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THE ECONOMIC DRIVERS OF VOLATILITY AND UNCERTAINTY

by Andrea Carriero’, Francesco Corsello” and Massimiliano Marcellino™"

Abstract

We introduce a time-series model for a large set of variables in which the structural
shocks identified are employed to simultaneously explain the evolution of both the level
(conditional mean) and the volatility (conditional variance) of the variables. Specifically,
the total volatility of macroeconomic variables is first decomposed into two separate
components: an idiosyncratic component, and a component common to all of the
variables. Then, the common volatility component, often interpreted as a measure of
uncertainty, is further decomposed into three parts, respectively driven by the volatilities of
the demand, supply and monetary/financial shocks. From a methodological point of view, the
model is an extension of the homoscedastic Multivariate Autoregressive Index (MAI)
model (Reinsel, 1983) to the case of time-varying volatility. We derive the
conditional posterior distribution of the coefficients needed to perform estimations via
Gibbs sampling. By estimating the model with US data, we find that the common
component of volatility is substantial, and it explains at least 50 per cent of the overall
volatility for most variables. The relative contribution of the demand, supply and financial
volatilities to the common volatility component is variable specific and often time-
varying, and some interesting patterns emerge.
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1 Introduction!

The seminal paper by Engle (1982) emphasized the importance of changing conditional
volatilities in economic and financial variables. The ensuing literature on this topic is
extensive, starting with time-series contributions but then entering also the mainstream
economic literature, with the debate on the Great Moderation’s origin, see, e.g., Primiceri
(2005), Cogley & Sargent (2005), Sims & Zha (2006), and Fernandez-Villaverde & Rubio-
Ramirez (2013).2 After the 2007 financial crisis there seems to be growing consensus
on the importance of allowing for economic and financial shocks with particularly large
variance during crisis periods, see for example Abbate, Eickmeier, Lemke & Marcellino
(2016) and references therein.

While there is by now a large literature modeling volatilities as stochastic and time-
varying, the economic identification of the shocks driving this variation in conditional
variances has not been investigated. This is in stark contrast with the mainstream ap-
proach to study the effects of identified structural shocks on the conditional mean of
macroeconomic variables as laid out in Sims (1980).

This paper introduces a model in which the identified structural shocks are employed
to simultaneously explain the evolution of both the level (conditional mean) and the
volatility (conditional variance) of macroeconomic variables. In particular, we provide
a strategy to decompose the total volatility of each macroeconomic variable, into two
separate components: an idiosyncratic component, and a component common to all of
the variables, which is often interpreted as a measure of uncertainty (see e.g. Jurado,
Ludvigson & Ng, 2015 and Carriero, Clark & Marcellino, 2018). The common volatility
component is further decomposed into three parts, respectively driven by structural de-
mand, supply and monetary / financial shocks. All these components are orthogonal to
each other, so the proposed decomposition provides a measure of the contribution of each
source to the total volatility.

Methodologically, the model is an extension of the homoschedastic Multivariate Auto-
regressive Index (MAI) Model of Reinsel (1983) and Carriero, Kapetanios & Marcellino
(2016) [CKM16 henceforth] to the case of time varying volatility (MAI-SV). We derive
the conditional posterior distributions of the model parameters, which are then used for

the development of a Gibbs sampler algorithm. A key feature of our approach is the use

"'We would like to thank Marco Del Negro, Barbara Rossi and participants at the GSE Summer
Forum on Time Series Econometrics for useful comments on a previous draft. Marcellino is grateful to
the Baffi-Carefin center for partially supporting this research.

2From a reduced form perspective, Clark & Ravazzolo (2015) reports evidence that introducing sto-
chastic volatilities improves the forecasting accuracy for macro-financial variables, strengthening the evi-
dence already gathered by D’Agostino, Gambetti & Giannone (2013) and Carriero, Clark & Marcellino
(2015).



of a large information set, which is essential to avoid non-fundamentalness of the shocks
and omitted variable bias, but requires efficient strategies to reduce the computational
burden resulting from the large number of unobservable state variables.

Carriero, Clark & Marcellino (2016, 2018, 2019) also analyze small and large VAR
models with a factor volatility structure, where each volatility is decomposed into com-
mon and idiosyncratic components. Yet, in those papers the factor volatility structure
is imposed a priori, while in this paper it emerges as a consequence of the reduced rank
restrictions. Moreover, while in those papers the common volatility component is unex-
plained, here it is linked to the volatilities of the structural shocks driving the indexes.
Further, in those papers only the variances of the errors are time varying, while here the
covariances can also change over time. Finally, the estimation algorithm is different, as
here we need to take the nonlinearity of the conditional mean into account.

We estimate the MAI-SV model using a dataset of 20 macroeconomic and financial
variables for the U.S.3. We use a common Choleski ordering to identify the demand,
supply and monetary / financial shocks in the VAR for the indexes. While simple, in our
application this identification scheme produces results in line with economic theory. In
particular, a (positive) demand shock boosts the output factor, the financial factor and,
to a lesser extent, the price factor; a (negative) supply shock increases prices, reduces
the real output factor, and overall has non significant effects on the monetary / financial
factor; and a (negative) monetary / financial shock lowers the real output factor and has
negative, though barely significant, effects on the price factor.*

The demand, supply and financial structural shocks appear as important drivers not
only of the level of macroeconomic and financial variables but also of their changing
conditional volatility. The volatility of the three structural shocks explains, in general,
more than 50% of the overall volatility, in line with the results in Carriero et al. (2018)
obtained with a different model for the conditional means and variances. The relative
importance of the estimated volatilities for the structural shocks varies substantially across
different variables, and in some cases it changes over time.

The common component of volatility seems to have broadly diminished its importance
over time for real variables, while it is rather stable and substantial for nominal variables
(much more so for CPI and the PCE deflator than for PPI). A similar pattern emerges
also for the financial variables, with the common component explaining about half of the
variation in the volatility of the Fed Funds rate and the 10 year T-Bond. Finally, the

3The series included coincide with those in Baiibura, Giannone & Reichlin (2010) and Carriero et al.
(2016), but for an extended period that covers 1964-2016.

40ur methodology could be also applied with different identification schemes, such as those discussed
in Kilian & Liitkepohl (2017).



role of the common volatility component in explaining the volatility of the S&P500 is
remarkably high.

In terms of the role of the various structural shocks, we find that demand shocks
are clearly dominant in explaining the volatility of industrial production and capacity
utilization. The same applies to employment, but only at the beginning of the sample:
for this variable the role of demand shocks has progressively declined in favor of supply
and monetary /financial shocks. Supply shocks are dominant in explaining the volatility
of the nominal variables, in particular for CPI and the PCE deflator. With regards to the
common volatility of financial variables, the contribution of different structural shocks
is overall comparable and rather stable over time. The monetary / financial shock is
particularly important to explain the common component of the S&P500 volatility, but
even for this variable it only explains about 50%, with the other 50% close to equally split
between demand and supply shocks.

From an economic point of view, the volatility of the structural demand shock could
be related to changes in the inventory mechanism (e.g., McConnell & Perez-Quiros, 2000)
or to the globalization process (e.g., Bianchi & Civelli, 2015), while that of the supply
shock can depend on the behavior of the oil market (e.g., Lee, Ni & Ratti, 1995) or on
firms’ productivity (e.g., Christiano, Motto & Rostagno, 2010), and the volatility of the
financial /monetary shock can be influenced by financial innovation (e.g., Dynan, Elmen-
dorf & Sichel, 2006) or by changes in the conduct of monetary policy (e.g., Clarida, Gali
& Gertler, 2000). Justiniano & Primiceri (2008) introduce a DSGE model with stochastic
volatility in several structural shocks. Specifically, they find that a reduction in the vari-
ance of investment shocks, interpreted also as a proxy for unmodeled financial frictions, is
the main driver of the US Great Moderation, with a limited role for changes in monetary
policy. Their evidence is somewhat in line with our common volatility decomposition that
shows the gradually decreasing role of the monetary/financial shock contribution from the
1980s to the Great Financial Crisis. However, our structural decomposition is based on
the common part of the volatility which is only a fraction of the total volatility. Moreover,
Benati & Surico (2009) show that it can be difficult to map changes in the variance of
structural VAR shocks with those in DSGE models.

