between 1996 and 2019. Despite the high sectoral coverage

offered, this data can only be obtained at the quarterly time scale from the Financial Accounts

of the United States - Z.1 Release of the Board of Governors of the Federal Reserve. Using the

same data, Gabaix and Koijen (2020), GK2020 hereafter, find evidence for the so-called “Inelas-

tic Market Hypothesis”. According to this hypothesis, as financial institutions are substantially

constrained by mandate (and/or for other reasons) on the choice of their portfolio weights on all

asset classes, the price elasticity of the aggregate demand of stocks is small. This implies that

aggregate flows in and out of the aggregate stock market, although small compared to the total

value of the equity market, have a large permanent impact on equity prices. GK2020 propose

a new aggregate measure of flows to the equity market, which they call “capital flows into the

stock market” (see their Section 4.7) and is computed as the weighted average of the flows to

equities across all sectors. They show that this measure, which we refer to simply as “Aggregate

Equity Flows”, is significantly and positively correlated with the level of equity prices, survey

expectations on returns (R2 = 0.233), and GDP growth innovations (R2 = 0.045).35

33For fund definitions, we refer to the ICI websites https://www.ici.org/research/stats/iob_update/

classification/iob_definitions and https://www.ici.org/research/stats/iob_update/classification/

iob_definitions_etf .
34For instance, only 6% of Treasury bonds in the US are held by mutual funds, which for this reason are

referred to as “just the tip of the iceberg” by BlackRock (2020).
35Following GK2020, we compute Aggregate Equity Flows as the equity-share weighted average of the flows

across all sectors of the US Economy and the Foreign Sector. By construction, this measure incorporates also net
issuance shares buybacks. GK2020 argue that the total flows to equities, corporate bonds and government bonds
of a certain sector i (divided by the total value of these assets) should be included in their measure of “capital
flows into the stock market” when correctly measured, i.e. when they are associated with an elasticity of equity
demand to flows of 1. If the estimated elasticity of demand of a certain sector is lower than 1, then only the pure
equity flow (divided by the total value of the equity market only) should be included. Based on the estimated
elasticities of demand, total capital flows are included for the following sectors: Mutual Funds, ETFs, Closed-
end funds, Private Pension funds, State & local pension funds, and State & local governments. On the other
hand, pure equity funds are included for the remaining sectors: Households, Foreign sector, Federal Government
retirement funds, Property & Casualty insurers, Life Insurance companies, Broker dealers, and Banks. Note that
a positive (resp. negative) flow in quarter t to a certain asset class, say equity, for sector i, say Mutual Funds,
means that on quarter t sector i has increased (resp. decreased) its holdings of that asset class with respect to
the previous quarter t− 1.
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If the flight-to-safety interpretation of our equity tail risk measure is correct, we expect it to

be positively associated with government bond fund flows and negatively associated with both

stock fund flows and Aggregate Equity Flows. Motivated by the novel short-term predictability

of bond returns discovered in the present study, Treasury inflows are expected to be observed

even in the month following an increase in equity tail risk. Such persistence in flows, which can

be seen as reflecting the fact that some investors do not rebalance their portfolios as soon as

market conditions change, would provide support for the important role of equity tail risk in

determining not only the present but also the one-month-ahead prices of Treasuries. To verify

our conjectures, we first describe how stock and bond fund flows relate to current and previous

month’s level of equity tail risk. Then we extend the analysis to include the quarterly flows of

sectors like households that may be characterized by delayed portfolio rebalancing and hence

explain the existence of a relation between equity tail risk and flows also at lower frequencies.

Figure 12 shows the time trend of monthly flows for different types of US-domiciled funds,

plotted against periods of elevated equity tail risk, corresponding to when TR(eq) is above its

historical 85-th percentile. The “Total Equity” fund is obtained by summing up the US Equity,

World Equity and Hybrid fund flows obtained from ICI. The “Equity - Government Bond”

fund is obtained by subtracting from the Total Equity flows the US Government Bond flows

obtained from ICI. We use net flows expressed as percentage of previous month’s assets under

management (AUM) for all types of funds except for “Equity - Government Bond”, whose flows

are shown in billions of US $. These plots clearly indicate that government bond fund flows

tend to be positive when the perception of tail risk is higher, while stock fund flows tend to be

negative. To measure and test the statistical strength of these relationships, we use TR
(eq)
t as the

explanatory variable in the following contemporaneous and predictive time series regressions:

Flowi,t = αi + βi · TR
(eq)
t + εi,t , F lowi,t+1 = αi + βi · TR

(eq)
t + εi,t+1 ,
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where Flowi,t an Flowi,t+1 are the month-t and month-(t + 1) net flows into type-i fund. We

report the results of these time-series regressions in Table 16. The estimates reveal that our

measure of equity tail risk is significantly positively correlated with bond fund flows and signif-

icantly negatively correlated with stock fund flows. This holds true in both contemporaneous

and predictive regressions. Furthermore, it is interesting to see that lagging the equity tail risk

measure strongly diminishes the relationship with equity fund flows but not with bond fund

flows. In fact, TR
(eq)
t strongly comoves with and explains a large portion of variation in both

month-t and month-(t+ 1) bond fund flows, with a correlation of 39% and an R2 of 15%. This

persistence, which can probably be seen as reflecting the fact some of those fund managers do

not rebalance their portfolios at the highest frequencies, is coherent with the prolonged positive

response of US Treasury bond prices to equity tail risk documented in the previous sections.

Finally, we consider how robust the explanatory and predictive ability of TR
(eq)
t for fund flows

is by including in the above regressions alternative factors studied by the literatures on stock

and bond return predictability. In particular, we consider the CBOE VIX and SKEW index

and the VRP of Bollerslev et al. (2014), for which we report estimates in Table 17. In short,

these results suggest that, amongst the candidate variables, TR
(eq)
t is the most important factor

influencing stock and bond fund flows in both the present and the upcoming month.

[ Insert Figure 12 here ]

[ Insert Table 16 here ]

[ Insert Table 17 here ]

We now examine the quarterly relationship between TR(eq) and Aggregate Equity Flows,

which is expected to be negative. This would imply that, according to the model behind the

Inelastic Market Hypothesis of GK2020, an increase of equity tail risk is positively correlated

with (i) equity outflows, but also (ii) Treasuries inflows from some (or most) of the largest
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sectors as measured by equity holdings. In particular, compatibly with the increase of Treasuries

prices when equity tail risk is high, our measure should be positively correlated with flows to

Treasuries by the two largest sectors by equity-ownership shares, which are Households and

Mutual Funds.36 In order to verify this, we first construct the Aggregate Equity Flows measure

using data from the Z.1 Release up to 2019.Q4, and display it in Figure 13.37

[ Insert Figure 13 here ]

As the Z.1 Release only provides quarterly data on flows, we compute the within-quarter average

of our monthly measure of equity tail risk (TR
(eq)
t ) and use it as the explanatory variable in the

following regression model:

Flowi,t = αi + βi · TR
(eq)
t + εi,t ,

where the index t now refers to a specific quarter, and Flowi,t corresponds to the flow to equity

or Treasuries for sector i. We run a separate time-series regression for each sector i and report

the results in Table 18.

[ Insert Table 18 here ]

The first column of the table reports the estimation results of the regression where the de-

pendent variable is the Aggregate Equity Flows measure of GK2020. The dependent variables

considered in the second and third column are the flows to Treasuries from the Mutual Fund and

the Households sectors, respectively. For the entire sample we find a negative and significant

36See GK2020 for a discussion of the different sectors of the US economy represented in the Z.1 Release, and
the fraction of the entire US stock market they own.

37All vintages of the data for the Financial Accounts of the United States - Z.1 Release can be downloaded
from https://www.federalreserve.gov/releases/z1/ In our application we use the June 2020 vintage, while
GK2020 use the June 2019 vintage, and therefore their data stop in 2018.
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relationship between Aggregate Equity Flows and our tail risk measure, which have a correla-

tion of -0.18, and the regression R2 is 3.2%. Notably, this R2 has the same order of magnitude

of the R2 when GDP news are considered as the only explanatory variable by GK2020.38 If we

only consider the post-2001 subsample, which is characterized by a mostly negative stock-bond

relation, the correlation between equity tail risk and equity flows drops to -0.21, with the R2

of the regression increasing to 4.4%. Symmetrically, we also find a positive and increasing re-

lationship between equity tail risk and (i) flows to Treasuries from Mutual Funds only (with a

p-value of 10.7% and R2 of 1.7%), and (ii) flows to Treasuries from Households only (p-value <

1% and R2 = 23.3%). Importantly, the R2 in this last regression is as large as the R2 between

Aggregate Equity Flows and expectation surveys on (equity) returns found by GK2020. Finally,

we note that these correlations remain positive, and become stronger in the post-2001 sample,

where the R2 increases to 3.9% for Mutual funds and to 27.8% for Households.

Overall, the findings of this section are consistent with our flight-to-safety conjecture related

to funds flowing form equities to Treasuries in periods of elevated equity tail risk. Furthermore,

our results complement those of Adrian et al. (2019a), who concentrate only on contemporaneous

relationships of the VIX index with flows from Mutual and Money Market Funds only, and those

of Gabaix and Koijen (2020), who mostly focus on equity market prices and flows. Nonetheless,

our analysis could be refined in the future to provide a more comprehensive understanding of

the flows to equities and bonds from each sector in the Z.1 Release.

5.2 Monetary Policy Shocks

In an attempt to find a link between the actions of monetary policy (MP) in the US and

our equity tail risk measure TR(eq), we exploit the recent dataset of Baker et al. (2020), who

study the causes that trigger US stock market jumps. They identify jumps (defined as absolute

38As the variables have been standardized before running the regressions, β̂i is also the sample correlation
coefficient.
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returns larger than 2.5%) at a daily level using next-day newspapers.39 They find that the most

common cause of large market movements is macroeconomic news, which triggered nearly a

quarter of the jumps observed in the US from 1900 to 2019, while monetary policy and central

banking jumps amount to a much smaller fraction. In terms of the implications of different

jumps, they note that monetary policy jumps tend to produce a lot less follow-on volatility

relative to macroeconomic news-driven jumps. The stock market jumps identified by Baker

et al. (2020) can help us understand whether the behavior of our equity tail risk measure TR(eq)

is by any means influenced by the actions of the MP makers and hence if the effect on Treasury

bonds that we have found is merely a MP effect or something more than that. The answer

appears to be the latter from the following considerations. In the 1996–2019 period, there are

only 26 monetary jumps, which amount to 10.4% of the total number. The fact that monetary

policy is not the main trigger of stock market jumps is itself an indicator that the information

contained in TR(eq) goes beyond merely MP announcements. This can be clearly seen also in

Figure 14, where the daily time series of our equity tail risk measure is plotted against the stock

market jump returns driven by monetary policy. The correlation between the two series is only

about 6%. This low level of correlation is not surprising at all if one considers that TR(eq) is,

by construction, a measure of downside risk and that negative jumps account for only 23% of

the jumps triggered by monetary policy. Also, the finding of Baker et al. (2020) that volatility

rises less after monetary jumps than after other jumps, which can probably be explained by

the predominant positive sign of these jumps combined with the well-known leverage effect,

contrasts with the high persistence of TR(eq) observed during post-crisis periods. These are all

arguments in support of our hypothesis that the effect of equity tail risk on Treasury bonds is

different from that of MP actions and announcements.

