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Abstract 
Assessing the role of uncertainty shocks as a driver of business cycle fluctuations is 

challenging because spikes in uncertainty often coincide with news about economic 
fundamentals. To tackle this problem, we exploit daily data to identify uncertainty shocks that 
(i) impact the VXO volatility index, and (ii) are statistically independent from level shocks 
affecting stock prices. We then use the identified series of uncertainty shocks in a monthly 
VAR to estimate their macroeconomic effects on the US economy. An exogenous increase in 
uncertainty depresses economic activity and prices, significantly affecting both labor and 
capital goods markets. Uncertainty shocks account for about 20% of the cyclical fluctuations 
in employment and industrial production.
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1 Introduction
1

Economic uncertainty has been increasingly identified by both researchers and policymakers as

a key source of financial and macroeconomic fluctuations especially after the Global Financial

Crisis.
2

However, assessing the role of uncertainty in the business cycle is far from trivial.

Uncertainty often rises endogenously in response to a deterioration in economic fundamentals,

and many events influence at once agents’ expectations and their perception of the riskiness of

the economic environment. This fact implies that disentangling first- and second-moment

effects is inevitably challenging.

To illustrate the relevance of this challenge, in Figure 1 we plot two principal components

calculated using a range of “TFP news” (pcn - considered in inverted scale) and “uncertainty”

shocks (pcu) available from the literature.
3
Each of the two components explains over 60% of the

variability of the underlying shocks. The two components are highly correlated (0.65) and their

comovement is particularly striking during the recessions experienced by the US in 2001 and

in 2008-2009. This correlation is a clear indication that bad news and uncertainty often come

together, and that different models can interpret the same episodes in different ways depending

on their specification and identification assumptions.

This paper proposes a new empirical strategy to identify uncertainty shocks and to estimate

their macroeconomic impact. The strategy involves two steps. First, we identify the shocks by

applying Independent Component Analysis (ICA) to the reduced form residuals of a daily VARmodel

that includes the S&P500 stock price index (sp) and the VXOvolatility index (vxo), togetherwith a
range of additional financial indicators. We assume that (i) the shocks are statistically independent

rather than just orthogonal to one another; (ii) atmost one of them is normally distributed; and (iii)

first- and second-moment (i.e. price level and uncertainty) shocks have a larger contemporaneous

impact respectively on sp and vxo.4 Thus, our identification assumptions are significantly less

restrictive than those employed in previous works: we allow the shocks to affect all variables

contemporaneously (i.e. within the same day) and place no restrictions on the sign of any of the

responses. Second, we aggregate uncertainty and level shocks to the monthly frequency and use

1

We thank Torben Andersen, Scott Baker, Dario Caldara, Ian Dew-Becker, Michele Piffer, Giorgio Primiceri,

Viktor Todorov and seminar participants at the Bank of Italy, Kellogg School of Management, and the “Workshop in

Structural VAR models” at Queen Mary University for helpful comments and suggestions. Any remaining errors are

our own responsibility. The views expressed in this paper do not necessarily coincide with those of the Bank of Italy.

2

Blanchard (2009), Bloom (2009), Fernandez-Villaverde et al. (2011); Christiano et al. (2014), Yellen (2017), Draghi

(2018), Bloom et al. (2018).

3

The TFP news shocks are taken fromBeaudry and Portier (2014), who consider thirteen VAR specifications that

follow Beaudry and Portier (2006) and Barsky and Sims (2011), while the uncertainty shocks come from Baker et al.

(2016), Basu and Bundick (2017), and Berger et al. (2019). Similar results hold if we consider also the news shocks

identified directly in Barsky and Sims (2011) and Kurmann and Otrok (2013). However, those series are available

only until 2005-2007, respectively.

4

Statistical independence provides sufficient restrictions to fully identify a VAR structure if at most one of the

structural shocks is gaussian: see Gourieroux et al. (2017) and Gourieroux et al. (2018) among others.
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them in a monthly VAR model of the US economy.

Figure 1: Comparison between news and uncertainty shocks

Principal components of the news shocks estimated by Beaudry and Portier (2014) (PC News) and of the uncertainty shocks estimated by Baker et al.
(2016), Basu and Bundick (2017) and Berger et al. (2019) (PC Uncertainty). All principal components are plotted as three-quarters moving averages. PC

News is inverted in sign, so a spike stands for negative news shocks. Grey areas represent NBER recessions.