The remainder of the paper is structured as follows. Section 2 describes the model.
Section 3 introduces the volatility decomposition. Section 4 presents the choice of prior
distributions and develops the MCMC algorithm for estimation, with additional details

provided in the appendix. Section 5 discusses the empirical results. Section 6 concludes.



2 Description of the model

This section presents the econometric model used in the paper. The model is an extension
of the homoschedastic Multivariate Autoregressive Index (MAI) Model of Reinsel (1983)
to the case of time varying volatility.
Let y; be a n-dimensional vector containing the variables of interest, and consider the
following model: ,
Y = Z A¢Bo Yi—o + uy, (1)
=1

. . . iid
where A, are n x r matrices, { = 1,...,p, By a is r X n matrix, and u; ~

MN (0,9)
is a vector of i.i.d. disturbances. The product A,;B, is then a sequence of n-dimensional
reduced rank (r) matrices, £ = 1,...,p, and defining &, = A,B; makes clear that the
model above is a constrained VAR. One advantage of the rank-reduction is that as the
dimension of the cross-section n increases, the model remains relatively parsimonious, as
long as r < n. A second important advantage is that the terms By y;_, and A, have a
straightforward interpretation as a set of r indeces (or factors) and their loadings.® This
model was originally named Multivariate Autoregressive Index model (Reinsel (1983)). If

we define the observable factors as:
F, = Boy;, (2)

the MAT model in (1) can be written as:

P
Yy = Z Ay Fip + . (3)
/=1

As pointed out by Carriero et al. (2016) [CKM16 henceforth], by pre-multiplying (3) by
By it is apparent that the MAI model implies a VAR(p) representation for the factors:

p
F, = Z CoFy—p + wy, (4)
=1

50f course, as it happens also in factor models and in cointegrated VARs, it is the case that one can
rotate these matrices arbitrarily, e.g. Ay - By = A¢Q’ - Q By, where @ is an orthogonal matrix, and hence
identification restrictions are needed to pin down only one of these possible rotations. Identification can
be straightforwardly achieved e.g. as in Reinsel (1983) by assuming that the first  rows and columns of B

are an identity matrix, By = { I, §0 } . Here we follow a similar approach in which the only difference

is the position of the columns of the matrix I,.. In addition, due to the grouping of the variables, we also
impose some additional zero restrictions, see Section 4 for details.



where C; = BoAy, £ = 1,....p, and w, ~ MN (0, 2), with = = ByQBj. Grouping (3)
and (4), we obtain a factor augmented VAR (FAVAR) - type model, with the notable
difference that the factors of the MAI model are observable, while the factors of a FAVAR
model are considered as unobservable. In addition, the VAR model for the factors is
imposed in FAVARs, while in our framework it is a consequence of the MAI model for
the variables. Furthermore, factors in FAVAR are in general orthogonal, while here they
can be correlated.

In this paper we generalize the MAI model by allowing the disturbances to have time

varying volatility:

Uy = Gt_12t5t7 (5)
where £, X M (0, 1,), and:

! 0 e 0] - -

1 . . 01t 0 . 0

g1t T :
. . 0 02t

Gy = 92.¢ g3t 1 R I Xy = ) 0
0 0 0 0 ons
| Im—n+2t Im—-n+3t --- Gmyi 1_ - -

Hence, the reduced form MATI errors become u; ~ MAN (0, ), with €, = G} e 2GrY,
so that both the variances and the covariances are time-varying.®

Following Primiceri (2005), we specify the following law of motions for the n-dimensional
vector of (log) standard deviations o; and the m-dimensional vector (m = n(n —1) /2)

of off-diagonal elements ¢g; = (911, gat, .-y Gimet)'

logo, =log o1+ Ve,
gt = Gt—1 + Vg,

. iid
with v, ~

MN(0, Q) Vys “ MN(0,Q,), and Y(t,h), Vet L Vgtin.

Note that the errors in the VAR(p) for the observable factors F; also feature time
variation in their volatilities. Specifically, the disturbances to the factor VAR in (4) have
the following distribution:

wi o MN(0,5,), (6)

where Z; = By§2:B). The equations in (3) and (4), augmented with the error specifications

6Any positive definite matrix Q; can be decomposed as € = Gt_lEtE;Gt_l,, while of course other
decompositions are possible.



in (5) and (6), are similar to a FAVAR model with stochastic volatility (SV) in both the
(observable) factors and idiosyncratic errors.”

When the model has a large number of variables, the off-diagonal elements contained
in GG; can create a computational bottleneck. For example, in a model with 20 variables
as in our empirical application, g; becomes an 190-dimensional stochastic process. For
this reason, in our empirical application, we consider two versions of the model. The first
version only features time variation in the volatilities, while the covariances g, are assumed
to remain constant over time. We will refer to this model as MAI-SV. The second version

of the model features time variation also in the covariances. We will refer to this model
as MAI-SVCV.

3 Decomposing volatility

In this section we present an approach to decompose the total volatility of the variables
y, into orthogonal components. This is achieved in two stages. In the first stage, we
decompose total volatility into a part which is common to all variables, which can be
interpreted as a measure of uncertainty, and an idiosyncratic component. In the second
stage we further decompose the common component into parts, each corresponding to a

different structural shock.

3.1 Common and idiosyncratic volatilities

We start with decomposing the total volatility into two parts, a part which is common to

all variables, and an idiosyncratic component. CKM16 introduce the following identity:®
I, = QBYE"'By + By, (BouQ 'By,) " B Q7Y (7)

where By, is a (n —r) x n matrix, such that ByBj, = 0,(»—r). Using this decomposition
in the context of the MAI-SV or MAI-SVCV models, we can then split the residuals u,
in their projection over the subspace generated by the factors’ residuals w;, and their

projection over the subspace generated by the n — r idiosyncratic errors 1; (orthogonal

to wy):
p
— — -1 -1
Yy = Z Ag . Ft_g + QtBé):t IBOUt + Bé)J_ (BOJ_Qt lBé)J_) BOJ_Qt Ut. (8)
= o T

7A small factor model with common stochastic volatility in the innovations to both factors and idio-
syncratic errors is studied by Marcellino et al. (2016).
8See also Johansen (1995) and Centoni & Cubadda (2003).
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We can then further decompose the total error volatility €2; into the volatility of the

common component and that of the idiosyncratic component:®
Qt —_ ngm 4 Qidio7 (9)

with Q™ = O, B)Z; ' B, and Q4o = BY (B Q' B),) ™" Boy.

The matrix §2; can be interpreted as the variance covariance matrix of the 1-step
ahead forecast errors. We can apply a similar decomposition also to the variance of the
h-step ahead forecast errors, to understand whether the common component contributes
differently across horizons.

Finally, as mentioned in the introduction, in the MAI-SV model the variance de-
composition in (9) into common and idiosyncratic components emerges from the model
structure, while in Carriero et al. (2016, 2018, 2019) it is imposed a priori (in a linear
rather than nonlinear VAR model).

3.2 Decomposition of the common volatility

In this section we further decompose the common volatility component Q2¢°™ into r parts,
each corresponding to a different structural shock. Starting from the shocks to the
observed factors w; we can recover the structural shocks to the factors €} using a Choleski
decomposition:

w w
wt:St 'gt,

where Sy is the lower-triangular cholesky factor of Z; (i.e. the variance of w;), and €Y is
an i.i.d. standard Normal variable, which represents the structural shocks. We can now

insert the structural shocks €Y into the decomposition in (8), obtaining:

1

p T
ye=3 Ay Fg+ > OBIESPer; e+ By (BouQ ' Byy)
=1 Jj=1

where ¢e; is the 7 x 1 column vector of the r-dimensional canonical base.

It follows that one can decompose the common volatility €2°™ into orthogonal com-

9The complete derivation is the following:

Q™ = O BYE; ' E (wiw)) 5 By = U BLEEET Boy = By B
>y _ —1 _ _ _ —1 _ —1
Qi =B, (BorQ 'B).)  BoiQy'E (wuy) Q7 'BY, (Bo1 Q7' Bly) Boy =B\, (Bo1Q;'B},)  Bo..