[ Insert Figure 14 here ]

39The authors share the data which can be downloaded from their website https://stockmarketjumps.com/ .
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We now ask whether the equity tail risk factor TR(eq) continues to affect US Treasury bonds

after accounting for the usual effect of unexpected monetary policy actions on domestic interest

rates, see, e.g., Kuttner (2001), Gürkaynak et al. (2005), Ca’ Zorzi et al. (2020) and Jarociński

and Karadi (2020). To answer this question, we use a regression framework that measures the

interest rate effects of tail risk and monetary policy shocks. Our baseline regression, which we

borrow from Bekaert et al. (2020), is as follows:

∆y
(n)
t = α+ βTR∆TR

(eq)
t +

∑
i

βMP,i∆MPit + γDt +
∑
k

δk∆Macrokt +
∑
k

rkθkt + εt , (37)

where ∆y
(n)
t is the daily change of the n-month US Treasury bond yield, ∆TR

(eq)
t is a proxy for

pure equity tail risk shocks, ∆MPit is the i-th measure of monetary policy shocks, Dt is a {0,1}

dummy variable that signals the event dates of monetary policy announcements, ∆Macrokt is

the shock in the k-th macroeconomic series, and θkt is a {0,1} dummy variable that flags the

news release days for the k-th macroeconomic series. We examine the interest rate effects of

“cleansed” unexpected changes in equity tail risk by means of ∆TR
(eq)
t , which we obtain as

the residual of projecting the daily change in TR(eq) onto the space of the monetary policy

and macroeconomic shocks.40 To measure the effect of US monetary policy on interest rates,

we mainly rely on the high-frequency shocks identified by Jarociński and Karadi (2020) with

the “poor man’s sign restrictions”. In this case, there are two ∆MPit measures in equation

(37) representing, respectively, pure MP shocks and central bank (CB) information shocks,

which Jarociński and Karadi (2020) separate based on the comovement of interest rates and

stock prices around a monetary policy announcement. In short, a pure MP shock (resp. CB

information shock) happens when negative (resp. positive) comovement between the interest rate

surprise, i.e. the first principal component of rate changes in fed funds futures with maturities

from 1 month to 1 year, and the stock price surprise, i.e. the change in the S&P 500, is observed

40In a similar vein, Bekaert et al. (2013) and Bekaert et al. (2020) use daily changes in risk aversion and
uncertainty as proxies for unexpected changes to their variables.
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in the half-hour window starting 10 minutes before and ending 20 minutes after a central bank

announcement. Pure MP shocks are equal to the interest rate surprises on days when the

fed funds futures and the S&P 500 moved in the opposite direction around the announcement,

equal to zero otherwise. Central bank information shocks are equal to the interest rate surprises

on days when the fed funds futures and the S&P 500 moved in the same direction around the

announcement, equal to zero otherwise. The shocks developed by Jarociński and Karadi (2020),

although available for a long period of time, do not account for the unconventional monetary

policy tools introduced by central banks in the aftermath of the global financial crisis when

the Fed funds rate reached the zero lower bound. Therefore, we also consider an instance of

equation (37) that we estimate in the post-2008 period and where the ∆MPit measures are those

developed by Rogers et al. (2018) who complement target rate shocks with two shocks for the

non-standard policies of forward guidance and asset purchases. Specifically, the target shock is

the change in yield on the current- or next-month federal funds futures contracts, as proposed

by Kuttner (2001), from 15 minutes before a monetary policy announcement to 1 hour and 45

minutes afterwards. The forward guidance (FG) shock is the residual from a regression of the

yield change for the fourth Eurodollar futures contract, which is a bet on the level of 3-month

interest rates about 1 year hence, onto the target shock. The asset purchase (AP) shock is the

residual from a regression of the yield change for the on-the-run 10-year Treasury futures onto

the target and forward guidance shocks. So estimated AP shocks are meaningful only from

October 2008 onwards, when they measure the jumps in long-term interest rates associated

with large-scale asset purchase programs. We illustrate in the top panel of Figure 15 the two

monetary policy shock measures of Jarociński and Karadi (2020) from January 1996 to May

2019, and in the bottom panel the three measures of Rogers et al. (2018) from January 1996 to

December 2015 (the series of AP shocks starts in October 2008 for the aforementioned reasons).

All measures are quoted in basis points.41 For the pure MP shocks of Jarociński and Karadi

41We are very grateful to Marek Jarocinski, Refet Gürkaynak and John Rogers for sharing the data of monetary
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(2020) and for the target and FG shocks of Rogers et al. (2018), a positive (resp. negative) value

indicates policy tightening (resp. easing). In case of the AP shocks, a positive value, as noted by

Bekaert et al. (2020), could mean an earlier-than-expected termination of the large-scale asset

purchases. For the CB information shocks, a positive value indicates a better-than-expected

economic outlook announcement and vice versa.

[ Insert Figure 15 here ]

The monetary policy day dummyDt together with the macroeconomic shock series ∆Macrokt

and corresponding news release day dummies θkt act as control variables. In fact, we run the

regression equation (37) at the daily level on all available dates. Hence, controlling for monetary

policy and macroeconomic news events ensures that our interest rate effects are compatible with

those of regressions that are run only on the MP event dates and in a narrow window of time

around the announcement. As for the macroeconomic news surprises, we follow Bekaert et al.

(2020) and collect data for the following seven series: GDP growth quarter-on-quarter, indus-

trial production growth, unemployment rate, CPI inflation, current account balance, consumer

confidence, and manufacturing confidence. The shock of each macro news release is calculated

as the difference between the actual realization and the median expectation according to sur-

veys, divided by the sample standard deviation. Daily data on the macro news announcements

and corresponding survey expectations come from Bloomberg.42

In this analysis, interest rates and MP shocks are measured in basis points. Table 19 reports

the full-sample estimates of the coefficients of ∆TR
(eq)
t and ∆MPit, and the corresponding p-

values computed with heteroskedasticity-robust standard errors.43 The results in Panel A are

obtained by estimating the regression equation (37) with the monetary policy shock measures

of Jarociński and Karadi (2020). Sample period starts in January 2003, which is when data is

policy shock measures.
42We thank Nancy Xu for providing details on how to construct the macroeconomic news surprises.
43The regression results associated to the control variables are not reported in Table 19 for sake of space.
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available for all seven macroeconomic series, and ends in May 2019 with the last available MP

shocks provided by Jarociński and Karadi (2020).44 The results in Panel B are obtained by

estimating the regression equation (37) with the monetary policy shock measures of Rogers et al.

(2018). In this case the sample period starts in October 2008, which is when unconventional

policies became predominant, and ends in December 2015 with the last available MP shocks

provided by Rogers et al. (2018). Numbers at the bottom of each panel correspond to the

adjusted R-squared of the predictive regressions that include and exclude ∆TR
(eq)
t as covariate

in the regression equation (37). In addition to the bond maturities analyzed in the previous

sections, we also report results for daily changes in 3- and 6-month interest rates as it is well

established in the literature that the monetary policy passes easily through short-term rates.

[ Insert Table 19 here ]

We start by examining the regression results obtained over the longer sample period with the

MP shocks of Jarociński and Karadi (2020). As expected, the US monetary policy strongly

affects domestic interest rates. The coefficient is positive and highly significant at all maturities

for both pure MP and CB information shocks. For the former shock, the pass-through is over

50% at the 1-year maturity and has a peak of approximately 70% at the 3-year maturity. More

relevant to the purpose of this paper is the strong negative effect of equity tail risk shocks on

US Treasury rates of all maturities. This negative contemporaneous relationship between daily

changes in equity tail risk and Treasury bond yields echoes the estimates obtained at lower

frequency with the ATSM and confirms the flight-to-safety effect that benefits US government

bonds in period of financial stress. The results of this analysis suggest that equity tail risk

shocks have a large economic effect on interest rates even after accounting for monetary policy

shocks. A one standard deviation shock to equity tail risk, which amounts to approximately

44In accordance with Bekaert et al. (2020) we also considered January 2000 as the start date of the sample
resulting in similar results that are available upon request.
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0.017, has on the 1-year US Treasury rate the same effect of an 80 basis point easing as measured

by ∆MP pure
t . The importance of equity tail risk in explaining interest rate variations is evident

also from the sizeable increases in the adjusted R-squared observed when ∆TR
(eq)
t is included in

the regression. Moving on to the regression results obtained over the post-2008 sample period,

we notice that equity tail risk shocks continue to significantly affect interest rates even in the

presence of unconventional monetary policy shocks. Like before, the sign of the coefficient is

negative and the magnitude grows with the maturity of the yields. As for the MP shocks of

Rogers et al. (2018) it is worth noting that the effect of FG and AP shocks is positive and highly

significant for a large number of maturities. On the contrary and not surprisingly having the

Fed funds rate reached the zero lower bound, the effect of target shocks is negative and also

insignificant at the short end of the curve.

6 Conclusion

In this paper, we study how US Treasury bonds respond to changes in the perceived tail risk

in the stock market. We estimate equity tail risk with the risk-neutral expectation of future

volatility that stems from large negative price jumps and we examine how it relates to the future

one-month returns on bonds in reduced-form predictive regressions. Also, we propose an affine

term structure model in which the main drivers of interest rates are the principal components of

the zero-coupon yield curve and the equity tail risk factor. While earlier approaches to pricing

bonds with factors other than combinations of yields have proven useful when macro variables

are considered, we focus here on the observed comovement in stock and bond markets during

crisis periods and use a state variable that originates in the equity option market.

The results of our main application to the US government bond and S&P 500 index option

markets are summarized as follows. First, there exist significant interactions between the one-

month-ahead risk premia in Treasury bonds and the left tail volatility of the stock market.

Second, the strong predictive power of equity tail risk for future bond returns is confirmed
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in a real-time out-of-sample exercise, where this predictability can be exploited to improve the

economic utility of a mean-variance investor. Third, the left tail volatility of the stock market is a

priced state variable in the US term structure. We find evidence of a significant and time-varying

market price of equity tail risk that has been negative on average since 2001. Fourth, consistent

with the theory of flight-to-safety, bond prices rise in response to a contemporaneous shock to

the equity left tail factor. Fifth, large drops in short-term bond yields and expected future short

rates are attributable to equity tail risk. Sixth, the strong interest rate effect of equity tail risk

shocks persists even after controlling for the usual effect of monetary policy and macroeconomic

shocks. Seventh, equity tail risk is positively correlated with aggregate equity outflows and

Treasury bond inflows. Finally, our results concerning the predictive power and pricing of equity

tail risk are robust to alternative data sets. When extending the analysis to major government

bond markets in Europe, we find that equity tail risk carries significant information about the

dynamics of Treasury bond yields and returns in United Kingdom, Germany, Switzerland and

France, while the evidence is considerably weaker in Spain and non-existent in Italy.

Given our findings with a measure of downside tail risk of the stock market, a natural

direction for future research would be to assess the impact on the yield curve of a tail factor

implied by Treasury options. For instance, it would be interesting to see whether the downside,

or even the upside, tail risk of the bond market receives compensation in a term structure

model and how its pricing differs from that of equity tail risk. This would contribute to the

recent literature on the auxiliary role of Treasury variance and jump risk in explaining bond

risk premia, see (Wright and Zhou, 2009; Mueller et al., 2017). We leave investigation of such

possibilities to future research.
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Table 1 – Descriptive statistics: bond risk premia and equity tail risk

rx
(12)
t+1 rx

(24)
t+1 rx

(36)
t+1 rx

(48)
t+1 rx

(60)
t+1 rx

(84)
t+1 rx

(120)
t+1 TR

(eq)
t

Panel A: Descriptive Statistics

Mean 0.389 0.965 1.534 2.066 2.548 3.359 4.240 0.101

Std. dev. 0.589 1.519 2.530 3.525 4.487 6.327 8.936 0.039

Skewness 1.373 0.484 0.143 0.010 −0.022 0.028 0.082 2.051

Kurtosis 7.592 4.624 3.911 3.710 3.767 4.190 4.957 10.020

ρ(1) 0.196 0.141 0.100 0.073 0.056 0.038 0.018 0.672

ρ(6) 0.087 −0.030 −0.078 −0.095 −0.100 −0.100 −0.090 0.272

ρ(12) 0.083 0.137 0.141 0.131 0.113 0.069 0.017 0.188

SR 0.660 0.636 0.606 0.586 0.568 0.531 0.475

Panel B: Correlation Matrix

rx
(12)
t+1 1.000

rx
(24)
t+1 0.926 1.000

rx
(36)
t+1 0.850 0.981 1.000

rx
(48)
t+1 0.791 0.947 0.990 1.000

rx
(60)
t+1 0.741 0.906 0.966 0.993 1.000

rx
(84)
t+1 0.655 0.823 0.901 0.950 0.980 1.000

rx
(120)
t+1 0.553 0.715 0.802 0.867 0.916 0.976 1.000

TR
(eq)
t 0.207 0.175 0.172 0.176 0.182 0.192 0.193 1.000

Notes: This table contains descriptive statistics for the one-month excess US Treasury bond returns rx
(n)
t+1, with

maturity n = 12, 24, 36, 48, 60, 84, 120 months, and for the S&P 500 option-implied equity tail risk measure
TR

(eq)
t used as predictor in the empirical analyses. Panel A reports the sample mean, standard deviation,

skewness, kurtosis and autocorrelation coefficients of order one, six and twelve for each of the variables. Return
means and standard deviations are expressed in annualized percentage terms. The annualized Sharpe ratio (SR)
is also reported for the Treasury bonds. Panel B reports the correlation coefficients calculated with the future
bond returns and contemporaneous TR(eq) factor. The sample uses end-of-month data for 1996:01–2019:12.