We focus primarily on the analysis of the second-moment shock, which reflects changes in

risk and uncertainty. By contrast, the first-moment shocks isolated by the procedure do not

have a structural interpretation since they capture a broad range of perturbations – including

news on future TFP – that would otherwise confound the estimation of uncertainty shocks. The

premise of our work, highlighted in Figure 1, is that controlling for the role of ‘news’ is

necessary in order to assess the effects of uncertainty. The use of high-frequency, non-Gaussian

financial data is crucial because it allows us to achieve identification by combining a strong

statistical assumption (independence), which is consistent with the definition of structural

shocks in theoretical models, with a relatively weak economic assumption (a restriction on the

relative magnitude of the responses of sp and vxo). This implies that we can avoid the

limitations of other commonly used identification schemes. A crucial benefit of our approach is

that it delivers shocks that are unrelated across the entire distribution and not just on average.

This feature is useful because, as we show in the empirical analysis, the interaction between

news and uncertainty goes well beyond linear correlation: bad trading days are typically

characterized by sharp drops in prices and jumps in volatility. This type of tail dependence is

completely ignored by identification strategies (such as Cholesky decomposition) that only
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orthogonalize the residuals of a VAR model.

The uncertainty shocks identified by our method capture the key geopolitical events in our

sample period and correlate strongly with firm-level investment decisions, in line with the “wait

and see” effect (Bloom, 2009). Furthermore, the method successfully retrieves uncertainty shocks

in Monte Carlo tests based on the models by Basu and Bundick (2017), Bloom et al. (2018) and

Berger et al. (2019).

Our main result is that uncertainty ’matters’. An exogenous rise in uncertainty causes a

contraction in economic activity, and uncertainty shocks account for about 10% to 20% of the

fluctuations in employment and industrial production in our sample. Furthermore, the negative

responses recorded by wages, hours, and new orders of capital goods suggest that the shocks

propagate through both labor and capital goods markets.

The challenges in the identification of uncertainty shocks were first stressed by Stock and

Watson (2012). The potential confusion between uncertainty and the release of new information

on economic fundamentals is also highlighted by Baker and Bloom (2013), Baker et al. (2016)

and Cascaldi-Garcia and Galvao (2016). Several mechanisms can complicate this identification

problem. On the one hand, since uncertainty is recessionary, agents might plausibly revise their

expectations downwards after a genuine uncertainty shock. On the other hand, negative news

could cause an endogenous increase in the agent’s uncertainty about the state of the economy.

Recessions are times when business practices and relationships break down (Bachmann and

Moscarini, 2011 and Fostel and Geanakoplos, 2012) and new, unfamiliar policies are activated

(Pastor and Veronesi, 2013 and Bianchi and Melosi, 2017). These difficulties are reflected in the

wide range of results documented in the empirical literature, where uncertainty shocks have

been alternatively found to be strongly recessionary (Christiano et al., 2014,Piffer and

Podstawski, 2018) or entirely irrelevant (Berger et al., 2019). Recent research has highlighted

two important complications of this problem. The first one is that uncertainty is not a univocal

concept, as agents might experience bouts of both ’good’ and ’bad’ uncertainty that have

radically different implications for their behavior (Segal et al., 2015, Kilic and Shaliastovich,

2019; see also the discussions in Basu and Bundick, 2017 and Bloom et al., 2018). The second

one is that the source of the shock may matter: Jurado et al. (2015) argue that financial

uncertainty has a negative impact on economic activity, while macroeconomic uncertainty

adjusts endogenously to business cycle fluctuations.

In an influential and closely related work, Berger et al. (2019) (BDG henceforth) explicitly

tackle the relation between news and uncertainty using data on the S&P500 equity market.

Uncertainty shocks are identified as changes in the expected volatility of the price index that are

unrelated to the realized volatility of the stock market in a given month, thus isolating

uncertainty from a broad range of economic news. BDG find that uncertainty shocks have no

significant effect on the economy and that the recessionary effects documented in the literature
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are caused by a systematic overlap between spikes in volatility and large adverse shocks to the

fundamentals of the economy. We also exploit stock and option price data for identification.

However, we relax the BDG identification scheme allowing for two-way feedbacks between

uncertainty and the observed volatility of the stock market. This generalization relies on two

innovations relative to BDG. First, we use daily data that contain richer information on the

relationship between economic news and uncertainty compared to monthly or quarterly

observations. Second, we look for shocks that are independent and not merely orthogonal, thus

imposing restrictions on the higher-order moments of the data. The moment restrictions allow

us to achieve identification with minimal assumptions on the impact matrix, and to avoid any

confusion between uncertainty and ’tail’ shocks to the fundamentals. The daily structural shocks

are then aggregated to the monthly frequency and used in a monthly VAR model following

Gazzani and Vicondoa (2020). These innovations turn out to be crucial: our identification

strategy, which is valid under a broader set of assumptions on the data generating process,

allows us to reject the hypothesis that uncertainty shocks do not affect the business cycle.
5

The remainder of the paper is organized as follows. Section 2 describes our empirical model.

