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THE ECONOMIC DRIVERS OF VOLATILITY AND UNCERTAINTY 

by Andrea Carriero*, Francesco Corsello** and Massimiliano Marcellino*** 

Abstract 

We introduce a time-series model for a large set of variables in which the structural 
shocks identified are employed to simultaneously explain the evolution of both the level 
(conditional mean) and the volatility (conditional variance) of the variables. Specifically, 
the total volatility of macroeconomic variables is first decomposed into two separate 
components: an idiosyncratic component, and a component common to all of the 
variables. Then, the common volatility component, often interpreted as a measure of 
uncertainty, is further decomposed into three parts, respectively driven by the volatilities of 
the demand, supply and monetary/financial shocks. From a methodological point of view, the 
model is an extension of the homoscedastic Multivariate Autoregressive Index (MAI) 
model (Reinsel, 1983) to the case of time-varying volatility. We derive the 
conditional posterior distribution of the coefficients needed to perform estimations via 
Gibbs sampling. By estimating the model with US data, we find that the common 
component of volatility is substantial, and it explains at least 50 per cent of the overall 
volatility for most variables. The relative contribution of the demand, supply and financial 
volatilities to the common volatility component is variable specific and often time-
varying, and some interesting patterns emerge. 
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1 Introduction1

The seminal paper by Engle (1982) emphasized the importance of changing conditional

volatilities in economic and financial variables. The ensuing literature on this topic is

extensive, starting with time-series contributions but then entering also the mainstream

economic literature, with the debate on the Great Moderation’s origin, see, e.g., Primiceri

(2005), Cogley & Sargent (2005), Sims & Zha (2006), and Fernández-Villaverde & Rubio-

Ramı́rez (2013).2 After the 2007 financial crisis there seems to be growing consensus

on the importance of allowing for economic and financial shocks with particularly large

variance during crisis periods, see for example Abbate, Eickmeier, Lemke & Marcellino

(2016) and references therein.

While there is by now a large literature modeling volatilities as stochastic and time-

varying, the economic identification of the shocks driving this variation in conditional

variances has not been investigated. This is in stark contrast with the mainstream ap-

proach to study the effects of identified structural shocks on the conditional mean of

macroeconomic variables as laid out in Sims (1980).

This paper introduces a model in which the identified structural shocks are employed

to simultaneously explain the evolution of both the level (conditional mean) and the

volatility (conditional variance) of macroeconomic variables. In particular, we provide

a strategy to decompose the total volatility of each macroeconomic variable, into two

separate components: an idiosyncratic component, and a component common to all of

the variables, which is often interpreted as a measure of uncertainty (see e.g. Jurado,

Ludvigson & Ng, 2015 and Carriero, Clark & Marcellino, 2018). The common volatility

component is further decomposed into three parts, respectively driven by structural de-

mand, supply and monetary / financial shocks. All these components are orthogonal to

each other, so the proposed decomposition provides a measure of the contribution of each

source to the total volatility.

Methodologically, the model is an extension of the homoschedastic Multivariate Auto-

regressive Index (MAI) Model of Reinsel (1983) and Carriero, Kapetanios & Marcellino

(2016) [CKM16 henceforth] to the case of time varying volatility (MAI-SV). We derive

the conditional posterior distributions of the model parameters, which are then used for

the development of a Gibbs sampler algorithm. A key feature of our approach is the use

1We would like to thank Marco Del Negro, Barbara Rossi and participants at the GSE Summer
Forum on Time Series Econometrics for useful comments on a previous draft. Marcellino is grateful to
the Baffi-Carefin center for partially supporting this research.

2From a reduced form perspective, Clark & Ravazzolo (2015) reports evidence that introducing sto-
chastic volatilities improves the forecasting accuracy for macro-financial variables, strengthening the evi-
dence already gathered by D’Agostino, Gambetti & Giannone (2013) and Carriero, Clark & Marcellino
(2015).
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of a large information set, which is essential to avoid non-fundamentalness of the shocks

and omitted variable bias, but requires efficient strategies to reduce the computational

burden resulting from the large number of unobservable state variables.

Carriero, Clark & Marcellino (2016, 2018, 2019) also analyze small and large VAR

models with a factor volatility structure, where each volatility is decomposed into com-

mon and idiosyncratic components. Yet, in those papers the factor volatility structure

is imposed a priori, while in this paper it emerges as a consequence of the reduced rank

restrictions. Moreover, while in those papers the common volatility component is unex-

plained, here it is linked to the volatilities of the structural shocks driving the indexes.

Further, in those papers only the variances of the errors are time varying, while here the

covariances can also change over time. Finally, the estimation algorithm is different, as

here we need to take the nonlinearity of the conditional mean into account.

We estimate the MAI-SV model using a dataset of 20 macroeconomic and financial

variables for the U.S.3. We use a common Choleski ordering to identify the demand,

supply and monetary / financial shocks in the VAR for the indexes. While simple, in our

application this identification scheme produces results in line with economic theory. In

particular, a (positive) demand shock boosts the output factor, the financial factor and,

to a lesser extent, the price factor; a (negative) supply shock increases prices, reduces

the real output factor, and overall has non significant effects on the monetary / financial

factor; and a (negative) monetary / financial shock lowers the real output factor and has

negative, though barely significant, effects on the price factor.4

The demand, supply and financial structural shocks appear as important drivers not

only of the level of macroeconomic and financial variables but also of their changing

conditional volatility. The volatility of the three structural shocks explains, in general,

more than 50% of the overall volatility, in line with the results in Carriero et al. (2018)

obtained with a different model for the conditional means and variances. The relative

importance of the estimated volatilities for the structural shocks varies substantially across

different variables, and in some cases it changes over time.

The common component of volatility seems to have broadly diminished its importance

over time for real variables, while it is rather stable and substantial for nominal variables

(much more so for CPI and the PCE deflator than for PPI). A similar pattern emerges

also for the financial variables, with the common component explaining about half of the

variation in the volatility of the Fed Funds rate and the 10 year T-Bond. Finally, the

3The series included coincide with those in Bańbura, Giannone & Reichlin (2010) and Carriero et al.
(2016), but for an extended period that covers 1964-2016.

4Our methodology could be also applied with different identification schemes, such as those discussed
in Kilian & Lütkepohl (2017).
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role of the common volatility component in explaining the volatility of the S&P500 is

remarkably high.

In terms of the role of the various structural shocks, we find that demand shocks

are clearly dominant in explaining the volatility of industrial production and capacity

utilization. The same applies to employment, but only at the beginning of the sample:

for this variable the role of demand shocks has progressively declined in favor of supply

and monetary/financial shocks. Supply shocks are dominant in explaining the volatility

of the nominal variables, in particular for CPI and the PCE deflator. With regards to the

common volatility of financial variables, the contribution of different structural shocks

is overall comparable and rather stable over time. The monetary / financial shock is

particularly important to explain the common component of the S&P500 volatility, but

even for this variable it only explains about 50%, with the other 50% close to equally split

between demand and supply shocks.

From an economic point of view, the volatility of the structural demand shock could

be related to changes in the inventory mechanism (e.g., McConnell & Perez-Quiros, 2000)

or to the globalization process (e.g., Bianchi & Civelli, 2015), while that of the supply

shock can depend on the behavior of the oil market (e.g., Lee, Ni & Ratti, 1995) or on

firms’ productivity (e.g., Christiano, Motto & Rostagno, 2010), and the volatility of the

financial/monetary shock can be influenced by financial innovation (e.g., Dynan, Elmen-

dorf & Sichel, 2006) or by changes in the conduct of monetary policy (e.g., Clarida, Gali

& Gertler, 2000). Justiniano & Primiceri (2008) introduce a DSGE model with stochastic

volatility in several structural shocks. Specifically, they find that a reduction in the vari-

ance of investment shocks, interpreted also as a proxy for unmodeled financial frictions, is

the main driver of the US Great Moderation, with a limited role for changes in monetary

policy. Their evidence is somewhat in line with our common volatility decomposition that

shows the gradually decreasing role of the monetary/financial shock contribution from the

1980s to the Great Financial Crisis. However, our structural decomposition is based on

the common part of the volatility which is only a fraction of the total volatility. Moreover,

Benati & Surico (2009) show that it can be difficult to map changes in the variance of

structural VAR shocks with those in DSGE models.

The remainder of the paper is structured as follows. Section 2 describes the model.

Section 3 introduces the volatility decomposition. Section 4 presents the choice of prior

distributions and develops the MCMC algorithm for estimation, with additional details

provided in the appendix. Section 5 discusses the empirical results. Section 6 concludes.
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2 Description of the model

This section presents the econometric model used in the paper. The model is an extension

of the homoschedastic Multivariate Autoregressive Index (MAI) Model of Reinsel (1983)

to the case of time varying volatility.

Let yt be a n-dimensional vector containing the variables of interest, and consider the

following model:

yt =

p∑
`=1

A`B0 yt−` + ut, (1)

where A` are n × r matrices, ` = 1, . . . , p, B0 a is r × n matrix, and ut
iid∼ MN (0,Ω)

is a vector of i.i.d. disturbances. The product A`B0 is then a sequence of n-dimensional

reduced rank (r) matrices, ` = 1, . . . , p, and defining Φ` = A`B0 makes clear that the

model above is a constrained VAR. One advantage of the rank-reduction is that as the

dimension of the cross-section n increases, the model remains relatively parsimonious, as

long as r � n. A second important advantage is that the terms B0 yt−` and A` have a

straightforward interpretation as a set of r indeces (or factors) and their loadings.5 This

model was originally named Multivariate Autoregressive Index model (Reinsel (1983)). If

we define the observable factors as:

Ft ≡ B0yt, (2)

the MAI model in (1) can be written as:

yt =

p∑
`=1

A` Ft−` + ut. (3)

As pointed out by Carriero et al. (2016) [CKM16 henceforth], by pre-multiplying (3) by

B0 it is apparent that the MAI model implies a V AR(p) representation for the factors:

Ft =

p∑
`=1

C`Ft−` + ωt, (4)

5Of course, as it happens also in factor models and in cointegrated VARs, it is the case that one can
rotate these matrices arbitrarily, e.g. A` ·B0 = A`Q

′ ·QB0, where Q is an orthogonal matrix, and hence
identification restrictions are needed to pin down only one of these possible rotations. Identification can
be straightforwardly achieved e.g. as in Reinsel (1983) by assuming that the first r rows and columns of B

are an identity matrix, B0 =
[
Ir B̃0

]
. Here we follow a similar approach in which the only difference

is the position of the columns of the matrix Ir. In addition, due to the grouping of the variables, we also
impose some additional zero restrictions, see Section 4 for details.
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where C` = B0A`, ` = 1, ..., p, and ωt
i∼ MN (0, Ξ), with Ξ ≡ B0ΩB′0. Grouping (3)

and (4), we obtain a factor augmented VAR (FAVAR) - type model, with the notable

difference that the factors of the MAI model are observable, while the factors of a FAVAR

model are considered as unobservable. In addition, the VAR model for the factors is

imposed in FAVARs, while in our framework it is a consequence of the MAI model for

the variables. Furthermore, factors in FAVAR are in general orthogonal, while here they

can be correlated.

In this paper we generalize the MAI model by allowing the disturbances to have time

varying volatility:

ut = G−1
t Σtεt, (5)

where εt
iid∼ MN (0, In), and:

Gt =



1 0 . . . . . . 0

g1,t 1
. . .

...

g2,t g3,t 1
. . .

...
...

...
. . . . . . 0

gm−n+2,t gm−n+3,t . . . gm,t 1


, Σt =


σ1,t 0 . . . 0

0 σ2,t
. . .

...
...

...
. . . 0

0 0 0 σn,t

 .

