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Abstract

In this paper we develop a general framework to analyse state space models with time-
varying system matrices, where time variation is driven by the score of the conditional
likelihood. We derive a new filter that allows for the simultaneous estimation of the state
vector and of the time-varying matrices. We use this method to study the time-varying
relationship between the price dividend ratio, expected stock returns and expected dividend
growth in the US since 1880. We find a significant increase in the long-run equilibrium value
of the price dividend ratio over time, associated with a fall in the long-run expected rate of
return on stocks. The latter can be attributed mainly to a decrease in the natural rate of
interest, as the long-run risk premium has only slightly fallen.
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1 Introduction'

A decade after the Great Recession the global economy is mired in an environment of low real
interest rates, low growth and high stock valuations. Whether this is a “new normal” is a
question that is at the center of a new research agenda on macro-financial trends in a changing
environment (Caballero et al., 2017). The issue of structural breaks is back in the spotlight,
as it is the use of time series models that allow for parameter instability. In this paper we
contribute to this debate by developing a general method to analyze state space models where
parameters change over time and by applying this method to study the evolving relationship
between stock valuations, stock returns and dividend growth.

The econometric method that we propose posits a law of motion for the parameters that
is a linear function of the score of the conditional likelihood, following Creal et al. (2008) and
Harvey (2013). We derive the analytical expressions for a new set of recursions that, running
in parallel with the Kalman Filter (KF), update at each point in time both the vector of
time-varying parameters (TVP) and the latent states. Within this framework, the likelihood
of any Gaussian state space model with TVP is available in closed form and the model can be
estimated by maximum likelihood (ML). A unique feature of our method is that it can easily
handle parameter constraints, which might arise from economic theory or from a deliberate
choice of the econometrician. Constraints are taken into account directly in the estimation
algorithm through a Jacobian function. Finally, missing observations, mixed frequencies and
the shrinkage of the TVP towards desired values are easily dealt with. A Monte Carlo exercise
shows that the method can replicate the salient features of various data generating processes.
In particular, our method delivers constant coefficients when the data are simulated from a
fixed coefficient model, and tracks time variation in parameters when this is present in the
data.

We are not the first ones to tackle the issue of parameter variation in state space models.
Harvey et al. (1992), Koopman et al. (2010), Eickmeier et al. (2015) and Koop and Korobilis
(2013) estimate state space models with TVP using either Maximum Likelihood or forgetting
factors. All these papers focus on specific models for which they develop ad-hoc estimation
methods. The algorithm that we develop in this paper is instead general and can be used to
analyze any model that can be cast in state space form. A second strand of the literature
analyzes models with TVP using Bayesian simulation techniques (see e.g., Cogley and Sargent,
2005; Stock and Watson, 2007; Durbin and Koopman, 2012). In some settings, our method
presents a distinctive advantage with respect to these methods, as the likelihood of the model
can always be computed using the standard Kalman filter, even in presence of non-linear

restrictions in the time varying parameters. Restrictions on the system matrices of the state

IThe authors would like to thank Juan Antolin-Diaz, Gino Cenedese, Laura Coroneo, Ana Galvao, Domenico
Giannone, Arie Gozluklu, Andrew Harvey, Gary Koop, Siem Jan Koopman, Andre Lucas, Massimiliano Mar-
cellino, Daniele Massacci, Pavol Povala, Barbara Rossi, Bernd Schwaab, Ron Smith and Shaun Vahey for their
useful suggestions.



space are embedded in the updating steps of the unobserved components and of the model
parameters with no additional computational costs.

We use the methodology developed in the first part of the paper to revisit the relation-
ship between the price dividend ratio, the return on stocks and dividend growth in present
value models. State space models are particularly attractive to study present value relation-
ships because they handle efficiently complex dynamics, while avoiding over-parameterization
(Binsbergen and Koijen, 2010). We estimate a generalization of the Campbell and Shiller de-
composition (Campbell and Shiller, 1988), which allows for time variation in the steady state
of expected dividend growth and of the expected return on stocks (and therefore the steady
state price dividend ratio as in Lettau and Nieuwerburgh, 2008) as well as in the conditional
variance of the shocks (as in Piatti and Trojani, 2017). We show that expected returns and,
to a lesser extent, expected dividend growth, exhibit slow moving steady states. Expected re-
turns, in particular, have experienced a continuous decline in their long-run equilibrium value.
This decline accelerated in the 1960s and in the 1990s, prior to the stock market crashes of
the early 1970s and 2000s, and is reflected in an upward trend of long-run price dividend ratio,
which so far the literature failed to explain. An intuition for this result is sketched by Fama
and French (2002) in their seminal paper on the equity risk premium. They use long historical
data on dividend growth and dividend yields to obtain an estimate of expected stock returns
and of the implied risk premium. Upon noticing that dividend growth is broadly stationary
but that the price dividend ratio has instead risen considerably, they conclude that the only
logical explanation is a decline in expected returns. We provide an econometric method and a
model specification that formalizes their intuition and that confirms its empirical validity. We
also add to a growing literature on the relative role played by the natural rate of interest (r-
star) and the risk-premium in explaining long-term trends in the return on stocks (Greenwald
et al., 2019; Farhi and Gourio, 2018). We decompose long-run expected returns into a riskless
component and a risk premium and find that the former has remained relatively stable until
the beginning of the 1960s, to decrease rapidly thereafter. The long-run equity risk premium
has only slightly fallen, from 4 to 3 percent.

Structure of the article. Section 2 constitutes the methodological body of the paper.
Section 3 discusses present value models with shifting steady states and provides details on the

model specification. Sections 4 and 5 present the empirical analysis. Section 6 concludes.

2 Score driven state space models

Let us assume that a given time series model has the following state space representation:

Y = Loyt €, €~ N(07 Hy),

(1)
Tiag1+n,, e ~N(0,Q), t=1,..,n,

ay



where 1, is the N x 1 vector of observed variables, ¢, is the N x 1 vector of measurement
errors, oy is the m x 1 vector of state variables and 7, is the corresponding m x 1 vector of
disturbances. The two disturbances are assumed to be Gaussian distributed and uncorrelated
for all time periods, that is E(en.) = 0 for V¢,s. This assumption can be relaxed at the cost
of a complication in the filtering formulae. The initial value of the state vector is also assumed
to be Gaussian, ag ~ N (ag, Py) and uncorrelated V¢ with e, and 7,.

Following Harvey (1989, sec. 3.1) it is usually assumed that the system matrices Z;, Hy, T}
and @; are non-stochastic. As a result the system (1) is linear with respect to the state vector.
Conditional on the information set Y;_1 = {y;_1, ..., y1} and on the vector of parameters 6, the
state vector and the observations are both Gaussian distributed; i.e. y|Y;_1;0 ~ N(Z;ay, Fy)
and ay|Y;_1;6 ~ N (as, P;), and the log-likelihood function at time ¢ is:

1
by =logp(ye|Ye1,0) o —5 (log |F| + viFy o) (2)

The prediction error vy, its covariance matrix F}, the conditional mean of the state vector a,

and its mean square error (MSE) matrix P;, are recursively estimated by means of the KF:

Ve = Y — Liay, F, = Z,P,Z] + H,,
ay = ay + BZF v, Py =P, — PZF,'ZP, (3)
A1 = Tt+1at|t Py = TtHPﬂtT{H +Quy1, t=1,..,n.

Specifically, we have that a; = E(ay|Y;_1,0) is the so-called predictive filter with its MSE
matrix being P, = E[(a; — o) (a; — a)'|Yi—1, 6], while ayy = E(y|Y}, 6) is the so-called real time
filter with MSE equal to Py, = E[(ay; — a)(ay — ou)'|Yi—1,6]. The state space model in (1)
is the so-called contemporaneous form used in Harvey (1989). Durbin and Koopman (2012)
use instead the so-called forward form. In this paper we prefer to use the former so that the
system matrices have all the same time dependency with respect to the vector of TVP. Using
the forward form, the time dependency of matrices T" and () needs to be adapted; for details
see Appendix A.

We assume that the changes in the system matrices over time are endogenous and depend on
past observations. Thus, although stochastic, the system matrices are predetermined, meaning
that conditional on past observation they can be regarded ad being fixed. As a result, the
model is still conditionally Gaussian like the one introduced by Harvey (1989, sec. 3.7.1).
This setup has three attractive features. First, both the state vector and the observations
are conditionally Gaussian. Second, the likelihood function can be written in the form of the

prediction error decomposition (2) and computed by means of the KF (3). Third, although the

2The KF generates the conditional Gaussian distribution of the state vector where the mean is no longer
linear in the observations and the MSE (conditional error covariance) depends upon the particular realization
of the observations in the sample. Chen et al. (1989) state the necessary conditions in order for the KF to
generate the conditional mean and covariance of the Gaussian state vector.



model is not linear in the observations, the KF delivers the minimum mean square estimates of
the state vector (see Harvey, 1989, p. 342). The key analytic challenge here is represented by
the joint updating of both the system matrices and of the state vector. To solve this problem,

we propose a new set of recursions that run in parallel with the KF.

2.1 Score driven system matrices

The time-varying elements of the system matrices in (1) are collected in the vector f; also
known as the TVP vector. As in Creal et al. (2008) and Harvey (2013), we posit the following

score driven law of motion for such vector:

firi=c+Afi+Bs;,, s, =8V, t=1,..,n, (4)
with , )
ol ( 04, >_

vV, =2t s = : 5

T A "\ofof ©)

where V, is the score (gradient) of the log-likelihood function ¢, with respect to f;, and the
scaling matrix, S;, is the inverse of the information matrix Z;. In this case, s; has zero con-
ditional mean and conditional variance equal to the inverse of the information matrix.” The
parameters in B determine the sensitivity of the time-varying parameters to the score of the
conditional likelihood, and therefore to the information contained in the prediction error. The
special case of constant system matrices is obtained by setting this matrix to 0. The system
matrices may contain both time-varying and constant elements. We collect the latter in the
vector 6,,. Thus, at each point in time, the system matrices depend upon f; and 6,,, namely
Zy = Z(f1,0m), Ty = T(ft,0m), He = H(f:,0), and Q; = Q(fi,0,,). The score vector s; is
computed conditional on the information up to time ¢, thus the vector f; is entirely determined
by past observations and by the vector of static parameters §; = {c, A, B}. Since the dynamic
of the system matrices is observation-driven, i.e. entirely determined by past observations and
by the vector 6 = (0%,6;,)", the model is conditional Gaussian and the log-likelihood (2) can
be evaluated recursively through the KF.

The gradient and the information matrix can be analytically compute by the expressions

presented below.

Result 1 Given the model (1)-(2), the score and the information matriz are:

Vi=3 [Ft,<Ft ® ) vec(vy — Fy) — 2V Fy o,

1 = % [FZ(E ® F) '+ QV,gIFt_lV}] , t=1,..n,

3 Alternatively, one could choose S; = Z, 1 2, in which case the conditional variance of the score is equal
to the identity matrix. One can also set s; = V;, in which case the score has conditional variance equal to
the information matrix. In general, to avoid numerical instability in the scaling matrix we replace S; with its



where V; = 0v,/Of! and F, = dvec(F,)/df! measure the sensitivity of the prediction error v,
and its variance Fy with respect to f;. Proofs in Appendix A.1.

Notice that all the elements of the information matrix Z;, are computed using information
up to time ¢ — 1. On the other hand, the gradient V; contains the current observation y; via
the prediction error v,. The terms V; and F} play a key role in the gradient V,. They measure
the sensitivity of, respectively, the first and second moment of the state vector with respect
to f;. Together with the variance of the prediction error (F}) and with the curvature of the
conditional likelihood (proportional to Z;), they determine the impact that new information,
summarized in the prediction error v;, has on the TVP vector. Notice that v; and F; are
recursively computed by means of the KF (3), while their Jacobian counterparts, V, and F},

are recursively computed through the new filter presented below.
Result 2 The Jacobian counterpart of the KF leads to the following set of expressions:

Vi = —l@® N+ 0y, ® Z)T, =1,

. . L (Y
E, = 2NN(ZPr® IN)Zy + 22 @ Zy) No(TPryjomr ® L) Ty + Hy + (2, @ Z4) Qs

where Z, = dvec(Zy)/0f!, H, = dvec(H,)/Of!, Ty = dvec(T})/df! and Qp = dvec(Qy)/df! are
the Jacobians of the system matrices with respect to f;, and N, is a symmetrizer matriz (i.e.,
for any n x n matriz, S, Nyvec(S) = vec[3(S + 5")]). Proofs in Appendiz A.2.