Section 3 works through a stylized VAR that only includes stock prices and implied volatility.

This application allows us to discuss analytically the role of daily data and the relation between

our identification assumptions and those employed by BDG, and highlights the dramatic

improvement delivered by moment restrictions relative to recursive identification schemes.

Section 4 illustrates the results of the daily VAR, providing a high-frequency, model-based

narrative of the main uncertainty shocks that occurred in the US between February 1986 and

December 2019. Section 5 contains the main empirical results. Section 6 compares the results

with those obtained in previous studies. Section 7 covers the robustness exercises. Section 8

concludes.

2 Identifying the Dynamic Effects of Uncertainty Shocks

Consider a vector of n time series wt modeled as a causal and covariance-stationary SVAR of lag

length p:

A(L)wt = Bεt (1)

where A(L) is a polynomial lag operator and εt is a vector of stochastic innovations that

represent the structural shocks in the economy, and B is a n × n matrix whose coefficients

5

Gazzani and Vicondoa (2020) show that the data frequency also plays a role in the BDG approach, which yields

different results when applied to daily rather than monthly data. The identification restrictions employed in this

paper allow us to leave the daily responses of prices, realized volatility and VXO to news and uncertainty shocks

completely unrestricted.
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determine the contemporaneous impact of εt on wt. We assume that w is sampled at the daily

frequency t. More specifically, wt = {spt, vxot, Ωt} where spt is the logarithm of the S&P500

stock price index, vxot is the (logarithm of) VXO implied volatility index (our baseline proxy of

aggregate uncertainty) and Ωt is a vector of control variables of dimension nΩ × 1. We allow

for the existence of a set of endogenous variables, collected in the vector y (ny × 1), which
might be affected by the primitive shocks εt but cannot be observed on a daily basis. This vector

includes the typical variable of interest in macroeconomics, e.g. inflation and economic activity

indicators. The vector Ωt has to be large enough to make the daily VAR informationally

sufficient, guaranteeing that the omission of yt from equation (1) is inconsequential for

identification purposes. This assumption is implicit in any VAR analysis and can be tested after

the estimation. The daily model can be written more explicitly as follows:

A(L)

 spt

vxot

Ωt

 =

 b11 b12 B13
b21 b22 B23
B31 B32 B33


 εe

t
εu

t
εΩ

t

 (2)

The first column of the B matrix, B•1, captures the impact of first-moment shocks that

primarily affect the stock price level on any given trading day (εe
t). The second column, B•2,

capture instead second-moment shocks stemming from changes in the expected volatility of the

market over the following month (εu
t ). A key objective of our analysis consists of estimating B•1

and B•2, disentangling the contribution of price level news and volatility news to the dynamics

of the daily data.
6

Standard identification schemes would assume that some elements of the B matrix are zero

or have particular signs that can be derived by some underlying economic theory. However, these

strategies are not suitable in this case.Zero restrictions are problematic because of the two-way

feedback between stock prices and implied volatility documented in the finance literature. On the

one hand, an unexpected drop in equity prices reduces the firms’ net worth and increases their

leverage, causing equity prices to be more volatile. On the other hand, an increase in volatility

reduces the investors’ discount factor bringing about a drop in equity prices. These ’leverage’ and

’volatility feedback’ effects are quantitatively significant for daily S&P500 observations, and they

both contribute to the negative conditional correlation between price level and volatility found in

the data (see e.g. Carr and Wu, 2017). Hence, a reliable identification strategy should allow prices

and volatility to respond to both first-moment and second-moment shocks

Although, in principle, it might be possible to design sign restrictions that are compatible

with these mechanisms, in practice, economic theory does not provide clear guidance on how

this task could be accomplished. Figure 1 suggests that coming up with workable restrictions

6

Notice that εu
t is a proper structural shock, with a well-defined theoretical interpretation grounded in the

uncertainty literature, whereas εe
t is a catch-all term that is meant to capture a broad range of changes in the

fundamentals of the economy. See BDG for a discussion.
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might be impossible: to the extent that bad news and rising uncertainty have qualitatively

similar implications for economic agents, one would suspect that the elements of B•1 and B•2
have opposite signs, and this would prevent a separation between εe

t and εu
t based on sign

restrictions.