Hence, the reduced form MAI errors become ut
i∼MN (0,Ωt), with Ωt = G−1

t ΣtΣ
′
tG
−1′
t ,

so that both the variances and the covariances are time-varying.6

Following Primiceri (2005), we specify the following law of motions for the n-dimensional

vector of (log) standard deviations σt and the m-dimensional vector (m = n (n− 1) /2)

of off-diagonal elements gt = (g1t, g2t, ..., gmt)
′:

log σt = log σt−1 + νσ,t,

gt = gt−1 + νg,t,

with νσ,t
iid∼ MN (0, Qσ), νg,t

iid∼ MN (0, Qg), and ∀(t, h), νσ,t ⊥ νg,t+h.

Note that the errors in the V AR(p) for the observable factors Ft also feature time

variation in their volatilities. Specifically, the disturbances to the factor VAR in (4) have

the following distribution:

ωt
i∼MN (0,Ξt) , (6)

where Ξt ≡ B0ΩtB
′
0. The equations in (3) and (4), augmented with the error specifications

6Any positive definite matrix Ωt can be decomposed as Ωt = G−1t ΣtΣ
′
tG
−1′
t , while of course other

decompositions are possible.
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in (5) and (6), are similar to a FAVAR model with stochastic volatility (SV) in both the

(observable) factors and idiosyncratic errors.7

When the model has a large number of variables, the off-diagonal elements contained

in Gt can create a computational bottleneck. For example, in a model with 20 variables

as in our empirical application, gt becomes an 190-dimensional stochastic process. For

this reason, in our empirical application, we consider two versions of the model. The first

version only features time variation in the volatilities, while the covariances gt are assumed

to remain constant over time. We will refer to this model as MAI-SV. The second version

of the model features time variation also in the covariances. We will refer to this model

as MAI-SVCV.

3 Decomposing volatility

In this section we present an approach to decompose the total volatility of the variables

yt into orthogonal components. This is achieved in two stages. In the first stage, we

decompose total volatility into a part which is common to all variables, which can be

interpreted as a measure of uncertainty, and an idiosyncratic component. In the second

stage we further decompose the common component into parts, each corresponding to a

different structural shock.

3.1 Common and idiosyncratic volatilities

We start with decomposing the total volatility into two parts, a part which is common to

all variables, and an idiosyncratic component. CKM16 introduce the following identity:8

In = ΩB′0Ξ−1B0 +B′0⊥
(
B0⊥Ω−1B′0⊥

)−1
B0⊥Ω−1, (7)

where B0⊥ is a (n− r)×n matrix, such that B0B
′
0⊥ = 0r×(n−r). Using this decomposition

in the context of the MAI-SV or MAI-SVCV models, we can then split the residuals ut

in their projection over the subspace generated by the factors’ residuals ωt, and their

projection over the subspace generated by the n − r idiosyncratic errors ψt (orthogonal

to ωt):

yt =

p∑
`=1

A` · Ft−` + ΩtB
′
0Ξ−1

t B0ut︸︷︷︸
ωt

+B′0⊥
(
B0⊥Ω−1

t B′0⊥
)−1

B0⊥Ω−1
t ut︸ ︷︷ ︸

ψt

. (8)

7A small factor model with common stochastic volatility in the innovations to both factors and idio-
syncratic errors is studied by Marcellino et al. (2016).

8See also Johansen (1995) and Centoni & Cubadda (2003).
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We can then further decompose the total error volatility Ωt into the volatility of the

common component and that of the idiosyncratic component:9

Ωt = Ωcom
t + Ωidio

t , (9)

with Ωcom
t = ΩtB

′
0Ξ−1

t B0Ωt and Ωidio
t = B′0⊥

(
B0⊥Ω−1

t B′0⊥
)−1

B0⊥.

The matrix Ωt can be interpreted as the variance covariance matrix of the 1-step

ahead forecast errors. We can apply a similar decomposition also to the variance of the

h-step ahead forecast errors, to understand whether the common component contributes

differently across horizons.

Finally, as mentioned in the introduction, in the MAI-SV model the variance de-

composition in (9) into common and idiosyncratic components emerges from the model

structure, while in Carriero et al. (2016, 2018, 2019) it is imposed a priori (in a linear

rather than nonlinear VAR model).

3.2 Decomposition of the common volatility

In this section we further decompose the common volatility component Ωcom
t into r parts,

each corresponding to a different structural shock. Starting from the shocks to the

observed factors ωt we can recover the structural shocks to the factors εωt using a Choleski

decomposition:

ωt = Sωt · εωt ,

where Sωt is the lower-triangular cholesky factor of Ξt (i.e. the variance of ωt), and εωt is

an i.i.d. standard Normal variable, which represents the structural shocks. We can now

insert the structural shocks εωt into the decomposition in (8), obtaining:

yt =

p∑
`=1

A` · Ft−` +
r∑
j=1

ΩtB
′
0Ξ−1

t Sωt ε
ω
t,j · ej +B′0⊥

(
B0⊥Ω−1

t B′0⊥
)−1

ψt

where ej is the r × 1 column vector of the r-dimensional canonical base.

It follows that one can decompose the common volatility Ωcom
t into orthogonal com-

9The complete derivation is the following:

Ωcom
t = ΩtB

′
0Ξ−1t E (ωtω

′
t) Ξ−1t B0Ωt = ΩtB

′
0Ξ−1t ΞtΞ

−1
t B0Ωt = ΩtB

′
0Ξ−1t B0Ωt.

Ωidio
t = B′0⊥

(
B0⊥Ω−1t B′0⊥

)−1
B0⊥Ω−1t E (utu

′
t) Ω−1t B′0⊥

(
B0⊥Ω−1t B′0⊥

)−1
B0⊥ = B′0⊥

(
B0⊥Ω−1t B′0⊥

)−1
B0⊥.
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ponents, each associated with a structural shock:

Ωcom
t =

r∑
j=1

ΩtB
′
0Ξ−1

t

(
Sωt ej · e′jSω′t

)
Ξ−1
t B0Ωt. (10)

A similar decomposition can be applied to the common component of the h-step ahead

covariance matrix, which is informative to understand whether the contribution of various

structural shocks changes with the forecast horizon.

A comparable decomposition can be also applied with different shock identification

methods, such as sign restrictions or external instruments, see Kilian & Lütkepohl (2017)

for an exhaustive review and analysis on shock identification. The choice of the proper

structural identification method crucially depends on the empirical application of interest.

In the empirical section we will apply these formulae to decompose the estimated

conditional volatilities of US macro and financial variables into their common and idio-

syncratic components, further studying the contribution of various structural shocks when

decomposing the common volatility component.

4 Estimation

In this section we discuss, in turn, the identification restrictions, the priors on model

parameters, and the Gibbs Sampler to draw from the joint posterior, which is not a

known distribution.

4.1 Identification restrictions

In order to identify the model, we need to restrict at least r2 elements in the r × n

matrix B0. Similarly to Carriero et al. (2016), we divide the n variables in r subgroups

or blocks, so to have as many blocks as factors. Each block may have in principle its own

number of variables, i.e. yt = (y1′
t , y

2′
t , . . . , y

r′
t ), n =

∑r
j=1 nj. The proposed identification

for the observable factors Ft = B0yt assumes that each factor is a linear combination of

the variables in its associated block. Moreover, we normalize to 1 the weight of the first

variable of each block. This is equivalent to the following representation:

B0 =


1 B̃0,1 0 01×(n2−1) . . . 0 01×(nr−1)

0 01×(n1−1) 1 B̃0,2 . . . 0 01×(nr−1)

...
...

...
. . . . . . . . .

...

0 01×(n1−1) 0 01×(n2−1) . . . 1 B̃0,r,

 ,
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which implies that the unrestricted elements are contained in each of the 1 × (nj − 1)

vectors B̃0,j, for a total of n− r unrestricted elements in the matrix B0.

4.2 Specification of the prior distributions

The set of prior distributions is constructed using a training sample. Prior knowledge for

the unrestricted elements of B0 is elicited with a Normal distribution. To calibrate these

prior distributions, for each block j = 1, . . . , r, we compute the largest eigenvalue score

via principal components analysis, so to obtain a set of r score series {Sjt }
j=1,...,r
t=1,...,T . Using

these scores, we consider the following n− r univariate regressions:

Sjt = b0,j,k · yjt,k + uj,k,t, uj,k,t
iid∼ N (0, σ2

j,k); j = 1, . . . , r, k = 2, . . . , nj.

The OLS estimates of these regressions, and their standard errors, are used to calibrate

mean and variances of the prior distributions. Since each b0,j,1 is set to 1 (as shown in the

previous subsection), each prior mean of the elements in B̃0,1 is divided by b̂0,j,1. Prior

covariances among elements are set to zero.

Defining A ≡ [A1|...|Ap], the prior on a = vec (A′) is multivariate Normal, centered

on 0, and with diagonal variance Va resembling a Minnesota prior. In particular, it holds

that

Va = Diag



σ̂2
y,1
...

σ̂2
y,n


⊗


Ψ1 0 . . . 0

0 Ψ2
. . .

...
...

. . . . . . 0

0 . . . 0 Ψp

 , ∀`, Ψ` =
λa
`d
·Diag



σ̂−2
F,1
...

σ̂−2
F,r


 ,

where σ̂2
y,j and σ̂2

F,s are the residual variances of a univariate AR(1) for, respectively, each

variable j and each factor s (computed using the prior mean of B0). The parameter λa

is a tightness parameter, and d is a decay parameter. We chose standard calibration

borrowing from the VAR literature, i.e. λa = 0.2 and d = 2.

In the MAI-SV case, the prior for the elements of G is a multivariate Normal distri-

bution centered at zero, with large diagonal covariance matrix. In the MAI-SVCV case,

the prior of the initial vector g0 is a multivariate normal centered at zero with identity

matrix. The prior for σ0 is a multivariate normal, centered at [σ̂2
y,1|...|σ̂2′

y,n]′, with identity

covariance matrix, as in Primiceri (2005). Prior distributions for innovation covariance

matrices Qg and Qσ are calibrated as in de Wind & Gambetti (2014) and Primiceri (2005).
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4.3 Gibbs Sampler

This subsection describes the main steps of the Gibbs Sampler used to simulate from the

joint posterior distribution of both parameters and unobservable states of the MAI-SV

and MAI-SVCV models. When drawing the volatility states, the algorithm makes use of

the approximation of Omori et al. (2007), which requires drawing a set of mixture states

{St}Tt=1.

The algorithm is more general than the one presented in Carriero et al. (2016) since it

introduces the step to draw the time-varying volatilities, following Primiceri (2005) and

Del Negro & Primiceri (2015). A Markov Chain of 10 thousand draws (with additional

30% initial draws discarded as burn-in) is simulated to obtain the posterior distributions of

the coefficients and unobservable states. Convergence statistics confirm that convergence

has been achieved and mixing is good.

The Gibbs Sampler steps for the MAI-SV model are:

1. Draw a history of volatilities {σt}Tt=1

∣∣∣θ, {St}Tt=1 ,

2. Draw θ, {St}Tt=1 | {σt}
T
t=1. This second step is further split as follows:

(a) Draw the elements in θ| {σt}Tt=1

i. Draw the covariance of volatilities’ innovations Qσ

∣∣∣A,B0, G, {σt}Tt=1

ii. Draw the loadings A
∣∣∣B0, G,Qσ, {σt}Tt=1 ,

iii. Draw the factor weights B0

∣∣∣A,G,Qσ, {σt}Tt=1 ,

iv. Draw the off-diagonal elements in G
∣∣∣A,B0, Qσ, {σt}Tt=1

(b) Draw a history of indexes of the mixture in {St}Tt=1 |θ, {σt}
T
t=1

In the MAI-SVCV model, instead of drawing the time invariant off-diagonal elements

in G, we need to draw the unobservable states {gt}Tt=1 and the covariance matrix of their

innovations Qg. The augmented sampler encompasses the following steps:

1. Draw a history of volatilities {σt}Tt=1

∣∣∣θ, {St}Tt=1

2. Draw θ, {St}Tt=1 | {σt}
T
t=1. This second step is further split as follows:

(a) Draw the elements in θ| {σt}Tt=1

i. Draw the covariance of volatilities’ innovationsQσ

∣∣∣A,B0, {gt}Tt=1 , Qg, {σt}Tt=1

ii. Draw the loadings A
∣∣∣B0, {gt}Tt=1 , Qg, Qσ, {σt}Tt=1 ,
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iii. Draw the factor weights B0

∣∣∣A, {gt}Tt=1 , Qg, Qσ, {σt}Tt=1 ,

iv. Draw the TV off-diagonal elements {gt}Tt=1

∣∣∣A,B0, Qg, Qσ, {σt}Tt=1 ,

v. Draw the covariance of TV off-diagonal elementsQg

∣∣∣A,B0, {gt}Tt=1 , Qσ, {σt}Tt=1 ,

(b) Draw a history of indexes of the mixture in {St}Tt=1 |θ, {σt}
T
t=1

The Gibbs Sampler steps for the MAI-SV and the MAI-SVCV are described in detail

in sections A and B of the Appendix.