Putting together Results 1 and 2, we can compute the scaled score s; = §;V; and therefore
recursively estimate the vector f; using the the score-driven filter (4). Such auziliary filter runs

in parallel with the standard KF (3) as explained in the Algorithm described below.

Algorithm for the score driven state space model
Initialize ap|0, @1, .P0|07 Pl, fl; and Zl, Tl, H17 Ql-
Fort=1,...,n:

i. compute Zt, j}, Ht, Qt

ii. compute vy, F,, Vi, F, ¢,

iii. compute ay¢, Pyi, Vi, Ly, St

iv. compute f; 1

v. compute Zyi1, Tyiq, Hirq, Qi

vi. compute a;y1, P

The vector of parameters 6 can be estimated by ML, that is h= argmax y ., (4(0). Given
the above algorithm, the evaluation of the log-likelihood function is straightforward and the
maximization can be obtained numerically.*

Appendix B provides examples of popular models with TVP that have been used in the

smoothed counterpart S; = (1 — k,)S; + KnSi—1.
4As in Creal et al. (2013, sec. 2.3) one can conjecture that the usual ML results hold.



literature and that can be analyzed within our framework. In particular we discuss the local-
level model with time-varying volatilities used by Stock and Watson (2007); the autoregressive
models and the vector autoregression with time-varying parameters (as in Koop and Korobilis,
2013). Appendix C shows, through a detailed Monte Carlo analysis, that our score driven
method successfully tracks parameters time variation for a variety of different Data Generating
Processes (DGPs). Importantly, the Monte Carlo exercise also highlights that, when the true

parameters do not change over time, the model correctly estimates them as constant.

2.2 Non-linearity in the system matrices

In many applications it is desirable to constrain the TVP at each point in time. Steady
state relationships, for instance, often imply non-linear parameters constraints that must be
taken into account when estimating the model. The score driven approach provides a general
framework to deal with such constraints. In this respect it presents a clear advantage over
alternative methods, including Bayesian ones. When the system matrices (Z;, Ty, H;, @Q;) are
a non-linear function of f;, the effect of these parameters on the score is mediated via the
Jacobians (Zt, T,, H,, Qt) Although the exact expression of the Jacobians is model specific,
we offer a flexible expression for dealing with them. Let M, be a generic system matrix of

dimension r X ¢, and decompose this matrix as follows:
vec (M) = So + S19(Saf1), (8)

where Sy is a rc X 1 vector containing all the time-invariant elements in each of the entries of the
matrix M;, S7 and S, are selection matrices that select respectively the time-varying elements
of M, and the sub-vector of f; belonging to M,. Finally, ¥(-) denotes the mapping function,
also known as the link function, between f; and the corresponding elements in M; embedding
parameter restrictions. Such function is assumed to be time-invariant, continuous, invertible,
twice differentiable, and its Jacobian matrix is denoted by W,. Given the representation (8),

the generic Jacobian matrix M, can be computed as follows:

: ovec(My)
My = ————= = 51V, 5. 9

: o/ 1Sy (9)
While equations (8)-(9) can be directly used to deal with Z; and T}, when modelling a generic
covariance, €2, it is often useful to decompose this in terms of volatilities and correlations, i.e.
QO = DiR;D;, where D, is the diagonal matrix containing the standard deviations and R; is

the correlation matrix. Now R; and D, can be expressed in the form of (8), R; and D, can be

computed as in (9) and € is computed using standard rules of matrix differentiation.

10



2.3 Shrinkage, mixed frequency data, correlated disturbances

As the dimension of the system grows, it could be desirable to impose some shrinkage on the
model parameters to avoid an increase in the estimation variance. In a Bayesian framework this
is achieved through the prior distribution. In a classical setting, like the one hereby adopted,
shrinkage can be achieved by means of stochastic constraints that lead to a mixed estimator
(Theil and Goldberger, 1961). In the appendix D we show how to modify the score-driven
algorithm in order to take into account shrinkage on model parameters.

The presence of missing observations and data sampled at mixed frequencies does not
present a particular challenge, as it only involves a re-weighing of the observations and temporal
aggregation. A detailed treatment of these issues is discussed in Appendix E. Finally, Appendix
F' shows how to modify our algorithm in the presence of correlation between the innovations

of the measurement and transition equations.

3 Price dividend ratio, expected returns and expected

dividend growth

We use the method laid out above to study the relationship between the price dividend ratio, the
return on stocks and dividend growth. This topic provides the ideal setting for score driven
state space models. First, it involves present value relationships that can be conveniently
analyzed via state space models (Binsbergen and Koijen, 2010). Second, there is significant
evidence of instability in regressions of stock returns on the price dividend ratio (Paye and
Timmermann, 2006; Lettau and Nieuwerburgh, 2008), suggesting that a state space model
with TVP is the appropriate modelling choice. Third, the parameters that link these three
objects are subject to a set of non-linear restrictions that pose a non-trivial challenge for other
methods but can be easily dealt with in our framework. We start by recalling the steady state

relationship between the return on stocks, the price dividend ratio and dividend growth.

3.1 Stock return and time-varying steady states

Let P, and D, denote stock prices and dividends. From the simple definition of gross return of

an asset it follows that:

Piv+ Dy Dy Py /Dy + 11
R = = ) 10
i P, Di  P/D 10)

Lettau and Nieuwerburgh (2008) show that this implies the following relationship in logs:

pd, = g, — log(exp 7, — expg,), (11)

11



where pd,, 7, and g, denote the steady state level of the price dividend ratio, of the return on
stocks and of dividend growth, respectively.” Equation (11) has two important implications.
First, changes in the steady state of the price dividend ratio reflect either changes in the steady
state of the return on stocks or in the steady state of dividend growth or in both. Second,
small changes in long-run growth (reflected in the steady state of dividend growth) and/or in

the steady state of returns have large effects on the steady state of the price dividend ratio.

3.2 Preliminary evidence on parameter instability

Lettau and Nieuwerburgh (2008) report evidence in support of the hypothesis that the long-
run mean of the price dividend ratio is subject to two structural breaks. In this section, we
extend their analysis by considering not only the price dividend ratio but also the return on
stocks and dividend growth and by testing for instability in the variance of these variables. Our
analysis is based on annual data between 1873 and 2018. Annual data for the Standard and
Poor Composite Stock Price Index and associated dividends are sourced from Robert Shiller’s
website.” We deflate total returns and dividends using data on US CPL.

We start by testing the null hypothesis of no breaks against the alternative hypothesis of
one break (Bai and Perron, 2003). The results, reported in the top panel of Table 1, convey
two clear messages. First, the hypothesis of no breaks can not be rejected for returns and
dividend growth. The second result is that there is strong evidence of structural breaks in the
mean of the price dividend ratio. Two of the dates for which the Bai and Perron procedure
detects a break (1954 and 1995) are consistent with the findings in Lettau and Nieuwerburgh
(2008). Evidence of a third break in 1913 is somewhat weaker. In fact, the null hypothesis of
two breaks against the alternative of a third one cannot be rejected on the basis of sequential
break tests (Table 1, central panel). These sequential tests also cannot reject the null that the
mean of the return on stocks and of dividend growth has remained stable over time.

Last, we employ Nyblom (1989) test of the null hypothesis of constant parameters (both
mean and variance) against the alternative that the parameters follow a martingale. The test
detects significant shifts in the mean and volatility of the price dividend ratio as well as in the
volatility of dividend growth. This result casts doubts on the hypothesis of constant variances
maintained by Lettau and Nieuwerburgh (2008) and confirms that shifts in the steady state of

the price dividend ratio are a robust feature of the data.

SLettau and Nieuwerburgh (2008) assume that, at the steady state, the level of the price dividend ratio is
constant (i.e. P/D,,, ~ P/D,). Moreover, denoting with DY, the steady state dividend yield, equation (11)
implies that DY, = R; — G4, consistent with the traditional Gordon model.

Shttp://www.econ.yale.edu/shiller/ (see Shiller, 1989, Ch.26 for a discussion).

12
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3.3 A score driven present value model with drifting steady states

The structural breaks analysis leaves one question open, that is how to reconcile the evidence
of breaks in the price dividend ratio with the apparent stability of returns and dividend growth,
given that the former is a function of the latter two. A plausible explanation is that changes
in the long-run mean of returns and dividend growth are overshadowed by the presence of a
very volatile transitory component. In such an environment state of the art break tests have
low power against the alternative of no breaks (Cogley and Sargent, 2005). The changing
relationship between the price dividend ratio, returns and dividend growth could be better
captured by a flexible model that allows for gradual shifts in their long-run mean as well as in
their volatility, which we now specify.

Lettau and Nieuwerburgh (2008) generalize the Campbell and Shiller decomposition to
allow for time-varying steady states in expected returns and in expected dividend growth.

They show that a first order approximation of (10) around a time-varying steady state yields:’

pdt - p_dt = sz(Ade - gt) - Z p{<7nt+j - ﬁt)a (12)
Jj=1 j

Jj=1

where p; = exppd,/(1 + exppd,) and, through pd,, depends on i, and g, according to (11).
Equation (12) shows that stock prices fall relative to dividends when there is bad news about
future cash flows, or when discount rates (i.e. expected returns) rise. Therefore, the price div-
idend ratio should forecast returns and dividend growth (Cochrane, 2008). Most importantly,
the presence of shifts in long-run expected returns and expected dividend growth implies that
the sensitivity of pd, — pd, to news about cash flows and discount rates also changes over time
(i.e. the higher the equilibrium level of the price dividend ratio, the higher p;).

To take the model to the data one needs to make some additional assumptions on expected
returns and expected dividend growth. Binsbergen and Koijen (2010) assume that these ex-
pected values can be modeled as AR(1) processes. Here we depart from their specification and
assume that expected returns and expected dividend growth are the sum of a transitory and a
persistent component. The latter, which constitutes a shift in long-run expected returns and
expected dividend growth, is the key novelty of our model and we discuss it more in detail in

the next sub-section. Specifically, we assume that:

Eif(Adiy1) = Groape + Gerape (13)
Ei(rig1) = Hypape + Berages (14)

where the equilibrium levels of expected returns and expected dividend growth are defined as

"Lettau and Nieuwerburgh (2008) assume that steady state log returns and dividend growth are martingales
(ie. E(fyy;) = 1y and Eq(gy1 ;) = G;), as well as Ey(pd, , ;) = pd; and E¢(pi+;) = pi, and that that deviations
from the mean price-dividend ratio are uncorrelated with p; (i.e. E¢[ps+;(pd,,; —pd;)] = 0). The specification
of the model for i, and g,, that we describe below, is consistent with the martingale assumption. As for
pd, and p;, Lettau and Nieuwerburgh (2008) show that the martingale assumption is satisfied to a very good
approximation for reasonable break processes for 1z, and g,.