In order to circumvent these limitations, we resort to an identification strategy that exploits

the moments of the distribution of εt and places only minimal restrictions on the impact matrix

B. We assume that: (i) the structural shocks are statistically independent; (ii) at most one of them

is normally distributed; and (iii) εu
t (εe

t) has a larger impact on vxot (spt). Assumption (i) cannot

be tested, but it is consistent with theoretical models and with the general notion of exogenous

shocks. Assumption (ii) may or may not be valid depending on the application, and it is plausible

for our daily financial data (see Section 3). Gourieroux et al. (2017) and Gourieroux et al. (2018)

show that, under assumptions (i) and (ii), the identification problem of VAR and VARMA models

can be solved by exploiting higher-order moments of the distribution of the residuals (over and

above their covariance matrix). We exploit this general result by using independent component

analysis (ICA) to search for the unique B matrix that yields themost independent shocks

{
εe

t, εu
t
}
.

In essence, ICA amounts to searching for a B matrix that maximizes the non-gaussianity of the

shocks.

Our implementation of ICA is discussed in detail in Appendix C; here, we exploit the results

by Keweloh (2020) to illustrate ICA within the more common generalized methods of moments

(GMM) framework. ICA can be expressed as a computationally efficient GMM estimator of the

impact matrix based on the standard covariance condition (eq.3) and on two conditions based on

higher-order moments. (eq.4-5), here analytically represented by coskewness. Coupled with the

standard normalization b11 = 1 and b22 = 1, these restrictions guarantee that the columns B•1
and B•2 are globally identified.

E [εu
t εe

t] = 0 (3)

E
[
εu

t (ε
e
t)

2
]
= 0 (4)

E
[
(εu

t )
2 εe

t

]
= 0 (5)

To obtain an economic interpretation for the (uniquely identified) components, we resort to

assumption (iii). In particular, we assume that εu
t and εe

t are the two components that exert their

maximum contemporaneous impact on, respectively, vxot and spt:
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|b11| > |b1i| ∀i 6= 1 (6)

|b22| > |b2i| ∀i 6= 2

Assumption (6) implies that vxot (spt) is relatively more sensitive to second-moment (first-

moment) shocks: in particular, it requires the daily innovation to the uncertainty proxy vxot to

be predominantly driven by genuine uncertainty shocks.
7
This setup allows all variables in the

system – including vxot and spt – to respond contemporaneously to the two shocks of interest.

As such, it can easily accommodate the presence of leverage and volatility feedback effects, as well

as the more complex interactions between first and second moments discussed in Section 1.

Since we are interested in examining the impact of the daily shocks

{
εu

t , εe
t
}
on a set of

macroeconomic variables yτ that are available only at a lower frequency τ (e.g. monthly), the

calculation of the impulse responses requires temporal aggregation of the shocks. Following

Gazzani and Vicondoa (2020), the aggregated shocks are calculated as monthly averages:

εu
τ =

∑m
t=1εu

t
m

(7)

εe
τ =

∑m
t=1εe

t
m

where m is the number of trading days within each calendar month.
8

To compute the response of yτ to the two shocks of interest, we use a monthly VARwhere the

yτ vector is modeled along with monthly averages of the daily stock price and uncertainty series

used in the daily model:

Ã(L)

 yτ

vxoτ

spτ

 =

 uy
τ

uu
τ

ue
τ

 (8)

where Ã(L) contains the autoregressive structure of the monthly VAR and uτ denotes the

monthly reduced-form residuals. As usual, the mapping between residuals and shocks is

determined by some unknown impact matrix B̃ such that uτ = B̃ετ . Identification is achieved

by using the shocks {εu
τ, εe

τ} as (internal or external) instruments for the VAR residuals. The

instruments allow us to identify the first two columns of the B̃ matrix that are our object of

7

We do not use directly magnitude restrictions because they are unappealing and unfeasible in our case. First,

imposing directly the magnitude restrictions exclusively on sp and vxo would not allow us to separate first-moment

and uncertainty shocks from other innovations hitting the daily VAR system (e.g. monetary policy shocks). Second,

imposing magnitude restrictions on our large VAR system is computationally unfeasible.

8

Within-month averaging recovers the correct impact effects of {εx, εe} on y under a general VAR structure –

see Gazzani and Vicondoa (2020).
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interest. The dynamic responses of the economy are computed using the matrix Ã(L) through a
VARX where the shocks are exogenous variables in the VARs. Since the two shocks {εu

τ, εe
τ} are

uncorrelated by construction if the daily VAR includes a sufficient number of lags, the inference

can be conducted separately for each shock.