5 Empirical Results

5.1 Data and model specification

We collected from the FRED database 20 monthly macroeconomic variables for the period

from January 1964 to December 2016. The selected series coincide with those in Bańbura,

Giannone & Reichlin (2010) and CKM16. The first 84 observations, from January 1964 to

December 1970, are used as training sample to calibrate the prior distributions, while the

rest of the sample is used in estimation. The variables are used in differences, standardized

and demeaned. We set the number of lags to 13, following common practice for Bayesian

VARs at monthly frequency.

Following CKM16, we select a specification using 3 factors. The first factor is a

real factor, gathering information from the real economic activity variables; the second

factor is a nominal factor, representing changes in price dynamics; the third factor is a

monetary/financial factor. Table 1 lists the variables and their factor grouping10.

5.2 Identifying the structural shocks and their effects

In this section we discuss the identification of demand, supply and monetary/financial

shocks, and their effects on the variables under analysis.

The estimated factors are reported in Figure 1, along with NBER recessions (as shaded

areas) and the uncertainty events highlighted in Bloom (2009) (as black lines). Due to the

10Carriero et al. (2019) estimate a BVAR with independent stochastic volatilities for 125 variables
(including macroeconomic indicators, an array of interest rates, some stock return measures, and exchange
rates). A factor analysis of the volatilities indicates two components to account for the vast majority of
innovations to volatilities. Here, we use three rather than two factors, even if the number of variables
is smaller, to get robustness to potential omission of a third factor, as the third factor is significant in
the conditional means, and the three factors can be given a meaningful economic interpretation as real,
nominal and financial factors. Computing the first three principal components of the median volatility of
residuals, we are able to explain more than 90% of time variation across the sample, in line with Carriero
et al. (2019).
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definition of factors and estimated coefficients, improved economic conditions are associ-

ated with higher demand factor and lower supply and monetary/financial factors. The

factors are reaching extreme values during the Oil crisis in the 1970s and in correspon-

dence of the Great Financial Crisis, while from the mid 1980s to the early 2000s they

appear less volatile (Great Moderation), even in case of recessions and rare events. It

is interesting to notice how the demand and supply factors seem negatively correlated

in case of supply-driven recessions, as the Oil crises, and positively correlated in other

recessions as the recent Great Financial Crisis.

Structural analysis can be performed similarly as in FAVARs applications. Indeed, as

shown before, the factors’ law of motion is given by (4) where the variance of the shocks

ωt is given by Ξt ≡ B0ΩtB
′
0, and where the factors are ordered as real, nominal and

monetary / financial. Differently from FAVAR models, this model features observable

factors (since Ft = B0yt) and heteroskedasticity in the factor innovations ωt.

From an economic perspective, it makes sense to expect that real activity variables

take some time to react to exogenous changes in prices, while prices are likely to react

contemporaneously to changes in real activity. Financial variables are likely to react

immediately to changes in prices and real activity. These considerations support the use

of a simple Cholesky scheme for the factor VAR in which the real activity factor is ordered

first, the nominal factor second, and the financial factor is ordered last.

This identification scheme provides three orthogonal structural shocks, each featuring

time-varying volatility. The posterior median of the volatilities of the structural shocks to

the factors, and their posterior 68% credible bounds are reported in Figure 2, along with

NBER recessions and Bloom (2009) uncertainty events. The Great Moderation is evident

for all shocks, but the volatility of supply and financial shocks seems to increase again

from the mid-90s, and all volatilities peak during the recent Global Financial Crisis.

From an economic point of view, the volatility of the structural demand shock could

be related to changes in the inventory mechanism (e.g., McConnell & Perez-Quiros, 2000)

or to the globalization process (e.g., Bianchi & Civelli, 2015), while that of the supply

shock can depend on the behavior of the oil market (e.g., Lee et al., 1995) or on firms’

productivity (e.g., Christiano et al., 2010), and the volatility of the financial/monetary

shock can be influenced by financial innovation (e.g., Dynan et al., 2006) or by changes in

the conduct of monetary policy (e.g., Clarida et al., 2000). Justiniano & Primiceri (2008)

introduce a DSGE model with stochastic volatility in several structural shocks. Specifi-

cally, they find that a reduction in the variance of investment shocks, interpreted also as

a proxy for unmodeled financial frictions, is the main driver of the US Great Moderation,

with a limited role for changes in monetary policy. Their evidence is somewhat in line
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with the gradually decreasing role of the monetary/financial shock contribution from the

1980s to the Great Financial Crisis in our common volatility decomposition. However,

our structural decomposition is based on the common part of the volatility which is only

a fraction of the total volatility. Moreover, Benati & Surico (2009) show that it can be

difficult to map changes in the variance of structural VAR shocks with those in DSGE

models.

Fernández-Villaverde et al. (2015) estimate a DSGE model with stochastic volatilities

similar to that of Justiniano & Primiceri (2008), but using a second order approximation

of the equilibrium dynamics of the economy. This approach allows changes in shock vo-

latilities to directly affect the equilibrium solution along with the shocks, contrarily to

the case of a first-order approximation of the solution. The model is estimated using a

non-Bayesian methodology. In light of these methodological differences, the estimated

stochastic volatilities of structural shocks show some discrepancies to analogous measures

in Justiniano & Primiceri (2008). Moreover, they don’t report the contribution of sto-

chastic volatilities in explaining unconditional variances of the observable variables. In

general, they find that “the 1970s and the 1980s were more volatile than the 1960s and

the 1990s, creating a tougher environment for monetary policy”, which is in line with our

results.

We can also compare these volatilities with the uncertainty estimates of Carriero

et al. (2018). Our demand factor volatility appears much correlated with their macro

uncertainty estimate, even though the only large volatility spike after 1970s is observed

in correspondence of the last Great Financial Crisis, and our measure of demand factor

volatility reaches record lows in the end of 2016. The supply factor volatility shows a

smaller degree of time variation than the demand factor during the Great Moderation, but

it has been changing more since the spike of 2008, probably because of large fluctuations

in commodity prices in the last years. As for the financial/monetary factor volatility,

the largest spike throughout the sample is reasonably observed in coincidence of the

years 2008-2009, differently from Carriero et al. (2018) financial uncertainty estimate, for

which there is a comparable spike also in the early 2000s. It is interesting to observe how

volatility of the monetary/financial factor is increasing in the years 2013-2016, most likely

because of increased volatilities of bond yields and exchange rates.

Figure 3 reports the dynamic response of each factor after each structural shock (pos-

terior median), measured at the NBER troughs, to assess whether there are differences

across the various recessions. A (positive) demand shock boosts the output factor, the

financial factor and, to a lesser extent, the price factor; a (negative) supply shock in-

creases prices, reduces the real output factor, and overall has non significant effects on
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the financial factor; finally, a (negative) financial shock lowers the real output factor and

has non-significant effects on the price factor. The fact that the estimated responses are

in line with economic theory provides support for the use of our Choleski identification

scheme for this application.

The temporal heterogeneity in the responses is due to different shocks’ sizes (i.e. their

standard deviations) and also to the time-varying simultaneous relations across variables.

The price factor displays the larger degree of time variation in median posterior responses,

especially at larger horizon, even though these differences among NBER troughs are barely

significant when estimation uncertainty is taken into account.

Using the factor representation, it is possible to compute the response of variables yt to

the structural shocks, again as in FAVAR models. Figures 4,5 and 6 report the responses

of all variables to, respectively, the identified demand, supply and financial shocks, at

the NBER troughs. The responses are broadly in line with those in CKM16: a demand

shock increases output variables and decreases unemployment, and triggers an increase

of both prices and Fed Funds rate, along with an appreciation of the real exchange rate

and a reduction in monetary indicators. The negative supply shock increases prices and

worsens the real economy indicators. Interestingly, the response of the Fed Funds rate

has an opposite sign in the last two recessions with respect to the previous recessions.

Instead, in almost all cases there is a depreciation of the real exchange rate. Responses to

the financial/monetary shock are also in line with economic theory: real variables decrease

along with monetary aggregates, while the effects on prices are not significant. In terms

of time variation, there are some differences in the responses at different NBER troughs,

because of different shocks’ size and changing simultaneous relationships. A demand shock

in November 2009 has a larger effect on Industrial Production, Capacity Utilization and

Housing Starts, while a monetary/financial shock in November 2001 has a large effect on

stocks and macro variables. However, when considering estimation uncertainty, such time

variation is not much significant.

To provide a different measure of time variation of the responses to the structural

shocks, we have also computed the temporal evolution of the responses at fixed horizons

of 1, 12 and 48 months. The estimated median responses, together with 68% bands,

reported in Figure 11 to Figure 19 in section C of the Appendix are broadly in line with

those commented above.

5.3 Decomposing the Stochastic Volatilities

In this section we use the decompositions discussed in Section 3 to assess the contributions

of different sources of volatlity to the total volatility of the macroeconomic series.
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Figure 7 reports the stochastic volatilities for the 20 variables, estimated using the

MAI-SVCV model. Stochastic volatilities appear to be significantly changing over time

for all variables, highlighting the importance of allowing for a time-varying conditional

variance in macro-financial applications. The Great Moderation is evident in variables

such as employment, earnings, consumption, CPI and the PCE deflator. The recent

financial crisis is associated with volatility peaks in many real and nominal variables,

including employment, earning, consumption, industrial production, housing starts, CPI,

PPI. Also for monetary/financial variables, volatility peaks during the last global crisis are

particularly evident for the Fed Funds rate, stock prices, money measures and reserves.

We start applying the decomposition in (9) and (10) and partition each of the reduced

form volatilities into the common component, driven by innovations to the three factors

and interpretable as an uncertainty measure, and the idiosyncratic components, driven

by the idiosyncratic innovations, ψt.

Figure 7 plots also the decomposition of the total volatility for each variable into the

two orthogonal components. From a graphical inspection, the common component of

volatility is dominant for most variables, but a non-negligible part of variation is also

driven by the idiosyncratic component. In order to obtain a more precise measure of the

contribution of each component, Figure 8 reports the time-varying percentage shares of

explained volatility by the common and idiosyncratic components.

In the real activity variables, the common component of volatility seems to have

diminished its importance over time for employment and, less so, for earnings, personal

income, and consumption, with values well below 50% at the end of the sample. The

fraction of volatility explained by the common component is much higher for industrial

production and capacity utilization, but it drops substantially for both variables after the

financial crisis, from values around 80-90% to slightly above 50%. For the unemployment

rate and housing starts, the fraction is instead stable at about 50% over the entire sample.

In the price variables, the fraction of their conditional time-varying volatility explained

by the common shocks is rather stable and high, much more so for CPI and the PCE

deflator than for PPI, but still well above 50% for the latter.

A similar pattern emerges also for the financial variables, with values around 50%

for the Fed Funds rate and the 10 year T-Bond yield but, interestingly, much higher for

the S&P500, whose time-varying volatility seems to be substantially affected by economic

shocks.

We further decompose the common component share of volatility into three ortho-

gonal sub-components, each driven by the volatility of structural demand, supply and

monetary/financial shocks identified in the previous subsection. Figure 9 reports the
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time-varying percentage contribution of each structural shock in determining the com-

mon component volatility.