13



limy, o0 Ei(rien) = Fyyrpe and limp o Ei(Adyyp) = Gr1pe- Using the notation in Binsbergen
and Koijen (2010) we denote the transitory component of the expectations (G1: and fiz41)¢)

with §; and fi; and assume that they can be characterized by simple AR(1) models:
Gt+1 = Qglt + Egrt (15)
fier1 = Qujly + €yt (16)
The present value relationship (12) implies that the transitory component of the price dividend

ratio is related to ji; and g;:

pd, — p_dt\t—l ~ —by g1l + b2 gje—191, (17)
with the following constraints on the parameters:
1 1
by = ——, by gy = ———. 18
bl Ptlt—1Pp L Ptlt—1Dg (18)

Hence the loadings of the transitory component of the price dividend ratio are not only time-
varying, but also a non-linear function of the steady state level of the price dividend ratio.
These restrictions must be imposed exactly when estimating the model, a challenge that our
score driven modeling approach can easily overcome.
The decomposition of dividend growth into the expected dividend growth plus an unex-
pected shock, €441, provides the first measurement equation:
Adpy1 — Ef(Adeyr) = €441 (19)
The second measurement equation is (17), which we augment with a measurement error v; ~
N(0,02) to take into account the approximation error associated with the solution of the
present value model. Moreover, we collect the three shocks in the vector e, = (€44, g, €pt)
respectively the shock to dividend growth, the shock to expected dividend growth and the
shock to expected returns. It is easy to see that they also map into unexpected changes in

returns, specifically:

rer1 — Ey(re1) = —Pi11t01 1111t E w1 T+ Peg1)eb2,i41(tEg 041 T Edy41- (20)

3.3.1 Slow-moving trends and time-varying risk

We assume that long-run expected dividend growth and long-run expected returns are martin-
gales driven by the score of the conditional likelihood:

Hoprye = Hye—1 T buSput (21)

Jir1t = Geje—1 T bgSg,ts (22)
where s,,; s, are the appropriate elements of the score vector. The steady states, f,_, and
Gyjt—1, are therefore updated (through the scaled score) using information on dividend growth
and on the price dividend ratio, as highlighted by equation (11), as well as the present value
restrictions embodied in equations (17)-(18), which imply that long-run returns and dividend
growth can also change, through py,_1, the sensitivity of the transitory components of price

dividend ratio (pd, — pd,, ;) to expected returns and dividend growth.
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Last, we assume that the vector of shock ¢; is normally distributed with time-varying co-
variances that are themselves driven by the score. Formally, ¢, ~ N (0,€;), and we decompose
the covariance matrix €2y = D, R;D;, where R; denotes the time-varying correlation matrix and
D, = diag ([04y, 044,0,,]) contains the standard deviations. Whereas the three shocks could
be all correlated, not all elements of the covariance matrix can be separately identified. In Ap-
pendix G.1 we show that, in order to identify the model, one restriction needs to be imposed on
the correlations among the innovations of the model. Below, we follow Binsbergen and Koijen
(2010) and assume that the measurement error in dividend growth (e4;) and the stochastic
disturbance in expected dividend growth (e,,) are uncorrelated, i.e. Corr(eyy,€q4¢) = 0.

Inspired by Joe (2006), we take advantage of the mapping between the correlations and
the partial correlations. This allows us to constrain the partial correlations to lie in the unit
circle, and yet guarantees a well-defined correlation matrix in every period. Modeling partial
correlations has the additional advantage that we can easily impose that one of the correlation
coefficients is always zero: ordering the innovations so that the restriction is placed on the first
column of the correlation matrix, one has that g4, = 74y (Where p;; and 7;; are, respectively,
the generic ij element of the correlation and partial correlation matrix) and the identification
restriction simply requires that w4, = 0,Vt. Therefore, through the Jacobian, the algorithm
translates the score of the likelihood with respect to the correlation matrix into the appropriate
updating of the unrestricted partial correlations. An alternative parametrization that guaran-
tees a positive-definite correlation matrix uses hyperspherical coordinates (Creal et al., 2011;
Buccheri et al., 2020). This implies constraining the partial correlations by the cosine function,
hence it is a special case of our approach. For full details on modelling the correlation matrix

through partial correlations see Appendix G.2.

3.3.2 State space representation and estimation

Let y; = (Ady, pd,) be the vector of observed variables and oy = (1, G, fie, Gi—1, E€d,t gty Ept)’
be the state vector. The measurement equations of the model are (17) and (19). The law of
motion of the transitory components (15)-(16) and the definition of the innovations of the model
constitute the transition equations.” The model can be set in the state space representation
(1), with the following specification of the system matrices:"
o o1 t1oo) 23)
pd, 0000

1_Pt¢g o 1_Pt¢u

8The measurement equation for the price dividend ratio and for dividend growth imply a measurement
equation for returns (20), which is therefore redundant for the estimation of the model.

9To simplify the notation, in this section any generic score driven time-varying parameter, Ty|¢—1, is simply
denoted with x;.
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10 0 0000
0 ¢, 0 0000
00 ¢, 0000

T=10 1 0 0000]|, (24)
00 0 0000
00 0 0000
00 0 000 0]

& = (0,14) and H = diag([0,02]). The innovations to the state vector are n, = S,&;, where
Sy is a selection matrix appropriately defined, and @; = 5,€:5;. The time-varying elements
of the system matrices Z; and (); are collected in the vector:

fi = (i, Gy, log 04, 10g 04 1, l0g 0,1, atanhmi# atanhrf*)’ (25)
where atanh(-) denotes the inverse hyperbolic tangent so that the partial correlations m;;; €
(—1,1), Vt. The law of motion of f; is a restricted version of (4). Specifically, we assume A and
B to be diagonal and we further restrict some of the elements of ¢ and A in accordance with
the random walk specification for the slow moving trends discussed in section 3.3.1. The model
likelihood is computed using the KF, coupled with the updating algorithm for the score driven
parameters as discussed in section 2 and parameters are easily estimated by maximising this
likelihood. Confidence intervals are obtained following Blasques et al. (2016). Appendix G.3
provides details on the state space representation, the non-linear mapping between the score
driven time-varying parameters and the system matrices, as well as the associated Jacobians

that are required in the score driven filter.

4 Results

Parameter estimates. The estimation results are shown in Table 2. Expected returns have a
root of 0.829, which implies a half life of 4.7 years. Expected dividend growth is less persistent,
with an autoregressive root of 0.345, implying a half life of 1.7. These numbers are, as expected,
lower than those estimated by Binsbergen and Koijen (2010) and Piatti and Trojani (2017), as
part of the persistence is captured in our case by the shifts in the steady states. The volatility
and correlation for the innovations of the model map into an average volatility of the shocks
to returns of roughly 0.18 and correlation between the innovations to the return on stocks
and expected returns in a range between -0.6 and -0.7, in line with the estimates in Carvalho
et al. (2018). The variance of the measurement error of the price dividend ratio is negligible.
The second column reports the autoregressive roots of the five time-varying parameters that
are modelled as stationary processes, namely the three volatilities and the partial correlations.
All of them are far from having a unit root, justifying our modeling choice. The third column
presents the seven loadings on the score and the smoothing coefficient of the Hessian term. The

long-run mean of expected returns has a loading of 0.151 on the likelihood score, three times
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as large as that of dividend growth (0.052). This is a signal that the low frequency component
of expected returns exhibits much more time variation than that of dividend growth. In sum,
expected returns are more predictable than expected dividend growth, they are characterized

by a slowly changing steady state and by a very persistent transitory component.

Filtered steady states. Figure 1 shows returns and dividend growth together with the
expected components. For both series, movements in the long-run steady states are completely
dominated by very volatile transitory shocks, and seem relatively flat. As we shall see below,
this is in fact not the case. Consistently with the parameter estimates in Table 2, expected
dividend growth is more volatile and falls considerably in recessions. It is worth stressing that
its fall in the 2008 recession is not exceptional by historical standards and is in fact significantly
milder than those observed in 1929 and during WWII. Expected returns, on the other hand,
are more persistent, with periods of high and low valuations spanning multiple recessions and
expansions of the business cycle.

Figure 2 shows the estimated trend components. These are the central results of our
empirical analysis. In the left panel we plot f,,_, and g,;_,, which are estimated in our model
as score driven martingales. It is clear that what seemed to be a flat line, i.e. the permanent
component of expected returns, is in fact a downward sloping trend. It starts off at around 9
percent at the end of the 19" century and fluctuates between 7 and 8 percent until the 50s.
Thereafter it experiences two sharp falls: one between the 50s and the 70s, and one in the
90s, the former being interrupted by the stock market crash in 1973 and the latter by the
burst of the dotcom bubble in 2000. At the end of the sample, the long-run expected return
on stocks stands at around 4 percent, less than half of its initial value. The steady state of
expected dividend growth has also fallen slightly over the sample, from around 2 percent to 1.3
percent at the turn of the century, to then rebound to 1.5 percent. This minor fall in long-run
dividend growth is quantitatively consistent with the rise of alternative forms of payout (such
as shares repurchases and issuance) which have become quantitatively more important since
the 90s (see e.g., Boudoukh et al., 2007). The right hand side panel shows the implications
of these results for the steady state of the price dividend ratio. Our estimate of pd, has an
upward trend over the whole sample, with three large changes, one early in the sample, one
after WWII and one in the Nineties. These are indeed the dates for which the Bai and Perron
(2003)’s test detects significant structural breaks. However, structural break tests are unable
to offer a structural explanation for such an upward trend in valuations, nor can they provide a
narrative behind these episodes. Our model reveals that these long waves of strong valuations
have largely built on falling expected returns. The rally of stock prices in the 90s, in particular,
was associated with a sharp fall in discount rates. These results formalize and provide evidence
for the intuition put forward by Fama and French (2002). In their seminal paper on the equity
premium they notice that, between 1950 and 2000, realized average stock returns in excess of

the riskless interest rate have been substantially higher than the equity risk premium. Given
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the relative stationarity of dividend growth, they argue that realized capital gains must have
come from a fall in discount rates. Our empirical analysis quantifies such shifts in long-run

discount rates and identifies their timing within a formal model.

Dynamic price dividend ratio decomposition. Figure 3 decomposes the cyclical com-
ponent of the price dividend ratio in a linear combination of the transitory components of
expected returns and of expected dividend growth, based on equation (17). The results are
quite striking. First, most of the cyclical variation in valuations is due to changes in expected
returns. In particular, high stock prices in the 60s and in the 90s were due to a slow fall (of
transitory nature) in the discount rate, which eventually reverted back towards its mean in the
bear markets of the early 70s and early 2000s. This finding is consistent with the relatively
higher persistence of fi; compared to g; (AR root of 0.829 versus 0.345) as well as with the fact
that changes in expected dividends affect both prices as well as actual dividends, with relative
little impact on valuations (Cochrane, 2011; Campbell and Ammer, 1993). Second, the role
of cash flows is episodic but non-negligible. A fall in cash flows expectations, for instance,
contributed as much as discount rates to the stock market crash in 1929 and in WWII. It had

an even larger role in explaining the 2008 crash.

Term Structure of expected returns and dividend growth. Iterating forward equa-
tions (15)-(16) we can obtain an expression for the average expected returns and expected

dividend growth over a given horizon n:

w1 o 11— ¢

Hy = EEt ;21 Tt—i—j] = Kyt + E 1— qﬁu Ht (26)
m 1 “ o 11—¢0_

9" = —E ;:1 Adeyj| =G+ -7 5,0 (27)

In Figure 4, left hand side panel, we plot expected returns at the ten years horizon (blue
dashed line) as well as the slope of the term structure of expected returns (red solid line), that
is the difference between average expected returns ten and two years out. At low frequencies,
expected returns inherit the properties of the shifting steady state 7z,,_;: they fall from an
average of around 7 percent in the first part of the sample to around 2 percent at the end of
the sample. The slope, despite some short run movements, fluctuates around zero, suggesting
that over this period the whole term structure of discount rates has shifted downwards. The
level and the slope are clearly negatively correlated. This negative correlation is driven by a

number of a recessionary episodes in which long term discount rates rise but the slope falls,

0These findings stand partially in contrast with those in Piatti and Trojani (2017) who keep the steady state
of expected returns constant. Keeping the steady state of expected returns constant has two consequences.
First, it constraints long-term expectations to remain relatively stable, the more the longer the horizon that
one considers. This is hard to reconcile with the secular upward trend in the price dividend ratio. Second, in a
model with constant steady states the terminal point of the term structure is fixed. This implies that a model
with constant steady states ends up overstating the predictability of returns, especially at very long horizons.
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i.e. discount rates rise more sharply at short than at long maturities. This evidence, consistent
with findings in Gormsen (2020), is directly connected to the predictability of returns: high
expected returns today predict low expected returns tomorrow.'” The right hand side panel
shows the level and the slope of the term structure of expected dividend growth. Long-term
expectations are rather smooth (much more than those of expected returns) and have remained
relatively stable at 2 percent,'' consistently with the relative stability of Gyji—1- The slope, on
the other hand, is countercyclical and quite volatile fluctuating between minus 10 to 10 percent,
a range that is almost five times as wide as that in which the slope of expected returns moves.
Indeed, as shown in table 2, the volatility of shocks to g; is on average almost four times as
high as that of fi; (0.083 versus 0.024) and this is reflected in the volatility of expected annual
cash flows. This slope has some notable peaks, corresponding to sharp recessions, such as the
post WWI recession, the Great Depression, the 1973 recession and more recently the Great
Financial Crisis. Therefore, the term structure of dividend growth highlights that short-term
cash flows expectations fall substantially during recessions, but are anticipated to mean revert
relatively quickly. The countercyclicality of the slope of the term structure of dividend growth
expectations is in line with the finding of Binsbergen et al. (2013) who document similar
properties from dividend derivatives for the post 2003 sample. Appendix H zooms in on some
large stock market corrections and shows that discount rates shocks contributed greatly to the

severity of the recessions in 1929 and 2008.