69



Table 2 – In-sample forecasts of Treasury returns with equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: No control for bond return forecasting factors

TR
(eq)
t β 0.421 0.920 1.504 2.150 2.831 4.194 5.969

p-value 0.000 0.001 0.001 0.002 0.002 0.003 0.007
p-value (b) 0.012 0.040 0.027 0.018 0.011 0.003 0.001

Adj. R2
(%) 3.930 2.729 2.613 2.769 2.989 3.336 3.393

Adj. R2
(%) no TR(eq) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

F -test 0.000 0.003 0.003 0.003 0.002 0.001 0.001

Panel B: Control for yield curve factors with 3 PCs

TR
(eq)
t β 0.399 0.861 1.418 2.028 2.659 3.897 5.504

p-value 0.001 0.007 0.009 0.009 0.009 0.010 0.014
p-value (b) 0.001 0.007 0.010 0.009 0.006 0.004 0.006

PC1t β 0.351 0.545 0.704 0.857 1.002 1.265 1.622
p-value 0.015 0.119 0.201 0.252 0.287 0.334 0.371

PC2t β 0.190 0.630 1.060 1.480 1.889 2.662 3.695
p-value 0.097 0.027 0.019 0.015 0.012 0.009 0.007

PC3t β 0.150 0.030 −0.139 −0.269 −0.339 −0.355 −0.373
p-value 0.480 0.948 0.843 0.770 0.762 0.811 0.848

Adj. R2
(%) 7.305 4.226 3.732 3.765 3.914 4.150 4.082

Adj. R2
(%) no TR(eq) 4.310 2.228 1.791 1.702 1.703 1.734 1.666

F -test 0.002 0.009 0.010 0.008 0.007 0.005 0.005

Panel C: Control for yield curve factors with 5 PCs

TR
(eq)
t β 0.388 0.838 1.364 1.929 2.509 3.651 5.155

p-value 0.001 0.006 0.009 0.010 0.010 0.011 0.014
p-value (b) 0.001 0.009 0.016 0.013 0.011 0.008 0.008

PC1t β 0.349 0.541 0.695 0.840 0.976 1.224 1.565
p-value 0.013 0.111 0.211 0.282 0.331 0.388 0.417

PC2t β 0.192 0.634 1.070 1.500 1.920 2.715 3.773
p-value 0.100 0.023 0.016 0.015 0.014 0.012 0.009

PC3t β 0.152 0.036 −0.126 −0.245 −0.302 −0.294 −0.285
p-value 0.460 0.937 0.855 0.791 0.792 0.849 0.889

PC4t β 0.211 0.607 1.020 1.377 1.648 1.917 1.821
p-value 0.175 0.058 0.047 0.063 0.092 0.187 0.385

PC5t β −0.158 −0.358 −0.766 −1.336 −1.961 −3.110 −4.294
p-value 0.201 0.237 0.133 0.063 0.033 0.015 0.014

Adj. R2
(%) 8.351 5.381 5.215 5.602 6.003 6.303 5.712

Adj. R2
(%) no TR(eq) 5.534 3.506 3.440 3.761 4.065 4.216 3.630

F -test 0.002 0.011 0.013 0.011 0.010 0.007 0.008
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Table 2 – In-sample forecasts of Treasury returns with equity tail risk (continued)

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel D: Control for Cochrane-Piazzesi (CP) factor

TR
(eq)
t β 0.352 0.762 1.249 1.790 2.365 3.533 5.081

p-value 0.001 0.004 0.005 0.005 0.005 0.006 0.010

CPt β 0.428 0.977 1.570 2.215 2.871 4.074 5.471
p-value 0.001 0.001 0.001 0.000 0.000 0.000 0.001

Adj. R2
(%) 7.905 5.779 5.427 5.665 6.004 6.395 6.126

Adj. R2
(%) no TR(eq) 5.320 4.055 3.767 3.889 4.063 4.176 3.814

F -test 0.003 0.013 0.015 0.012 0.009 0.006 0.005

Panel E: Control for Cieslak-Povala (CiP) factor

TR
(eq)
t β 0.407 0.872 1.418 2.028 2.673 3.971 5.654

p-value 0.001 0.004 0.005 0.004 0.004 0.004 0.007

CiPt β 0.269 0.947 1.670 2.385 3.073 4.363 6.148
p-value 0.018 0.002 0.000 0.000 0.000 0.000 0.000

Adj. R2
(%) 5.342 5.652 5.932 6.270 6.586 6.989 7.029

Adj. R2
(%) no TR(eq) 1.679 3.226 3.632 3.830 3.942 4.019 4.004

F -test 0.001 0.004 0.005 0.004 0.003 0.002 0.002

Panel F: Control for VIX⊥

TR
(eq)
t β 0.410 0.884 1.407 1.961 2.522 3.593 4.878

p-value 0.001 0.004 0.005 0.004 0.002 0.001 0.001

VIX⊥t β 0.194 0.162 0.056 −0.081 −0.254 −0.747 −1.817
p-value 0.265 0.685 0.932 0.929 0.827 0.659 0.481

SKEWt β −0.365 −0.839 −1.213 −1.484 −1.676 −1.933 −2.255
p-value 0.033 0.049 0.079 0.112 0.144 0.201 0.269

VRPt β −0.115 −0.317 −0.674 −1.171 −1.786 −3.252 −5.697
p-value 0.399 0.357 0.214 0.097 0.032 0.002 0.000

Adj. R2
(%) 9.666 5.322 4.124 3.919 4.109 4.886 5.991

Adj. R2
(%) no TR(eq) 6.079 2.922 1.966 1.763 1.898 2.619 3.919

F -test 0.001 0.005 0.007 0.007 0.006 0.006 0.008

Notes: This table reports the slope estimates and p-values from predictive regressions of one-month US Treasury
bond returns on the S&P 500 option-implied equity tail risk measure TR(eq). n denotes the bond maturity in
months. Panel A reports the results of a regression that only uses TR(eq) as predictor. Panels B to F report
the results of regressions that control for bond return predictors identified in the literature: PC1 – PC5 are the
first five principal components extracted from the Treasury bond yields, CP is the Cochrane and Piazzesi (2005)
bond return predictor obtained as a linear combination of forward rates, CiP is the Cieslak and Povala (2015)
risk-premium factor obtained from a decomposition of Treasury yields into inflation expectations and maturity-
specific interest-rate cycles, VIX⊥ is the orthogonal component of the CBOE VIX with respect to TR(eq), VRP is
the equity variance risk premium of Bollerslev et al. (2014), and SKEW is the CBOE Skew Index. All predictors
have been normalized to have mean zero and unit variance. For all predictors we report the Newey-West p-values
computed with a 12-lag standard error correction. In addition, for the TR(eq) factor used alone or alongside
the principal components in the predictive regressions, we report the p-value (b) computed with the bootstrap
procedure of Bauer and Hamilton (2018). For each regression we report the adjusted R-squared in percentage.
This measure is also reported for a regression that excludes the TR(eq) factor as predictor. We also report the
p-value of an F -test of the null hypothesis that the regression that includes the TR(eq) as predictor does not give
a significantly better fit to the data than does a regression without it. The in-sample period is 1996:01–2019:12.
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Table 3 – Out-of-sample forecasts of Treasury returns with equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: Benchmark predictor is EH model (no predictability)

Panel A1: Increasing windows

R2
OS (%) 2.045 2.867 3.698 4.212 4.284 3.466 1.707

p-value (CW ) 0.120 0.100 0.085 0.070 0.056 0.030 0.009
p-value (b) (CW ) 0.155 0.198 0.123 0.102 0.095 0.073 0.102
p-value (b) (R2

OS) 0.076 0.068 0.016 0.010 0.007 0.005 0.023

Panel A2: Rolling windows

R2
OS (%) 1.800 2.750 3.517 3.955 3.978 3.124 1.357

p-value (CW ) 0.123 0.098 0.078 0.060 0.043 0.016 0.004
p-value (b) (CW ) 0.163 0.202 0.124 0.095 0.085 0.065 0.097
p-value (b) (R2

OS) 0.093 0.074 0.020 0.012 0.011 0.010 0.038

Panel B: Benchmark predictor is 3 PCs-only model

Panel B1: Increasing windows

R2
OS (%) 3.897 3.082 3.471 3.794 3.773 2.952 1.393

p-value (CW ) 0.010 0.018 0.021 0.018 0.012 0.004 0.014
p-value (b) (CW ) 0.015 0.035 0.040 0.037 0.034 0.047 0.110
p-value (b) (R2

OS) 0.002 0.005 0.004 0.003 0.003 0.008 0.039

Panel B2: Rolling windows

R2
OS (%) 2.799 2.578 3.175 3.567 3.597 2.862 1.305

p-value (CW ) 0.036 0.028 0.017 0.010 0.006 0.008 0.084
p-value (b) (CW ) 0.035 0.036 0.028 0.025 0.022 0.042 0.101
p-value (b) (R2

OS) 0.008 0.013 0.006 0.005 0.005 0.012 0.052

Panel C: Benchmark predictor is 5 PCs-only model

Panel C1: Increasing windows

R2
OS (%) 2.559 2.802 3.034 3.099 2.930 2.050 0.606

p-value (CW ) 0.053 0.089 0.098 0.093 0.080 0.042 0.020
p-value (b) (CW ) 0.029 0.055 0.067 0.073 0.069 0.086 0.149
p-value (b) (R2

OS) 0.008 0.008 0.006 0.005 0.009 0.021 0.103

Panel C2: Rolling windows

R2
OS (%) 2.966 3.751 3.980 4.015 3.800 2.825 1.300

p-value (CW ) 0.060 0.052 0.046 0.034 0.019 0.004 0.067
p-value (b) (CW ) 0.034 0.037 0.043 0.040 0.041 0.048 0.108
p-value (b) (R2

OS) 0.009 0.005 0.003 0.002 0.004 0.013 0.055

Notes: This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of predicting one-month

returns on the n-month US Treasury bond with the S&P 500 option-implied equity tail risk measure TR(eq).
These R2

OS statistics represent the percentage reduction in the MSPE for the forecasts generated by a preferred
model that includes TR(eq) relative to a benchmark that does not use it as predictor. Panel A: the preferred
model uses the TR(eq) factor alone, while the benchmark model complies with the expectation hypothesis that
assumes no predictability of bond returns. Panel B: the preferred model includes TR(eq) and the first 3 principal
components of bond yields, while the benchmark model only includes the 3 principal components. Panel C: the
preferred model includes TR(eq) and the first 5 principal components of bond yields, while the benchmark model
only includes the 5 principal components. Predictive regressions are recursively estimated with both expanding
and rolling window approach. The out-of-sample period is 2008:01–2019:12. Statistical significance for R2

OS is
based on the p-value of the Clark and West (2007) MSPE-adjusted statistic (CW ) for testing H0 : R2