In the real activity variables, demand shocks are clearly dominant for industrial pro-

duction and capacity utilization. The same was true for employment at the beginning

of the sample, but then the role of demand shocks has progressively declined in favor of

supply and monetary/financial shocks, that combined explained more than 50% of the

common volatility component of employment at the end of the sample. A declining role

for demand shocks is evident, though milder, also for housing starts. Instead, for earning,

income, consumption and unemployment the share of demand shocks is rather stable over

time, below 50% for the three variables and close to 50% for unemployment. Supply

and monetary/financial shocks explain a comparable fraction of the remaning common

volatility component of these four variables.

In the price variables, supply shocks are dominant, in particular for CPI and the PCE

deflator, with demand shocks ranked second and monetary/financial shocks third, though

slightly more important for PPI.

In the financial variables, the contribution of the three types of structural shocks

is overall comparable and rather stable over time. The volatility of the monetary /

financial shock is particularly important to explain the common component of the S&P500

volatility, but even for this variable it only explains about 50%, with the other 50% close

to equally split between demand and supply shocks.

Overall, the structural demand, supply and financial shocks appear as important dri-

vers not only of the level of macroeconomic and financial variables but also of their

changing conditional volatility. In fact, the volatility of demand, supply and monetary /

financial shocks explains, in general, more than 50% of the overall volatility, with their

relative importance being variable dependent and, sometimes, changing over time.

5.4 Results for longer forecast horizons

In Figures 10 and 11 we report the decomposition of the 12- and 36-steps ahead forecast

error covariance matrices into common and idiosyncratic components (results for longer

horizons are very similar to those for h = 36 and are available upon request). It is

interesting that for virtually all variables and periods the role of the common component

of volatility becomes even larger at longer horizons, suggesting that common shocks are

even more important than idiosyncratic shocks at long than at short horizons. Figures 12

and 13 further decompose the common volatility component into the contribution of the

supply, demand and monetary / financial shocks’ volatilities. The relative contribution of

each shock is rather stable across forecast horizons, but it is worth mentioning the larger
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importance at longer horizon of supply and monetary shocks for industrial production,

capacity utilization and unemployment.

6 Conclusions

Many economic variables feature changes in their conditional volatility, and stochastic

volatility specifications are commonly used in macroeconomic applications to model this

feature. In models with stochastic volatility, different shocks drive the levels and volatili-

ties of the variables, with volatility shocks left unexplained. In this paper we decompose

the shocks driving the volatility processes into the volatility of structural economic shocks,

in order to understand the relative importance over time of demand, supply and monetary

/ financial shocks as drivers of volatility.

The structural shocks are obtained from a Multivariate Autoregressive Index (MAI)

model, a particular reduced rank VAR that can be also interpreted as a factor model,

featuring stochastic volatility, over a large set of real, nominal and financial indicators.

We have developed a Gibbs Sampling algorithm for (Bayesian) inference, introducing

efficient strategies to reduce the computational burden.

Using the model with US data for the period 1964-2016, we have found that the

common component of volatility is substantial, it explains at least 50% of the overall

volatility for most variables, though the share is declining over time for some real variables.

Moreover, a large fraction of the common volatility component is driven by the volatility

of structural demand, supply and financial shocks, in general more than 50%, with their

relative importance being variable dependent and, sometimes, changing over time.
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Table 1: List of variables and composition of Factors

Variable F1 F2 F3

Employees (Total nonfarm) 1 0 0

Average hourly earnings B
(1,2)
0 0 0

Personal Income B
(1,3)
0 0 0

Real Consumption B
(1,4)
0 0 0

Industrial Production B
(1,5)
0 0 0

Capacity Utilization B
(1,6)
0 0 0

Unemployment rate B
(1,7)
0 0 0

Housing starts B
(1,8)
0 0 0

CPI all items 0 1 0

Producer Price Index (Farm & Foods) 0 B
(2,10)
0 0

Implicit price deflator for personal cons. exp. 0 B
(2,11)
0 0

Producer Price Index (Industrials) 0 B
(2,12)
0 0

Federal Funds, effective 0 0 1

M1 money stock 0 0 B
(3,14)
0

M2 money stock 0 0 B
(3,15)
0

Total reserves of depository institutions 0 0 B
(3,16)
0

Nonborrowed reserves of depository institutions 0 0 B
(3,17)
0

S&P’s common stock price index 0 0 B
(3,18)
0

Interest rate on treasury bills, 10 year constant maturity 0 0 B
(3,19)
0

Effective Exchange rate 0 0 B
(3,20)
0
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Figure 2: Volatilities of the structural shocks. Green Bands correspond to the 68% credible
regions of the posterior distribution.
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Demand shock

Supply shock

Financial/monetary shock

Figure 3: Response of each factor to all shocks at NBER troughs. Means of the posterior
distribution.
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Figure 4: Response to a permanent Demand shock at NBER troughs. Means of the posterior
distribution.
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Figure 5: Response to a permanent Supply shock at NBER troughs. Means of the posterior
distribution.
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Figure 6: Response to a permanent Financial shock at NBER troughs. Means of the posterior
distribution.
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Figure 7: Residual volatility and its decomposition: total (green), common factors (red), Idio-
syncratic (blue)

32



Figure 8: Residual volatility shares (%): common factors (red), Idiosyncratic (blue)
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Figure 9: Contribution (%) of the identified shocks over the common factor component of
residual volatility
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Figure 10: Contribution (%) of the common and idiosyncratic components to the 12-steps ahead
forecast error variance
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Figure 11: Contribution (%) of the common and idiosyncratic components to the 36-steps ahead
forecast error variance
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Figure 12: Contribution (%) of the identified shocks over the common factor component to the
12-steps ahead forecast error variance
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Figure 13: Contribution (%) of the identified shocks over the common factor component to the
36-steps ahead forecast error variance
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Online Appendix for

“The Economic Drivers of Volatility and

Uncertainty”

The four sections of this online Appendix provide additional details on Gibbs Sampler

algorithm for the MAI-SV and MAI-SVCV models (Appendix A, B and C), and some

additional figures for the empirical application (Appendix D).

Appendix A Detailed steps of the Gibbs Sampler for

the estimation of the MAI-SV model

A.1 Stacking of the model

The observation equation of the MAI-SV model written as:

yt︸︷︷︸
n×1

=

p∑
`=1

A`︸︷︷︸
n×r

· B0︸︷︷︸
r×n

yt−` + ut (11)

establishes that the observables in yt depend on p lags of the r common components

B0 · yt−`, plus an error term. The equation in 11 can be stated in a more compact

formulation.

Defining the n×rpmatrixA ≡
[
A1 . . . Ap

]
and the n×pmatrix x•t ≡

[
yt−1 . . . yt−p

]
,

we can define Zt as

Zt ≡


B0yt−1

...

B0yt−p

 = vec (B0 · x•t ) ,

and since

p∑
`=1

A`B0 · yt−` =
[
A1 . . . Ap

] 
B0yt−1

...

B0yt−p

 ,
we can finally restate the model as

yt = A · Zt + ut. (12)
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A.2 Step 1: Draw a history of volatilities {σt}Tt=1

This step concerns the draw of the (unobservable) stochastic volatilities conditional on

θ = {A,B0, G,Qσ} and the indexes of Normal components of the mixture {St}Tt=1. The

order of these steps is in line with Del Negro & Primiceri (2015).

In order to draw the volatilities, we apply the triangular reduction of the errors ut =

G−1Σtεt to transform the model in the following way:

yt = A · Zt +G−1Σtεt,

G (yt − A · Zt)︸ ︷︷ ︸
ỹt

= Σtεt,

ỹt = Σtεt.

Moreover, using the Hadamard product operator, we can first write

Σtεt = Σt


ε1,t

ε2,t

...

εn,t

 =


σ1,t ε1,t

σ2,t ε2,t

...

σn,t εn,t

 = σt � εt,

and taking the square element by element on both sides of ỹt = Σtεt, we obtain:

(ỹt)
·2 = (Σtεt)

·2 = σ·2t � ε·2t ⇐⇒


ỹ2

1,t

ỹ2
2,t
...

ỹ2
n,t

 =


σ2

1,t ε
2
1,t

σ2
2,t ε

2
2,t

...

σ2
n,t ε

2
n,t

 .

We add on the left hand-side a small constant11 c̄ = 10−3 and apply the logarithm on

11The addition of a small constant term has numerical stability purposes, as explained in Fuller (2009)
and Primiceri (2005).
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both sides12 in order to break the non-linearity, to obtain:
log

(
ỹ2

1,t + c̄
)

log
(
ỹ2

2,t + c̄
)

...

log
(
ỹ2
n,t + c̄

)


︸ ︷︷ ︸

ỹ∗t

= 2


log σ1,t

log σ2,t

...

log σn,t

+


log ε2

1,t

log ε2
2,t

...

log ε2
n,t

 ,

ỹ∗t = 2 log σt + log
[
(εt)

·2] .
Since εt

iid∼ MN (0, In), each term log ε2
j,t has a logχ2

1 distribution, and log
[
(εt)

·2] is a

vector of independent logχ2
1 random variables.

Then, conditioning on {St}Tt=1, i.e. the sequence of n × 1 vectors that specify the

indexes of Normal components of the mixture, the vector log
[
(εt)

·2] has the following

Gaussian distribution:

log
[
(εt)

·2]∣∣ {St}Tt=1 ∼MN




mm
s1,t

mm
s2,t
...

mm
sn,t


︸ ︷︷ ︸
ϕt

,


mv
s1,t

0 . . . 0

0 mv
s2,t

. . .
...

...
. . . . . .

...

0 . . . 0 mv
sn,t


︸ ︷︷ ︸

Υt


Hence, given the Gaussian distribution of log

[
(εt)

·2]∣∣ {St}Tt=1, we can define the needed

state space form as:

ỹ∗t = ϕt + 2 log σt + ζt, ζt
i∼MN ( 0, Υt ) ,

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

At this point, the Forward Filtering Backward Sampling (FFBS) procedure, introduced

by Carter & Kohn (1994), can be implemented to draw a history of volatilities {σt}Tt=1.

The procedure is described below. For simplicity we define σ̃t ≡ log σt, since the FFBS

procedure is implemented on the log-volatilities.

12Noticing that log

[
a
b

]
=

[
log a
log b

]
, and

[
a
b

]·2
=

[
a2

b2

]
.
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The filter can be initialized at the following values:

σ̃0|0 = log(σ̄), Pσ,0|0 = P̄σ,

where log(σ̄) and P̄σ are respectively the mean and the covariance matrix of the prior

distribution of log σ0.

Recursively, for each
(
σ̃ t−1|t−1, Pσ, t−1|t−1

)
, we compute the filter:

Pσ, t|t−1 = Pσ, t−1|t−1 +Qσ,

Kσ,t = 2Pσ, t|t−1

(
4Pσ, t|t−1 + Υt

)−1
,

σ̃ t|t = σ̃ t−1|t−1 +Kσ,t

(
ỹ∗t − 2σ̃ t−1|t−1 − ϕt

)
,

Pσ, t|t = Pσ, t|t−1 − 2Kσ,tPσ, t|t−1.

Having an entire set of updating and prediction steps
(
σ̃ t|t, Pσ, t|t, Pσ, t|t−1

)T
t=1

, we start to

sample backward, beginning by sampling σ̃T fromMN
(
σ̃T |T , Pσ,T |T

)
, and then for each

t ∈ {T − 1, T − 2, . . . , 2, 1} we sample recursively each σ̃t from MN
(
σ̃ t|t+1, Pσ, t|t+1

)
where:

σ̃ t|t+1 = σ̃ t|t + Pσ, t|tP
−1
σ, t+1|t

(
σ̃t+1 − σ̃ t|t

)
,

Pσ, t|t+1 = Pσ, t|t − Pσ, t|tP−1
σ, t+1|tPσ, t|t.