5 Expected excess returns and the equilibrium real rate

The central result of our empirical analysis is that the long-run expected return on equity has
fallen over time. In this section, we elaborate further on this finding by splitting long-run
expected returns in a riskless component and a risk premium. A wealth of research has shown
that the natural rate has fallen dramatically not only in the US but also in a set of advanced
countries (Holston et al., 2017, and Del Negro et al., 2019)."

We follow Cochrane (2008) and rewrite the present value decomposition of the price dividend
ratio in equation (12) in terms of excess returns, by simply subtracting a measure of the safe real
rate of interest (let us call it 7/) from both expected discounted returns and expected discounted
dividend growth.'” Our baseline model can then be re-estimated using as observable variables

for the measurement equations the price dividend ratio and the difference between dividend

HFew rare exceptions when pessimistic expectations on cash flows persisted for more than 10 years include
the height of the Great Depression, the oil price shock of 1973 and the Great Financial Crisis.

12Three main competing explanations have been put forward to rationalize the fall in equilibrium real rate: a
permanent decline in the rate of growth of the economy (secular stagnation), an increase in desired savings due to
aging population (saving glut) and a rise in economic risk (or a fall in its tolerance) that has raised the liquidity
and safety premium of safe assets like US Treasuries, see Del Negro et al. (2017) for an extensive discussion.

13Returns and dividend growth enter the decomposition with opposite signs, so that r{ cancels out leaving
unaffected the price dividend ratio.
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growth and rtf 11 Besides this simple modification, the model is essentially unchanged, apart
from the fact that, following the suggestion in Campbell and Thompson (2008), we impose
the restriction that the long run equity premium needs to be always positive. This alternative
model provides us with three time series, P_dt|t—17 §f|°’§_1, ﬁfﬁ_l that measure, respectively, the
time-varying equilibrium price to dividend ratio for this alternative model specification, the
long-run expected ezcess dividend growth (i.e. the long-run expected dividend growth minus
the equilibrium riskless real rate) and the steady state equity risk premium or expected excess
return. A comforting result of this exercise is that the estimate of the equilibrium price to
dividend ratio that we retrieve using this alternative specification is very close to the one
obtained in the baseline model in Section 3 (see Appendix [ for a comparison). Yet, we now
have a measure of the equilibrium excess returns 7yj; ;. Subtracting this from 7z, , we can
then obtain a measure of the riskless long-run real rate, 1 = fiy—1 — ﬁfﬁ_l.l5

The left panel of figure 5 shows that the long-run expected excess return, ﬁteﬁfl, has only
slightly fallen, from around 4 percent at the beginning of the 20th century, to reach a minimum
of 3 percent in 2000 and to rebound thereafter to around 3.5 percent. These numbers are in
the ballpark of the estimates provided by Avdis and Wachter (2017) who report an annual
equity premium of 3.86 per cent in the post WWII period and of around 4.5 in a longer sample
(1927-2011) as well as with the estimate of the equity risk premium (between 2.6 percent and
4.3 percent) for the period 1950-2000 in Fama and French (2002). These results are also in
line with Greenwald et al. (2019) who find that the fall in the equity premium played a limited
role in the overall fall in the equilibrium rate of return on stocks after the 80s. We add to
their analysis by showing that the trend in valuations is almost entirely driven by the fall in
the long-run riskless rate.

The implied long-run natural rate of interest 7;, our measure of r-star, has remained stable
(between 3 and 4 percent) for about a century until 1960. It has then fallen by 1 full percentage
point in the 60s, and by 2 percentage points in the 90s. Its terminal estimate is only slightly
above zero. The sudden fall in the equilibrium rate of interest after the 60s is also documented,
with a completely different method, by Del Negro et al. (2019). The behaviour of our measure
of r-star is qualitatively in line with that of Laubach and Williams (2003) and Holston et al.
(2017), also plotted in the chart.!®

Concluding, our results confirm that the natural rate of interest has fallen substantially
over the last three decades, but add to previous studies by drawing a clear link between this

secular trend and the increase in stock valuations (Caballero et al., 2017).

14 A long series of the risk free rate is taken from Amit Goyal’s website http://www.hec.unil.ch/agoyal/.

15 Alternatively one could compute the implied riskless real rate as Tjt—1 = Gyje—1 — gfﬁfl. The two offer a
similar picture, as we show in Appendix I. Figure 5 reports the average between these two alternative measures.

16Quantitatively, our measures are lower in the 60s and 70s. In defence of our results we point out that,
given our estimate of the expected return on equity, the level of r-star implied by the Laubach and Williams
(2003) model prior to the 90s would require a level of the equity risk premium substantially lower than what is
typically found in the literature.
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6 Conclusions

State space models with time-varying parameters can help us better understanding the co-
movement in macro financial aggregates, in a world in which returns, long-run growth and asset
valuations appear to have undergone long-lasting shifts. These models present computational
as well as analytical challenges. In this paper we propose a method for analyzing state space
models with time-varying system matrices where the parameters are driven by the score of the
conditional likelihood. We derive a new set of recursions that, running in parallel with the KF,
update at each point in time both the vector of TVP and the latent states. A unique feature
of our method is that it can easily incorporate in the estimation a broad class of parameter
constraints. These are taken into account directly in the estimation algorithm through a
Jacobian function, without the need for rejection sampling or complicated filtering techniques.
A Monte Carlo analysis provides support for the proposed method. Recent empirical analyses
that use our method also testify its usefulness (Delle Monache et al., 2016; Buccheri et al.,
2020; Gorgi et al., 2019).

We have then used this framework to fill a gap in the literature that studies the relationship
between the price dividend ratio, the expected return on stocks and expected dividend growth
in present value models. Our estimates reveal that the secular upward trend in the price
dividend ratio, so far unexplained in the literature, is associated with a persistent decline
(from 9 to 4 percent) of the long-run expected return on stocks. A decomposition into a
riskless component and a risk premium further reveals that most of this decline (four percentage
points) is accounted for by the riskless component (i.e. the natural rate of interest, r-star),
that is virtually zero at the end of our sample. The long-term equity risk premium has instead
remained relatively stable over the past 150 years.

In sum, our work substantiates, and provides quantitative evidence for, the argument that
in a world of permanently low rates valuation rates will be persistently higher than in the past.
Falling productivity growth, scarcity of safe assets and population aging depress r-star and
risk-free rates, inducing investors to reach for yield and permanently lifting stock valuations
(Campbell and Sigalov, 2020).
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Table 1: STRUCTURAL BREAK TESTS

T Adt pdt
SupFr(k)
k=1 0.954 0.458 48.836"**
[1921] [1996] [1991]
k=2 1.078 0.365 49.804***
[1921; 1962] [1918; 1944] [1954; 1995]
k=3 1.619 0.488 35.862***

[1921; 1960; 1982] [1896; 1918; 1944] [1913; 1954; 1995]

SupFr(k+1]k)

k=2 1.676 0.233 14.896***
k=3 2.229 0.846 2.227
Ugmax 1.619 0.488 49.804**
Nyblom Test

I 0.023 0.057 7.401%*
a? 0.319 0.693** 2.608"*
Joint L. 0.348 0.750 7.873"

Note. SupFr(k) denotes the Bai and Perron (2003) test where the null hypothesis of no breaks is tested against
the alternatives of k = 1,2, or 3 breaks. Dates in square brackets are the most likely break date(s) for each of
the specifications. SupFr(k + 1|k) denotes the test of k breaks against the alternative of k + 1 breaks. The
U, max statistics is the result of testing the null hypothesis of absence of breaks against the alternative of an
unknown number of breaks. The bottom panel reports the Nyblom (1989) test that in the model: y; = pu+ oey,
either p or o are constant against the alternative that they evolve as random walks. The symbols */**/***
indicate significance at the 10/5/1% level.

Table 2: MODEL ESTIMATION RESULTS

bu 0.829 b,  0.151
[0.010] [0.010]
o 0.345 b,  0.052
[0.010] [0.010]
G4 0.075 a,, 0881 b, 0015
[0.074; 0.083)] [0.026] [0.002]
a, 0.083 a,, 0899 b,  0.012
[0.082; 0.127] [0.050] 0.004]
7, 0.024 a5, 0902 b, ~ 0.014
0.023; 0.040] [0.040] 0.004]
i 0.339 an,, 0.820 by, 0013
[0.280; 0.371] © [0.068] [0.003]
Do -0.232 ar,, 0844 by~ 0017
[-0.253; -0.130] [0.040] [0.003]
o2 0.001 kn o 0.020
[0.0005) [0.001]

Log Lik. 311.567

Note. First column: autoregressive coefficients of expected returns and expected dividend growth (¢, and
¢g) and average (over the whole sample) estimates of the volatilities (64, 54 and ,) and correlations (pq4,,
and p,, ) that form the matrix @Q;. o2 is the volatility of the measurement error for the price dividend ratio.
The second and third columns show the estimates of the coefficients that enter the law of motion of the score
driven time-varying processes (4) where A and B are diagonal matrices, and the smoothing coefficient applied

to the Hessian term (k). For each coefficient we report in square brackets the associated standard error. For
the average volatilities and correlations in the first column we report the 68% confidence interval from 1000
simulations of the model (calculated as in Blasques et al., 2016).

22



-0.3

-0.4

Figure 1: EXPECTED RETURNS AND EXPECTED DIVIDEND GROWTH
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Note. The panel on the left of Figure 1 shows the return on stocks (r;), expected returns (E;—1(r¢)), and
the long-run component of expected returns (fi;;—1). The panel on the right reports dividend growth (Ad;),
together with expected dividend growth (E;_;(Ad;)) and the long-run component of expected dividend
growth (gy¢—1). In both panels the colored bands denote the 68% confidence interval. Vertical shadows
indicate recessions as identified by the National Bureau of Economic Research (NBER).

Figure 2: LONG-RUN EXPECTED RETURNS, EXPECTED DIVIDEND GROWTH AND PRICE-
D1viDEND RATIO
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Note. The panel on the left of Figure 2 shows long-run expected returns (fi,,_;, continuous blue line)
and long-run expected dividend growth (g, ,_;, broken red line). The implied long-run price dividend ratio,
obtained from 7i,,_; and gy,_, on the basis of equation (11), is shown in the panel on the right (green broken
line) together with the actual level of the (log) price dividend ratio (black solid line). Bands around the
estimates correspond to the 68% confidence interval obtained through simulation, as discussed in Blasques

et al. (2016). Vertical shadows indicate recessions as identified by the National Bureau of Economic Research
(NBER).
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Figure 4: TERM STRUCTURE OF EXPECTED RETURNS AND EXPECTED DIVIDEND GROWTH
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Note. Figure 4 reports with a broken blue line the level (i.e. 10 years) and with a continuous red line
the slope (i.e 10 year minus 2 years) of conditional expected returns (panel on the left) and of conditional
expected dividend growth (panel on the right). Vertical shadows indicate recessions as identified by the

Figure 3: PRICE DIVIDEND RATIO DECOMPOSITION
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Note. Figure 3 reports the decomposition of the transitory component of the price
dividend ratio into the contribution of the transitory components of, respectively,
expected returns and expected dividend growth according to equation (17). Verti-
cal shadows indicate recessions as identified by the National Bureau of Economic

Research (NBER).
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Figure 5: LONG-RUN EXCESS RETURN ON STOCKS AND LONG-RUN RISKLESS RATE

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Note. The panel on the left of Figure 5

LONG-RUN RETURN AND EQUITY PREMIUM
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reports in blue the long-run expected return on stocks

(Tigj—1) estimated using the baseline model specification described in Section 3 and in red the long
run equity premium (ﬁiﬁ—l) estimated as described in Section 5. The panel on the right shows (blue
line) the long-run real riskless rate constructed as 74,1 = 0.5(Fy;—1 — ;1) +0-5(Gy -1 = Gyfi_1)-
The panel on the right also shows two alternative measures of r-star for the US, as estimated
in Laubach and Williams (2003) denoted with “LW” and in Holston et al. (2017) denoted with
“HLW”. Vertical shadows indicate recessions as identified by the National Bureau of Economic
Research (NBER).
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Supplementary Material

A  Proofs

We follow the notation and the results in Abadir and Magnus (2005, ch. 13). Given a N x m
matrix X, vec(X) is the vector obtained by stacking the columns of X one underneath the
other. The Nm x Nm commutation matrix Cy,, is such that Cy,vec(X) = vec(X’). For
N = m the m? x m? commutation matrix is denoted by C,,. The identity matrix of order k is
denoted by I, and ‘®’ is the Kronecker product. Given a square matrix U, the symmetrizer
matrix is N, = 1(I,2 + C,) and N,vec(U) = vec [3(U + U’)].