11



ponents, each associated with a structural shock:
Q= ", B{E (SPes - €5S) 2 By, (10)
j=1

A similar decomposition can be applied to the common component of the h-step ahead
covariance matrix, which is informative to understand whether the contribution of various
structural shocks changes with the forecast horizon.

A comparable decomposition can be also applied with different shock identification
methods, such as sign restrictions or external instruments, see Kilian & Liitkepohl (2017)
for an exhaustive review and analysis on shock identification. The choice of the proper
structural identification method crucially depends on the empirical application of interest.

In the empirical section we will apply these formulae to decompose the estimated
conditional volatilities of US macro and financial variables into their common and idio-
syncratic components, further studying the contribution of various structural shocks when

decomposing the common volatility component.

4 Estimation

In this section we discuss, in turn, the identification restrictions, the priors on model
parameters, and the Gibbs Sampler to draw from the joint posterior, which is not a

known distribution.

4.1 Identification restrictions

In order to identify the model, we need to restrict at least r? elements in the r x n
matrix By. Similarly to Carriero et al. (2016), we divide the n variables in r subgroups
or blocks, so to have as many blocks as factors. Each block may have in principle its own
number of variables, i.e. y; = (y,', 47, ..., y;"), n = Y_;_; nj. The proposed identification
for the observable factors F; = Byy; assumes that each factor is a linear combination of
the variables in its associated block. Moreover, we normalize to 1 the weight of the first

variable of each block. This is equivalent to the following representation:

1 Box 0 Oty -~ 0 Opgm )
0 Oixm-1) 1 Bop N N | e

By = |. . . . . . ;
0 Oty 0 Opxnyny --- 1 By,

12



which implies that the unrestricted elements are contained in each of the 1 x (n; — 1)

vectors EOJ, for a total of n — r unrestricted elements in the matrix By.

4.2 Specification of the prior distributions

The set of prior distributions is constructed using a training sample. Prior knowledge for
the unrestricted elements of By is elicited with a Normal distribution. To calibrate these
prior distributions, for each block 7 = 1,...,r, we compute the largest eigenvalue score
via principal components analysis, so to obtain a set of r score series {SZ }i:ll; Using
these scores, we consider the following n — r univariate regressions:

S =bojk Y+ Uipes Uips ©N(0,02); j=1o.m k=2,...,n;,

The OLS estimates of these regressions, and their standard errors, are used to calibrate
mean and variances of the prior distributions. Since each by ;; is set to 1 (as shown in the
previous subsection), each prior mean of the elements in §071 is divided by [;O,j,l- Prior
covariances among elements are set to zero.

Defining A = [A]...|4,], the prior on a = vec(A’) is multivariate Normal, centered
on 0, and with diagonal variance V, resembling a Minnesota prior. In particular, it holds

that

~ U, 0 ... 0 L,
Oy.1 0 v, - . \ Op1
V, = Diag : @ 0 v U= g_d - Diag : :
b\;m : . .0 3;3
0 ... 0 ¥,

where 7 ; and 67, are the residual variances of a univariate AR(1) for, respectively, each
variable 7 and each factor s (computed using the prior mean of By). The parameter A,
is a tightness parameter, and d is a decay parameter. We chose standard calibration
borrowing from the VAR literature, i.e. \, = 0.2 and d = 2.

In the MAI-SV case, the prior for the elements of G is a multivariate Normal distri-
bution centered at zero, with large diagonal covariance matrix. In the MAI-SVCV case,
the prior of the initial vector gy is a multivariate normal centered at zero with identity
matrix. The prior for g is a multivariate normal, centered at [0,

covariance matrix, as in Primiceri (2005). Prior distributions for innovation covariance
matrices ), and @, are calibrated as in de Wind & Gambetti (2014) and Primiceri (2005).

1l--o7, ), with identity

13



4.3 Gibbs Sampler

This subsection describes the main steps of the Gibbs Sampler used to simulate from the
joint posterior distribution of both parameters and unobservable states of the MAI-SV
and MAI-SVCV models. When drawing the volatility states, the algorithm makes use of

the approximation of Omori et al. (2007), which requires drawing a set of mixture states
{St}is-

The algorithm is more general than the one presented in Carriero et al. (2016) since it
introduces the step to draw the time-varying volatilities, following Primiceri (2005) and
Del Negro & Primiceri (2015). A Markov Chain of 10 thousand draws (with additional
30% initial draws discarded as burn-in) is simulated to obtain the posterior distributions of
the coefficients and unobservable states. Convergence statistics confirm that convergence
has been achieved and mixing is good.

The Gibbs Sampler steps for the MAI-SV model are:

1. Draw a history of volatilities {at}tT:l 9, {St}thl,
2. Draw 0, {St}thl | {at}le. This second step is further split as follows:

(a) Draw the elements in | {at}thl
i. Draw the covariance of volatilities” innovations @, |A, By, G, {at}tT:1
ii. Draw the loadings A ‘Bo, G,Q,, {at}thl,
iii. Draw the factor weights By ‘A, G, Q,, {Ut}thl,
iv. Draw the off-diagonal elements in G ‘A, By, Q, {ot}le

(b) Draw a history of indexes of the mixture in {S;},_, |6, {o\}1_,

In the MAI-SVCV model, instead of drawing the time invariant off-diagonal elements
in G, we need to draw the unobservable states {gt};‘tr:1 and the covariance matrix of their

innovations 4. The augmented sampler encompasses the following steps:
1. Draw a history of volatilities {o},_ |6, {Si},_,
2. Draw 6, {S;},_, | {ov},_,. This second step is further split as follows:

(a) Draw the elements in 6| {o},_,
i. Draw the covariance of volatilities’ innovations @, |A, By, {g:} :{:1 Qg {01} tT:1

ii. Draw the loadings A | By, {gt};[:l ,Qgy Qo {Jt};f:l,

14



iii. Draw the factor weights By | A, {gt}thl , Qgy Qo {at}le,
Aa BO7 an QO’a {O-t}thl )
Aa BOa {gt}z—‘zl ) Qoa {Ut}?zl )

(b) Draw a history of indexes of the mixture in {S;},_, |0, {o\}1_,

iv. Draw the TV off-diagonal elements { gt}thl

v. Draw the covariance of TV off-diagonal elements (),

The Gibbs Sampler steps for the MAI-SV and the MAI-SVCV are described in detail
in sections A and B of the Appendix.

5 Empirical Results

5.1 Data and model specification

We collected from the FRED database 20 monthly macroeconomic variables for the period
from January 1964 to December 2016. The selected series coincide with those in Banbura,
Giannone & Reichlin (2010) and CKM16. The first 84 observations, from January 1964 to
December 1970, are used as training sample to calibrate the prior distributions, while the
rest of the sample is used in estimation. The variables are used in differences, standardized
and demeaned. We set the number of lags to 13, following common practice for Bayesian
VARs at monthly frequency.

Following CKM16, we select a specification using 3 factors. The first factor is a
real factor, gathering information from the real economic activity variables; the second
factor is a nominal factor, representing changes in price dynamics; the third factor is a

monetary/financial factor. Table 1 lists the variables and their factor grouping!®.

5.2 Identifying the structural shocks and their effects

In this section we discuss the identification of demand, supply and monetary/financial
shocks, and their effects on the variables under analysis.
The estimated factors are reported in Figure 1, along with NBER recessions (as shaded

areas) and the uncertainty events highlighted in Bloom (2009) (as black lines). Due to the

0Carriero et al. (2019) estimate a BVAR with independent stochastic volatilities for 125 variables
(including macroeconomic indicators, an array of interest rates, some stock return measures, and exchange
rates). A factor analysis of the volatilities indicates two components to account for the vast majority of
innovations to volatilities. Here, we use three rather than two factors, even if the number of variables
is smaller, to get robustness to potential omission of a third factor, as the third factor is significant in
the conditional means, and the three factors can be given a meaningful economic interpretation as real,
nominal and financial factors. Computing the first three principal components of the median volatility of
residuals, we are able to explain more than 90% of time variation across the sample, in line with Carriero
et al. (2019).