3 Bivariate VAR

This section illustrates the logic of our empirical strategy through a stylized bivariate VAR

model that only includes stock prices and implied volatility. First, we demonstrate the role of

high-frequency data in our identification strategy (Section 3.1). Second,we discuss the

relationship between our approach and the one pursued in BDG (Section 3.2). Finally, we

compare the performance of moment and recursive restrictions in identifying uncertainty

shocks in our sample (Section 3.3).

3.1 The Role of High-Frequency Data

Consider a stylized version of the VARmodel in equation (2). For simplicity, we set the lag length

to p = 1 and omit the additional control variables Ωt, so that the system only includes vxot and

spt: [
vxot

spt

]
=

[
a11 a21
a12 a22

] [
vxot−1
spt−1

]
+

[
b11 b21
b12 b22

] [
εu

t
εe

t

]
(9)

The reduced-form residuals are linked to the structural shocks by the relation ut = Bεt. As

in the previous discussion, we use the subscripts t and τ to denote high and low frequency,

respectively. We further assume for analytical tractability that the sampling ratio between τ and

t (i.e. the frequency mismatch m) is equal to 2. The temporal aggregation has two problematic

implications. First, it alters the covariance matrix of the residuals. This implies that

identification restrictions that are valid at high frequency can turn out to be invalid at low(er)

frequencies. Second, it washes away information on the higher moments of the data. Thus,

identification restrictions that exploit co-skewness and other forms of tail dependence in the

data may simply not be viable at low frequencies. We discuss these points in turn below.

The influence of temporal aggregation on the residual covariance matrix can be examined by

aggregating eq.(9) to the lower frequency τ. Aggregation is obtained by applying the filter D(L) =
I + AL to the original process, where A is the autoregressive matrix of the high-frequency VAR

and L is the lag operator. Intuitively, the filter D(L) makes the data observable only once every

m periods t. For the case with m = 2, the process at frequency τ is given by:

12



[
vxoτ

spτ

]
=

[
a2

11 + a12a21 a11a12 + a12a22
a11a21 + a21a22 a12a21 + a2

22

] [
vxoτ−1
spτ−1

]
+

[
uvxo

τ

usp
τ

]
(10)

[
uvxo

τ

usp
τ

]
=

[
b11 + L (a11b11 + a12b21) b21 + L (a11b12 + a12b22)

b12 + L (a11b21 + a12b22) b22 + L (a21b12 + a22b22)

] [
εu

t
εe

t

]
(11)

The impact matrix in eq.(11) is clearly different from the original B matrix. A diagonal B
matrix, for instance, does not necessarily lead to a diagonal (I + AL) B matrix. This means that

even if sp and vxo index were accurately described by a recursive system at the daily frequency

(which, as we argue in Section 1, is extremely unlikely), the recursive structure would most

probably break down at the monthly or quarterly frequency. More generally, plausible

restrictions at the HF might not hold at the LF, and the contemporaneous responses estimated

using a LF-VAR will typically differ from those obtained from a Bridge-Proxy SVAR where

identification is achieved at HF. This problem is particularly relevant when dealing with

financial variables, as financial markets quickly absorb and propagate most economic

perturbations.

The influence of temporal aggregation on the higher moments of the data-generating

process stems directly from the Central Limit Theorem. The probability density function of a

sum of N random variables converges monotonically over N to the Gaussian p.d.f. in terms of

relative entropy (Barron, 1986). This result implies that temporal aggregation of the data

dramatically increases the entropy (Gaussianity) of the residuals of a VAR model. Define Υ (u)
as the the number of random variables that linearly determine the reduced-form residuals u.
Then Υ (ut) = n and Υ (uτ) = nm, and for m ≥ 1 we can immediately conclude that

Υ (uτ) ≥ Υ (ut) . In other words, the low-frequency residuals uτ are inevitably more Gaussian

than the original high-frequency residuals ut. When m and n are large (as in our empirical

specification, where m = 22 is the average number of business days within a month and the

baseline VAR includes n = 10 variables), the difference becomes quantitatively important. This

loss of information plays a critical role in our case. The daily series display rich forms of

statistical interdependence. It is precisely this interdependence that allows ICA to identify a

unique set of structural shocks without imposing stringent theoretical restrictions on the impact

matrix. As we show in the next section, this route is not viable with Gaussian monthly or

quarterly samples.
9

9

Ferrara and Guerin (2018) is a related work that tackles the temporal aggregation bias by resorting to mixed-

frequency models (MIDAS regressions or stacked VARs), but rely on a recursive identification scheme that does not

resolve the endogeneity between first and second moments. We show instead that the linkages between stock prices

and VXO are a key obstacle in the identification of uncertainty shocks. Although temporal aggregation exacerbates
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3.2 Restricting the Relation between Prices and Expected Volatility