A.1 Gradient and information matrix

The gradient vector is

V, = a_étl , _ 1 _810g|/Ft|+3U£Ft_llvt /
afi 21 ofi afi
1T 1 O|F| Ovec(f}) 8v£Ft_1vt% Ol F v, dvec(F) dvec(Fy) ]
= T2 |[Rlovec(RY  of, du. Of " dvec(F, 1Y dvec(FY  0f]
1 . . 7
= =5 [veelF ) By 200 F Ve — (v @ w) (1 @ B
11 : .
= S |BET 0 B @) — BT © Fvee( ;) — 2V F M
1, .
= 3 [Ft’(Ft_1 ® F Yvec(vw, — Fy) — 2Vt'Ft_17)t} : (A.1)

We now compute the information matrix as the expected value of the Hessian matrix

0%,
b= b {aftaf;} | (4.2

From the third line of (A.1) we can write that

VvV, = —% :Ft’[vec(Ft_l) — vec(F loul 7)) + QVt,Ft_lvt}
— _% :Ft’vec(Ffl — F7 ol F7Y) + 2V;’F[11)t]
= 5 [FrveclF A n — vl ) + 20 F
= —% :Ft’(IN ® F; Yyvec(Iy — v F7Y) + 2Vt/F;1Ut} . (A.3)
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The negative Hessian is equal to:

% 109, dvec(V/F  w,) dvec(V)) (A4)
OfOf, — 20fi T ovec(Vly  Off |
vec(V/ F; Yy Ovec(F; 1) dvec(Fy) — dvec(V) Fy  uy) vy
dvec(F D) Ovec(F)  Of] do O]
109 .. . ) : )
= 3 8ff + (T @ InVi— (v @ V) (F @ Fy DR+ VTV, (AD)
t

where &, = F!/(Iy ® F; Y)vec(Iy — vl F, ). Let us now compute the following Jacobian:

0%, O,  Ovec(E)) N 0P, Ovec(Iy @ F; 1) Ovec(F, 1) dvec(Fy)
ofy dvec(E))  Off Ovec(Iy @ F 1) Ovec(F[ Y  Ovec(Fy)  Of]
0P, ovec(vul LY
Ovec(Iy — vl F LY af]

= [vec(Iy —vu,F; YI @ F7Y) @I F, — [VGC(IN — v FTY ® Ft/} (F7'® F7YE,

Ovec(v vl 1) Ovec(v,v)) vy ovec(v vl Fy 1) Ovec(F ) avec(Ft)}
Ovec(vv))! ov,  Off Ovec(F 1) Ovec(Fy)  Off

= [vec(I — w0l F Y (I @ F) @ InJF, = [vee(Iy — v @ B (F @ B

~F(I®F™)

—F(F @ F7Y) (0 @ Iy + In @ v) Vi + F(F7' @ F o B E (A.6)
i AVeC(F!) . . . . .
where Fy = =5~ Putting together (A.5) and (A.6) we obtain the following expression:
82615 1 ! —1\/ -1 n 1 r—1\/ nli -1 -1\ 7,
“app = abeeln —wiET) (v o B @ I - vee(Iy — vl @ F| (F7 @ B,
tJt
1. . 1. .
_§F15,<Ft71 X Ft71>(/0t & [N + [N X 'Ut)‘/;‘, + éFt/ (thl & Ftil'l)t?]gFtil) Ft
HuFy @ In)Ve = (0 @ V) (B @ O E + VIV, (A7)
where V, = W‘gﬁiﬁm Following Harvey (1989, p.141), taking the conditional expectation

of (A.7) the fourth and the seventh term in (A.7) are the only nonzero elements and the

information matrix is equal to
1. . . .
It — §Ft/ (thl ® F’til) Ft + ‘/tletil‘/; (AS)
A.2 Jacobians of the Kalman filter

Let us write the KF recursions (3) in terms of the predictive filter:

Uy = Yy — Ly, F, = Z,P,Z] + H,,
Ky =Tin RZ[F Y, Ly =Ty — K12y, (A.9)
a1 = Tt+1at + Ktvt Pt+1 - T‘t-f—lptL;ﬁ + Qt+1, t= 1, . n.
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Given the model specific Jacobian matrices:

. Ovec(Zy) : Ovec(Hy) . Ovec(Ty) : ovec(Qy)
t 3ft' ) t aft/ ’ t 8‘]({ ) Qt afl{ ’
we compute the following Jacobian matrices:
. 3vt 31)1; aVGC(Zt) 8vt aat ’ . .
Zon T ovezy o T oaog) T @zt 2Al (A-10)
P dvec(Fy)  Ovec(l}) Ovec(Zy) — Ovec(Fy) Ovec(F) L
YTOaf T ovee(Zy) Of! dvec(P,)  Off !
. Ovec(Ky) Ovec(Ky) Ovec(Tiyq) 1 :
K, = = = (F7 Zi P ® 1) Thiq. A12
' aﬂﬂ ovec(Tiy1) 8ft/+1 (= 2F JTin ( )
i Ovec(L;)  Ovec(L;) Ovec(Tyy1)  Ovec(L;) Ovec(Ky)
' Ofta Ovec(T1)  Ofin Ovec(Ky)  Ofj44
= Tin — (Z1® L) K. (A.13)
I Oagyy  OTypiap Ovec(Tiyr) OKvy  Ovec(Ky)
o Ofta ovec(Tir1)  Ofip Ovec(Ky) Of4
= (a} ® L) Tiy1 + (v, ® L, K. (A.14)
P ovec(Piy1)  Ovec(Tiy P Ly) Ovec(Tyy 1) — Ovec(Typ1 P Ly) Ovec(Ly) Ovec(Ly) L0
i afl., dvec(Tr1)  Ofly, dvec(L)  dvec(L,) Ofl,, i
= (LP @ 1) Tir + (Iy @ Ti1 ) O Ly + Qv (A.15)
Plugging (A.12) in (A.14) we obtain
AtH = [(a;®In) + (UQF;thPt 2 Im)]TtJrl
= [(a; + V,F, ' Z,P) @ L, Ti 11
= (afy; ® In) 1 (A.16)
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Plugging (A.12) and (A.13) in (A.15) we obtain

Py = (LB @ L) Ty + (Ly @ Tra P)Co[ Lz — (ZIF7 2P @ L) Ty + Qi
LiP @ 1) Toi1 + Co(Tosa P @ 1) — (Toa P ZUFT 24Py @ 1) Tyt + Qe
LiP, ® L) Tyr + Co[(Tisa P = T PZUFT Z,P) @ LTy + Qi

Tip1 Py @ L) Ti1 + Con(Tis1 Pyt @ L) Tit + Qi

= 2Ny (T Py ® L) Tiir + Qe (A.17)

(
(
(
(

Note that expressions (A.10), (A.11), (A.16) and (A.17) can be be also obtained by differenti-
ating the recursions in (3), therefore avoiding the computation of (A.12)-(A.15). Shifting one
period backward (A.16) and substituting into (A.10) we obtain:

Ve = =l @ In) Zi + (@41 ® Z)T3). (A.18)
Shifting one period backward (A.17) and substituting into (A.11) we obtain

I = 2NN (Zi P, ® IN>Zt +2(Z; @ Zy)Non(Ti Pr—1j—1 ® Im)Tt + H, + (Z; ® Zt)@t- (A.19)

A.3 State space model in forward form

Let us consider the state space model in the so-called forward form:

Y = Ztat+€t7 EtNN(O,Ht>,

(A.20)
Q1 = ,I‘tat + Nty Nt NN(Oa Qt)7 aq NN(ahPl)v = 17 ceey NN

The log-likelihood function is the same as in (2), thus V; and Z; are the same as in (6). The

recursions in (3) are replaced by the following ones:

Uy = Yp — Ly, F,=Z,P,Z, + Hy,
Ky = EPtZ£Ft717 Ly =T, — KiZ, (A.21)
A1 :Eat“i_KtUt Pt+1 :,-Tt-PtLg—i_Qtu t= 17"'7”'

Here we assume the following time dependency in the system matrices: Z; = Z(f;,0.,), H; =
H(fi,0m), but Ty = T(fis1,0m) and Q; = Q(fiy1,0m). The formulae (A.10)-(A.19) remain
unchanged by simply replacing Ty.1, Tii1, Qer1, and Qpi1 with T3, Ty, Qy, and Q.

B Examples

In this section, we look at some examples of time-varying state space models that have been
considered in the literature and show how they can be analyzed with our score driven algorithm.

In particular, in section B.1 we consider the local level model with time-varying volatility, a
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model that has been popularized by Stock and Watson (2007) to study inflation dynamics. In

section, B.2 we consider autoregressive processes with time-varying parameters.

B.1 Local level model

Let us consider the local level model with time-varying volatilities:

Ye = Ht + &y, et ~N(0,02,),

; (B.1)
Ut = phe—1 + N, ne ~ N (0, Un,t)'

This model has been proposed by Stock and Watson (2007) to model US inflation. The
estimation of (B.1) using the score-driven approach was initially proposed by Creal et al.
(2008, sec. 4.4). Their algorithm, however, contains some inconsistencies and below we show

how it should be modified. First, the state vector and the system matrices are equal to ay = 1y,
Zt:ﬂ:LHt:U?,th:UQ

¢ Thus, the application of the Kalman Filter leads to the

following recursions:

Vg = Yp — Qy, agp1 = ay + kyvy,
dy =pi + Uf,ta peyr = (1 = ke)py + Ur2],t+17 (B.2)
kt:pt/dt, t:1,...,n.

Second, the vector of time-varying parameters, which is recursively estimated using the score-
driven filter (4), is equal to f; = (logo.4,logo,,)’. Third, the corresponding Jacobian matrices
are H, = (203# O), Q; = (0, 20%71&), Z, =T, = (0,0)". Finally, the conditional log-likelihood is

equal to ¢; o —%(log dy + v?/dy), and the gradient vector and information matrix in (6) are:'"

1
- 2d?

1

Vt :2_dt2

d;(/l)tz — dt), It [d;dt:| s (B3)

where dt = (202

e 20‘7%,25). The score’s driving mechanism is represented by (v? — d;), that is

the deviation of the current estimate of the prediction error variance (by means of v;) from its
past estimate (d;). Such term is weighted by d;, which determines the different impact on the
two time-varying volatilities.'® A multivariate extension of the score driven model considered
in this section has been used by Buccheri et al. (2020) to model high-frequency multivariate

financial time-series.

I"Note that the information matrix is singular. Therefore, it needs to be smoothed to be used as scaling
matrix.

18Note that the resulting algorithm is different from the one derived in Creal et al. (2008). In fact, the two
volatilities are only updated using information in the second moments of the data and the level of the prediction
error, vy, does not enter directly the filter.
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B.2 Autoregressive models

Here, we consider models that are perfectly observable. In this case, our algorithm collapses to
the score-driven filter proposed in the literature by Blasques et al. (2014) and Delle Monache
and Petrella (2017). Let us consider the following autoregressive model with time-varying

parameters:
Y= b1 + &, &~ N(0,07), (B.4)

the model can be easily cast in state space form by setting oy = y;, Z; = 1, ¢, = 0, H; = 0,
Ty = ¢y, i = & and Q; = o2. The vector of interest is f; = (¢¢,0?)’, and the corresponding
Jacobians are T; = (1,0), Q; = (0,1), Z, = H, = 0. For simplicity we do not impose any
restrictions on f;.'Y Combining the KF (3) with the new filter (6)-(7) leads to the following

expression for the scaled-score vector:

L(yt—lft) ] ‘ (B.5)

2
St :It_lvt = [ Yi—1
(& —ot)

The driving process for the coefficient ¢, is the prediction error scaled by the regressor, while the
volatility o7 is driven by the squared prediction error. These match exactly those in Blasques
et al. (2014) and Delle Monache and Petrella (2017).