A.3 Step 2(a): Draw θ| {σt}Tt=1

A.3.1 Substep 2(a).i: Draw the covariance of volatilities’ innovations Qσ

Conditioning on {σt}Tt=0, we can draw the covariance matrix Qσ. Indeed, recall that:

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

But then, having a complete history of the sigmas, given the random walk law of motion,

is equivalent to having a complete histories of innovations νσ,t. Stacking the νσ,t across

time, we get:

ν∗σ︸︷︷︸
n×T

=
[
νσ,1 νσ,2 . . . νσ,T

]
,
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and we can easily compute the innovations sum of squares matrix:

Sσ︸︷︷︸
n×n

= ν∗σ︸︷︷︸
n×T

ν∗′σ︸︷︷︸
T×n

.

If the prior on the matrix Qσ is a n×n Inverse Wishart with scale matrix Q̄σ and degrees

of freedom τσ,0:

Qσ ∼ IWn

(
Q̄σ, τσ,0

)
,

then the posterior is conjugate and given by:

Qσ
∣∣ {σit}Tt=0

∼ IWn

(
Sσ + Q̄σ, τσ,0 + T

)
.

A.3.2 Substep 2(a).ii: Draw the loadings A

To draw the loadings contained in A, we rewrite the model in (12) in the following stacked

form: 
y′1

y′2
...

y′T

 =


Z ′1

Z ′2
...

Z ′T

A′ +

u′1

u′2
...

u′T

 ,
y︸︷︷︸

T×n

= Z︸︷︷︸
T×rp

· A′︸︷︷︸
rp×n

+ u.

Defining a ≡ vec (A′), and exploiting the Kronecker properties, the stacked form can be

vectorized and transformed into:

vec (y) = vec (Z · A′ · In) + vec (u) ,

Y︸︷︷︸
nT×1

= (In ⊗ Z)︸ ︷︷ ︸
n×nrp

· a︸︷︷︸
nrp×1

+ U,

where U has the following distribution:

U︸︷︷︸
nT×1

∼MN

 0, Vu︸︷︷︸
nT×nT



43



and

Vu ≡



Ω
(1,1)
1 0 · · · 0 · · · · · · Ω

(1,n)
1 0 · · · 0

0 Ω
(1,1)
2

. . .
... · · · · · · 0 Ω

(1,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(1,1)
T · · · · · · 0 · · · 0 Ω

(1,n)
T

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

Ω
(n,1)
1 0 · · · 0 · · · · · · Ω

(n,n)
1 0 · · · 0

0 Ω
(n,1)
2

. . .
... · · · · · · 0 Ω

(n,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(n,1)
T · · · · · · 0 · · · 0 Ω

(nn)
T


=

T∑
t=1

[Ωt ⊗ (et · e′t)] .

To use an informative prior on a, we follow the approach in Gelman et al. (2014). The

strategy incorporates the prior as observations. Considering a multivariate normal prior

with the following moments:

a ∼MN ( ā, Va ) ,

it is possible to augment the model with nrp observations that express the prior informa-

tion: [
Y

ā

]
=

[
In ⊗ Z
Inrp

]
a+

[
U

Ua

]
,

Y � = Z�a+ U�, U� ∼MN ( 0nT+nrp, V
� ) ,

V � =

[
Vu 0nT×nrp

0nrp×nT Va

]
.

A draw for a then comes from the following posterior:

a ∼MN
(
ã,
(
Z�′V �−1Z�

)−1
)
,

ã =
(
Z�′V �−1Z�

)−1
Z�′V �−1Y �.

In order to decrease the computational burden of this step throughout the sampling,

we adopt the strategy proposed by Carriero et al. (2019). In particular, the triangular
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representation of the system is exploited, and coefficients are drawn equation by equation.

The approach proposed in Carriero et al. (2019) and its generalization to allow for time-

varying covariances is analytically documented in the appendix (section C.2).

A.3.3 Substep 2(a).iii: Draw the factor weights elements in B0

Given the restrictions and the non-linear role of B0, a Random Walk Metropolis step on

the posterior kernel of each element of B0 is implemented, nested into the Gibbs Sampling

algorithm. In order to do this, we first write the likelihood of the model.

Given the reduced form VAR written as:

yt = A · Zt + ut , ut
i∼MN ( 0, Ωt ) ,

conditioning on all other elements and using the chain rule, we can write the likelihood

kernel as:

f
(

(yt)
T
t=1

∣∣∣A, (Ωt)
T
t=1 , B0

)
∝

(
T∏
t=1

|Ωt|−
1
2

)
exp

{
−1

2

T∑
t=1

(yt − A · Zt)′Ω−1
t (yt − A · Zt)

}
.

Next, let us consider the r∗ ≡ n − r scalar unrestricted elements of B0, i.e. (b0,j)
r∗

j=1.

Then, ∀j ∈ {1, . . . , r∗}, we can define the set b0,j− ≡ (b0,s)s 6=j.

For a given prior f (b0,j) on each element b0,j, we can write the kernel of the conditional

posterior of b0,j as:

fpost

(
b0,j| (yt,Ωt)

T
t=1 , A, b0,j−

)
∝ f

(
(yt)

T
t=1

∣∣∣A, B0, (Ωt)
T
t=1

)
· f (b0,j) .

We are now ready to design the Metropolis step, separately for each j. Given the last

step Bi−1
0 , a random walk candidate is computed as:

b∗0,j = bi−1
0,j + cj · ηt,

where cj is a scaling factor calibrated to have an acceptance rate of approximately 30%-

35% and ηt
iid∼ N (0, vj), where vj is the variance of the prior f (b0,j). The candidate draw

is accepted with probability:

αj = min

1,
fpost

(
b∗0,j
∣∣ (yt,Ωi−1

t

)T
t=1

, A, bi−1
0,j−

)
fpost

(
bi−1

0,j

∣∣ (yt,Ωi−1
t

)T
t=1

, A, bi−1
0,j−

)
 .
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When the candidate is accepted, then bi0,j− = b∗0,j, otherwise bi0,j− = bi−1
0,j−. Repeating this

procedure for ∀j ∈ {1, . . . , r∗}, we obtain a draw Bi
0 from the distribution of interest.

A.3.4 Substep 2(a).iv: draw the off-diagonal elements in G

To draw the off-diagonal elements in G, we restate the reduced form as:

yt = A︸︷︷︸
n×rp

· Zt︸︷︷︸
rp×1

+ ut,

yt − A · Zt = G−1Σtεt,

ŷt = G−1Σtεt,

G · ŷt = Σtεt.

Removing ones from the diagonal of G, and bringing off-diagonal elements on the right

hand side, produces:

G = In +G∗.

This can be combined in the model to obtain:

(In +G∗) ŷt = Σt εt,

ŷt = −G∗ ŷt + Σt εt.

Exploiting the Kronecker properties, we then get:

− In G∗︸︷︷︸
n×n

ŷt︸︷︷︸
n×1

= −(In ⊗ ŷ′t)︸ ︷︷ ︸
n×n2

vec (G∗′)︸ ︷︷ ︸
n2×1

,

where vec (G∗′) have zeros in positions [(i− 1)n+ j]
i∈{1,...,n}
j∈{1,...,n}. By removing the zeros, we

obtain exactly the elements below the main diagonal of G, gathered in the m-dimensional

vector g. Removing the corresponding columns in − (In ⊗ ŷ′t), we construct the matrix
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Wt, which has the following form:

Wt︸︷︷︸
n×m

= −1 ·



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

ŷ1,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 ŷ1,t ŷ2,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 ŷ1,t ŷ2,t ŷ3,t 0 . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0
. . . . . .

...
...

...
... 0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ŷ1,t ŷ2,t ŷ3,t . . . ŷn−1,t


.

We can then rewrite the model as:

ŷt = −G∗ŷt + Σtεt,

ŷt = − (In ⊗ ŷ′t) vec (G∗′) + Σtεt,

ŷt = Wt g + ε∗t , ε∗t ∼MN
(

0n×1, Σ2
t

)
.

Next, we stack the model as:
ŷ1

ŷ2

...

ŷT

 =


W1

W2

...

WT

 g +


ε∗1

ε∗2
...

ε∗T

 ,
ŷ︸︷︷︸

nT×1

= W︸︷︷︸
Tn×m

· g︸︷︷︸
m×1

+ ε∗, ε∗ ∼MN
(

0nT×1, Σ2
)
,

where Σ is the diagonal matrix containing all the stacked stochastic volatilities vectors in

the main diagonal:

Σ = Diag

([
σ′1 σ′2 . . . σ′T

]′)
.

We can then use a similar approach as the one implemented for a, following Gelman et al.

(2014). Specifically, given the prior :

g ∼MN ( ḡ, Vg ) ,
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we augment the model with r observations that express the prior information:[
ŷ

ḡ

]
=

[
W

Im

]
g +

[
ε∗

εg

]
,

Ŷ � = W �g + ε�, ε� ∼MN ( 0nT+m, V
�
ε ) ,

V �ε =

[
Σ2 0nT×m

0m×nT Vg

]
.

A draw for g then comes from the following posterior:

g ∼MN
(
g̃,
(
W �′V �−1

ε W �)−1
)
,

g̃ =
(
W �′V �−1

ε W �)−1
W �′V �−1

ε Ŷ �.

A.4 Step 2(b): Draw a history of indexes of the mixture {St}Tt=1 |θ, {σt}
T
t=1

Starting from the following formulation seen in Step 1 of the algorithm

ỹ∗t = 2 log σt + log
[
(εt)

·2] ,
we can notice that, since εt

iid∼ MN (0, In), each term log ε2
j,t has a logχ2

1 distribution,

and log
[
(εt)

·2] is a vector of independent logχ2
1 random variables.

Omori et al. (2007), improving upon Kim et al. (1998), show that the logχ2
1 distribu-

tion is very well approximated by a mixture of ten Normal distributions:

flogχ2
1

(x) ≈
10∑
j=1

mp
j fN

(
x|mm

j ,m
v
j

)
,

where mp
j , m

m
j and mv

j are contained in the following table:

j 1 2 3 4 5 6 7 8 9 10

mp
j 0.00609 0.04775 0.13057 0.20674 0.22715 0.18842 0.12047 0.05591 0.01575 0.00115

mm
j 1.92677 1.34744 0.73504 0.02266 −0.85173 −1.97278 −3.46788 −5.55246 −8.68384 −14.65000

mv
j 0.11265 0.17788 0.26768 0.40611 0.62699 0.98583 1.57469 2.54498 4.16591 7.33342

Therefore, in order to have a conditionally Gaussian measurement equation, we should

condition each element of the vector log
[
(εt)

·2] on the index that specifies the Normal

components of the mixture. Defining the n × 1 vector St that contains the indexes of
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components in period t, we can write

St ≡


s1,t

...

sn,t

 , where
[
log ε2

h,t

∣∣ sh,t = j
]
∼ N

(
mm
j ,m

v
j

)
.

Conditioning on a history of volatilities (σt)
T
t=1, we can restate the model as

log
[
(εt)

·2] = ỹ∗t − 2 log σt,

Then, the element sh,t that indexes the specific component from which log ε2
h,t is drawn,

has support J = {1, . . . , 10} and the following discrete probability distribution:

∀j ∈ J, Pr
[
sh,t = j| ỹ∗h,t, σt

]
=

mp
j fN

(
ỹ∗h,t − 2 log σh,t

∣∣mm
j ,m

v
j

)∑10
ι=1 m

p
ι fN

(
ỹ∗h,t − 2 log σh,t

∣∣mm
ι ,m

v
ι

) .
Independent draws for all variables h ∈ {1, . . . , n} at all periods t ∈ {1, . . . , T} from this

distribution will form the new history of indexes of mixture’s components {St}Tt=1 |θ, {σt}
T
t=1.