Our empirical setup bears a clear resemblance to BDG: in both cases level and uncertainty

shocks (or equivalently first- and second-moment shocks) are identified using stock prices and

implied volatility, the assumption being that actual uncertainty shocks should be orthogonal to

changes in several economic fundamentals that directly hit equity prices. However, there is a key

difference in how this idea is implemented. BDG capture price-level news using the realized

volatility of the stock market, defined as the squared return rvt = (∆spt)
2
, and identify

uncertainty shocks as innovations to the option-implied volatility vxot that are orthogonal to

the innovations to rvt. This orthogonalization guarantees that εu
t captures changes in expected

volatility that are separated from changes in current volatility driven by news on fundamentals.

However, identification relies on the key assumption that rvt does not respond

contemporaneously to εu
t : uncertainty must have no impact on the current volatility of the stock

market. In Appendix B we prove that our identification assumptions generalize those used by

BDG removing this restriction. In particular, we show that the VAR system in equation (9) is

consistent with a stylized equity price model in which stock prices follow a random-walk

process with stochastic volatility. Price and volatility innovations are driven by the two

structural shocks εe
t and εe

t, while rvt includes by construction the squares and the

cross-product of the two shocks. The model suggests that there are economically interesting

cases where the system is not recursive and εu
t has a contemporaneous impact on rvt, leading to

a failure of the BDG assumption. In particular, this happens when (i) the ’volatility feedback’

effect is active (b12 < 0 in equation 2) and (ii) the distribution of εu
t is skewed, implying that εu

t
and (εu

t )
2
are not orthogonal. Our strategy is not subject to this limitation. By restricting

directly the moments of the joint distribution of the shocks, we ensure that εu
t is orthogonal to

both εe
t and (εe

t)
2
without taking a priori a strong stance on the impact matrix. Our approach

separates εu
t from both price level and realized volatility shocks, and is thus consistent with the

BDG argument but, crucially, it allows us to achieve this separation without preventing either

spt or rvt from responding contemporaneously to εu
t .

Since our identification strategy is novel, before moving to the empirical analysis we test its

performance in a Montecarlo setup using three leading general equilibrium models with

uncertainty shocks: Basu and Bundick (2017) (BB), the ’really uncertain business cycle’ model of

Bloom et al. (2018) (RUBC) and the ’really skewed business cycle’ model of Berger et al. (2019)

(RSBC).
10
A summary of the results is reported in Table 1. ICA successfully retrieves the actual

this identification challenges, this problem is also pervasive in daily data, which implies that recursive restrictions are

problematic irrespective of the sampling frequency. This motivates our approach, where identification is obtained

at high frequency through a more flexible identification strategy - ICA - and the shocks are subsequently used to

construct external instruments for a lower-frequency VAR model.

10

We follow BDG and we run this exercise by running our VAR identification on data drawn from the ergodic

distribution of the variables in the models. The shocks in these models are Gaussian (the only exception being the

14



structural shocks in all models. Its precision is high in absolute terms, with correlations between

true and estimated shocks above 90%. It is also higher than that achieved by the BDG recursive

identification strategy, which in the three models under consideration delivers correlations of

0.94, 0.98 and 0.87 (see BDG Section 6.1). These results imply that, although the BDG

restrictions approximately hold in these models, our strategy is also reliable in cases where the

timing restriction is not satisfied (due to the double feedback mechanism previously described)

and/or the shocks are not symmetrically distributed.

Model BB RUBC RSBC

Correlation 0.98 0.98 0.91

Table 1: Montecarlo performances of ICA in leading models of uncertainty

BB, RUBC, RSBC denote the general equilibrium models of Basu and Bundick (2017), Bloom et al. (2018) and Berger et al.
(2019). For each model, the table reports the correlation between actual uncertainty shocks and the uncertainty shocks
identified by Independent Component Analysis.