OS ≤ 0
against H1 : R2

OS > 0. For the CW statistics we report both the Newey-West p-value computed with a 12-lag
standard error correction and the p-value (b) computed with the bootstrap procedure of Bauer and Hamilton
(2018). For the out-of-sample R2

OS we only report the bootstrap p-value (b) .
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Table 4 – Asset allocation gains of equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: Benchmark predictor is EH model (no predictability)

Panel A1: Risk aversion γ = 3

∆ (%) 0.096 −0.359 −0.307 −0.017 0.908 0.908 −2.753
Θ (%) 0.094 −0.366 −0.322 0.004 0.990 1.431 −2.990

SR(1) 1.063 0.881 0.854 0.811 0.769 0.681 0.508

SR(0) 0.895 0.888 0.853 0.787 0.720 0.645 0.570

Panel A2: Risk aversion γ = 5

∆ (%) 0.033 −0.233 0.189 1.418 0.822 −1.419 −4.918
Θ (%) 0.029 −0.253 0.219 1.535 1.091 −0.149 −5.108

SR(1) 1.079 0.908 0.859 0.829 0.761 0.650 0.479

SR(0) 0.895 0.888 0.827 0.727 0.716 0.675 0.602

Panel B: Benchmark predictor is 3 PCs-only model

Panel B1: Risk aversion γ = 3

∆ (%) −0.305 −0.926 −0.594 0.532 1.077 1.773 −1.072
Θ (%) −0.307 −0.928 −0.587 0.528 1.039 1.797 −0.939

SR(1) 1.400 0.951 0.890 0.903 0.830 0.707 0.499

SR(0) 1.260 1.111 0.986 0.892 0.782 0.611 0.572

Panel B2: Risk aversion γ = 5

∆ (%) −0.252 −0.693 −0.294 0.900 1.334 1.618 −1.541
Θ (%) −0.257 −0.695 −0.290 0.917 1.356 1.657 −0.480

SR(1) 1.405 0.941 0.907 0.900 0.819 0.701 0.448

SR(0) 1.246 1.101 0.998 0.848 0.707 0.576 0.534

Panel C: Benchmark predictor is 5 PCs-only model

Panel C1: Risk aversion γ = 3

∆ (%) −0.260 0.674 1.244 2.059 3.556 3.175 −1.318
Θ (%) −0.263 0.673 1.244 2.119 3.703 3.164 −1.964

SR(1) 1.451 1.074 1.025 1.014 1.014 0.910 0.575

SR(0) 1.249 0.976 0.934 0.962 0.865 0.772 0.617

Panel C2: Risk aversion γ = 5

∆ (%) −0.281 0.594 1.115 1.721 2.541 0.825 −1.559
Θ (%) −0.286 0.594 1.143 1.866 2.927 0.604 −0.862

SR(1) 1.454 1.060 0.999 0.984 0.963 0.825 0.557

SR(0) 1.275 0.979 0.929 0.904 0.831 0.787 0.549

Notes: This table reports the asset allocation gains of predicting one-month US Treasury bond returns with the
S&P 500 option-implied equity tail risk measure TR(eq). n denotes the maturity of the bond in months. We
assume a mean-variance investor with risk aversion γ = 3 or γ = 5 that every month allocates his or her wealth
between a 1-month Treasury (risk-free) bond and an n-month Treasury bond. Investment decisions are based
on the expected return forecasts of the n-month bond which are generated by a preferred model that includes
TR(eq) as predictor or by a benchmark that does not use it. Panel A: the preferred model uses the TR(eq) factor
alone, while the benchmark model complies with the expectation hypothesis that assumes no predictability of
bond returns. Panel B (resp. C): the preferred model includes TR(eq) and the first three (resp. five) principal
components of bond yields, while the benchmark model only includes the principal components. Predictive
models are recursively estimated with a rolling window approach. The (out-of-sample) investment period is
2008:01–2019:12. We report two measures for the performance of the preferred model relative to that of the
benchmark model: certainty equivalent return gain (∆) and Goetzmann et al. (2007) manipulation-proof perfor-
mance improvement (Θ). Both measures are expressed in annualized percentage terms. The annualized Sharpe
ratio of the portfolios associated with the preferred model (SR(1)) and the benchmark (SR(0)) are also reported.
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Table 5 – Expected returns, forecasting performance and macroeconomic condition

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: ρ(Et[RX
(n)
t+1],CFNAIt)

TR(eq) −0.667 −0.648 −0.635 −0.622 −0.603 −0.556 −0.492

TR(eq) + 3PCs −0.471 −0.430 −0.414 −0.409 −0.405 −0.387 −0.334

TR(eq) + 5PCs −0.331 −0.168 −0.098 −0.081 −0.087 −0.124 −0.188

Panel B: ρ(Et[RX
(n)
t+1],UMACRO

t )

TR(eq) 0.716 0.676 0.650 0.630 0.608 0.559 0.496

TR(eq) + 3PCs 0.569 0.544 0.528 0.521 0.516 0.496 0.442

TR(eq) + 5PCs 0.505 0.353 0.277 0.257 0.264 0.306 0.372

Panel C: ρ(DCSPEt,CFNAIt)

TR(eq) −0.371 −0.188 −0.013 0.100 0.165 0.213 0.160

TR(eq) + 3PCs 0.408 0.394 0.394 0.391 0.378 0.321 0.194

TR(eq) + 5PCs 0.357 0.395 0.388 0.384 0.379 0.327 0.189

Panel D: ρ(DCRUt,CFNAIt)

TR(eq) 0.217 0.298 −0.013 0.224 0.044 −0.322 −0.449

TR(eq) + 3PCs 0.406 0.170 0.009 0.218 0.174 0.122 −0.175

TR(eq) + 5PCs 0.244 0.231 0.411 0.442 0.423 −0.024 −0.181

Notes: This table reports contemporaneous correlations between economic variables and the expected bond risk
premia and forecasting performance obtained with the S&P 500 option-implied equity tail risk measure TR(eq).
n denotes the bond maturity in months. Panels A and B report contemporaneous correlations between the out-
of-sample forecasts of the one-month-ahead Treasury bond returns obtained by one of the three models that use
TR(eq) as predictor and the Chicago Fed National Activity Index (CFNAI) and the macroeconomic uncertainty
index (UMACRO) constructed by Jurado et al. (2015). Panels C and D report contemporaneous correlations
between relative forecast and portfolio performance obtained by one of the three models that use TR(eq) as
predictor (relative to its benchmark that does not use TR(eq) to predict bond returns) and the CFNAI. Relative
forecast performance is defined as the difference in cumulative squared prediction error (DCSPE) and portfolio
performance is defined as the difference in cumulative realized utilities (DCRU). The out-of-sample evaluation
period is 2008:01–2019:12. The predictive models are recursively estimated with a rolling window approach.
The investor’s risk aversion coefficient is γ = 5.
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Table 6 – Fit diagnostics of the ATSM with equity tail risk

Panel A: Equity Tail Risk ATSM

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel A1: Yield Pricing Errors

Mean −0.002 0.000 0.000 −0.002 −0.001 −0.002
Standard Deviation 0.004 0.005 0.003 0.004 0.003 0.006
Skewness −0.390 0.779 0.119 −0.311 0.413 −0.429
Kurtosis 4.162 4.163 2.047 3.635 2.769 3.509
ρ(1) 0.877 0.805 0.910 0.899 0.845 0.863
ρ(6) 0.551 0.369 0.787 0.583 0.481 0.499

Panel A2: Return Pricing Errors

Mean 0.000 0.002 −0.002 −0.005 0.004 −0.027
Standard Deviation 0.044 0.072 0.067 0.111 0.118 0.394
Skewness −0.322 −0.488 −0.537 0.044 −0.201 −0.211
Kurtosis 5.807 7.212 14.160 5.989 6.385 5.008
ρ(1) 0.048 0.045 0.258 0.020 −0.072 −0.015
ρ(6) 0.152 0.215 0.283 0.020 0.136 0.051

Panel B: PC-only ATSM

n = 12 n = 24 n = 36 n = 60 n = 84 n = 120

Panel B1: Yield Pricing Errors

Mean −0.004 −0.001 −0.001 −0.003 −0.003 −0.002
Standard Deviation 0.005 0.005 0.003 0.005 0.003 0.006
Skewness −0.096 0.744 −0.142 −0.143 0.048 −0.434
Kurtosis 3.754 4.106 1.888 3.158 2.152 3.563
ρ(1) 0.906 0.813 0.949 0.922 0.897 0.860
ρ(6) 0.615 0.398 0.872 0.651 0.692 0.540

Panel B2: Return Pricing Errors

Mean −0.001 0.002 −0.004 −0.009 −0.001 −0.015
Standard Deviation 0.049 0.074 0.066 0.124 0.114 0.384
Skewness −0.413 −0.466 −0.741 −0.081 0.130 −0.217
Kurtosis 5.628 7.908 13.689 5.975 6.487 5.424
ρ(1) 0.129 0.014 0.344 0.079 −0.186 −0.083
ρ(6) 0.109 0.217 0.337 0.002 0.138 0.037

Notes: This table contains the summary statistics of the pricing errors implied by the Gaussian ATSM that
includes the S&P 500 option-implied equity tail risk measure TR(eq) (Panel A) and by the benchmark model
that only uses the first five PCs of the yield curve (Panel B). Models are estimated over the period 1996 to 2019.
Reported are the sample mean, standard deviation, skewness, kurtosis and the autocorrelation coefficients of
order one and six. Panels A1 and B1: properties of the yield pricing errors û. Panels A2 and B2: properties of
the return pricing errors ê. n denotes the maturity of the bonds in months.
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Table 7 – Factor risk exposures in the ATSM with equity tail risk

Equity Tail Risk ATSM PC-only ATSM

Factor Wβi p-value Wβi p-value

TR(eq) 9520240.543 0.000 - -

PC1 32833939.666 0.000 34906004.697 0.000

PC2 6017848.042 0.000 6474375.636 0.000

PC3 987085.382 0.000 1000091.019 0.000

PC4 186350.666 0.000 188058.261 0.000

PC5 35266.896 0.000 35190.169 0.000

Notes: This table provides the Wald statistics and corresponding p-values for the Wald test of whether the
exposures of bond returns to a given model factor are jointly zero. Under the null H0 : βi = 0N×1 the i-th
pricing factor is unspanned, i.e. Treasury returns are not exposed to it. The test is conducted on the pricing
factors of both the proposed ATSM specified with the S&P 500 option-implied equity tail risk measure TR(eq),
and a benchmark PC-only model specification.
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Table 8 – Market prices of risk in the ATSM with equity tail risk

Factor λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5 λ1,6 WΛi Wλ1i

TR(eq) 0.138 −0.175 0.419 0.111 −0.410 −0.091 0.224 12.268 11.958
(0.926) (−1.134) (2.459) (0.743) (−2.469) (−0.618) (1.445) (0.092) (0.063)

PC1 0.004 −0.055 0.053 0.001 −0.060 −0.031 0.018 12.241 12.238
(0.178) (−2.192) (1.927) (0.049) (−2.252) (−1.287) (0.714) (0.093) (0.057)

PC2 −0.046 0.019 −0.097 −0.052 0.121 0.016 −0.091 14.516 13.940
(−1.129) (0.442) (−2.106) (−1.274) (2.695) (0.384) (−2.155) (0.043) (0.030)

PC3 0.006 0.033 −0.149 0.023 0.038 0.070 −0.066 12.061 11.934
(0.121) (0.671) (−2.872) (0.483) (0.755) (1.499) (−1.360) (0.099) (0.063)

PC4 0.020 −0.043 −0.062 0.084 −0.029 −0.037 −0.077 18.709 18.330
(0.595) (−1.282) (−1.828) (2.480) (−0.871) (−1.094) (−2.277) (0.009) (0.005)

PC5 −0.068 −0.003 −0.039 −0.113 0.046 −0.037 −0.136 15.537 13.904
(−1.388) (−0.068) (−0.747) (−2.289) (0.904) (−0.754) (−2.724) (0.030) (0.031)