Appendix B Detailed steps of the Gibbs Sampler for

the estimation of the MAI-SVCV model

The MAI-SVCV model has time-varying off diagonal elements in the triangular reduction

ut = G−1
t Σtεt. Therefore, we have to substitute SubStep 2(a).iv with two Substeps: the

first one draws the elements {gt}Tt=1, and the second one the covariance matrix of their

innovations Qg. The Gibbs sampler in which the rank reduction of de Wind & Gambetti

(2014) is not applied, and hence matrix Qg is full rank, is similar to the one described

in Primiceri (2005). If the rank reduction of de Wind & Gambetti (2014) is applied to

attenuate the curse of dimensionality, the draw of {gt}Tt=1 is further split into two substeps.

The following subsections will provide further details on the procedure needed in the case

of reduced rank of Qg, following de Wind & Gambetti (2014), which is more general than

the full rank case.
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B.1 Alternative SubStep 2(a).iv for the MAI-SVCV: Draw a

history of TV off-diagonal elements {gt}Tt=1

Using the rank reduction strategy of de Wind & Gambetti (2014), the vector gt is decom-

posed as:

gt = Λgg̃t +Mgg0,

with

Λg︸︷︷︸
m×qr

= Vg︸︷︷︸
m×qg

Dg︸︷︷︸
qg×qg

, Mg = Im − Λg

(
Λ′gΛg

)−1
Λ′g,

where Dg is the diagonal matrix containing the square roots of the qg non-zero eigenvalues

of Qg, while Vg is the matrix whose columns are the associated eigenvectors (normalized

to unit length). Mgg0 represents the time invariant residual and g̃t is the qg-dimensional

stochastic vector of TV components, having the following law of motion:

g̃t = g̃t−1 + ν̃g,t, ν̃g,t︸︷︷︸
qg×1

iid∼ MN
(

0, Iqg
)
.

As in de Wind & Gambetti (2014), the transformed time-varying components Λgg̃t

and the non-TV component Mgg0 are drawn separately.

In order to build the state space form, we first transform the reduced form of the

model in the following way:

yt = A · Zt +G−1
t Σtεt,

yt − A · Zt︸ ︷︷ ︸
ŷt

= G−1
t Σtεt,

Gt ŷt = Σt εt.

Removing ones from the diagonal of Gt, and bringing off-diagonal elements on the right

hand side, produces:

Gt = In +G∗t .

This can be inserted in the model to obtain:

(In +G∗t ) ŷt = Σt εt,

ŷt = −G∗t ŷt + Σt εt.
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Exploiting the Kronecker properties, we get:

− In G∗t︸︷︷︸
n×n

ŷt︸︷︷︸
n×1

= −(In ⊗ ŷ′t)︸ ︷︷ ︸
n×n2

vec (G∗′t )︸ ︷︷ ︸
n2×1

,

where vec (G∗′t ) have zeros in positions [(i− 1)n+ j]
i∈{1,...,n}
j∈{1,...,n}. By removing the zeros we

obtain exactly the elements below the main diagonal of Gt, gathered in the vector gt.

Removing the corresponding columns in − (In ⊗ ŷ′t), we construct the matrix Wt, which

has the following form:

Wt︸︷︷︸
n×m

= −1 ·



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

ŷ1,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 ŷ1,t ŷ2,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 ŷ1,t ŷ2,t ŷ3,t 0 . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0
. . . . . .

...
...

...
... 0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ŷ1,t ŷ2,t ŷ3,t . . . ŷn−1,t


.

Hence, we obtain a measurement equation with gt as states:

ŷt = −G∗t ŷt + Σtεt,

ŷt = − (In ⊗ ŷ′t) vec (G∗′t ) + Σtεt,

ŷt = Wt gt + Σtεt.

B.1.1 SubSubStep: draw a history of TV components {g̃it}
T
t=1

Let us consider the de Wind & Gambetti (2014) decomposition on the m-dimensional

process gt:

gt = Λgg̃t +Mgg0, Qg = Λg︸︷︷︸
m×qg

Λ′g,

and plug it into the measurement equation:

ŷt = Wtgt + Σtεt,

ŷt −WtMgg0 = WtΛg · g̃t + Σtεt,

ŷ∗t = W ∗
t g̃t + Σtεt.
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The resulting state space form is:

ŷ∗t = W ∗
t g̃t + Σtεt, εt

iid∼ MN ( 0, In ) ,

g̃t︸︷︷︸
qg×1

= g̃t−1 + ν̃g,t, ν̃g,t︸︷︷︸
qg×1

iid∼ MN
(

0, Iqg
)
.

The FFBS procedure can be implemented to draw an history {g̃it}
T
t=1. The filter, following

de Wind & Gambetti (2014), can be initialized at:

g̃0|0 = Rgḡ Pg,0|0 = RgP̄gR
′
g.

where

Rg ≡
(
Λ′gΛg

)−1
Λ′g.

B.1.2 SubSubStep: draw a vector of time invariant component Mgg0 of gt

We operate the following transformation

ŷt = Wtgt + Σtεt = Wt (Λgg̃t +Mgg0 ) + Σtεt,

ŷt −WtΛgg̃t︸ ︷︷ ︸
ŷ•t

= Wt Mgg0︸ ︷︷ ︸
µg,0

+ Σtεt︸︷︷︸
ε̂t

,

to obtain the regression model of interest:

ŷ•t = Wt µg,0 + ε̂t, ε̂t
iid∼ MN

(
0, Σ·2t

)
.

We want to impose the qg < m restrictions given by:

Rg︸︷︷︸
qg×r

µg,0︸︷︷︸
r×1

= 0qg×1.

Stacking the time dimensions in columns, we write the restricted regression model as:

Ŷ •︸︷︷︸
nT×1

= W︸︷︷︸
nT×m

µg,0 + ξ︸︷︷︸
nT×1

, ξ ∼MN
(

0nT×1, Σ·2
)
,

Rg︸︷︷︸
qg×m

µg,0︸︷︷︸
r×1

= 0qg×1.
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Then, given the prior for g0 and the unrestricted Bayesian regression moments:

g0 ∼MN
(
ḡ, P̄g

)
,

Ψg =
(
W ′Σ·−2W + P̄−1

g

)−1
,

ψg = Ψg

(
W ′Σ·−2 Ŷ • + P̄−1

g ḡ
)
,

the sampling posterior distribution for µg,0 is given by:

µg,0 ∼MN
(
µ̃g,0 , Pµg

)
,

µ̃g,0 = Ψµgψg, Pµg = ΨµgΨg,

Ψµg = Ir −ΨgR
′
g

(
RgΨgR

′
g

)−1
Rg.

B.1.3 SubSubStep: sum the TV and non-TV draws of gt

We can now sum the draws obtained in the two previous substeps:

gt = Λgg̃t +Mgg0, ∀t ∈ {1, . . . , T} ,

finally obtaining a history of time-varying off-diagonal elements (git)
T
t=1.

B.2 Additional SubStep 2(a).v for the MAI-SVCV: Draw a re-

duced rank covariance matrix Qg

Conditioning on the drawn {git}
T
t=1, we can draw the reduced rank covariance matrix Qg.

Indeed, since:

gt = gt−1 + νg,t, νg,t
iid∼ MN

 0, Qg︸︷︷︸
r×r

 ,

having a complete history (gt)
T
t=1, given the random walk law of motion, is equivalent to

having a complete history of innovations νg,t. Stacking the νg,t across time, we get:

ν∗g︸︷︷︸
r×T

=
[
νg,1 νg,2 . . . νg,T

]
,
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and we can easily compute the innovation sum of squares matrix:

Sg︸︷︷︸
r×m

= ν∗g︸︷︷︸
m×T

ν∗′g︸︷︷︸
T×m

.

By construction, the rank of Sg would be qg < m. Hence, if the prior on the matrix Qg

is an m×m Singular Inverse Wishart with rank qg < m, scale matrix Q̄g and degrees of

freedom τg,0:

Qg ∼ SIW qg
m

(
Q̄g, τg,0

)
,

then, the posterior is conjugate and given by:

Qg
∣∣ (git)Tt=0

∼ SIW qg
m

(
Sg + Q̄g, τg,0 + T

)
.

Section C.1 in the appendix discusses how to compute efficiently a draw from a Singular

Inverse Wishart distribution.

Appendix C Additional details for the GS

C.1 Procedure to draw from a Singular Inverse Wishart distri-

bution

Consider the m×m matrix Ξ having the following SIW distribution:

Ξ ∼ SIW q
m

(
S︸︷︷︸

m×m

, d

)
,

where S is a scale matrix, d the degrees of freedom, and q is the rank of both Ξ and S.

Following Bodnar & Okhrin (2008) and Dıaz-Garcıa et al. (1997), and applying some

modifications tailored at improving the algorithm efficiency, it is possible to draw from

the distribution of Ξ through the following steps:

1. Construct the Moore–Penrose pseudoinverse S+ of the scale matrix S. Moore Pen-

rose computation follows the highly efficient Qrginv algorithm proposed by Ataei

(2014).

2. Construct the diagonal matrix ΛS︸︷︷︸
q×q

containing the non-zero eigenvalues of S+ in the

main diagonal, and the matrix US︸︷︷︸
m×q

whose columns are the associated eigenvectors.
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3. Draw d independent vectors z̃︸︷︷︸
q×1

from the multivariate normal MN ( 0, ΛS ) and

stack them as columns in the matrix Z̃︸︷︷︸
q×d

.

4. Construct the matrices Z︸︷︷︸
m×q

= USZ̃ and W︸︷︷︸
m×m

= ZZ ′. The matrix W is a draw from

a Singular Wishart distribution with scale matrix S+ and d degrees of freedom.

5. Compute the Moore–Penrose pseudoinverse W+ of W . The matrix Ξ̃ = W+ is a

draw from the Singular Inverse Wishart of interest.

C.2 Procedure to draw variable-specific coefficients with trian-

gular structure of heteroskedastic innovations

This approach generalizes the one proposed by Carriero et al. (2019). Consider the follo-

wing multivariate regression, with variable-specific coefficients, common regressors across

equations, and heteroskedastic errors, whose time variation can be decomposed through

a standard triangular reduction.

We are considering the following model:

∀t ∈ {1, . . . , T} , Zt︸︷︷︸
n×1

= Θ︸︷︷︸
n×k

· Ft︸︷︷︸
k×1

+ ut︸︷︷︸
n×1

, ut
i∼MN

 0, Ωt︸︷︷︸
n×n

 ,

Ωt = WtΣtΣtW
′
t , ut = WtΣtεt, εt

iid∼ MN ( 0, In ) ,

where

Wt︸︷︷︸
n×n

=



1 0 . . . . . . 0

w1,t 1
. . . . . .

...

w2,t w3,t 1
. . .

...
...

...
. . . . . . 0

wm−n+2,t wm−n+3,t . . . wm,t 1


, wt︸︷︷︸

m×1

≡


w1,t

w2,t

...

wm,t

 , m ≡ n (n− 1)

2
,

Σt︸︷︷︸
n×n

=


σ1,t 0 . . . 0

0 σ2,t
. . .

...
...

. . . . . . 0

0 . . . 0 σn,t

 , σt︸︷︷︸
n×1

≡


σ1,t

σ2,t

...

σn,t

 .
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When n · k gets large, it is convenient to split the previous system in n sets of univariate

equations. Indeed, splitting Θ in row vectors it is possible to write the system as:

Θ =


θ[1,:]

θ[2,:]

...

θ[n,:]

 →



z1,t = θ[1,:] · Ft + σ1,tε1,t

z2,t = θ[2,:] · Ft + w1,tσ1,tε1,t + σ2,tε2,t

...

zn,t = θ[n,:] · Ft + wm−n+2,tσ1,tε1,t + · · ·+ wm,tσn−1,tεn−1,t + σn,tεn,t

that, defining

W ∗
t︸︷︷︸

n×n

=



0 0 . . . . . . 0

w1,t 0
. . . . . .

...

w2,t w3,t 0
. . .

...
...