We can easily extend to the case of vector autoregressive model of order p:
Y=+ + Qi+ + &, &~ N(O,IY). (B.6)

The SSF representation can be obtain by setting:

[ @17,5 N q)pﬂf Cy B r 7
I ' .
ap = (yzu 7y£7p7 1)/7 Zt = Ia E - ) Qt = 5
1
0
|0 0 ' .

where f; = (vec(®,),vec(I'y)'), with & = [P14,..., Dy, ). We therefore have that Z, =
H, = 0, while T} and Q,, are selection matrices. After some algebra, the scaled-score can be

specialized in two sub-vectors driving the coefficients and the volatilities:

(XL X)X

St — It_lvt ==
vec(&,&;) — vee(Ty)

, (B.7)

where X; = (o_; ® I). Interestingly, the algorithm proposed by Koop and Korobilis (2013)

9Delle Monache and Petrella (2017) show how to impose stable roots.
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can be obtained as a special case of ours by imposing some restrictions on the model. First, set
the law of motion (4) ¢ = 0, A = I and let B depend on two scalar parameters (one driving the
coefficients and one the volatility). Second, replace the information matrix for the time-varying
coefficients by its smoothed estimator: fc,t =(1- Ii)i-qt_l + R(XIT1X).

It is well known that VAR models tend to suffer from the ‘curse of dimensionality’ and
to overfit the data (see, e.g., Litterman, 1979; Doan et al., 1986). In the context of fixed
coefficients, Bayesian techniques are used to shrink the parameters, therefore reducing esti-
mation variance. Our algorithm can easily accommodate shrinkage, as detailed in Appendix
D. A regularized version of the model proposed by Koop and Korobilis (2013) can then be
easily obtained, where the parameters can be shrunk towards any type of prior that can be
reformulated in the form of stochastic constraints. These include the most popular priors typ-
ically considered in the Bayesian VAR literature, including the Minnesota prior, the sum of

coefficients prior and the long-run prior (see, e.g., Del Negro, 2012; Kapetanios et al., 2019).

C Monte Carlo exercise

The Monte Carlo exercise is based on a battery of simple bivariate models that share a common
component. We simulate two time series (y1; and ys,) that load (with parameters A;; and
A2+) on a common factor i, and are each affected by idiosyncratic noise. The common factor
evolves as an AR(1), with coefficient p;. In this model, we look at the time variation of a subset
of parameters one at the time. Specifically, DGP1 lets the loading on the common factor vary
over time and keeps all the remaining parameters fixed. In DGP2 we keep both factor loadings
constant (A;; = 1 and Ay; = 1) while allowing for time variation in the AR coefficient of the
common factor, p;. In DGP3 and DGP4 we experiment with time-varying volatility, either in
the measurement or in the transition equations, keeping everything else fixed. In these latter
cases, the simulated model is a univariate signal plus noise model. In all cases, we consider two
different sample sizes, n = 250 and n = 500. As for the laws of motions for the TVPs entering

the various DGPs, we experiment with 6 different possibilities:

Case 1: CONSTANT fi = a1, Vt;
Case 2: SINE fi = ag + by sin (%—/2>
Case 3: SINGLE STEP  f;=a3+ b3 (t > 7);
Case 4: DOUBLE STEP  fi=a4+ b (t > ) + c4[ (t > Ty);
Case 5: RAMP f=as + (

Case 6: AR(1) MODEL  f;, = ag(1 — b6) + bﬁft_l + §t, & ~ N (0, c);

v

where f; = A\; in DGP1, f; = p; in DGP2, f; = afvt in DGP3, and f; = ag’t in DGP4.?° We

20Moreover, f; in the AR(1) model is transformed to be within the unit circle for DGP2, and to be positive
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start with a baseline case in which we keep the parameters constant over time. We then move
to four cases where the parameters change according to a deterministic process. In case 2 the
parameters follow a cyclical pattern determined by a sine function. In cases 3 and 4 we let
the parameters break at discrete points in time, allowing for either one or two breaks. We set
the location of the discrete breaks at given point in the sample. In the case of a single break,
this occurs in the middle of the sample. When we consider two breaks, they are located at 1/3
and 2/3 of the sample. Case 5 (RAMP) is a rather challenging case, whereby the parameters
increase for some time before returning abruptly to their starting levels. Finally, case 6 is
the only one in which we let the parameters vary stochastically, following a persistent AR(1)
model. We consider two cases, one with a near unit root process (i.e. with an AR root of
0.99) and a low variance, one with lower persistence (AR root of 0.97) but substantially higher
variance. We obtain very similar results in these two specifications. The DGPs that we design
are simple, in that time variation is introduced in all the channels in which it can manifest itself,
but only one at the time. By focusing on a single channel at the time, we can better identify the
situations in which our model either succeeds or fails at tracking parameter variation. Further
details on the calibration of the parameters are provided in the next subsections.

The results of the Monte Carlo exercise are shown in Table C.1. The table is organized
in four panels, corresponding to each of the four DGPs. On the left hand side of the table
we show the results for a sample size of n = 250, on the right hand side those obtained when
setting n = 500. For each DGP the analysis is based on 300 simulations. In each panel we
report the results obtained for the six alternative laws of motion described above. We base
our assessment on five different statistics, namely the Root Mean Squared Error (RMSEs),
the Mean Absolute Error (MAE), the correlation between actual and estimated coefficients,
the Coverage (i.e. percentage of times that the actual parameters fall in a given estimated
confidence interval) and the number of cases in which a pile-up occurs (#Pile-up). The last
statistics consists of the number of simulations in which the static coefficients that pre-multiply
the score end up being lower than 107%, which we take as sufficient evidence that the estimated
parameters are effectively zero, i.e. that the model does not detect any time variation.

We highlight five results. First, for all the DGPs in which the true parameters are constant
the model performs extremely well. This means that the adaptive filter correctly collapses the
parameters to a constant. As a result, RMSEs and MAEs are virtually nil, the actual coverage
extremely precise and a pile-up at zero occurs in about 75 percent of the cases for the volatility
models and more than half of the cases for the loadings and AR coefficients.? This result

implies that our estimation method does not generate spurious time variation in the coeffi-

for DGP3 and DGP4.
21For the latter two cases, in an additional 20% of the simulations the estimated parameters are virtually
constant, despite not being classified as a pile-up according to the criterion we have set above.
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cients when this is not present in the data generating process. Second, the pile-up problem
is not of primary concern for our estimator. The number of instances in which our method
(incorrectly) concludes that there is no time variation is basically zero in most cases. Third,
for all the DGPs and across all the specifications for the parameters we obtain extremely good
coverage. Coverage is almost perfect when time variation involves the autoregressive coeffi-
cients, somewhat lower when it affects the volatility of the measurement and of the transition
equation, in particular when parameters break at discrete points in the sample. Fourth, across
all DGPs the RAMP specification is the one that the model finds more challenging to estimate.
This specification generally leads to low correlation between actual and estimated parameters,
higher RMSEs and MAEs and lower coverage. This is not surprising, since our model is, by
construction, designed to detect smooth changes, whereas in the RAMP model periods of small,
continuous changes are suddenly interrupted by large breaks. Fifth, the adaptive filter is very
effective in estimating time-varying loadings and autoregressive coefficients, but it is rather
conservative in the estimation of the time-varying variances, especially when these are driven
by a near unit root process. For this DGP, in one third of the cases the filter ends in a pile-up
when the sample is relatively small (T=250). However, when time variation is detected, the
algorithm yields relatively low RMSEs and MAEs and a satisfactory coverage. We take these
results as evidence that, in the case of time-varying variances, the algorithm needs relatively
more evidence of breaks in the parameters to move away from zero. A larger sample size (of the
type encountered in financial applications that use high frequency data) basically eliminates

the problem.

C.1 Specification of the DGPs

DGP1 - Time-Varying loadings

1 € €
Y1t _ 1 + 1, 7 Lt | N(O, [) ’
Yot At €2t €2t
pe = 081 + uy Uty ~ N (07 1) .

DGP2 - Time-Varying AR coefficient

1 € €
Y1t _ 1 + 1, ’ Lt N(O, ])’
Yot 1 €2t €2t
e = pele—1 + Uy, uy ~ N(0,1).

DGP3 - Time-Varying Volatility in the measurement equation

ye =pe+en g~ N(0,02,),
pepr = 0.8p +uy,  up ~N(0,1).
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DGP4 - Time-Varying Volatility in the transition equation

Y¢ = Mt + &g, gtNN<071)7
peyr = 0.8p + ug,  up ~ N(Oa U%,J

C.2 Calibration

DGP1:Time-varying loadings

CONSTANT: a; = 1;

SINE: ay = 2, by = 1.5;

SINGLE STEP: a3 =1, b3 =2, 7 = (2/5)n;

DOUBLE STEP: ay =1, by = ¢4 = 1.5, 71 = (1/5)n, 7o = (3/5)n;
RAMP: a5 = 0.5, b5 = 4, ¢5 = 2;

AR(1) [bs = 0.99): ag = 1, bs = 0.99, ¢5 = 0.082.

AR(1) [bg = 0.97]: ag = 1, bg = 0.97, cs = 30.242%.

DGP2: Time-varying autoregressive coefficient
CONSTANT: a; = 0.7;

SINE: ay =0, by = 0.7,

SINGLE STEP a3 = 0.8, b3 = —0.6, 7 = (2/5)n;

DOUBLE STEP:a4 = 0.8, by = ¢4 = —0.5, 4 = (1/5)n, 7o = (3/5)n;
RAMP: a5 = 0.3, b5 = —0.9. ¢5 = 2;

AR(1) [bg = 0.99]: ag = 0.2, bg = 0.99, cg = 0.08%;

AR(1) [bg = 0.97): ag = 0.2, bg = 0.97, ¢ = 0.24%;

and in the latter two cases we also impose the restriction that |p;| < 1.
DGP3 and DGP4: Time-varying volatilities

CONSTANT: a; = 1;

SINE: ay =1, by =0.9;

SINGLE STEP: a3 =1, b3 =4, 7 = (2/5)n;

DOUBLE STEP:ay =1, by = ¢4 = 3, 11 = (1/5)n, 72 = (3/5)n;
RAMP: a5 = 0.5, b5 =8, ¢c5 = 2;

AR(1) [bg = 0.99]: ag =0, bg = 0.99, cg = 0.08%

AR(1) [bg = 0.97]: ag =0, bg = 0.97, cs = 0.24%;

In DGP3 and DGP4, after having simulated the dynamic of the volatility the time-varying
volatilities are rescaled so as to have a fixed ratio between the measurement and transition
error variances equal to 1.

For each DGP we target 300 simulations. However, the actual number of samples changes

38



depending on the specifications. In the case of constant coefficients, where we would like to see
our estimator to end up in a pile-up situation as often as possible, we perform 300 simulations
and compute all the statistics on these samples. For the remaining specifications, on the other
hand, we keep on drawing artificial samples until we obtain 300 simulations in which the
estimated parameters are different from zero and compute RMSEs, MAESs, correlations and
coverage ratios on these 300 artificial samples. At the same time, we also keep track of the
number of times in which the pile-up problem arises. To better understand how we proceed,
let us take a concrete example, that is the bottom-left panel of Table 1 (DGP4, i.e. the model
with time-varying volatility in the transition equation, n = 250). In the first row we report the
results for the constant coefficient case. As explained, for this case we simulate 300 artificial
samples and estimate the model using our algorithm. It turns out that in 236 out of 300
simulations our estimation method ends up in a pile-up. The RMSEs, MAEs, Correlations and
Coverages, are estimated on all the 300 simulations. Now let us take in the same panel the
last line, referring to one of the AR(1) specifications. In this case we need to draw up to 314
samples to obtain 300 simulations in which the estimation algorithm does not end being stuck
in a region of the likelihood where the model loading is zero. Now, in this case all the remaining
statistics are computed on the 300 ‘good’ samples. We proceed in this way because we want
to appraise two different issues. The former is the percentage of cases in which the algorithm
ends up in the pile-up even if the true DGP implies time variation. The second is how well
it estimates the parameters conditional on the model correctly detecting time variation. The
two points are of independent interest. If we were to find that the model often ends up in
the pile-up but it is very precise when it does not, one could decide to force the algorithm to
stay away from zero, for instance by using a grid-based estimation method. This is the choice
made, for instance, by Koop and Korobilis (2013). Similarly, in their Monte Carlo Markov
Chain estimation, Stock and Watson (2007) reject draws in which the variances are very close
to zero.