Notes: This table provides the estimates of the market price of risk parameters λ0 and λ1 in equation (15)
for the Gaussian ATSM specified with the S&P 500 option-implied equity tail risk measure TR(eq). Estimated
t-statistics are reported in parentheses. Wald statistics for tests of the rows of Λ and of λ1 being different from
zero are reported along each row, with the corresponding p-values in parentheses below. The null hypothesis
underlying WΛi is that the risk related to a given factor is not priced in the term structure model. The null
hypothesis underlying Wλ1i

is that the price of risk associated with a given factor does not vary over time.
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Table 9 – Market price of equity tail risk with GX procedure

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

γg 0.010 0.026 0.026 0.024 0.024 0.026 0.024 0.024
(0.009) (0.016) (0.016) (0.016) (0.016) (0.017) (0.017) (0.017)

R2
g 0.006 0.078 0.078 0.081 0.081 0.098 0.105 0.106

p-value 0.241 0.012 0.027 0.035 0.034 0.021 0.038 0.044
g weak

Notes: This table reports the results of the three-pass regression procedure of Giglio and Xiu (2019) to estimate
the risk premium of the S&P 500 option-implied equity tail risk measure TR(eq) in the US Treasury bond market.
p denotes the number of latent factors used in the three-pass estimator. For each number of latent factors, we
report the estimate of the market price of risk γg of the observable factor g with standard errors in parentheses,
the R-squared of the time series regression of the observable factor g onto the p latent factors, and the p-value
of the Wald test of testing the null hypothesis that the observable factor is weak. We use AR(1) innovations in
TR(eq) as the factor g. * (resp. **, and ***) denote statistical significance at the 10% (resp. 5%, and 1%) level.
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Table 10 – In-sample forecasts of international bond returns with equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: No control for bond return forecasting factors

UK β 0.975 1.806 2.450 3.002 3.549 4.520 5.754
p-value 0.001 0.000 0.000 0.000 0.000 0.000 0.000
p-value (b) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DE β 0.542 1.030 1.448 1.827 2.172 2.758 3.378
p-value 0.002 0.001 0.001 0.001 0.002 0.004 0.009
p-value (b) 0.000 0.001 0.001 0.003 0.002 0.010 0.026

CH β 0.547 0.654 0.799 1.033 1.295 1.776 2.397
p-value 0.036 0.002 0.000 0.001 0.001 0.002 0.009
p-value (b) 0.000 0.011 0.035 0.037 0.032 0.034 0.047

FR β 0.468 0.893 1.231 1.511 1.754 2.170 2.667
p-value 0.003 0.003 0.004 0.007 0.012 0.035 0.097
p-value (b) 0.003 0.008 0.010 0.014 0.024 0.042 0.083

IT β 0.402 0.454 0.679 1.008 1.336 1.811 2.084
p-value 0.103 0.343 0.350 0.285 0.237 0.205 0.240
p-value (b) 0.116 0.417 0.402 0.317 0.269 0.245 0.285

ES β 0.619 1.179 1.662 2.079 2.445 3.067 3.866
p-value 0.000 0.000 0.000 0.001 0.002 0.005 0.011
p-value (b) 0.017 0.045 0.054 0.072 0.085 0.112 0.156

Panel B: Control for yield curve factors with 3 PCs (country-specific)

UK β 0.966 1.758 2.351 2.862 3.376 4.289 5.460
p-value 0.001 0.000 0.000 0.000 0.000 0.000 0.000
p-value (b) 0.000 0.000 0.000 0.000 0.000 0.000 0.001

DE β 0.548 1.009 1.393 1.732 2.034 2.527 3.001
p-value 0.002 0.001 0.001 0.002 0.003 0.007 0.022
p-value (b) 0.000 0.000 0.001 0.003 0.004 0.010 0.035

CH β 0.559 0.693 0.828 1.008 1.194 1.523 1.992
p-value 0.034 0.003 0.001 0.002 0.004 0.011 0.036
p-value (b) 0.000 0.007 0.030 0.041 0.041 0.055 0.074

FR β 0.452 0.830 1.099 1.295 1.447 1.678 1.923
p-value 0.007 0.010 0.015 0.028 0.050 0.123 0.265
p-value (b) 0.000 0.002 0.007 0.019 0.035 0.094 0.222

IT β 0.446 0.597 0.841 1.117 1.344 1.549 1.374
p-value 0.111 0.283 0.312 0.288 0.272 0.290 0.427
p-value (b) 0.068 0.269 0.299 0.279 0.260 0.318 0.469

ES β 0.500 1.015 1.416 1.746 2.031 2.512 3.127
p-value 0.003 0.003 0.008 0.014 0.020 0.031 0.050
p-value (b) 0.051 0.082 0.111 0.143 0.170 0.199 0.253
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Table 10 – In-sample forecasts of international bond returns with equity tail risk (continued)

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel C: Control for yield curve factors with 5 PCs (country-specific)

UK β 0.941 1.752 2.343 2.877 3.431 4.481 5.876
p-value 0.002 0.000 0.000 0.000 0.000 0.000 0.001
p-value (b) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DE β 0.479 0.908 1.279 1.615 1.915 2.399 2.846
p-value 0.000 0.000 0.000 0.001 0.002 0.006 0.023
p-value (b) 0.000 0.001 0.003 0.006 0.008 0.017 0.044

CH β 0.464 0.605 0.767 0.939 1.081 1.281 1.585
p-value 0.014 0.001 0.001 0.005 0.010 0.027 0.080
p-value (b) 0.000 0.018 0.047 0.057 0.068 0.110 0.155

FR β 0.441 0.817 1.093 1.298 1.454 1.673 1.856
p-value 0.016 0.015 0.017 0.026 0.047 0.127 0.297
p-value (b) 0.000 0.003 0.007 0.017 0.034 0.096 0.234

IT β 0.586 0.837 1.134 1.426 1.657 1.900 1.882
p-value 0.027 0.099 0.123 0.119 0.118 0.140 0.237
p-value (b) 0.017 0.115 0.155 0.170 0.170 0.214 0.331

ES β 0.678 1.189 1.605 2.009 2.395 3.085 3.957
p-value 0.008 0.009 0.012 0.015 0.017 0.027 0.050
p-value (b) 0.006 0.039 0.071 0.094 0.100 0.118 0.155

Notes: This table reports the slope estimates and p-values associated with the S&P 500 option-implied equity tail
risk measure TR(eq) used in return predictive regressions of Treasury bonds of United Kingdom (UK), Germany
(DE), Switzerland (CH), France (FR), Italy (IT), and Spain (ES). n denotes the bond maturity in months.

Panel A reports the results of a regression that only uses TR
(eq)
t as predictor. Panel B (resp. C) reports the

results of a predictive regression that controls for country-specific yield curve factors represented by the first
three (resp. five) principal components of Treasury bond yields. Predictors have been normalized to have mean
zero and unit variance. We report the Newey-West p-values computed with a 12-lag standard error correction,
and the p-value (b) computed with the bootstrap procedure of Bauer and Hamilton (2018). The in-sample period
is 1996:01–2018:12.
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Table 11 – Out-of-sample forecasts of international bond returns with equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: No control for bond return forecasting factors

UK R2
OS (%) 24.245 18.207 14.287 12.136 10.904 8.411 5.991

p-value 0.103 0.078 0.064 0.056 0.051 0.044 0.034

∆ (%) 0.009 0.243 1.012 2.093 3.433 1.786 −4.959
Θ (%) 0.007 0.264 1.110 2.284 3.774 2.419 −5.765

DE R2
OS (%) 9.637 7.644 6.923 6.498 6.038 4.941 3.278

p-value 0.046 0.046 0.041 0.034 0.028 0.020 0.014

∆ (%) −0.011 0.070 0.188 0.420 0.785 1.359 0.121
Θ (%) −0.011 0.072 0.220 0.505 0.986 1.858 0.800

CH R2
OS (%) 9.422 5.735 2.465 2.594 3.182 3.362 2.476

p-value 0.100 0.056 0.033 0.032 0.030 0.016 0.001

∆ (%) 0.105 0.332 0.061 −0.192 0.070 0.112 1.241
Θ (%) 0.104 0.330 0.059 −0.251 0.028 0.183 1.972

FR R2
OS (%) 7.269 5.474 4.397 3.480 2.757 1.763 0.754

p-value 0.102 0.116 0.118 0.117 0.120 0.139 0.196

∆ (%) −0.001 0.005 0.080 0.140 0.140 0.321 −3.606
Θ (%) −0.001 0.004 0.093 0.178 0.250 0.640 −4.526

Panel B: Control for yield curve factors with 3 PCs (country-specific)

UK R2
OS (%) 20.834 14.966 11.143 9.289 8.254 6.173 4.187

p-value 0.096 0.097 0.097 0.090 0.081 0.063 0.049

∆ (%) 0.422 0.449 0.526 1.553 1.649 0.868 −1.859
Θ (%) 0.435 0.503 0.621 1.680 1.794 1.076 −0.406

DE R2
OS (%) 7.717 5.934 5.218 4.500 3.714 2.205 0.545

p-value 0.084 0.103 0.105 0.101 0.096 0.089 0.112

∆ (%) 0.285 1.671 2.281 2.433 2.134 1.769 0.151
Θ (%) 0.284 1.677 2.301 2.497 2.243 2.053 0.123

CH R2
OS (%) 8.870 5.372 2.211 1.918 1.832 0.927 −0.577

p-value 0.102 0.071 0.081 0.102 0.111 0.106 0.223

∆ (%) 0.839 0.566 1.104 1.175 1.184 0.941 0.235
Θ (%) 0.839 0.572 1.120 1.203 1.232 1.056 0.086

FR R2
OS (%) 6.493 4.489 3.136 1.950 1.009 −0.249 −1.334

p-value 0.115 0.151 0.173 0.197 0.231 0.339 0.621

∆ (%) 0.017 −0.239 −0.194 −0.196 −0.594 −2.188 −4.100
Θ (%) 0.019 −0.237 −0.153 −0.066 −0.359 −1.748 −3.270
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Table 11 – Out-of-sample forecasts of international bond returns with equity tail risk (continued)

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel C: Control for yield curve factors with 5 PCs (country-specific)

UK R2
OS (%) 20.461 15.758 12.521 11.005 10.215 8.208 5.754

p-value 0.096 0.086 0.080 0.072 0.063 0.049 0.043

∆ (%) 0.481 0.701 0.497 1.682 2.288 0.996 1.044
Θ (%) 0.494 0.761 0.586 1.773 2.266 0.793 0.954

DE R2
OS (%) 10.968 8.402 6.647 5.373 4.320 2.580 0.694

p-value 0.030 0.048 0.051 0.051 0.051 0.054 0.107

∆ (%) 0.036 −0.207 −0.311 0.138 0.428 0.053 −0.889
Θ (%) 0.036 −0.209 −0.294 0.190 0.473 0.197 −1.056

CH R2
OS (%) 8.631 3.860 1.082 0.770 0.775 0.395 −0.737

p-value 0.059 0.027 0.060 0.097 0.116 0.136 0.484

∆ (%) −0.114 0.398 0.593 0.543 0.611 0.639 0.112
Θ (%) −0.114 0.397 0.605 0.562 0.617 0.623 −0.176

FR R2
OS (%) 7.846 5.277 3.554 2.268 1.283 −0.110 −1.416

p-value 0.103 0.149 0.179 0.204 0.233 0.334 0.666

∆ (%) −0.058 −0.101 0.766 1.339 0.783 −0.557 −3.398
Θ (%) −0.057 −0.091 0.801 1.483 1.050 −0.090 −3.877

Notes: This table reports the Campbell and Thompson (2008) out-of-sample R2
OSs of predicting one-month

Treasury bond returns in United Kingdom (UK), Germany (DE), Switzerland (CH), and France (FR) with the
S&P 500 option-implied equity tail risk measure TR(eq). These R2