15



definition of factors and estimated coefficients, improved economic conditions are associ-
ated with higher demand factor and lower supply and monetary/financial factors. The
factors are reaching extreme values during the Oil crisis in the 1970s and in correspon-
dence of the Great Financial Crisis, while from the mid 1980s to the early 2000s they
appear less volatile (Great Moderation), even in case of recessions and rare events. It
is interesting to notice how the demand and supply factors seem negatively correlated
in case of supply-driven recessions, as the Oil crises, and positively correlated in other
recessions as the recent Great Financial Crisis.

Structural analysis can be performed similarly as in FAVARs applications. Indeed, as
shown before, the factors’ law of motion is given by (4) where the variance of the shocks
wy is given by =y = By{)Bj, and where the factors are ordered as real, nominal and
monetary / financial. Differently from FAVAR models, this model features observable
factors (since Fy = Byy;) and heteroskedasticity in the factor innovations wy.

From an economic perspective, it makes sense to expect that real activity variables
take some time to react to exogenous changes in prices, while prices are likely to react
contemporaneously to changes in real activity. Financial variables are likely to react
immediately to changes in prices and real activity. These considerations support the use
of a simple Cholesky scheme for the factor VAR in which the real activity factor is ordered
first, the nominal factor second, and the financial factor is ordered last.

This identification scheme provides three orthogonal structural shocks, each featuring
time-varying volatility. The posterior median of the volatilities of the structural shocks to
the factors, and their posterior 68% credible bounds are reported in Figure 2, along with
NBER recessions and Bloom (2009) uncertainty events. The Great Moderation is evident
for all shocks, but the volatility of supply and financial shocks seems to increase again
from the mid-90s, and all volatilities peak during the recent Global Financial Crisis.

From an economic point of view, the volatility of the structural demand shock could
be related to changes in the inventory mechanism (e.g., McConnell & Perez-Quiros, 2000)
or to the globalization process (e.g., Bianchi & Civelli, 2015), while that of the supply
shock can depend on the behavior of the oil market (e.g., Lee et al., 1995) or on firms’
productivity (e.g., Christiano et al., 2010), and the volatility of the financial/monetary
shock can be influenced by financial innovation (e.g., Dynan et al., 2006) or by changes in
the conduct of monetary policy (e.g., Clarida et al., 2000). Justiniano & Primiceri (2008)
introduce a DSGE model with stochastic volatility in several structural shocks. Specifi-
cally, they find that a reduction in the variance of investment shocks, interpreted also as
a proxy for unmodeled financial frictions, is the main driver of the US Great Moderation,

with a limited role for changes in monetary policy. Their evidence is somewhat in line
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with the gradually decreasing role of the monetary/financial shock contribution from the
1980s to the Great Financial Crisis in our common volatility decomposition. However,
our structural decomposition is based on the common part of the volatility which is only
a fraction of the total volatility. Moreover, Benati & Surico (2009) show that it can be
difficult to map changes in the variance of structural VAR shocks with those in DSGE
models.

Ferndndez-Villaverde et al. (2015) estimate a DSGE model with stochastic volatilities
similar to that of Justiniano & Primiceri (2008), but using a second order approximation
of the equilibrium dynamics of the economy. This approach allows changes in shock vo-
latilities to directly affect the equilibrium solution along with the shocks, contrarily to
the case of a first-order approximation of the solution. The model is estimated using a
non-Bayesian methodology. In light of these methodological differences, the estimated
stochastic volatilities of structural shocks show some discrepancies to analogous measures
in Justiniano & Primiceri (2008). Moreover, they don’t report the contribution of sto-
chastic volatilities in explaining unconditional variances of the observable variables. In
general, they find that “the 1970s and the 1980s were more volatile than the 1960s and
the 1990s, creating a tougher environment for monetary policy”, which is in line with our
results.

We can also compare these volatilities with the uncertainty estimates of Carriero
et al. (2018). Our demand factor volatility appears much correlated with their macro
uncertainty estimate, even though the only large volatility spike after 1970s is observed
in correspondence of the last Great Financial Crisis, and our measure of demand factor
volatility reaches record lows in the end of 2016. The supply factor volatility shows a
smaller degree of time variation than the demand factor during the Great Moderation, but
it has been changing more since the spike of 2008, probably because of large fluctuations
in commodity prices in the last years. As for the financial/monetary factor volatility,
the largest spike throughout the sample is reasonably observed in coincidence of the
years 2008-2009, differently from Carriero et al. (2018) financial uncertainty estimate, for
which there is a comparable spike also in the early 2000s. It is interesting to observe how
volatility of the monetary /financial factor is increasing in the years 2013-2016, most likely
because of increased volatilities of bond yields and exchange rates.

Figure 3 reports the dynamic response of each factor after each structural shock (pos-
terior median), measured at the NBER troughs, to assess whether there are differences
across the various recessions. A (positive) demand shock boosts the output factor, the
financial factor and, to a lesser extent, the price factor; a (negative) supply shock in-

creases prices, reduces the real output factor, and overall has non significant effects on
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the financial factor; finally, a (negative) financial shock lowers the real output factor and
has non-significant effects on the price factor. The fact that the estimated responses are
in line with economic theory provides support for the use of our Choleski identification
scheme for this application.

The temporal heterogeneity in the responses is due to different shocks’ sizes (i.e. their
standard deviations) and also to the time-varying simultaneous relations across variables.
The price factor displays the larger degree of time variation in median posterior responses,
especially at larger horizon, even though these differences among NBER troughs are barely
significant when estimation uncertainty is taken into account.

Using the factor representation, it is possible to compute the response of variables y; to
the structural shocks, again as in FAVAR models. Figures 4,5 and 6 report the responses
of all variables to, respectively, the identified demand, supply and financial shocks, at
the NBER troughs. The responses are broadly in line with those in CKM16: a demand
shock increases output variables and decreases unemployment, and triggers an increase
of both prices and Fed Funds rate, along with an appreciation of the real exchange rate
and a reduction in monetary indicators. The negative supply shock increases prices and
worsens the real economy indicators. Interestingly, the response of the Fed Funds rate
has an opposite sign in the last two recessions with respect to the previous recessions.
Instead, in almost all cases there is a depreciation of the real exchange rate. Responses to
the financial/monetary shock are also in line with economic theory: real variables decrease
along with monetary aggregates, while the effects on prices are not significant. In terms
of time variation, there are some differences in the responses at different NBER troughs,
because of different shocks’ size and changing simultaneous relationships. A demand shock
in November 2009 has a larger effect on Industrial Production, Capacity Utilization and
Housing Starts, while a monetary/financial shock in November 2001 has a large effect on
stocks and macro variables. However, when considering estimation uncertainty, such time
variation is not much significant.

To provide a different measure of time variation of the responses to the structural
shocks, we have also computed the temporal evolution of the responses at fixed horizons
of 1, 12 and 48 months. The estimated median responses, together with 68% bands,
reported in Figure 11 to Figure 19 in section C of the Appendix are broadly in line with

those commented above.

5.3 Decomposing the Stochastic Volatilities

In this section we use the decompositions discussed in Section 3 to assess the contributions

of different sources of volatlity to the total volatility of the macroeconomic series.
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Figure 7 reports the stochastic volatilities for the 20 variables, estimated using the
MAI-SVCV model. Stochastic volatilities appear to be significantly changing over time
for all variables, highlighting the importance of allowing for a time-varying conditional
variance in macro-financial applications. The Great Moderation is evident in variables
such as employment, earnings, consumption, CPI and the PCE deflator. The recent
financial crisis is associated with volatility peaks in many real and nominal variables,
including employment, earning, consumption, industrial production, housing starts, CPI,
PPI. Also for monetary /financial variables, volatility peaks during the last global crisis are
particularly evident for the Fed Funds rate, stock prices, money measures and reserves.

We start applying the decomposition in (9) and (10) and partition each of the reduced
form volatilities into the common component, driven by innovations to the three factors
and interpretable as an uncertainty measure, and the idiosyncratic components, driven
by the idiosyncratic innovations, ;.

Figure 7 plots also the decomposition of the total volatility for each variable into the
two orthogonal components. From a graphical inspection, the common component of
volatility is dominant for most variables, but a non-negligible part of variation is also
driven by the idiosyncratic component. In order to obtain a more precise measure of the
contribution of each component, Figure 8 reports the time-varying percentage shares of
explained volatility by the common and idiosyncratic components.