In figures C.1-C.8 we report the simulated true process for the time-varying parameters (red
line), and the fan chart associated to the 510%™ 20" 30 40" 60 70" 80" 90" and 95"
quantile of the filtered parameters. In the case of the AR(1) specification we focus on the more
persistent AR(1) DGP and report the difference between actual and estimated parameters.

The figures are based on 300 replications.
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Table C.1: MONTE CARLO EXERCISE

DGP 1: time-varying LOADINGS COEFFICIENT

T =250 T = 500
RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up
CONSTANT 0.003  0.003 0.678 0.900 165 0.000  0.000 0.680 0.900 180
SINE 0.473  0.380 0.909 0.636 0.852 0 0.386  0.305 0.940 0.648 0.868 0
SINGLE STEP 0.406  0.280 0.927 0.656 0.876 0 0.335 0.229 0.951 0.660 0.882 0
DOUBLE STEP  0.462 0.339 0.936 0.640 0.860 0 0.390 0.277 0.953 0.652 0.874 0
RAMP 0.695 0.461 0.723 0.648 0.856 0 0.575 0.367 0.817 0.658 0.870 0
AR(1) [bs = 0.99] 0.265 0.213 0.727 0.676 0.892 0 0.274 0.217 0.807 0.676 0.892 0
AR(1) [bs = 0.97] 0.523 0.415 0.803 0.660 0.872 0 0.527 0.413 0.828 0.662 0.872 0
DGP 2: time-varying AUTOREGRESSIVE COEFFICIENT
T = 250 T = 500
RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up
CONSTANT 0.006  0.006 0.676 0.900 147 0.005 0.004 0.680 0.900 156
SINE 0.330  0.267 0.780 0.684 0.900 0 0.268 0.212 0.866 0.682 0.900 0
SINGLE STEP 0.228 0.166 0.769 0.684 0.900 0 0.203  0.140 0.811 0.686 0.902 0
DOUBLE STEP  0.240 0.185 0.872 0.684 0.900 0 0.209 0.160 0.892 0.686 0.900 0
RAMP 0.341 0.261 0.392 0.682 0.900 0 0.299 0.221 0.548 0.683 0.900 0
AR(1) [bg = 0.99] 0.297 0.237 0.608 0.684 0.900 4 0.301  0.241 0.695 0.686 0.902 1
AR(1) [bs = 0.97] 0.477 0.377 0.575 0.686 0.900 0 0.478  0.375 0.593 0.685 0.900 0
DGP 3: TIME-VARYING VOLATILITY - MEASUREMENT EQUATION ERROR
T = 250 T = 500
RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up
CONSTANT 0.000  0.000 0.676 0.896 231 0.000  0.000 0.682 0.899 232
SINE 0.981 0.768 0.747 0.672 0.876 1 0.829 0.637 0.813 0.678 0.882 0
SINGLE STEP 0.808 0.605 0.843 0.618 0.848 0 0.659  0.477 0.883 0.652 0.870 0
DOUBLE STEP  0.702 0.551 0.856 0.628 0.848 0 0.595  0.460 0.889 0.648 0.870 0
RAMP 0.960 0.764 0.498 0.640 0.860 20 0.803  0.599 0.646 0.656 0.874 1
AR(1) [bg = 0.99] 0.717 0.571 0.568 0.664 0.880 93 0.748 0.578 0.608 0.668 0.886 24
AR(1) [bg = 0.97) 1.446 0.998 0.600 0.664 0.868 22 1.489 1.005 0.626 0.674 0.878 3
DGP 4: TIME-VARYING VOLATILITY - TRANSITION EQUATION ERROR
T = 250 T = 500
RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up
CONSTANT 0.000  0.000 0.676 0.896 236 0.000  0.000 0.680 0.898 241
SINE 1.052  0.832 0.714 0.672 0.880 1 0.871 0.673 0.794 0.672 0.886 0
SINGLE STEP 0.829 0.614 0.834 0.644 0.864 0 0.680 0.485 0.874 0.656 0.878 0
DOUBLE STEP  0.754 0.592 0.849 0.644 0.868 0 0.620 0.481 0.885 0.656 0.876 0
RAMP 1.015 0.822 0.468 0.644 0.868 1 0.829 0.640 0.615 0.659 0.881 0
AR(1) [bg = 0.99] 0.768 0.623 0.622 0.668 0.888 95 0.776  0.607 0.613 0.668 0.887 34
AR(1) [bs = 0.97) 1.533 1.069 0.590 0.664 0.876 14 1.523 1.042 0.619 0.664 0.880 5

Note. The results shown in the first and in the second panel (DGP1 and DGP2) refer to a bivariate factor
model in which two variables are driven by a single common factor that evolves as an autoregressive process
of order 1. In the first case (DGP1) the loading of the second variable on the common factor varies over time
and all the other parameters are kept constant. In the second case (DGP2) the autoregressive component of
the common factor varies over time and all the other parameters are kept constant. The results shown in the
third and in the fourth panel (DGP3 and DGP4) refer to ARMA(1,1) models that are cast in state space and
feature time-varying variances of the random disturbance in, respectively, the measurement and the transition
equation. The abbreviations Corr. and Cov. stand, respectively for Correlation and Coverage, while # Pile-up
denotes the number of simulations in which the algorithm delivers constant parameters. The different laws of
motion of the parameters in the first column (Constant, Sine, Single Step, Double Step, Ramp and AR(1) are
described in Section 4).
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Figure C.1: TIME-VARYING LOADINGS, N=250
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Figure C.2: TIME-VARYING LOADINGS, N=500
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Figure C.3: TIME-VARYING AUTOREGRESSIVE COEFFICIENTS, n=250
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Figure C.4: TIME-VARYING AUTOREGRESSIVE COEFFICIENTS, n=500
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Figure C.5: TIME-VARYING MEASUREMENT EQUATION ERROR VARIANCE, n=250
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Figure C.6: TIME-VARYING MEASUREMENT EQUATION ERROR VARIANCE, n=500
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Figure C.7: TIME-VARYING TRANSITION EQUATION ERROR VARIANCE, n=250
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Figure C.8: TIME-VARYING TRANSITION EQUATION ERROR VARIANCE, n=500
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D Shrinking the vector of parameters by the L2 penalty

As the dimension of the system grows, it could be desirable to impose some shrinkage on
the model parameters to avoid an increase in the estimation variance (Hastie et al., 2001).
Following (Theil and Goldberger, 1961), priors can be incorporated into the state space model
(1), with the score driven system matrices described by (4), augmenting the model using the

following Gaussian constraints:
Ty = Rtft + Ut Up ~ N(O, Zt), (Dl)

where r;, ¥; and R; are known and the random disturbance wu; is Gaussian and uncorrelated
with the other two disturbances ¢; and 7;. Since u; is Gaussian, the resulting penalty will be
quadratic with the matrix ; regulating the degree of shrinkage; e.g for ¥; — oo the constraints
vanish, while for ¥; — 0 the constraints hold exactly. The vector r; can be considered a vector of
artificial observations. The likelihood function for the vector of ‘augmented data’, g, = (y;,7})’

is equal to:
P ~ 1 /I 7—1 1 Iyv—1
8 =logp(4:|Yi-1,0) x —3 (log |Fy| + v F, o) — 5 (log |2 + i3y ') | (D.2)

which can be interpreted as a ‘penalized likelihood” with a quadratic penalty function. The

resulting ‘penalized’ score is:
s =TV = (T + BX7R) NV + RS ). (D.3)
Using the Woodbury identity we obtain?*:
I ' =T+ RER) T =1, - L'R(RI R+ 2) ' RI; = (I -V R)Z;Y, (DA

where T; = Z, ' R,(R,Z; ' R, + ¥;)~!. Finally, we can express the penalized (regularized) score
as follows:
st = (I = TiRy)se + Ty, (D.5)

From the last expression it is straightforward to obtain the two polar cases for ¥; — 0 and
Y — 00. To illustrate with a simple example how such ‘penalized score’ works let us define
Ri=Ir=f and ¥, = %] so that the constraints reduce to f; ~ N(f, %]) This corresponds
to a Ridge-type penalty with A regulating the degree of penalization. The penalized score will
be st = (I — Ay)s; + A(f — fi), where Ay = \(Z; + \I)~L. If we assume a simple random-walk

law of motion for f;, that is fi,1 = f; + Bs!, and the information matrix equals to identity

22Tn case Z; is not invertible we use its smoothed estimator 7:} =(1- /f)ft,l + kZ; which is invertible.
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matrix, the resulting regularized score-driven filter is:**

BA 2 BA B

Jer1 = T + (I— T +)\) Je+ Tt (D.6)

The law of motion is now mean reverting towards the desired value f. Everything else equal,
the larger is A, the lower is the weight assigned to actual data and the more binding is the
constraint. Notice that the strategy of stochastic constraints is very flexible, and generalizes a
number of shrinkage methods, including Ridge regressions, Minnesota priors, sum of coefficients
priors as well as the long-run prior in Giannone et al. (2019). Kapetanios et al. (2019) discuss

in details these additional cases.

E Mixed frequencies and missing observations

Assume to have a data set containing missing observations. The observed vector is represented
by Wy, where W, is an N; x N selection matrix with 1 < N, < N, meaning that at least
one observation is available at time ¢. Note that W, is obtained by eliminating the ¢ — th row
from Iy when the ¢ — th variable is missing. In this setting, at each time ¢ the likelihood /; is
computed using NN; observations; i.e. ¢, = log p(W,y;|Y;_1,6), that is the marginal likelihood.
In practice, the score of the marginal likelihood is computed and the updating of f; is based

24

on the available information.”® Given this reparameterization, the measurement equation in

(1) is modified as follows:
Wtyt = WtZtOét + Wt€t7 WtEt ~ N(O, WthWt/), (El)

and the first four expressions of the KF (3) are modified as follows:

vy = Wiy — Zeay), Fy =W(Z,P,Z] + H,)W/, (E.2)
Qe = Q¢ + PtZQVVtIE_IUt, Pt\t =5 — BZZW;Ft_IWtZtPt. '
The expressions in (7) become
Vi = —l(at@ W) Zi + (a)_y,_, © WeZ) T3],
Fy = 2Ny (W Z P, @ W) Zy + (Wi Zy @ Wi Zy) 2N (Ti Piajp—1 @ L)) T (E.3)

+(W ® Wt)Ht + (WiZy @ WtZt)Qt-

Mixed frequencies typically involve missing observations and temporal aggregation. The
case of mixed frequencies is of particular interest for a number of applications, like for instance
forecasting low frequency variables using higher frequency predictors (nowcasting). Indeed

low frequency indicators can be modeled as a latent process that is observed at regular low

23The same regularized filter can be obtained by setting f, ~ N'(f, $Z;), which is the Litterman-type of prior.
24 A formal discussion of dealing with missing values in score-driven models can be found in Lucas et al. (2016).
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frequency intervals and missing at higher frequency dates. The relation between the observed
low frequency variable and the corresponding (latent) higher frequency indicator depends on
whether the variable is a flow or a stock and on how the variable is transformed before entering
the model. In all cases, the variable can be rewritten as a weighted average of the unobserved

high frequency indicator (see e.g., Banbura et al., 2013).

F Correlated disturbances

Let consider the case in which the disturbances in (1) are correlated, that is E(n€;) = G;. In

this case the following expressions in (3) need to be modififed:

Ft - thtZ£ + Zth + G;Zg + Ht7
aye = ay + (PZ; + Go)F; vy, (F.1)
Py =P, — (PZ+ G)F  (PZ + Gy).

Therefore, the expression for F} in (7) need to be modified as follows:

F, = [2Ny(ZP, @ Iy) + (G, @ Iy) + (In @ GY)Cnml Z
+(Zt ® Z) 2N (Ti Pr—vji—1 @ 1) Ty + Hy + (Zy @ Z4)Qy (F.2)
+[(IN ® Zt) + (Zt ® IN)CmN]Gt-

G Empirical application

G.1 Identification of the model

In this section, we consider the identification of the model presented in section 3. Let us start

by looking at the constant parameter version of the model:

pd; 1 = pd — byfirr1 + baGr1 + Ves, vis1 ~ N(0,072),
Adi1 =g+ Gt + €a s,
fir1 = Qufls + Eppst,

Ji41 = PgGr + Eg141-

(G.1)

The measurement error v, is uncorrelated with the innovations of the model for which we
assume a general a covariance structure, &, = (€44, €,t,€4.) ~ N(0,9). Below we discuss the
restrictions needed for this model to be identified.