OS statistics represent the percentage reduction
in the MSPE for the forecasts generated by a preferred model that includes TR(eq) relative to a benchmark that
does not use it as predictor. The preferred model uses the TR(eq) factor alone in Panel A, and alongside the
country-specific first three (resp. five) principal components of bond yields in Panel B (resp. C). Statistical
significance for R2

OS is based on the Clark and West (2007) MSPE-adjusted statistic, for which we report
Newey-West p-values computed with a 12-lag standard error correction. To assess the portfolio performance
afforded by TR(eq) relative to the benchmark models, we report the certainty equivalent return gain (∆) and
Goetzmann et al. (2007) manipulation-proof performance improvement (Θ) in annualized percentage terms. The
out-of-sample period is 2007:07–2018:12. Predictive regressions are recursively estimated with a rolling window
approach. The investor’s risk aversion coefficient γ is set equal to 5.
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Table 12 – Market price of equity tail risk in international bond markets

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

UK γg 0.015 0.028* 0.032* 0.032* 0.035* 0.035* 0.035* 0.036*
(0.011) (0.016) (0.019) (0.019) (0.021) (0.020) (0.021) (0.021)

R2
g 0.013 0.061 0.071 0.071 0.095 0.096 0.103 0.104

p-value 0.089 0.037 0.071 0.121 0.013 0.018 0.008 0.015
g weak

DE γg 0.039** 0.047** 0.051** 0.055** 0.054** 0.055** 0.052* 0.052*
(0.018) (0.023) (0.026) (0.027) (0.027) (0.028) (0.028) (0.028)

R2
g 0.041 0.121 0.160 0.161 0.163 0.165 0.172 0.172

p-value 0.005 0.003 0.002 0.004 0.004 0.004 0.003 0.003
g weak

CH γg 0.027** 0.033** 0.032** 0.040** 0.049*** 0.051** 0.067** 0.083**
(0.014) (0.016) (0.016) (0.017) (0.018) (0.024) (0.033) (0.038)

R2
g 0.023 0.051 0.051 0.069 0.073 0.073 0.094 0.130

p-value 0.026 0.004 0.013 0.005 0.005 0.006 0.014 0.016
g weak

FR γg 0.023 0.059** 0.059** 0.064** 0.079** 0.089** 0.089** 0.091**
(0.015) (0.028) (0.028) (0.029) (0.032) (0.035) (0.035) (0.036)

R2
g 0.017 0.109 0.110 0.116 0.127 0.133 0.133 0.135

p-value 0.082 0.011 0.029 0.043 0.032 0.045 0.064 0.094
g weak

IT γg −0.014 −0.012 −0.011 −0.012 −0.013 −0.015 −0.017 −0.017
(0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.012) (0.012)

R2
g 0.009 0.021 0.024 0.028 0.029 0.033 0.037 0.040

p-value 0.106 0.119 0.206 0.288 0.416 0.408 0.461 0.357
g weak

ES γg −0.004 0.007 0.008 0.010 0.004 0.035 0.032 0.039
(0.007) (0.013) (0.014) (0.017) (0.021) (0.026) (0.027) (0.026)

R2
g 0.001 0.023 0.030 0.030 0.031 0.046 0.048 0.060

p-value 0.536 0.147 0.235 0.370 0.425 0.334 0.301 0.219
g weak

Notes: This table reports the results of the three-pass regression procedure of Giglio and Xiu (2019) to estimate
the risk premium of the S&P 500 option-implied equity tail risk measure TR(eq) in the Treasury bond market of
United Kingdom (UK), Germany (DE), Switzerland (CH), France (FR), Italy (IT), and Spain (ES). p denotes
the number of latent factors used in the three-pass estimator. For each number of latent factors, we report
the estimate of the market price of risk γg of the observable factor g with standard errors in parentheses, the
R-squared of the time series regression of the observable factor g onto the p latent factors, and the p-value of
the Wald test of testing the null hypothesis that the observable factor is weak. We use AR(1) innovations in
TR(eq) as the factor g. * (resp. **, and ***) denote statistical significance at the 10% (resp. 5%, and 1%) level.
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Table 13 – In-sample forecasts of international bond returns with country-specific equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: No control for bond return forecasting factors

UK β 0.864 1.612 2.290 2.955 3.623 4.810 6.137
p-value 0.004 0.000 0.000 0.000 0.000 0.002 0.016
p-value (b) 0.000 0.000 0.000 0.000 0.000 0.001 0.001

DE β 0.581 1.128 1.563 1.927 2.231 2.667 2.909
p-value 0.000 0.000 0.001 0.002 0.006 0.018 0.065
p-value (b) 0.001 0.002 0.004 0.006 0.010 0.022 0.048

CH β 0.600 0.741 0.826 1.008 1.270 1.921 3.002
p-value 0.117 0.012 0.009 0.016 0.015 0.010 0.005
p-value (b) 0.000 0.003 0.035 0.059 0.049 0.023 0.012

FR β 0.432 0.561 0.558 0.557 0.614 0.966 2.124
p-value 0.017 0.107 0.221 0.296 0.308 0.217 0.099
p-value (b) 0.008 0.115 0.310 0.458 0.517 0.479 0.327

IT β 1.205 1.837 2.076 2.105 2.048 1.920 1.931
p-value 0.000 0.007 0.046 0.123 0.218 0.379 0.494
p-value (b) 0.000 0.028 0.123 0.219 0.306 0.436 0.524

ES β 0.726 0.752 0.560 0.515 0.531 0.487 0.187
p-value 0.295 0.439 0.672 0.765 0.803 0.868 0.963
p-value (b) 0.127 0.492 0.749 0.804 0.831 0.892 0.972

Panel B: Control for yield curve factors with 3 PCs (country-specific)

UK β 0.758 1.348 1.862 2.386 2.924 3.851 4.847
p-value 0.015 0.001 0.001 0.002 0.006 0.034 0.094
p-value (b) 0.000 0.000 0.000 0.001 0.001 0.004 0.012

DE β 0.634 1.160 1.512 1.754 1.915 2.036 1.798
p-value 0.000 0.001 0.007 0.025 0.055 0.148 0.366
p-value (b) 0.000 0.001 0.005 0.012 0.030 0.097 0.293

CH β 0.588 0.783 0.860 0.948 1.076 1.469 2.308
p-value 0.139 0.019 0.004 0.009 0.022 0.045 0.039
p-value (b) 0.000 0.002 0.034 0.074 0.094 0.096 0.065

FR β 0.320 0.280 0.076 −0.138 −0.293 −0.346 0.283
p-value 0.105 0.483 0.885 0.826 0.688 0.735 0.868
p-value (b) 0.062 0.468 0.892 0.861 0.767 0.816 0.907

IT β 0.603 0.458 0.099 −0.298 −0.646 −1.088 −1.191
p-value 0.061 0.621 0.941 0.852 0.717 0.607 0.652
p-value (b) 0.049 0.605 0.944 0.868 0.768 0.689 0.713

ES β 0.419 0.197 −0.188 −0.366 −0.444 −0.628 −1.127
p-value 0.555 0.845 0.892 0.841 0.846 0.843 0.798
p-value (b) 0.371 0.854 0.911 0.858 0.869 0.858 0.832
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Table 13 – In-sample forecasts of international bond returns with country-specific equity tail risk (cont.)

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel C: Control for yield curve factors with 5 PCs (country-specific)

UK β 0.747 1.346 1.847 2.360 2.894 3.849 4.944
p-value 0.018 0.002 0.001 0.001 0.005 0.032 0.093
p-value (b) 0.000 0.000 0.001 0.001 0.001 0.003 0.011

DE β 0.604 1.151 1.514 1.751 1.903 2.018 1.819
p-value 0.000 0.001 0.009 0.028 0.059 0.156 0.370
p-value (b) 0.000 0.001 0.007 0.013 0.036 0.107 0.297

CH β 0.515 0.729 0.815 0.886 0.987 1.342 2.175
p-value 0.015 0.000 0.001 0.014 0.036 0.046 0.017
p-value (b) 0.000 0.002 0.042 0.100 0.122 0.132 0.080

FR β 0.254 0.086 −0.291 −0.672 −0.970 −1.247 −0.977
p-value 0.174 0.810 0.511 0.201 0.132 0.209 0.574
p-value (b) 0.138 0.825 0.636 0.413 0.355 0.411 0.680

IT β 0.639 0.669 0.545 0.353 0.149 −0.196 −0.476
p-value 0.066 0.467 0.677 0.821 0.932 0.924 0.854
p-value (b) 0.037 0.443 0.691 0.841 0.945 0.948 0.884

ES β 0.430 0.287 −0.055 −0.177 −0.149 0.004 0.145
p-value 0.509 0.787 0.970 0.924 0.947 0.999 0.972
p-value (b) 0.354 0.793 0.973 0.933 0.955 0.999 0.983

Notes: This table reports the slope estimates and p-values associated with country-specific equity tail risk
measures used in return predictive regressions of Treasury bonds in United Kingdom (UK), Germany (DE),
Switzerland (CH), France (FR), Italy (IT), and Spain (ES). n denotes the maturity of the bonds in months.
The country-specific equity tail risk measures are calculated using options on the FTSE 100 (UK), DAX (DE),
SMI (CH), CAC 40 (FR), FTSE MIB (IT) and IBEX 35 (ES) equity index. Panel A reports the results of a
regression that only uses the country-specific equity tail risk measure as predictor. Panel B (resp. C) reports
the results of a predictive regression that controls for country-specific yield curve factors represented by the
first three (resp. five) principal components of Treasury bond yields. All predictors have been normalized to
have mean zero and unit variance. We report the Newey-West p-values computed with a 12-lag standard error
correction, and the p-value (b) computed with the bootstrap procedure of Bauer and Hamilton (2018). The
in-sample period is 2002:01–2018:12 in UK, DE and CH, 2007:01–2018:12 in IT and FR, 2007:05–2018:12 in ES.
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Table 14 – Market price of country-specific equity tail risk in international bond markets

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

UK γg 0.029* 0.057* 0.053* 0.053* 0.053* 0.053* 0.057* 0.056*
(0.016) (0.029) (0.028) (0.028) (0.031) (0.031) (0.031) (0.031)

R2
g 0.033 0.104 0.135 0.137 0.168 0.168 0.174 0.174

p-value 0.005 0.003 0.004 0.009 0.001 0.001 0.002 0.003
g weak

DE γg 0.047** 0.059* 0.063* 0.063* 0.063* 0.061* 0.060* 0.067*
(0.022) (0.031) (0.035) (0.035) (0.034) (0.035) (0.034) (0.036)

R2
g 0.055 0.145 0.197 0.197 0.199 0.231 0.231 0.242

p-value 0.004 0.005 0.003 0.008 0.001 0.000 0.000 0.000
g weak

CH γg 0.050** 0.060** 0.059** 0.074*** 0.078** 0.074** 0.139** 0.144**
(0.020) (0.024) (0.024) (0.027) (0.031) (0.036) (0.056) (0.057)

R2
g 0.055 0.080 0.086 0.114 0.114 0.114 0.191 0.194

p-value 0.001 0.001 0.003 0.001 0.003 0.007 0.002 0.004
g weak

FR γg 0.045 0.142* 0.144* 0.165* 0.163* 0.163** 0.173** 0.173**
(0.031) (0.077) (0.078) (0.085) (0.085) (0.083) (0.087) (0.087)

R2
g 0.037 0.244 0.253 0.285 0.301 0.340 0.358 0.358

p-value 0.060 0.023 0.050 0.064 0.077 0.020 0.001 0.001
g weak

IT γg −0.017 −0.017* −0.015 0.005 0.006 0.007 0.009 0.008
(0.010) (0.009) (0.011) (0.028) (0.029) (0.030) (0.031) (0.031)

R2
g 0.020 0.020 0.022 0.065 0.066 0.069 0.078 0.079

p-value 0.120 0.227 0.378 0.031 0.035 0.056 0.150 0.171
g weak

ES γg 0.009 0.018 0.013 −0.010 0.012 0.075 0.083 0.102
(0.009) (0.020) (0.023) (0.029) (0.036) (0.089) (0.093) (0.093)