In the real activity variables, the common component of volatility seems to have
diminished its importance over time for employment and, less so, for earnings, personal
income, and consumption, with values well below 50% at the end of the sample. The
fraction of volatility explained by the common component is much higher for industrial
production and capacity utilization, but it drops substantially for both variables after the
financial crisis, from values around 80-90% to slightly above 50%. For the unemployment
rate and housing starts, the fraction is instead stable at about 50% over the entire sample.

In the price variables, the fraction of their conditional time-varying volatility explained
by the common shocks is rather stable and high, much more so for CPI and the PCE
deflator than for PPI, but still well above 50% for the latter.

A similar pattern emerges also for the financial variables, with values around 50%
for the Fed Funds rate and the 10 year T-Bond yield but, interestingly, much higher for
the S&P500, whose time-varying volatility seems to be substantially affected by economic
shocks.

We further decompose the common component share of volatility into three ortho-
gonal sub-components, each driven by the volatility of structural demand, supply and

monetary /financial shocks identified in the previous subsection. Figure 9 reports the
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time-varying percentage contribution of each structural shock in determining the com-
mon component volatility.

In the real activity variables, demand shocks are clearly dominant for industrial pro-
duction and capacity utilization. The same was true for employment at the beginning
of the sample, but then the role of demand shocks has progressively declined in favor of
supply and monetary/financial shocks, that combined explained more than 50% of the
common volatility component of employment at the end of the sample. A declining role
for demand shocks is evident, though milder, also for housing starts. Instead, for earning,
income, consumption and unemployment the share of demand shocks is rather stable over
time, below 50% for the three variables and close to 50% for unemployment. Supply
and monetary/financial shocks explain a comparable fraction of the remaning common
volatility component of these four variables.

In the price variables, supply shocks are dominant, in particular for CPI and the PCE
deflator, with demand shocks ranked second and monetary/financial shocks third, though
slightly more important for PPI.

In the financial variables, the contribution of the three types of structural shocks
is overall comparable and rather stable over time. The volatility of the monetary /
financial shock is particularly important to explain the common component of the S&P500
volatility, but even for this variable it only explains about 50%, with the other 50% close
to equally split between demand and supply shocks.

Overall, the structural demand, supply and financial shocks appear as important dri-
vers not only of the level of macroeconomic and financial variables but also of their
changing conditional volatility. In fact, the volatility of demand, supply and monetary /
financial shocks explains, in general, more than 50% of the overall volatility, with their

relative importance being variable dependent and, sometimes, changing over time.

5.4 Results for longer forecast horizons

In Figures 10 and 11 we report the decomposition of the 12- and 36-steps ahead forecast
error covariance matrices into common and idiosyncratic components (results for longer
horizons are very similar to those for h = 36 and are available upon request). It is
interesting that for virtually all variables and periods the role of the common component
of volatility becomes even larger at longer horizons, suggesting that common shocks are
even more important than idiosyncratic shocks at long than at short horizons. Figures 12
and 13 further decompose the common volatility component into the contribution of the
supply, demand and monetary / financial shocks’ volatilities. The relative contribution of

each shock is rather stable across forecast horizons, but it is worth mentioning the larger
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importance at longer horizon of supply and monetary shocks for industrial production,

capacity utilization and unemployment.

6 Conclusions

Many economic variables feature changes in their conditional volatility, and stochastic
volatility specifications are commonly used in macroeconomic applications to model this
feature. In models with stochastic volatility, different shocks drive the levels and volatili-
ties of the variables, with volatility shocks left unexplained. In this paper we decompose
the shocks driving the volatility processes into the volatility of structural economic shocks,
in order to understand the relative importance over time of demand, supply and monetary
/ financial shocks as drivers of volatility.

The structural shocks are obtained from a Multivariate Autoregressive Index (MAI)
model, a particular reduced rank VAR that can be also interpreted as a factor model,
featuring stochastic volatility, over a large set of real, nominal and financial indicators.

We have developed a Gibbs Sampling algorithm for (Bayesian) inference, introducing
efficient strategies to reduce the computational burden.

Using the model with US data for the period 1964-2016, we have found that the
common component of volatility is substantial, it explains at least 50% of the overall
volatility for most variables, though the share is declining over time for some real variables.
Moreover, a large fraction of the common volatility component is driven by the volatility
of structural demand, supply and financial shocks, in general more than 50%, with their

relative importance being variable dependent and, sometimes, changing over time.
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Table 1: List of variables and composition of Factors

Variable F1 F2 F3
Employees (Total nonfarm) 1 0 0
; (1,2)
Average hourly earnings B, 0 0
Personal Income Bél’S) 0 0
Real Consumption Bél’4) 0 0
. . (1,5)
Industrial Production B, 0 0
. e (1,6)
Capacity Utilization B, 0 0
Unemployment rate Bé1’7) 0 0
Housing starts Bél’s) 0 0
CPI all items 0 1 0
. (2,10)
Producer Price Index (Farm & Foods) 0 By 0
. . . (2,11)
Implicit price deflator for personal cons. exp. 0 B, 0
. . (2,12)
Producer Price Index (Industrials) 0 By 0
Federal Funds, effective 0 0 1
M1 money stock 0 0 B(()S’M)
M2 money stock 0 0 Bé3’15)
. e (3,16)
Total reserves of depository institutions 0 0 B,
Nonborrowed reserves of depository institutions 0 0 B(()S’l?)
, .. (3,18)
S&P’s common stock price index 0 0 By
Interest rate on treasury bills, 10 year constant maturity | 0 0 B(()?”lg)
Effective Exchange rate 0 0 B(()S’QO)
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Figure 2: Volatilities of the structural shocks.

regions of the posterior distribution.
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Figure 3: Response of each factor to all shocks at NBER troughs. Means of the posterior
distribution.
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Figure 6: Response to a permanent Financial shock at NBER, troughs. Means of the posterior
distribution.
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Figure 13: Contribution (%) of the identified shocks over the common factor component to the
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Online Appendix for
“The Economic Drivers of Volatility and

Uncertainty”

The four sections of this online Appendix provide additional details on Gibbs Sampler
algorithm for the MAI-SV and MAI-SVCV models (Appendix A, B and C), and some
additional figures for the empirical application (Appendix D).

Appendix A Detailed steps of the Gibbs Sampler for
the estimation of the MAI-SV model

A.1 Stacking of the model

The observation equation of the MAI-SV model written as:

P

= A, - B _ 11
Yt Z ¢ 0 Yo+ U (11)
nx1 =1 pxr rXn

establishes that the observables in 1; depend on p lags of the r common components

By - yi—¢, plus an error term. The equation in 11 can be stated in a more compact

formulation.
Defining the nxrp matrix A = [Al e Ap} and the nxpmatrix 27 = |1 ... yi_p|,
we can define Z; as
Boyt—1
7, = : =wvec(By - z}),
Boyt—p
and since
P Boyi—1
Z AyBo -y = [A1 e Api| : ;
= BOyt—p
we can finally restate the model as
yt :A'Zt+ut. (12)
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A.2 Step 1: Draw a history of volatilities {o,},_,

This step concerns the draw of the (unobservable) stochastic volatilities conditional on
# = {A, By, G,Q,} and the indexes of Normal components of the mixture {S,},_,. The
order of these steps is in line with Del Negro & Primiceri (2015).

In order to draw the volatilities, we apply the triangular reduction of the errors u; =

G~1Y,e, to transform the model in the following way:
Yy =A-Z+ G 'Sy,

Gy — A Zy) = ey,
S —

Yt

i/vt = et

Moreover, using the Hadamard product operator, we can first write

€1t O1t €1t
Eat O2¢ €2t

Mg =2 | | = ) =0y © &y,
gn,t Un,t 5n,t

and taking the square element by element on both sides of y; = ¥,&;, we obtain:

~2 2 2
Y1 01t €1
~ 2 2
05, €
2 2 2 9 Yot 2.t €2t
)" = (Beer)” =0, O — . = .
~2 2 2
yn,t On,t 2gn,f

We add on the left hand-side a small constant!! & = 1072 and apply the logarithm on

The addition of a small constant term has numerical stability purposes, as explained in Fuller (2009)
and Primiceri (2005).
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both sides!? in order to break the non-linearity, to obtain:

log (gjft +¢) log o1, log €7,
log (g}’%’t—i-é) ) log 09, N log &3,

log (y2,+¢) log 0,4 log €2,

y; = 2log oy + log [(et)'Q] .