Model (G.1) is equivalent to one estimated by Binsbergen and Koijen (2010), whose identi-
fication issue is discussed at lenght in Cochrane (2008), with the key difference being that we
have added the measurement error in the pd, equation. To be more precise, the specification
for Ad;yy implies an ARMA(1,1) process, while the model for pd, without the measurement
error v is an ARMA(2,1). The resulting bivariate model is a restricted VARMA(2,1) with
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five parameters” to identify the covariance €. Specifically, we set one correlation to zero as
in Binsbergen and Koijen (2010) and Rytchkov (2012), i.e. Corr(eqy,e4:) = 0. Adding the
measurement error v; in the pd, equation, the additional parameter o2 is identified by the ad-
ditional moving average coefficients.”’ By introducing time-varying long-run mean pd,, and g,,
the implied reduced form models for pd, and Ad; become ARIMA(2,1,3) and ARIMA(1,1,2),
respectively. Thus, the two additional moving average coefficients are used to identify the two
parameters, b, and by, scaling the score-driven filters for 7z, and g, in (21)-(22). Since our model
features a time-varying {2;, at each point in time for a given covariance matrix {2 the model is

identified; i.e. the model is locally identified.

G.2 Modelling the correlation matrix by partial correlations

Here we show how to model a time-varying correlation matrix by imposing bounds on the
partial correlations. In order to save in notation we drop the subscript ¢. Let consider the

following covariance matrix @ = DRD’, where D = diag([o1, 09, 03)] and R is the correlation

matrix:
I o012 o013
R= o1 1 o3
013 023 1

To ensure positive standard deviations we model §; = logo; so that o; = expd;. For the
correlations we model v = (712, 713, 723)", where 7;; = h(0;;) and h(-) is the inverse function of
the transformation g;; = ¢,.(;;) that we describe below.

A well defined correlation matrix R must be positive semidefinite with ones on the main
diagonal, this poses a non-trivial problem; see e.g. Budden et al. (2008). On the other hand, the
one-to-one mapping between the correlations and the partial correlations allows us to impose
simple constraints to the partial correlations. Inspired by Joe (2006), Daniels and Pourahmadi
(2009) and Lewandowski et al. (2009), we re-parametrize the correlation matrix with respect
to the partial correlation matrix. Specifically, R is positive semidefinite if the corresponding
partial correlation matrix

I ma ms
II= |7y 1 g3
T3 T3 1
has all the elements 7;; € (—1,1), where 7;; are the partial correlations between variables ¢ and

j. To satisfy those bounds on the partial correlations m;; we use the Fisher transformation,

that is m;; = tanh(v,;), so that we model v;; = atanhm;;. The function mapping the elements

25The tree autoregressive coefficients and the two constants are identified by construction. The two moving
average coefficients and three parameters of the covariance matrix are used to identify the six elements of the
matrix 2.

26 Adding the measurement error v, the reduced form model for pd, becomes an ARMA(2,2).
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of R into the elements of II is:*"

012 = M12, Q13 = M3, 023 = 7T23\/(1 — 7)1 — 7d3) + miams. (G.2)
Thus, we perform two transformations:
0ij = ¥r(Vig) = Yr2(¥r1 (i), (G.3)

where 1,1 (-) = tanh(-), 1,2(+) is defined in (G.2). The resulting Jacobian is:

1 0 0 1-— W%Q 0 0
0o _000m | o | 0 1-72% 0
a"}// - or! a,.y/ - — T13 )
Mg M3 3 0 0 - 7T§3

where

[1— 72 1 —m?

_ 13 _ 12 _ 2 2

M2 = T13 — T12723 1_ 2 2 M3 = T12 — T13723 1 — 2 23 = \/(1 - 7T12)(1 - 7T13)-
— T2 — 713

Remark: If the partial correlations 7;; are bounded using the cosine function, i.e. ¥,.1(-) =

cos v;j, the transformation (G.3) turns out to be the same as the hyperspherical coordinates
used in, e.g., Creal et al. (2011) and Buccheri et al. (2020). This means that the use of
hyperspherical coordinates implies modelling inverse consine of the partial correlations. The
proof for a correlation matrix of general dimension is beyond the scope of this paper.

In our application, the identification of the model requires to set to zero one of the corre-
lations. Without loss of generality we set to zero the correlation between the first and second
innovation. Eploiting the mapping between the correlations and partial correlations we have
that mo = 0 implies g1 = 0. Therefore, we model the following vectors 0 = (013, 023)’,

m = (m3,m3), ¥ = (713,723)" The mapping between correlations and partial correlation is
013 = 13, 023 = 234/ 1 — 73y, and the Jacobian is

Do / 1— 7?2 0
8—7/: 1—77'%3[ 13 ]

2
—7137723 1— 7T23

G.3 State space, score driven vector and jacobians
The model in section 3 can be cast easily in state space form:
Yy = Zyoyte, e ~N(0, H),

a = Toygy+mn, n~N(0,Q),

27See also Yule and Kendall (1965, ch. 12) and Anderson (1984, p. 41).
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where

Ad, G 0 0 1100] [o 0]
Yt = s L= 1 1 , H= N
pd, Pd: o5 T 0000 0 o
1] (1 0 000 0] (0 0 0]
i, 0 ¢, 0000 010
i, 00 ¢, 0000 Ea 00 1
=G|, T=]01 0 0000/, m=S|¢e:|, Sp=]00 0],
Eds 00 0 0000 €t 100
Eqit 00 0 0000 010
Eut | (000 0 000 0| (00 1

Q; = SthS%, Q = DiR;D,, with D, contains the standard deviations, and R; denotes the
correlation matrix. The zero correlation between the measurement error in dividend growth
(€4¢) and the stochastic disturbance in expected dividend growth (e4.), which is required for

the identification of the model, is appropriately imposed. The resulting matrices are is:

Odt 0 0 1 0 Odpt
Di=1 0 o050 0 |, Re=| 0 1 g
0 0 Op,t Qdu,t  Ogu,t 1

The vector of time-varying parameters is:

Pt _ log o4,
s atanhmg, ;
ft = 0y , P = _ ) 0 = log Og.t y Nt = .
Js atanhmg,, ;
Ve logo,+

The vector f; follows the score driven model discussed in section 2, with the following specifi-

cation of the static parameters:

— /
C= [07 07 Cada ng, Co‘#’ Cﬂd,uu Cﬂg,u] )
A - dla’g([17 17 acrd7 a097 aa,,,a a7rd7u7 aﬁg,u])v

B = dlag([bua bga bada boga ba,” bﬂ'd“u? bwg’ﬂ])-

Time variation in the Z matrix. Using the notation in section 2.2 we have that

vec(Zy) = So, + 51,0, (S22 ft)
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where

9y
pd
wz (@t) = 1t )

1_Pt¢g
_ 1
1_Pt¢u

The Jacobian matrix is:

0
9pd,
Opg
__ % Opt
(1—¢gpt)* 0L,
bu___Opt
(1=¢upt)® Om,

Zt = SI,Z\I/Z,tSQ,Za \Ijz,t

Time variation in the Q matrix.

I
T R R

000 |
100
000
010 |,
000
00 1
Ogx4 ]

1

9pd,

99,
%9 _Opt
(1—¢gpt)? 07,

% Ops

(I=¢upt)* 07, |

!/

2,z

P_dt =0, — log(exp [y — €xp gt)v

10
0 1
0 0
=10 0],
0 0
0 0
0 0
oy = exp pd,
t _—— = .
1 + exp pd,
dpd, — exp fly
oy exp fi;—exp g;’
Opd, _6Pdt
dg, — Of’
Opr _ __ pt(l—pt) exp iy
Oy exp iy —expg; ’
Opt _ _ Opt
g opy

Recall that the covariance matrix of the transition

equation is Q; = SnQ,gS;7 where 2, = D;R;D;. Using the notation in Section 2.2, and the

standard rules of matrix differentiation, we have that:

Qi = (5, ®8,) (DR @ I +1© DyR)D,+ (D@ D)Ry|

We now express the matrices of volatilities and correlations as follows:

vec(Dy) = S1,ata (S2,aft) ;
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where S1 4 S2.4, S1,,, S2,» are selection matrices

(10 0] 1] [0 0]
000 [0 0 0] 0 00 [0 0]
000 000 0 10 0 0
000 100 0 00 00
Sia=10 1 0|, S4,=10 1 0|, So,=|1]|, Si,=|0 0|, S5, = [0 0
000 00 1 0 01 00
000 000 0 10 10
000 0 0 0] 0 0 1 0 1
0 0 1] 1] 0 0]

The functions ¥,4(d;) and ¥,.(v;) and their Jacobians are described in section G.2. Specifically,
we have that:
Dt = Sl,dq}d,tSQ,du Rt = Sl,r\llr,tSQ,m

where

\J1— 72 0
\de,t = Dt: \I]r,t = \/ 1— WZW it

2
—Tdu Mgt 1 —7

gup,t
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H Term structure of expected returns and dividend growth
in recessions

In Figure H.1 we plot the whole term structure of expected returns and expected dividend
growth for three historical episodes. In particular, we look at the year before the recession,
the peak of the recession and the year after the recession. We find that discount rates shocks,
especially at the short end of the curve, contributed greatly to the severity of the recessions in
1929 and 2008, while they played a relatively minor role in the 2001 recession episode. These

results are consistent with the narrative in Campbell et al. (2013).

Figure H.1: EXPECTED RETURNS AND DIVIDEND GROWTH: SELECTED EPISODES

Term Structure of Expected Returns: 1929-1932
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Note. Figure H.1 plots the term structure of expected return (left panel) and dividend growth (right panel)
around some specific events. In particular, the upper panel looks at the Great Depression, the middle panel
looks at the years around the 2001 recession and the bottom panel looks at the years of the Great Recession.
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I Additional Results

Figure I.1: TERM STRUCTURE OF EXPECTED RETURNS AND DIVIDEND GROWTH

Term Structure of Expected Return

Note. Figure 1.1 plots the term structure of expected return and dividend growth.
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Figure 1.2: STEADY STATE COMPARISONS
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Note. The left panel of Figure 1.2 reports two alternative measures of the long-run riskless real rate that we
recover from the estimates in section 5. Specifically, Ty, — py;_y and Gy_y — Gyj;_;- The estimates of

ﬁtlt_l from the two models are reported in the panel on the right together with the (log) level of the price
dividend ratio.
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Table [.1: EXCESS RETURN MODEL: ESTIMATION RESULTS

by 0.863 b,  0.081
[0.007] [0.010]
o 0.355 by 0.053
[0.011] [0.007]
G4 0.062 a,, 0858 b,  0.016
[0.061; 0.065] [0.023] [0.001]
a, 0.097 a4, 0765 b,  0.012
[0.096; 0.104] [0.052] [0.003]
&, 0.019 a,, 0847 b, 0.015
[0.018; 0.024] [0.051] [0.003]
Pap 0.888 try, 0980 by,  0.025
[0.660; 0.892] 0.010] 0.010]
Do -0.001 ar,, 0820 b, 0025
[-0.026; -0.018] [0.047] [0.005]
o2 0.008 kn  0.020
[0.0002] [0.0001]
Log Lik. 322.232

Note. Table 1.1 reports parameter estimates for the model estimated in section 5. First column: autoregressive
coefficients of expected returns and expected dividend growth (¢, and ¢4) and average (over the whole sample)
estimates of the volatilities (54, 5, and &,,) and correlations (pa, and py,) that form the matrix Q;. o2 is
the volatility of the measurement error for the price dividend ratio. The second and third columns show the
estimates of the coefficients that enter the law of motion of the score driven time-varying processes (4) where A
and B are diagonal matrices, and the smoothing coefficient applied to the Hessian term (kp). For each coefficient
we report in square brackets the associated standard error. For the average volatilities and correlations in the
first column we report the 68% confidence interval from 1000 simulations of the model (calculated as in Blasques

et al., 2016).
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