3.3 Empirical Illustration

This section employs the bivariate VAR discussed in the previous subsections to illustrate the

comparison between recursive and ICA-based identifications. The VAR is estimated alternatively

on daily or monthly data for the S&P500 stock price index (spt) and the VXO volatility index

(vxot) over the period 1986m2-2019m12. Both variables are used in logarithms. Following the

Akaike information criterion, the number of lags is set to 10 and 3, respectively, for the daily and

monthly model. Not surprisingly, sp and vxo display a strong negative correlation at both the

monthly and the daily frequency, with correlation coefficients of, respectively, -0.76 and -0.72.

This immediately points to the perils of using a recursive identification scheme irrespective of

the sampling frequency. Appendix E shows that the role of uncertainty shocks during the GFC is

indeed reversed under alternative recursive schemes both at daily and monthly frequency.
11

When applied to the residuals of the VAR models, ICA recovers two distinct shocks in the

daily but not in the monthly dataset: in the latter case, temporal aggregation (and the associated

loss of information) prevents a clear separation between first- and second-moment shocks. This

result is entirely consistent with Figure 1. Furthermore, the daily ICA identification is sharply at

oddswith the Cholesky decomposition. The estimated off-diagonal elements of the impactmatrix

skewed productivity shock in RSBC); however, the mispecification associated to the discrepancy between SS and

VAR representations introduces a degree of non-normality, and this turns out to be sufficient for ICA to work. In

separate tests, we find that - unsurprisingly - ICA is also accurate when the structural shocks are drawn directly from

non-Gaussian distributions (e.g. Beta and Bernoulli)

11

Similar conclusions are drawn by analyzing the mutual information contained in first-moment and uncertainty

shocks. Table A.2 included in Appendix A summarizes the differences between Cholesky and ICA in terms of the

mutual information contained in the estimated shocks. The table confirms that there are forms of dependence

between stock prices and VXO that survive the Cholesky orthogonalization, whereas ICA succeeds in breaking down

that dependence.
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are -0.38 and -0.50, implying that ’leverage’ and ’volatility feedback’ effects coexist in the data: a

positive price shock εe
t > 0 reduces vxot on impact, while a positive volatility shock εu

t > 0
causes a decline in spt. Finally, the exercise shows how ICA exploits the high-order moments

of the distribution to break the interdependence among news and uncertainty. To illustrate this

point, we study the joint distribution of residuals, Cholesky and ICA-based shocks using local-

linear regressions and cluster analysis.

Figure 2 shows scatterplots of the data with local-linear regressions that allow the relation

between spt and vxot to change smoothly across the distribution. The VAR residuals display the

usual negative relation between price and volatility (panel a). A Cholesky factorization transforms

this relation rather than removing it from the data: the ’shocks’ are still correlated, and the sign

of the correlation changes across the distribution (panel b).
12

The ICA shocks, by contrast, are orthogonal across the entire distribution (panel c). Figure

3 shows a partition of shocks and residuals into separate clusters. Following the AIC criterion,

we estimate 5 clusters and let mean and variance change across clusters; in each panel of the

figure, the legend reports the within-cluster correlation coefficients, their p-values (in brackets)

and the share of observations assigned to the clusters. Panel (a) confirms that the residuals are

negatively and significantly correlated, albeit to different degrees. The negative correlation is still

dominant among the Cholesky shocks, where it involves 77% of the observations (panel b). ICA

entirely removes the correlation among the shocks in three out of the five clusters (panel c). It also

reduces drastically the magnitude of the correlation coefficients, that are bounded between -0.04

and 0.26. Taken together, Figures 2 and 3 confirm that ICA yields a credible separation between

structural (and hence exogenous and independent) first- and second-moment shocks.

12

Away from the boundaries, the standard negative correlation dominates in the ’bad news’ region εe
t < 0 while a

strong positive correlation shows up in the ’good news’. This switchmight be compatiblewith the occurrence of “good

uncertainty” after a positive news shocks (Cascaldi-Garcia, 2017) region εe
t > 0. Irrespective of the interpretation, it

is symptomatic of a failure of the Cholesky factorization to isolate authentic structural shocks.
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Figure 2: Local linear regression
The left panel shows a scatterplot of the residuals from a bivariate daily VAR model that includes the S&P500 stock price index and the VXO volatility
index. The middle panel shows scatter and regression lines for the S&P and VXO shocks identified through a Cholesky orthogonalization, ordering VXO
first. The right panel shows scatter and regression lines for the shocks obtained through Independent Component Analysis. The estimation period is
1986-2019, and the VAR includes 10 lags.