Since &; Y MN (0, 1,), each term log eit has a log x? distribution, and log [(Q)Q] is a
vector of independent log x? random variables.

Then, conditioning on {St}thl, i.e. the sequence of n x 1 vectors that specify the
indexes of Normal components of the mixture, the vector log [(et)'z] has the following

Gaussian distribution:

m 1 [me 0 0 |
S1,t S1,t
. mg, 0 mj
log [()?][{Si}_y ~ MN . o
mg' 0 e 00omy
Pt 'E

Hence, given the Gaussian distribution of log [(@)‘2] ’ {St}thl, we can define the needed

state space form as:

ﬂ::¢t+210g0t+@, Ct"z-’MN(O, Tt),
10g Ot = 1Og o1+ Vo ts Vot Z’Z\gl MN 07 Qa
~—

nxn

At this point, the Forward Filtering Backward Sampling (FFBS) procedure, introduced
by Carter & Kohn (1994), can be implemented to draw a history of volatilities {at}tT:l.
The procedure is described below. For simplicity we define o, = log oy, since the FFBS

procedure is implemented on the log-volatilities.

.2 9
1ONT - ps s a| |loga al” _|a
Noticing that log {b} = [log b]’ and [b] = [62].
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The filter can be initialized at the following values:

dojo = log(a), Py 00 = Fs,

where log(c) and P, are respectively the mean and the covariance matrix of the prior
distribution of log oy.

Recursively, for each (5t_1|t_1, Pa,t—ut—l), we compute the filter:

Py i1 = Py i—1jp—1 + Qo
~1
Koy =2F; 11 <4Pa,t|t71 + Tt) ;
Oyt = Og—1jp—1 + Koy @Z‘ — 20 1j4-1 — SOt) )
Pa,t\t = Pa,t|t—1 - 2-Kva,t‘PU,thf—l-
Having an entire set of updating and prediction steps (5t|t, Py it Pa,t|t—1)tT:1 , we start to
sample backward, beginning by sampling o7 from MN ( orr, Porr ), and then for each
t e {T—-1,T—-2,...,2,1} we sample recursively each &; from MN ( Tjt41> Pttt )
where:
~ o ~ _1 ~ ~
Otjt+1 = Ot + Pa,t\tpa7t+1‘t (Ut+1 - Ut\t) )

—1
Pa,t|t+1 = Pa,t\t - Pa,t|tP Pa,t\t-

o, t+1]t

A.3 Step 2(a): Draw 6| {0;},_,
A.3.1 Substep 2(a).i: Draw the covariance of volatilities’ innovations @,
Conditioning on {at}tT:O, we can draw the covariance matrix (),. Indeed, recall that:

log oy = log o1 + Vo, Vgt “ MN | 0, Q,
<~

nxn

But then, having a complete history of the sigmas, given the random walk law of motion,
is equivalent to having a complete histories of innovations v,,. Stacking the v,, across

time, we get:

*
Vo = [Va,l Voo ... Vor|>
~—

nxT
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and we can easily compute the innovations sum of squares matrix:

* */
Se = v, v .
\/ v
nxn nxT Txn

If the prior on the matrix Q, is a n x n Inverse Wishart with scale matrix Q, and degrees
of freedom 7, :

QU ~IW, (Qm 7—0,0) )

then the posterior is conjugate and given by:

Q| {1}y ~ Do (S0 + Qs 700+ 7).

A.3.2 Substep 2(a).ii: Draw the loadings A

To draw the loadings contained in A, we rewrite the model in (12) in the following stacked
form:

Y 7z uy

AN

Yr Zy up
— . /

y = 74 - A +u.

Txn TXrp rpXn

Defining a = vec (A’), and exploiting the Kronecker properties, the stacked form can be
vectorized and transformed into:

vec(y) =wvec(Z - A" - I,,) + vec (u),

Y =(,®Z) _a +U,

nT'x1 nxXnrp nrpx1

where U has the following distribution:

U ~MN| O V,
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and

QD 0 Qo 0
0 ng) : e lev")
. S 5 0
0 0 Qb 0 0 Qi
V. = _
Qml g 0 SO 0
0 an 1) 0 an n)
0 : 0
0 0 Qb 0 0 QF)

T
Z [ @ (e - €})]
t=1

To use an informative prior on a, we follow the approach in Gelman et al. (2014). The
strategy incorporates the prior as observations. Considering a multivariate normal prior

with the following moments:

a~MN(a, V, ),
it is possible to augment the model with nrp observations that express the prior informa-
tion:
Y I, ®Z U
a+ ,
a Ly U,

YO = ZOCL—F UO, (]<> ~ MN( 0nT+’n7”p7 Vo )7

VO _ Vu OnT Xnrp

Om"anT ‘/a

A draw for a then comes from the following posterior:
a ~ MN ( '&/, (Zolvoflzo)—l > ’
a= (Zolvoflzo)—l Z<>/V<>71Yo.

In order to decrease the computational burden of this step throughout the sampling,

we adopt the strategy proposed by Carriero et al. (2019). In particular, the triangular
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representation of the system is exploited, and coefficients are drawn equation by equation.
The approach proposed in Carriero et al. (2019) and its generalization to allow for time-

varying covariances is analytically documented in the appendix (section C.2).

A.3.3 Substep 2(a).iii: Draw the factor weights elements in B

Given the restrictions and the non-linear role of By, a Random Walk Metropolis step on
the posterior kernel of each element of By is implemented, nested into the Gibbs Sampling
algorithm. In order to do this, we first write the likelihood of the model.

Given the reduced form VAR written as:

w=A Z+u, Ut’iJMN(O;Qt),

conditioning on all other elements and using the chain rule, we can write the likelihood

kernel as:

f <(yt)tT:1

AL, By ) (le—%)exp{—%Z ~A-2) Qt1<yt—A~Zt>}.

t=1 t=1

*

Next, let us consider the r* = n — r scalar unrestricted elements of By, i.e. (bo,j);:1
Then, Vj € {1,...,r*}, we can define the set by ;- = (b075)s;£j‘
For a given prior f (by ;) on each element by j, we can write the kernel of the conditional

posterior of by ; as:

Foost (B0l (s 21 s Ay by ) o f (@Fa| A Boy ()11) - f (o).

We are now ready to design the Metropolis step, separately for each j. Given the last

step Bé_l, a random walk candidate is computed as:
ba,j - sz)jjl + Cj - M,

where ¢; is a scaling factor calibrated to have an acceptance rate of approximately 30%-
35% and CN (0,v,), where v; is the variance of the prior f (by ;). The candidate draw
is accepted with probability:

Frow (5] (s 7)1y 0 AL L)

i i—1\T i—
fpost (boJl (yt,Qt 1)t=1’ A7 b07j1,>

aj =min ¢ 1,
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When the candidate is accepted, then bé,j_ = bg,;, otherwise bgg_ = bf)_ja Repeating this
procedure for Vj € {1,...,r*}, we obtain a draw B} from the distribution of interest.
A.3.4 Substep 2(a).iv: draw the off-diagonal elements in G

To draw the off-diagonal elements in GG, we restate the reduced form as:

yp=_A - Z +u,

nXrp  rpx1
Yy — A Zy = G ',
U = G_lztgt,
G-y = Yies.

Removing ones from the diagonal of G, and bringing off-diagonal elements on the right

hand side, produces:
G=1,+G".