...
. . . . . . 0

wm−n+2,t wm−n+3,t . . . wm,t 0


= Wt − In,

and

ξt = W ∗
t Σtεt,

can be written as: 

z1,t − ξ1,t = θ[1,:] · Ft + σ1,tε1,t

z2,t − ξ2,t = θ[2,:] · Ft + σ2,tε2,t

...

zn,t − ξn,t = θ[n,:] · Ft + σn,tεn,t

This system is constituted by the following set of n separate equations:

∀j ∈ {1, . . . , n} , zj,t − ξj,t = θ[j,:] · Ft + ε∗j,t, ε∗j,t ∼ N
(
0, σ2

j,t

)
Notice that for j ≥ 2 each ξj,t depends on

{
ε∗1,t, . . . , ε

∗
j−1,t

}
, since only the first j − 1

elements of the j-th row of W ∗
t are non-zero.

Then, conditioning on (W ∗
t , σt, Ft)

T
t=1, and given the following priors on the elements

of Θ:

∀j ∈ {1, . . . , n} , vec
(
θ[j,:]

)
∼MN

(
θ̄[j,:], Vj,θ

)
it is possible to design the following recursive procedure to draw from the posterior of Θ.
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Starting from j = 1:

z1,t − ξ1,t = θ[1,:] · Ft + ε∗1,t, ε∗1,t ∼ N
(
0, σ2

1,t

)
and given that ∀t, ξ1,t = 0, it is possible to draw from the posterior of θ[1,:] using the

following stacked regression:


z1,1

...

z1,T

 =


F ′1
...

F ′T

 · vec (θ[1,:]

)
+ ε∗1, ε∗1 ∼MN

0,


σ2

1,1 0 . . . 0

0 σ2
1,2

. . .
...

...
. . . . . . 0

0 . . . 0 σ2
1,T



 ,

using the prior

vec
(
θ[1,:]

)
∼MN

(
θ̄[1,:], V1,θ

)
.

Then, setting the initial condition ξ̃j−1,t = 0 and the posterior draw θ̃[1,:] , the recursive

step for any j ≥ 2 is:

1. The posterior draw vec
(
θ̃[j−1,:]

)
is used to compute the following ∀t:

ε̃∗j−1,t = zj−1,t − ξ̃j−1,t − θ̃[j−1,:]Ft,

ξ̃j,t = W ∗
t,[j,:] ·


ε̃∗1,t
...

ε̃∗j−1,t

 .
2. The following stacked regression is used to draw from the posterior of θ[j,:]:


zj,1 − ξ̃j,1

...

z1,T − ξ̃j,T

 =


F ′1
...

F ′T

 · vec (θ[j,:]

)
+ ε∗j , ε∗j ∼MN

0,


σ2
j,1 0 . . . 0

0 σ2
j,2

. . .
...

...
. . . . . . 0

0 . . . 0 σ2
j,T



 ,

using the following prior distribution: vec
(
θ[j,:]

)
∼MN

(
θ̄[j,:], Vj,θ

)
.

Repeating this iteration until j = n, we have drawn from the conditional posterior:[
θ′[1,:] θ′[2,:] . . . θ′[n,:]

]′∣∣∣∣ (W ∗
t , σt, Ft, Zt)

T
t=1 .
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If W ∗
t is non time-varying, the above procedure is implemented in the same way as in

the TV case, simply by considering that ∀t we have W ∗
t = W ∗.

Appendix D Additional Figures

Figure 14: Response to a permanent Demand shock at horizon h = 1. Posterior bands.
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Figure 15: Response to a permanent Demand shock at horizon h = 12. Posterior bands.
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Figure 16: Response to a permanent Demand shock at horizon h = 48. Posterior bands.
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Figure 17: Response to a permanent Supply shock at horizon h = 1. Posterior bands.
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Figure 18: Response to a permanent Supply shock at horizon h = 12. Posterior bands.
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Figure 19: Response to a permanent Supply shock at horizon h = 48. Posterior bands.
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Figure 20: Response to a permanent Financial shock at horizon h = 1. Posterior bands.
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Figure 21: Response to a permanent Financial shock at horizon h = 12. Posterior bands.
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Figure 22: Response to a permanent Financial shock at horizon h = 48. Posterior bands.

66



(*) Requests for copies should be sent to: 
Banca d’Italia – Servizio Studi di struttura economica e finanziaria – Divisione Biblioteca e Archivio storico – Via 
Nazionale, 91 – 00184 Rome – (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

RECENTLY PUBLISHED “TEMI” (*)

N. 1266 – Determinants of  the credit cycle: a flow analysis of the extensive margin, by 
Vincenzo Cuciniello and Nicola di Iasio (March 2020).

N. 1267 – Housing supply elasticity and growth: evidence from Italian cities, by Antonio 
Accetturo, Andrea Lamorgese, Sauro Mocetti and Dario Pellegrino (March 2020).

N. 1268 – Public debt expansions and the dynamics of the household borrowing constraint, 
by António Antunes and Valerio Ercolani (March 2020).

N. 1269 – Expansionary yet different: credit supply and real effects of negative interest rate 
policy, by Margherita Bottero and Enrico Sette (March 2020).

N. 1270 – Asymmetry in the conditional distribution of euro-area inflation, by Alex 
Tagliabracci (March 2020).

N. 1271 – An analysis of sovereign credit risk premia in the euro area: are they explained by 
local or global factors?, by Sara Cecchetti (March 2020).

N. 1264 – The impact of TLTRO2 on the Italian credit market: some econometric evidence, 
by Lucia Esposito, Davide Fantino and Yeji Sung (February 2020).

N. 1265 – Public credit guarantee and financial additionalities across SME risk classes,  
by Emanuele Ciani, Marco Gallo and Zeno Rotondi (February 2020).

N. 1272 – Mutual funds’ performance: the role of distribution networks and bank affiliation, 
by Giorgio Albareto, Andrea Cardillo, Andrea Hamaui and Giuseppe Marinelli 
(April 2020).

N. 1273 – Immigration and the fear of unemployment: evidence from individual perceptions 
in Italy, by Eleonora Porreca and Alfonso Rosolia (April 2020).

N. 1274 – Bridge Proxy-SVAR: estimating the macroeconomic effects of shocks identified at 
high-frequency, by Andrea Gazzani and Alejandro Vicondoa (April 2020).

N. 1275 – Monetary policy gradualism and the nonlinear effects of monetary shocks, by Luca 
Metelli, Filippo Natoli and Luca Rossi (April 2020).

N. 1276 – Spend today or spend tomorrow? The role of inflation expectations in consumer 
behaviour, by Concetta Rondinelli and Roberta Zizza (April 2020).

N. 1277 – Going the extra mile: effort by workers and job-seekers, by Matthias S. Hertweck, 
Vivien Lewis and Stefania Villa (June 2020).

N. 1278 – Trainspotting: board appointments in private firms, by Audinga Baltrunaite and 
Egle Karmaziene (June 2020).

N. 1279 – The role of bank supply in the Italian credit market: evidence from a new regional 
survey, by Andrea Orame (June 2020).

N. 1280 – The non-linear effects of the Fed asset purchases, by Alessio Anzuini (June 2020).

N. 1281 – The effects of shop opening hours deregulation: evidence from Italy, by Lucia 
Rizzica, Giacomo Roma and Gabriele Rovigatti (June 2020).

N. 1282 – How do house prices respond to mortgage supply?, by Guglielmo Barone, 
Francesco David, Guido de Blasio and Sauro Mocetti (June 2020).

N. 1283 – The macroeconomics of hedging income shares, by Adriana Grasso, Juan Passadore 
and Facundo Piguillem (June 2020).

N. 1284 – Uncertainty matters: evidence from a high-frequency identifiction strategy, by 
Piergiorgio Alessandri, Andrea Gazzani and Alejandro Vicondoa (June 2020).



 "TEMI" LATER PUBLISHED ELSEWHERE 

2018 
 

ACCETTURO A., V. DI GIACINTO, G. MICUCCI and M. PAGNINI, Geography, productivity and trade: does 
selection explain why some locations are more productive than others?, Journal of Regional Science, 
v. 58, 5, pp. 949-979, WP 910 (April 2013). 

ADAMOPOULOU A. and E. KAYA, Young adults living with their parents and the influence of peers, Oxford 
Bulletin of Economics and Statistics,v. 80, pp. 689-713, WP 1038 (November 2015). 

ANDINI M., E. CIANI, G. DE BLASIO, A. D’IGNAZIO and V. SILVESTRINI, Targeting with machine learning: 
an application to a tax rebate program in Italy, Journal of Economic Behavior & Organization, v. 
156, pp. 86-102, WP 1158 (December 2017). 

BARONE G., G. DE BLASIO and S. MOCETTI, The real effects of credit crunch in the great recession: evidence from 
Italian provinces, Regional Science and Urban Economics, v. 70, pp. 352-59, WP 1057 (March 2016). 

BELOTTI F. and G. ILARDI Consistent inference in fixed-effects stochastic frontier models, Journal of 
Econometrics, v. 202, 2, pp. 161-177, WP 1147 (October 2017). 

BERTON F., S. MOCETTI, A. PRESBITERO and M. RICHIARDI, Banks, firms, and jobs, Review of Financial 
Studies, v.31, 6, pp. 2113-2156, WP 1097 (February 2017). 

BOFONDI M., L. CARPINELLI and E. SETTE, Credit supply during a sovereign debt crisis, Journal of the 
European Economic Association, v.16, 3, pp. 696-729, WP 909 (April 2013). 

BOKAN N., A. GERALI, S. GOMES, P. JACQUINOT and M. PISANI, EAGLE-FLI: a macroeconomic model of 
banking and financial interdependence in the euro area, Economic Modelling, v. 69, C, pp. 249-
280, WP 1064 (April 2016). 

BRILLI Y. and M. TONELLO, Does increasing compulsory education reduce or displace adolescent crime? 
New evidence from administrative and victimization data, CESifo Economic Studies, v. 64, 1, pp. 
15–4, WP 1008 (April 2015). 

BUONO I. and S. FORMAI The heterogeneous response of domestic sales and exports to bank credit shocks, 
Journal of International Economics, v. 113, pp. 55-73, WP 1066 (March 2018). 

BURLON L., A. GERALI, A. NOTARPIETRO and M. PISANI, Non-standard monetary policy, asset prices and 
macroprudential policy in a monetary union, Journal of International Money and Finance, v. 88, pp. 
25-53, WP 1089 (October 2016). 

CARTA F. and M. DE PHLIPPIS, You've Come a long way, baby. Husbands' commuting time and family labour 
supply, Regional Science and Urban Economics, v. 69, pp. 25-37, WP 1003 (March 2015). 

CARTA F. and L. RIZZICA, Early kindergarten, maternal labor supply and children's outcomes: evidence 
from Italy, Journal of Public Economics, v. 158, pp. 79-102, WP 1030 (October 2015). 

CASIRAGHI M., E. GAIOTTI, L. RODANO and A. SECCHI, A “Reverse Robin Hood”? The distributional 
implications of non-standard monetary policy for Italian households, Journal of International Money 
and Finance, v. 85, pp. 215-235, WP 1077 (July 2016). 

CIANI E. and C. DEIANA, No Free lunch, buddy: housing transfers and informal care later in life, Review of 
Economics of the Household, v.16, 4, pp. 971-1001, WP 1117 (June 2017). 

CIPRIANI M., A. GUARINO, G. GUAZZAROTTI, F. TAGLIATI and S. FISHER, Informational contagion in the 
laboratory, Review of Finance, v. 22, 3, pp. 877-904, WP 1063 (April 2016). 

DE BLASIO G, S. DE MITRI, S. D’IGNAZIO, P. FINALDI RUSSO and L. STOPPANI, Public guarantees to SME 
borrowing. A RDD evaluation, Journal of Banking & Finance, v. 96, pp. 73-86, WP 1111 (April 2017). 

GERALI A., A. LOCARNO, A. NOTARPIETRO and M. PISANI, The sovereign crisis and Italy's potential output, 
Journal of Policy Modeling, v. 40, 2, pp. 418-433, WP 1010 (June 2015). 