R2
g 0.004 0.008 0.021 0.029 0.033 0.048 0.054 0.076

p-value 0.264 0.504 0.467 0.448 0.556 0.691 0.747 0.001
g weak

Notes: This table reports the results of the three-pass regression procedure of Giglio and Xiu (2019) to estimate
the risk premium of country-specific equity tail risk measures in the Treasury bond market of United Kingdom
(UK), Germany (DE), Switzerland (CH), France (FR), Italy (IT), and Spain (ES). The country-specific equity
tail risk measures are calculated using options on the FTSE 100 (UK), DAX (DE), SMI (CH), CAC 40 (FR),
FTSE MIB (IT) and IBEX 35 (ES) equity index. p denotes the number of latent factors used in the three-
pass estimator. For each number of latent factors, we report the estimate of the market price of risk γg of
the observable factor g with standard errors in parentheses, the R-squared of the time series regression of the
observable factor g onto the p latent factors, and the p-value of the Wald test of testing the null hypothesis
that the observable factor is weak. We use AR(1) innovations in the country-specific equity tail risk measures
as factors g. * (resp. **, and ***) denote statistical significance at the 10% (resp. 5%, and 1%) level.
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Table 15 – In-sample forecasts of int. bond returns with US and country-specific equity tail risk

n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

UK β 1.136 2.073 2.797 3.465 4.162 5.486 7.143
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β⊥ 0.038 0.121 0.335 0.588 0.816 1.126 1.279

p-value⊥ 0.832 0.729 0.420 0.211 0.171 0.288 0.492

DE β 0.710 1.399 2.018 2.588 3.106 3.979 4.896
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β⊥ 0.111 0.196 0.192 0.137 0.049 −0.209 −0.783

p-value⊥ 0.525 0.642 0.759 0.863 0.958 0.861 0.622

CH β 0.670 0.829 1.015 1.346 1.754 2.608 3.786
p-value 0.025 0.000 0.000 0.000 0.000 0.000 0.000

β⊥ 0.181 0.223 0.158 0.087 0.052 0.123 0.479

p-value⊥ 0.300 0.272 0.627 0.846 0.925 0.864 0.589

FR β 0.629 1.066 1.409 1.720 2.017 2.581 3.379
p-value 0.001 0.009 0.019 0.031 0.045 0.084 0.155

β⊥ −0.073 −0.389 −0.799 −1.167 −1.429 −1.549 −0.699

p-value⊥ 0.672 0.344 0.232 0.205 0.217 0.324 0.731

IT β 0.800 0.831 1.127 1.635 2.186 3.078 3.725
p-value 0.002 0.193 0.247 0.184 0.127 0.077 0.080

β⊥ 0.927 1.643 1.745 1.480 1.088 0.412 0.044

p-value⊥ 0.019 0.073 0.208 0.407 0.609 0.877 0.989

ES β 0.791 1.674 2.450 3.145 3.781 4.932 6.532
p-value 0.000 0.000 0.000 0.000 0.000 0.001 0.003

β⊥ 0.569 0.402 0.037 −0.161 −0.283 −0.580 −1.235

p-value⊥ 0.432 0.672 0.976 0.921 0.890 0.840 0.760

Notes: This table reports the slope estimates and p-values associated with the US and country-specific equity tail
risk measures used in return predictive regressions of Treasury bonds in United Kingdom (UK), Germany (DE),
Switzerland (CH), France (FR), Italy (IT), and Spain (ES). n denotes the maturity of the bonds in months.
The US measure corresponds to the S&P 500 option-implied equity tail risk factor TR(eq). The country-specific
measures are calculated using options on the FTSE 100 (UK), DAX (DE), SMI (CH), CAC 40 (FR), FTSE
MIB (IT) and IBEX 35 (ES) equity index, and they have been orthogonalized with respect to the US measure
TR(eq). The slope estimates and p-values associated with the country-specific measures are denoted respectively
as β⊥ and p-value⊥. We report the Newey-West p-values computed with a 12-lag standard error correction. The
in-sample period is 2002:01–2018:12 in UK, DE and CH, 2007:01–2018:12 in IT and FR, 2007:05–2018:12 in ES.

87



Table 16 – Monthly fund flows and equity tail risk

Sample: 2000-2019 Contemporaneous Predictive

LHS variable: TR
(eq)
t β Adj. R2

(%) β Adj. R2
(%)

p-value p-value

US Government Bond 0.394 15.155 0.386 14.555
0.000 0.000

US Equity −0.321 9.898 −0.145 1.683
0.000 0.038

World Equity −0.493 24.018 −0.400 15.647
0.000 0.000

Hybrid −0.378 13.922 −0.257 6.196
0.000 0.005

Total Equity −0.460 20.799 −0.283 7.621
0.000 0.000

Equity - Government Bond ($ flow) −0.448 19.762 −0.275 7.174
0.000 0.000

Notes: This table reports the slope estimates, their p-values and the adjusted R-squared in percentage for the
contemporaneous time series regressions Flowi,t = αi + βi · TR

(eq)
t + εi,t and for the predictive regressions

Flowi,t+1 = αi +βi ·TR
(eq)
t + εi,t+1, where TR

(eq)
t are the monthly values of the S&P 500 option-implied equity

tail risk measure and Flowi,t are the monthly values of US-domiciled open-end mutual fund and ETF flows
into type-i funds indicated in the left column. Source of flows data: the Investment Company Institute (ICI).
The “Total Equity” category is obtained by summing up the US Equity, World Equity and Hybrid fund flows
obtained from ICI. The “Equity - Government Bond” category is obtained by subtracting from the Total Equity
flows the US Government Bond flows obtained from ICI. We use flows expressed as percentage of previous
month’s fund AUM for all types of funds except for “Equity - Government Bond”, whose flows are measured
in millions of US $. We report Newey-West p-values computed with a 12-lag standard error correction. The
sample period is 2000:01–2019:12. For convenience, both left and right hand variables have been standardized.
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Table 17 – Monthly fund flows and equity tail risk - Controls

Contemporaneous Predictive

(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

US Government Bond

TR
(eq)
t β 0.394 0.396 0.386 0.415

p-val 0.000 0.000 0.000 0.000

VIXt β 0.399 0.289 0.336 0.113
p-val 0.000 0.017 0.000 0.243

SKEWt β −0.023 0.207 0.015 0.115
p-val 0.837 0.028 0.884 0.249

VRPt β −0.119 −0.014 −0.030 0.087
p-val 0.025 0.863 0.468 0.098

Adj. R2
(%) 15.155 15.595 −0.371 1.005 17.697 14.555 10.922 −0.398 −0.329 14.840

US Equity

TR
(eq)
t β −0.321 −0.317 −0.145 −0.188

p-val 0.000 0.000 0.038 0.002

VIXt β −0.242 −0.088 −0.032 0.121
p-val 0.001 0.592 0.577 0.236

SKEWt β −0.093 −0.168 −0.137 −0.055
p-val 0.297 0.173 0.089 0.444

VRPt β 0.120 0.028 −0.080 −0.142
p-val 0.019 0.653 0.137 0.018

Adj. R2
(%) 9.898 5.450 0.450 1.031 10.208 1.683 −0.318 1.467 0.227 4.890

World Equity

TR
(eq)
t β −0.493 −0.480 −0.400 −0.392

p-val 0.000 0.000 0.000 0.000

VIXt β −0.484 −0.397 −0.375 −0.193
p-val 0.000 0.000 0.000 0.074

SKEWt β −0.027 −0.339 0.009 −0.147
p-val 0.778 0.000 0.922 0.179

VRPt β 0.208 0.081 0.148 0.041
p-val 0.059 0.196 0.052 0.371

Adj. R2
(%) 24.018 23.133 −0.351 3.936 30.485 15.647 13.728 −0.414 1.790 16.301

Hybrid

TR
(eq)
t β −0.378 −0.285 −0.257 −0.204

p-val 0.000 0.000 0.005 0.005

VIXt β −0.326 −0.282 −0.190 −0.160
p-val 0.005 0.015 0.098 0.179

SKEWt β −0.104 −0.316 −0.128 −0.250
p-val 0.398 0.011 0.288 0.034

VRPt β 0.430 0.354 0.263 0.205
p-val 0.000 0.000 0.000 0.000

Adj. R2
(%) 13.922 10.243 0.667 18.149 28.744 6.196 3.200 1.230 6.511 11.720
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Table 17 – Monthly fund flows and equity tail risk - Controls (continued)

Contemporaneous Predictive

(i) (ii) (iii) (iv) (v) (i) (ii) (iii) (iv) (v)

Total Equity

TR
(eq)
t β −0.460 −0.430 −0.283 −0.299

p-val 0.000 0.000 0.000 0.000

VIXt β −0.391 −0.246 −0.181 −0.002
p-val 0.000 0.085 0.012 0.984

SKEWt β −0.095 −0.290 −0.117 −0.128
p-val 0.313 0.014 0.170 0.154

VRPt β 0.250 0.130 0.049 −0.041
p-val 0.000 0.019 0.412 0.456

Adj. R2
(%) 20.799 14.929 0.482 5.841 25.010 7.621 2.881 0.958 −0.185 8.193

Equity - Government Bond ($ flow)

TR
(eq)
t β −0.448 −0.415 −0.275 −0.283

p-val 0.000 0.000 0.000 0.000

VIXt β −0.397 −0.175 −0.213 −0.015
p-val 0.000 0.222 0.002 0.916

SKEWt β −0.020 −0.161 −0.034 −0.054
p-val 0.845 0.203 0.699 0.632

VRPt β 0.247 0.131 0.061 −0.021
p-val 0.000 0.012 0.204 0.625

Adj. R2
(%) 19.762 15.388 −0.383 5.683 21.659 7.174 4.149 −0.307 −0.046 6.215

Notes: This table reports the slope estimates, their p-values and the adjusted R-squared in percentage for
the contemporaneous time series regressions Flowi,t = αi + β

′
i · Xt + εi,t and for the predictive regressions

Flowi,t+1 = αi + β
′
i · Xt + εi,t+1, where Xt includes the monthly values of the S&P 500 option-implied equity

tail risk measure TR(eq) and/or a number of control variables – the CBOE VIX and SKEW index and the VRP
of Bollerslev et al. (2014) – and Flowi,t are the monthly values of US-domiciled open-end mutual fund and
ETF flows into type-i funds indicated in bold at the top of each panel. Source of flows data: the Investment
Company Institute (ICI). The “Total Equity” category is obtained by summing up the US Equity, World Equity
and Hybrid fund flows obtained from ICI. The “Equity - Government Bond” category is obtained by subtracting
from the Total Equity flows the US Government Bond flows obtained from ICI. We use flows expressed as
percentage of previous month’s fund AUM for all types of funds except for “Equity - Government Bond”, whose
flows are measured in millions of US $. The column headers (i)-(v) indicate different models that include in
Xt different sets of explanatory variables selected from those indicated in the left column. Due to the high
correlation that exists between TR(eq) and VIX, we deploy the orthogonal component of the VIX with respect
to TR(eq) in model (v). We report Newey-West p-values computed with a 12-lag standard error correction. The
sample period is 2000:01–2019:12. For convenience, both left and right hand variables have been standardized.
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Table 18 – Quarterly flows by different sectors in the economy and equity tail risk

Flow to Equities Flow to Treasuries Flow to Treasuries
Sector (i) by all sectors by Mutual Funds by Households

Full sample: 1996.Q1 - 2019.Q4

βi -0.180∗ 0.129 0.483∗∗∗

(0.105) (0.105) (0.092)

R2
i 0.032 0.017 0.233

Post-2001 sample: 2002.Q1 - 2019.Q4

βi -0.210∗ 0.197 0.527∗∗∗

(0.117) (0.120) (0.104)