This can be combined in the model to obtain:

(In+G") e =2 &,

h=—G"y+ X e

Exploiting the Kronecker properties, we then get:

~~~

nXxXn pxi

— 1, G 5 =—(1,27y,) vec(G"),
—_—— ——

nxn? n2x1

where vec (G*) have zeros in positions [(: — 1) n + j]ﬁ%’;ﬁ

obtain exactly the elements below the main diagonal of G, gathered in the m-dimensional

By removing the zeros, we

vector g. Removing the corresponding columns in — (7, ® ¥;), we construct the matrix

46



Wy, which has the following form:

O 0
e 0 :
W, — 1 0 Ui Tor 0 oo
~~ 0 0 0 Gis Gow ot O eornoneieeeiin,
o o0 o0 o0 0 0 . .o : : : 0
O 0 Uit Uox Usu Un—11

We can then rewrite the model as:

Y = _G*@\t + Etgt)
U= — (I, @ 7,) vec (G¥) + Liey,

=W, g+e;, ef ~ MN (0,1, 57 ).

Next, we stack the model as:

) Wi €1
Yo Wa €5

= . g+ .|
Yr Wr ET

\@;:\I/I’//'\.g’/—f_g*? 5*NMN(O7LT><1’ 22)7

nTx1 Tnxm mx1

where Y is the diagonal matrix containing all the stacked stochastic volatilities vectors in

/
E:Diag([ai gy ... U’T]>-

We can then use a similar approach as the one implemented for a, following Gelman et al.

the main diagonal:

(2014). Specifically, given the prior :

g~ MN (g, Vy),
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we augment the model with r observations that express the prior information:

g+
€g

ye = Weg+e® &~ MN(O0urim, V2,

o 22 OnTXm
0

mxnT ‘/g

A draw for g then comes from the following posterior:
g~ MN < 57 (Wolvao—lwo)—l ) ,

E _ (WO/VE<>71W<>) -1 Wo/vvaofli}o'

A.4 Step 2(b): Draw a history of indexes of the mixture {S;}/_, |6, {o,},_,

Starting from the following formulation seen in Step 1 of the algorithm
y; = 2log oy + log [(st)'Q] ,

we can notice that, since g, % MAN (0, 1,), each term log €2, has a log x} distribution,
and log [(gt)'Q] is a vector of independent log x? random variables.
Omori et al. (2007), improving upon Kim et al. (1998), show that the log x? distribu-

tion is very well approximated by a mixture of ten Normal distributions:

10
froge (2) =Y mP f (x| m,mY)
j=1

where m? , m7" and mj are contained in the following table:

ERN S D D 1 ) I

6| 7| 8 9 10

m’jy 0.00609 | 0.04775 | 0.13057 | 0.20674 | 0.22715 0.18842 0.12047 | 0.05591 0.01575 0.00115
mi* | 1.92677 | 1.34744 | 0.73504 | 0.02266 | —0.85173 | —1.97278 | —3.46788 | —5.55246 | —8.68384 | —14.65000
m? | 0.11265 | 0.17788 | 0.26768 | 0.40611 0.62699 0.98583 1.57469 2.54498 | 4.16591 7.33342

J
Therefore, in order to have a conditionally Gaussian measurement equation, we should

condition each element of the vector log [(5,5)'2} on the index that specifies the Normal

components of the mixture. Defining the n x 1 vector S; that contains the indexes of
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components in period ¢, we can write

S1t

St : |, where [10g 5f21,t‘ Shit :]} NJ\/'(mT,mg).

Sn,t

Conditioning on a history of volatilities (O‘t>T we can restate the model as

=1
log [(gt)'Q] =7y — 2log oy,

Then, the element s;; that indexes the specific component from which log 5%,1‘, is drawn,

has support J = {1,...,10} and the following discrete probability distribution:

m? far (U5, — 2log Ope| M, m?)

vield P = I Unss0t) = = '
J € r e = 154 01 S0 m? f (Tr, — 2log one| mm, m?)

Independent draws for all variables h € {1,...,n} at all periods ¢t € {1,...,T} from this

distribution will form the new history of indexes of mixture’s components {S;},_, |0, {0\ },_,.

Appendix B Detailed steps of the Gibbs Sampler for
the estimation of the MAI-SVCYV model

The MAI-SVCV model has time-varying off diagonal elements in the triangular reduction
uy = Gy 'Se;. Therefore, we have to substitute SubStep 2(a).iv with two Substeps: the
first one draws the elements {gt}thl, and the second one the covariance matrix of their
innovations ). The Gibbs sampler in which the rank reduction of de Wind & Gambetti
(2014) is not applied, and hence matrix @), is full rank, is similar to the one described
in Primiceri (2005). If the rank reduction of de Wind & Gambetti (2014) is applied to
attenuate the curse of dimensionality, the draw of { gt}thl is further split into two substeps.
The following subsections will provide further details on the procedure needed in the case
of reduced rank of @), following de Wind & Gambetti (2014), which is more general than

the full rank case.
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B.1 Alternative SubStep 2(a).iv for the MAI-SVCV: Draw a
history of TV off-diagonal elements {gt}?zl
Using the rank reduction strategy of de Wind & Gambetti (2014), the vector g, is decom-

posed as:
g = Aggt + MgQOa

with
1
A, =V, Dy, My, =1, —A, (A’gAg) A;,
qur qug qQqu

where D, is the diagonal matrix containing the square roots of the g, non-zero eigenvalues
of Q,, while V; is the matrix whose columns are the associated eigenvectors (normalized
to unit length). Mgy represents the time invariant residual and g; is the g,-dimensional

stochastic vector of TV components, having the following law of motion:

- - ~ ~  iid

gt = Gt—1 + Vg, Vgt ~ MN ( 0, I, ) :
~—
ggx1

As in de Wind & Gambetti (2014), the transformed time-varying components A,g;
and the non-TV component M gy are drawn separately.
In order to build the state space form, we first transform the reduced form of the

model in the following way:

Yy = A-Zy + G ey,

Yt — A- Zt = G[IZtat,

Yt

Gy gt = &

Removing ones from the diagonal of G, and bringing off-diagonal elements on the right

hand side, produces:

This can be inserted in the model to obtain:

(In+ GY) yr =24 &4,
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Exploiting the Kronecker properties, we get:

— I, G U =-.®F) vec(Gy),
~— —_—— —

nxn nx1l nxn? n2x1

where vec (G}') have zeros in positions [(i — 1) n + j];ee{{llﬁ

obtain exactly the elements below the main diagonal of G;, gathered in the vector g,.

By removing the zeros we

Removing the corresponding columns in — (7, ® y;), we construct the matrix W;, which

has the following form:

I 0
Ure 0

W, = —1 0 Tit Dot 0 oo

—~ 0 0 0 Tit Yot Usx O orvviriiiiiiina...
O 0 0 0 0 0 " . 1 ooioiotg
0 0 Tt Tow Ut - Ynta

Hence, we obtain a measurement equation with g, as states:

u = -Gy + Liey,
U= — (I, @ ;) vec (G}') + L&y,

y = Wi g + Siey.

B.1.1 SubSubStep: draw a history of TV components {’g’;}le

Let us consider the de Wind & Gambetti (2014) decomposition on the m-dimensional
process gi:

g = Aggt + MgQO: Qg = Ag A;:
~—

mxqy

and plug it into the measurement equation:

U = Wigy + Ziey,
y — Willggo = Wiy - g + Siey,

@f = Wt* gt + Xy

o1



The resulting state space form is:

~x s~ iid
Yy = Wige + Yier, e~ MN (O, I, ),
~ ~ ~ ~ iid
\gi/:gt—l‘f‘Vg,t, @NMN(O, qu).
ggx1 ggx1

The FFBS procedure can be implemented to draw an history {gi}; The filter, following
de Wind & Gambetti (2014), can be initialized at:

50\0 = Ryg Py000 = RngR;.

where
Ry = (ALA,) " AL

B.1.2 SubSubStep: draw a vector of time invariant component Mg, of g

We operate the following transformation

U = Wige + Siey = Wi (M gge + Mygo ) + Eiey,

y— Wikgge = Wy, Mygo + Xy,
— ~—

:/U\; Hg,0 €t

to obtain the regression model of interest:

. ~ - iid .
yt:Wt ,Ug,()‘}'c‘:t, EtNMN(O, ZtQ).

We want to impose the ¢, < m restrictions given by:

Ry pgo = 0g,x1-
~ N~

ggxr rxl1

Stacking the time dimensions in columns, we write the restricted regression model as:

Too 0 et £ e MN (000,57,
nTx1 nTxm nTx1

Ry 190 = 0gyx1.
~
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Then, given the prior for g, and the unrestricted Bayesian regression moments:

QONMN(Q, Pg)a

W, = (WS=2W + P17

by =, <W’2"2 Y4 Pg—lg) ,
the sampling posterior distribution for p,q is given by:

/v‘g,ONMN(ﬁgyov Py, )7
/jgvo = \Il#gwm Pﬂg = \Ilﬂg‘;[jfﬁ

v, =1, — VR (R,W,R)"R,.

B.1.3 SubSubStep: sum the TV and non-TV draws of ¢,

We can now sum the draws obtained in the two previous substeps:

gr = Nggr + Mygo, vie{1,...,T},

finally obtaining a history of time-varying off-diagonal elements (gi)tT:l.

B.2 Additional SubStep 2(a).v for the MAI-SVCV: Draw a re-

duced rank covariance matrix ),

e T : :
Conditioning on the drawn {g;},_,, we can draw the reduced rank covariance matrix Q,.

Indeed, since:

iid
gt = 9t—1 + Vg, Vgt ~ MN | o0, Qq )
~~~

rXr

having a complete history (gt)thl, given the random walk law of motion, is equivalent to

having a complete history of innovations v,,. Stacking the v,; across time, we get:

Yy :[VQJ Vg2 oo VgT|>

rxT
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and we can easily compute the innovation sum of squares matrix:

S * */
Sy = v, v, .
~ =~ =~
Xm mxXT Txm

By construction, the rank of S, would be g, < m. Hence, if the prior on the matrix @),
is an m x m Singular Inverse Wishart with rank g, < m, scale matrix @, and degrees of

freedom 7, o:

Qg ~ SIW, (ng 7970) ;

then, the posterior is conjugate and given by:
i\ T A
Q] (91) o ~ STV, (Sg + Qg g0+ 1)

Section C.1 in the appendix discusses how to compute efficiently a draw from a Singular

Inverse Wishart distribution.

Appendix C Additional details for the GS

C.1 Procedure to draw from a Singular Inverse Wishart distri-

bution

Consider the m x m matrix = having the following SZW distribution:

= o~ q
=E~SIW,! ( S d) ,
mXm
where S is a scale matrix, d the degrees of freedom, and ¢ is the rank of both = and S.
Following Bodnar & Okhrin (2008) and Diaz-Garcia et al. (1997), and applying some
modifications tailored at improving the algorithm efficiency, it is possible to draw from

the distribution of = through the following steps:

1. Construct the Moore-Penrose pseudoinverse S™ of the scale matrix S. Moore Pen-
rose computation follows the highly efficient Qrginv algorithm proposed by Ataei
(2014).

2. Construct the diagonal matrix Ag containing the non-zero eigenvalues of S™ in the

axq
main diagonal, and the matrix Ug whose columns are the associated eigenvectors.
~—~

mXq
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3. Draw d independent vectors _ Z  from the multivariate normal MN ( 0, Ag ) and
gx1
stack them as columns in the matrix Z .
d
gx

4. Construct the matrices Z = USZ and W = ZZ'. The matrix W is a draw from
~~~ ~~~
mxq mxm
a Singular Wishart distribution with scale matrix St and d degrees of freedom.

5. Compute the Moore—Penrose pseudoinverse W+ of W. The matrix = = W+ is a

draw from the Singular Inverse Wishart of interest.

C.2 Procedure to draw variable-specific coefficients with trian-

gular structure of heteroskedastic innovations

This approach generalizes the one proposed by Carriero et al. (2019). Consider the follo-
wing multivariate regression, with variable-specific coefficients, common regressors across
equations, and heteroskedastic errors, whose time variation can be decomposed through
a standard triangular reduction.

We are considering the following model:

VtE{l,,T}, Zt = 0 - Ft + U s Ut’z—’MN O, Qt s
nx1 nxk kx1 nx1 nxn
iid
Qt = WtEtEtWt/, Ut = Wtztéft, Et ~ MN( 0, In ) ,
where
! 0 0] )
W1,
wl,t 1
| wage _n(n—-1)
Wt = wQ,t w37t 1 s wy = s m = T,
nxn : : . . mx1
: : - 0
_wm,t
| Wm—n+2t Wm—n+3t -+ Wnt 1_
O-l’t O “e . 0 O-I,t
0 o094 - 02,
Zt = & s Ot =
nxn ' nx1
0 0 Ont _Un,t
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When n - k gets large, it is convenient to split the previous system in n sets of univariate

equations. Indeed, splitting © in row vectors it is possible to write the system as:

;

O, 210 =0 - By +oeny
02,1 Zop = O+ Fy + w1 014€1¢ + 02,4824
0= —
o, .
] [ Znit = O, - Fy 4 Wi 2401461 + -+ Wi 4 On—1,4En—1,t + OpiEny

0 0 0
W1 ¢ 0
* . .
Wt = Wa ¢ W3t 0 . = W — ]'m
~—~
nxn 0
| Wm—n+2t Wm—n+3t .. Wy O_
and
*
& = Wt i€t

can be written as:

4
21— &1 =0p - By + o1,

Zo4 — o = Oy - Py + 09,404

\Zn,t - gn,t = e[n,:] : Ft + On,t€nt

This system is constituted by the following set of n separate equations:
V] € {17 o an} ) Zjt — gj,t = H[Q,} : Ft + 5;,1‘5 5;,1? ~ N (07 0]2',t)

Notice that for j > 2 each §;; depends on {5{7“ o ,5;_1’t}, since only the first 7 — 1

elements of the j-th row of W, are non-zero.

T

+—1, and given the following priors on the elements

Then, conditioning on (W}, oy, F})
of ©:

Vie{l,...,n}, vec (HU,;]) ~ MN( 0.1, Vio )

)

it is possible to design the following recursive procedure to draw from the posterior of ©.
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Starting from j = 1:
— * * 2
~1,t fl,t = 9[1,:} B+ €10 E14 7™ N (O» U1,t)

and given that V¢,&;, = 0, it is possible to draw from the posterior of ;. using the

following stacked regression:

oj; 0 0
“11 By 0 o2, :
= - vec (9[1’;]) -+ ET, 8>{ ~ MN O, ) 1,2 . . ,
s o 0
ar]  Fr 0 0 o
1T

using the prior
vec (8[17:]) ~ MN( 9_[1,:], Vie ) i
Then, setting the initial condition gj_u = 0 and the posterior draw 5[17:] , the recursive
step for any 7 > 2 is:

1. The posterior draw vec <9U71,:]> is used to compute the following Vi:

~ - ~
i1 = Zj—1t — §—10 — Opj—1,0F4,

%

€1t
= _ *
gj,t - Wt

7[j7::| )

2. The following stacked regression is used to draw from the posterior of 6j;;:

- / o7, 0 0

zj1 = & R 0 o2 .

lop P

: = | i | -vec(fyy) + g, g~MNIO, | 32 :

~ . el T 0

21,7 — § i, T F;
’ ’ 0 0 o2y
using the following prior distribution: vec (H[j,:]) ~ MN ( ém, Vie )

Repeating this iteration until j = n, we have drawn from the conditional posterior:

(Wt*a O¢, Ft7 Zt)le .

/
/ / /
[[1,:1 O - e[m]}
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If W} is non time-varying, the above procedure is implemented in the same way as in
the TV case, simply by considering that V¢ we have W/

=W
L3 L3 L3 .
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Figure 14: Response to a permanent Demand shock at horizon h = 1. Posterior bands.
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Figure 15: Response to a permanent Demand shock at horizon h = 12. Posterior bands.
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Figure 16: Response to a permanent Demand shock at horizon h = 48. Posterior bands.
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Figure 17: Response to a permanent Supply shock at horizon h = 1. Posterior bands.
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Figure 18: Response to a permanent Supply shock at horizon h = 12. Posterior bands.
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Figure 19: Response to a permanent Supply shock at horizon h = 48. Posterior bands.
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Figure 20: Response to a permanent Financial shock at horizon h = 1. Posterior bands.
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Figure 21: Response to a permanent Financial shock at horizon h = 12. Posterior bands.
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Figure 22: Response to a permanent Financial shock at horizon h = 48. Posterior bands.
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