LIBERATI D., An estimated DSGE model with search and matching frictions in the credit market, 
International Journal of Monetary Economics and Finance (IJMEF), v. 11, 6, pp. 567-617, WP 986 
(November 2014). 

LINARELLO A., Direct and indirect effects of trade liberalization: evidence from Chile, Journal of 
Development Economics, v. 134, pp. 160-175, WP 994 (December 2014). 

NATOLI F. and L. SIGALOTTI, Tail co-movement in inflation expectations as an indicator of anchoring, 
International Journal of Central Banking, v. 14, 1, pp. 35-71, WP 1025 (July 2015). 

NUCCI F. and M. RIGGI, Labor force participation, wage rigidities, and inflation, Journal of 
Macroeconomics, v. 55, 3 pp. 274-292, WP 1054 (March 2016). 

RIGON M. and F. ZANETTI, Optimal monetary policy and fiscal policy interaction in a non_ricardian economy, 
International Journal of Central Banking, v. 14 3, pp. 389-436, WP 1155 (December 2017). 



 "TEMI" LATER PUBLISHED ELSEWHERE 

SEGURA A., Why did sponsor banks rescue their SIVs?, Review of Finance, v. 22, 2, pp. 661-697, WP 1100 
(February 2017). 

 
 

2019 
 

ALBANESE G., M. CIOFFI  and P. TOMMASINO, Legislators' behaviour and electoral rules: evidence from an Italian 
reform, European Journal of Political Economy, v. 59, pp. 423-444, WP 1135 (September 2017). 

APRIGLIANO V., G. ARDIZZI and L. MONTEFORTE, Using the payment system data to forecast the economic 
activity, International Journal of Central Banking, v. 15, 4, pp. 55-80, WP 1098 (February 2017). 

ARNAUDO D., G. MICUCCI, M. RIGON and P. ROSSI, Should I stay or should I go? Firms’ mobility across 
banks in the aftermath of the financial crisis, Italian Economic Journal / Rivista italiana degli 
economisti, v. 5, 1, pp. 17-37, WP 1086 (October 2016). 

BASSO G., F. D’AMURI and G. PERI, Immigrants, labor market dynamics and adjustment to shocks in the 
euro area, IMF Economic Review, v. 67, 3, pp. 528-572, WP 1195 (November 2018). 

BATINI N., G. MELINA and S. VILLA, Fiscal buffers, private debt, and recession: the good, the bad and the 
ugly, Journal of Macroeconomics, v. 62, WP 1186 (July 2018). 

BURLON L., A. NOTARPIETRO and M. PISANI, Macroeconomic effects of an open-ended asset purchase 
programme, Journal of Policy Modeling, v. 41, 6, pp. 1144-1159, WP 1185 (July 2018). 

BUSETTI F. and M. CAIVANO, Low frequency drivers of the real interest rate: empirical evidence for 
advanced economies, International Finance, v. 22, 2, pp. 171-185, WP 1132 (September 2017). 

CAPPELLETTI G., G. GUAZZAROTTI and P. TOMMASINO, Tax deferral and mutual fund inflows: evidence from 
a quasi-natural experiment, Fiscal Studies, v. 40, 2, pp. 211-237, WP 938 (November 2013). 

CARDANI R., A. PACCAGNINI and S. VILLA, Forecasting with instabilities: an application to DSGE models 
with financial frictions, Journal of Macroeconomics, v. 61, WP 1234 (September 2019). 

CHIADES P., L. GRECO, V. MENGOTTO, L. MORETTI and P. VALBONESI, Fiscal consolidation by 
intergovernmental transfers cuts? The unpleasant effect on expenditure arrears, Economic 
Modelling, v. 77, pp. 266-275, WP 985 (July 2016). 

CIANI E., F. DAVID and G. DE BLASIO, Local responses to labor demand shocks: a re-assessment of the case 
of Italy, Regional Science and Urban Economics, v. 75, pp. 1-21, WP 1112 (April 2017). 

CIANI E. and P. FISHER, Dif-in-dif estimators of multiplicative treatment effects, Journal of Econometric 
Methods, v. 8. 1, pp. 1-10, WP 985 (November 2014). 

CIAPANNA E. and M. TABOGA, Bayesian analysis of coefficient instability in dynamic regressions, 
Econometrics, MDPI, Open Access Journal, v. 7, 3, pp.1-32, WP 836 (November 2011). 

COLETTA M., R. DE BONIS and S. PIERMATTEI, Household debt in OECD countries: the role of supply-side 
and demand-side factors, Social Indicators Research, v. 143, 3, pp. 1185–1217, WP 989 (November 
2014). 

COVA P., P. PAGANO and M. PISANI, Domestic and international effects of the Eurosystem Expanded Asset 
Purchase Programme, IMF Economic Review, v. 67, 2, pp. 315-348, WP 1036 (October 2015). 

ERCOLANI V. and J. VALLE E AZEVEDO, How can the government spending multiplier be small at the zero 
lower bound?, Macroeconomic Dynamics, v. 23, 8. pp. 3457-2482, WP 1174 (April 2018). 

FERRERO G., M. GROSS and S. NERI, On secular stagnation and low interest rates: demography matters, 
International Finance, v. 22, 3, pp. 262-278, WP 1137 (September 2017). 

FOA G., L. GAMBACORTA, L. GUISO and P. E. MISTRULLI, The supply side of household finance, Review of 
Financial Studies, v.32, 10, pp. 3762-3798, WP 1044 (November 2015). 

GIORDANO C., M. MARINUCCI and A. SILVESTRINI, The macro determinants of firms' and households' 
investment: evidence from Italy, Economic Modelling, v. 78, pp. 118-133, WP 1167 (March 2018). 

GOMELLINI M., D. PELLEGRINO and F. GIFFONI, Human capital and urban growth in Italy,1981-2001, 
Review of Urban & Regional Development Studies, v. 31, 2, pp. 77-101, WP 1127 (July 2017). 

MAGRI S., Are lenders using risk-based pricing in the Italian consumer loan market? The effect of the 2008 
crisis, Journal of Credit Risk, v. 15, 1, pp. 27-65, WP 1164 (January 2018). 

MAKINEN T., A. MERCATANTI and A. SILVESTRINI, The role of financial factors for european corporate 
investment, Journal of International Money and Finance, v. 96, pp. 246-258, WP 1148 (October 2017). 

MIGLIETTA  A., C. PICILLO and M. PIETRUNTI, The impact of margin policies on the Italian repo market, The 
North American Journal of Economics and Finance, v. 50, WP 1028 (October 2015). 



 "TEMI" LATER PUBLISHED ELSEWHERE 

MONTEFORTE L. and V. RAPONI, Short-term forecasts of economic activity: are fortnightly factors useful?, 
Journal of Forecasting, v. 38, 3, pp. 207-221, WP 1177 (June 2018). 

NERI S. and A. NOTARPIETRO, Collateral constraints, the zero lower bound, and the debt–deflation 
mechanism, Economics Letters, v. 174, pp. 144-148, WP 1040 (November 2015). 

PEREDA FERNANDEZ S., Teachers and cheaters. Just an anagram?, Journal of Human Capital, v. 13, 4, pp. 
635-669, WP 1047 (January 2016). 

 RIGGI M., Capital destruction, jobless recoveries, and the discipline device role of unemployment, 
Macroeconomic Dynamics, v. 23, 2, pp. 590-624, WP 871 (July 2012). 

 
 

2020 
 

BRIPI F., D. LOSCHIAVO and D. REVELLI, Services trade and credit frictions: evidence with matched bank – 
firm data, The World Economy, v. 43, 5, pp. 1216-1252, WP 1110 (April 2017). 

COIBION O., Y. GORODNICHENKO and T. ROPELE, Inflation expectations and firms' decisions: new causal 
evidence, Quarterly Journal of Economics, v. 135, 1, pp. 165-219, WP 1219 (April 2019). 

CORSELLO F. and V. NISPI LANDI, Labor market and financial shocks: a time-varying analysis, Journal of 
Money, Credit and Banking, v. 52, 4, pp. 777-801, WP 1179 (June 2018). 

D’IGNAZIO A. and C. MENON, The causal effect of credit Guarantees for SMEs: evidence from Italy, The 
Scandinavian Journal of Economics, v. 122, 1, pp. 191-218, WP 900 (February 2013). 

RAINONE E. and F. VACIRCA, Estimating the money market microstructure with negative and zero interest 
rates, Quantitative Finance, v. 20, 2, pp. 207-234, WP 1059 (March 2016). 

RIZZICA L., Raising aspirations and higher education. Evidence from the UK's widening participation 
policy, Journal of Labor Economics, v. 38, 1, pp. 183-214, WP 1188 (September 2018). 

 
 

FORTHCOMING 
 

ARDUINI T., E. PATACCHINI and E. RAINONE, Treatment effects with heterogeneous externalities, Journal of 
Business & Economic Statistics, WP 974 (October 2014). 

BALTRUNAITE A., C. GIORGIANTONIO, S. MOCETTI and T. ORLANDO, Discretion and supplier selection in 
public procurement, Journal of Law, Economics, and Organization, WP 1178 (June 2018).  

BOLOGNA P., A. MIGLIETTA and A. SEGURA, Contagion in the CoCos market? A case study of two stress 
events, International Journal of Central Banking, WP 1201 (November 2018). 

BOTTERO M., F. MEZZANOTTI and S. LENZU, Sovereign debt exposure and the Bank Lending Channel: impact on 
credit supply and the real economy, Journal of International Economics, WP 1032 (October 2015). 

BRONZINI R., G. CARAMELLINO and S. MAGRI, Venture capitalists at work: a Diff-in-Diff approach at late-
stages of the screening process, Journal of Business Venturing, WP 1131 (September 2017). 

BRONZINI R., S. MOCETTI and M. MONGARDINI, The economic effects of big events: evidence from the Great 
Jubilee 2000 in Rome, Journal of Regional Science, WP 1208 (February 2019). 

COVA P. and F. NATOLI, The risk-taking channel of international financial flows, Journal of International Money 
and Finance, WP 1152 (December 2017). 

COVA P., P. PAGANO, A. NOTARPIETRO and M. PISANI, Secular stagnation, R&D, public investment and monetary 
policy: a global-model perspective, Macroeconomic Dynamics, WP 1156 (December 2017). 

DEL PRETE S. and S. FEDERICO, Do links between banks matter for bilateral trade? Evidence from financial 
crises, Review of World Economics, WP 1217 (April 2019). 

GERALI A. and S. NERI, Natural rates across the Atlantic, Journal of Macroeconomics, WP 1140 
(September 2017). 

LIBERATI D. and M. LOBERTO, Taxation and housing markets with search frictions, Journal of Housing 
Economics, WP 1105 (March 2017). 

LOSCHIAVO D., Household debt and income inequality: evidence from Italian survey data, Review of Income 
and Wealth, WP 1095 (January 2017). 

MOCETTI S., G. ROMA and E. RUBOLINO, Knocking on parents’ doors: regulation and intergenerational 
mobility, Journal of Human Resources, WP 1182 (July 2018). 



 "TEMI" LATER PUBLISHED ELSEWHERE 

NISPI LANDI V. and A. SCHIAVONE, The effectiveness of capital controls, Open Economies Review, WP 1200 
(November 2018). 

PANCRAZI R. and M. PIETRUNTI, Natural expectations and home equity extraction, Journal of Housing 
Economics, WP 984 (November 2014). 

PEREDA FERNANDEZ S., Copula-based random effects models for clustered data, Journal of Business & 
Economic Statistics, WP 1092 (January 2017). 

RAINONE E., The network nature of otc interest rates, Journal of Financial Markets, WP 1022 (July 2015). 
SANTIONI, R., F. SCHIANTARELLI and P. STRAHAN, Internal capital markets in times of crisis: the benefit of 

group affiliation, Review of Finance, WP 1146 (October 2017). 
SCHIANTARELLI F., M. STACCHINI and P. STRAHAN, Bank Quality, judicial efficiency and loan repayment 

delays in Italy, Journal of Finance, WP 1072 (July 2016). 
 