R2
i 0.044 0.039 0.278

Notes: This table reports the βi estimates, their OLS standard errors (in brackets) and R2 for the contempora-

neous time series regressions Flowit = αi + βi · TR
(eq)
t + εit, where TR

(eq)
t are the quarterly values of the S&P

500 option-implied equity tail risk measure, computed as averages of the end-of-month observations within each
quarter. Flowit is the Aggregate Equity Flows (column 1), Treasury flows of Mutual Funds only (column 2),
and Treasury flows of Mutual Funds only (column 3) as defined by Gabaix and Koijen (2020). The upper panel
report results for the full sample (1996.Q1 - 2019.Q4), while the bottom panel report results for the post-2001
sample (2002.Q1 - 2019.Q4). ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% level for
a t-statistic for the test of the null βi = 0. For convenience, all series have been standardized to have mean
zero and unit variance before running the regressions, and therefore the estimated values of βi are equal to the
sample correlation between Flowit and TR

(eq)
t . Source of flows data: Financial Accounts of the United States -

Z.1 Release, vintage June 2020, available at https://www.federalreserve.gov/releases/z1/.
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Table 19 – Interest rate effects of monetary policy and equity tail risk shocks

n = 3 n = 6 n = 12 n = 24 n = 36 n = 48 n = 60 n = 84 n = 120

Panel A: Monetary policy shock measures developed by Jarociński and Karadi (2020). Sample: 2003–2019

∆TR(eq) β −8.230 −14.232 −23.885 −37.131 −45.203 −50.247 −53.518 −57.220 −59.315
p-value 0.136 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000

∆MP pure β 0.337 0.409 0.535 0.667 0.692 0.667 0.624 0.530 0.411
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

∆MP info β 1.542 1.404 1.281 1.236 1.197 1.123 1.031 0.844 0.608
p-value 0.031 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Adj. R2
(%) 2.706 4.336 5.328 5.610 5.490 5.256 5.039 4.765 4.583

Adj. R2
(%) no ∆TR(eq) 2.614 3.849 4.089 3.739 3.277 2.788 2.369 1.799 1.364

Panel B: Monetary policy shock measures developed by Rogers et al. (2018). Sample: 2008–2015

∆TR(eq) β −8.488 −14.196 −24.391 −40.325 −51.650 −59.813 −65.825 −73.748 −79.646
p-value 0.245 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000

∆MP target β −0.244 −0.247 −0.296 −0.476 −0.675 −0.841 −0.958 −1.050 −0.940
p-value 0.437 0.383 0.248 0.061 0.009 0.001 0.000 0.000 0.003

∆MP FG β 0.178 0.267 0.441 0.738 0.947 1.078 1.150 1.171 1.043
p-value 0.053 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

∆MP AP β 0.031 0.048 0.130 0.384 0.650 0.873 1.039 1.222 1.267
p-value 0.751 0.572 0.100 0.000 0.000 0.000 0.000 0.000 0.000

Adj. R2
(%) 1.217 3.485 10.173 12.740 13.669 14.497 15.064 15.341 14.403

Adj. R2
(%) no ∆TR(eq) 0.987 2.214 5.933 7.860 8.756 9.438 9.822 9.744 8.381

Notes: This table reports the slope estimates and p-values from contemporaneous regressions of daily yield changes of the n-month US Treasury bond on US
monetary policy and equity tail risk shocks, with the latter corresponding to daily changes in the S&P 500 option-implied tail risk measure TR(eq). Panel A
reports the results of a regression that includes, besides control variables, the pure MP shocks (∆MP pure) and central bank information shocks (∆MP info)
identified by Jarociński and Karadi (2020) and the orthogonalized equity tail risk shocks (∆TR(eq)) with respect to all other shocks. Sample is 2003:01–2019:05.
Panel B reports the results of a regression that includes, besides control variables, the target shocks (∆MP target), forward guidance shocks (∆MP FG) and
asset purchase shocks (∆MP AP ) identified by Rogers et al. (2018) and the orthogonalized equity tail risk shocks (∆TR(eq)) with respect to all other shocks.
Sample is 2008:10–2015:12. For all monetary policy shocks and equity tail risk shocks we report p-values computed with heteroskedasticity-robust standard
errors. For each regression we report the adjusted R-squared in percentage. This measure is also reported for a regression that excludes ∆TR(eq) as covariate.
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Figure 1 – Time series of the S&P 500 option-implied equity tail risk measure
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The figure displays the end-of-month values of the S&P 500 option-implied equity tail risk mea-

sure (TR
(eq)
t ) and 3-month moving average of the Chicago National Activity Index (CFNAIt)

from January 1996 to December 2019. For convenience, both series have been normalized to
have mean zero and unit variance. Contemporaneous correlation between TR(eq) and CFNAI
is −0.49. Vertical gray bars denote the National Bureau of Economic Research (NBER) based
recession periods.
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Figure 2 – Cumulative returns of competing strategies
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The figure illustrates the cumulative returns of a portfolio formed using the return forecasts
delivered by a model that includes both TR(eq) and the first 5 PCs of bond yields as predictors
(solid black line), and a portfolio formed using the return forecasts delivered by a 5 PCs-
only benchmark (dashed gray line). Predictive models are recursively estimated with a rolling
window approach. The (out-of-sample) investment period is 2008:01–2019:12. The investor’s
risk aversion coefficient is γ = 5.
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Figure 3 – Time series of US Treasury bond yields
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The figure displays the end-of-month values of 1- to 10-year Treasury bond yields from January
1996 to December 2019. Vertical gray bars indicate periods of elevated (>= 85%-ile) equity
tail risk implied by S&P 500 index options.
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Figure 4 – Time series of the pricing factors of US Treasuries
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The figure displays the monthly time series of the pricing factors of the proposed Gaussian
ATSM with equity tail risk. The top-left panel shows the S&P 500 option-implied equity tail
risk factor TR(eq). The remaining panels show the first five principal components extracted
from the US Treasury yields orthogonal to the TR(eq) factor. The light-colored dashed lines
show the principal components extracted from non-orthogonalized yields, which however are
not used as pricing factors in our model. All factors have been normalized to have mean zero
and unit variance.
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Figure 5 – Observed and model-implied US Treasury bond yields and returns
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The figure displays the observed and model-implied time series of yields and one-month excess
returns on US Treasury bonds with 1-, 5- and 10-year maturities. In the left panels, the solid
black lines show the observed yields, the dashed gray lines plot the model-implied yields, while
the dashed red lines indicate the model-implied term premia. In the right panels, the solid
black lines show the observed excess returns, the dashed gray lines plot the model-implied
excess returns, while the dashed red lines indicate the model-implied expected excess returns.
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Figure 6 – Time-varying market price of equity tail risk
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The figure displays the monthly time series of the market price of equity tail risk estimated
with the proposed Gaussian ATSM. For each day in the sample, this measure corresponds to

the element in vector λt defined in equation (15) that is associated with the risk factor TR
(eq)
t .

Vertical gray bars denote the NBER based recession periods.
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Figure 7 – Model-implied yield loadings on the pricing factors of US Treasuries
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The figure displays the model-implied yield loadings on the pricing factors of the proposed
ATSM with equity tail risk. These coefficients are calculated as −(1/n)bn and can be inter-
preted as the response of the n-month yield (expressed in annualized percentage terms) to a
contemporaneous shock to the respective factor. TR(eq) represents the S&P 500 option-implied
equity tail risk factor, normalized to have mean zero and unit variance. PC1 – PC5 denote the
first five standardized principal components extracted from the US Treasury yields orthogonal
with respect to the TR(eq) factor.
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Figure 8 – Model-implied return loadings on the pricing factors of US Treasuries
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The figure displays the model-implied excess return loadings on the pricing factors of the
proposed ATSM with equity tail risk. These coefficients are calculated as b

′
nλ1 and can be

interpreted as the response of the expected one-month excess return (expressed in annualized
percentage terms) on the n-month bond to a contemporaneous shock to the respective factor.
TR(eq) represents the S&P 500 option-implied equity tail risk factor, normalized to have mean
zero and unit variance. PC1 – PC5 denote the first five standardized principal components
extracted from the US Treasury yields orthogonal with respect to the TR(eq) factor.
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Figure 9 – Impact over time of equity tail risk on US Treasury bond yields and components
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The figure displays the impact over time of the S&P 500 option-implied equity tail risk factor

TR
(eq)
t on the 1-, 5- and 10-year US Treasury bond yields (black lines) and on their two

components, i.e average expected future short rate (red lines) and term premium (blue lines).
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Figure 10 – Impact of equity tail risk on US Treasury bond yields
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The figure displays the impact (in basis points) of the S&P 500 option-implied equity tail risk

factor TR
(eq)
t on the term structure of US interest rates for selected dates: Russian financial

crisis and collapse of Long Term Capital Management fund (Aug-98), onset of 2008-09 financial
crisis with bankruptcy of Lehman Brothers (Oct-08), intensification of European sovereign debt
crisis (Sep-11), announcement of the Federal Reserve’s “taper tantrum” (May-13). Interest
rates fell on all dates except for May-13, when yields markedly rose.
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Figure 11 – Time series of international equity tail risk measures
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The figure displays the international equity tail risk measures calculated using options on the
FTSE 100 (UK), DAX (DE), SMI (CH), CAC 40 (FR), FTSE MIB (IT) and IBEX 35 (ES)
equity index. All series have been normalized to have mean zero and unit variance. The solid
black lines show the equity tail risk measure of the country of interest, while the dashed gray
lines show, for comparison, the S&P 500 option-implied equity tail risk measure TR(eq).
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Figure 12 – Monthly fund flows
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The figure displays the monthly time series of US-domiciled open-end mutual fund and ETF
flows into the types of funds indicated by the subplot titles. Displayed values are from January
2000 to December 2019. Vertical gray bars indicate periods of elevated (≥ 85%-ile) equity tail
risk implied by S&P 500 index options (TR(eq)). Source of flows data: the Investment Company
Institute (ICI). The “Total Equity” category is obtained by summing up the US Equity, World
Equity and Hybrid fund flows obtained from ICI. The “Equity - Government Bond” category is
obtained by subtracting from the Total Equity flows the US Government Bond flows obtained
from ICI. We show flows expressed as percentage of previous month’s fund AUM for all types
of funds except for “Equity - Government Bond”, whose flows are shown in billions of US $.

104



Figure 13 – S&P 500 option-implied equity tail risk and Aggregate Equity Flows (quarterly)

The figure displays the quarterly time series the S&P 500 option-implied equity tail risk measure

(TR
(eq)
t ), computed as averages of the end-of-month observations within each quarter (red

dashed line), and Aggregate Equity Flows (black continuous line) as computed by Gabaix
and Koijen (2020). The sample period is 1990.Q1 - 2019:Q4. For convenience, both series
have been standardized to have mean zero and unit variance. Source of flows data: Financial
Accounts of the United States - Z.1 Release, vintage June 2020, available at https://www.

federalreserve.gov/releases/z1/.
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Figure 14 – Equity tail risk vs monetary-policy-driven jumps
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The figure displays the daily time series of the S&P 500 option-implied equity tail risk measure

TR
(eq)
t (left y-axis, solid black line) and of the US stock market jump returns triggered by

monetary policy and identified by Baker et al. (2020) (right y-axis, dashed red line) from
January 1996 to December 2019. Contemporaneous correlation between the two series is 0.06.
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Figure 15 – Monetary policy shocks

(a) Measures developed by Jarociński and Karadi (2020)
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(b) Measures developed by Rogers et al. (2018)
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The figure displays the time series of the monetary policy shock measures developed by
Jarociński and Karadi (2020) and Rogers et al. (2018). Data are aggregated to the monthly
frequency. In any month with no announcement, the shock is zero. In any month with mul-
tiple announcements, the shocks are added up within that month. Panel A shows the “pure”
monetary policy shocks (black bars) and central bank information shocks (blue bars) identified
by Jarociński and Karadi (2020) from January 1996 to May 2019. Panel B shows the target
shocks (gray bars), forward guidance shocks (turquoise bars) and asset purchase shocks (coral
bars) identified by Rogers et al. (2018) from January 1996 to December 2015.
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