Figure 3: Shock correlation across clusters

The figure displays with different colors the identified cluster for the residuals (left panel), Cholesky shocks (middle panel), and ICA shocks (right panel)
together with regression lines of each of the clusters.
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4 A New Series of Uncertainty Shocks

The first step of our analysis consists of estimating a daily VARmodel with ten daily series, mainly

from the US financial markets, that span from January 1st
1986 to December 31st

2019. The

variables included in the daily VAR are sp, vxo, Brent Oil Prices, Gold Price Index, Euro-dollar FX,
Dollar-pound FX, 3m Treasury Bills, 1y Treasury Rate, 5y Term Premium 10y Term Premium. Our
analysis focuses on vxo as a proxy of aggregate uncertainty (as commonly done in the literature:

e.g. Bloom, 2009; Basu and Bundick 2017; and BDG) and sp as a proxy of first-moment (see e.g.

Cheung and Ng, 1998; Beaudry and Portier, 2014; Dison and Theodoridis, 2017 among others).

Themodel is estimated using all variables in log-levels except for the interest rates.
13
Our baseline

includes 10 lags, but nearly identical results are obtained with 22 or 1 lags. The null hypothesis of

normally-distributed residuals is rejected for all residuals at the 10% significance level (or lower)

by both the Jarque-Bera and Kolmogorov-Smirnov statistics, confirming the feasibility of ICA.

ICA isolates by construction 10 components, one for each variable included in the system, which

are not just uncorrelated but (nearly) independent.

To obtain an economic interpretation for the shocks, we match each variable to the

component that explains most of its variance on impact. Following our identifying assumption

based on magnitude restrictions (see Section 2), uncertainty shocks are the component that has

the maximum impact on vxo, whereas the first-moment shocks correspond to the component

that has the largest impact on sp . Importantly, we only attach a structural interpretation to the

uncertainty shock εu
. This shock represents a change in the second (or higher) moments of the

equity market, allowing an impact feedback on sp that is independent to the first-moment shock

εe
. In other words, εu

captures a change in the implied volatility of stock returns (an uncertainty

shocks) controlling for a range of confounding factors that affect sp on the same day through a

first-moment effect. By contrast, the first-moment shock is by construction a catch-all term

without a structural interpretation: it captures all the events that affect investor expectations on

a given trading day. Thus, it includes for instance news on TFP, macroeconomic surprises

associated to new data releases or policy announcements. It follows that this is not a “news”

shock: it does not refer exclusively to TFP, and it reflects observed changes in fundamentals as

well as news on future fundamentals.

A crucial feature of ICA is that, unlike a Cholesky factorization, it does not prevent εe
from

affecting vxo on impact or εu
from affecting sp contemporaneously. It merely ensures that we

can separately trace the impact (on both vxo and sp) of innovations that (i) affect predominantly

one of the two variables, and (ii) are independent of one another. The identified coefficients of

13

All series are provided by Datastream. Since most financial variables feature heteroskedasticity, ARCH or

GARCH models would presumably provide a more accurate description of the data-generating process. However,

the OLS estimation of the linear VAR is consistent and the identification of the shocks (which is the only objective of

the exercise) only depends on the point estimates of the coefficients.
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the impact matrix that link sp and vxo, reported in Table 2, are consistent with the preliminary

evidence presented in Section 3.3. The elements on themain diagonal come from a normalization,

as in a standard Cholesky factorization. The non-zero off-diagonal elements confirm that even

at the daily frequency first-moment and uncertainty shocks affect simultaneously both vxo and

sp, providing further evidence against recursive identification schemes. The direction of this

influence is consistent with the economic intuition: positive first-moment shocks that raise the

sp cause a simultaneous decline in vxo, while uncertainty shocks cause a drop in stock prices.

Figure 4 displays the monthly averages of the estimated daily shocks, which are used as

instruments in the monthly VAR model (see Section 5). The outburst of the Great Recession

corresponds to sizable adverse first-moment shocks, while large uncertainty shocks hit the

economy later on, particularly in 2015. In Section 6.1 we explore more in detail the main first-

and second-moment shocks. The top panel focuses on negative first-moment shocks (εe
t) and the

bottom panel on positive second-moment shocks (εu
t ).

εe
t εu

t

usp
t 1 -0.5

uvxo
t -0.34 1

Table 2: Impact matrix from the daily VAR

The table reports the impact matrix identified by ICA and magnitude restrictions in a VAR model that includes 15 financial
time series as stock prices, gold and oil prices, credit spreads, VXO, and other uncertainty proxies. The VAR has 10 lags and
the estimation sample runs from January 1st, 1986 to December 31st, 2019.
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Figure 4: Level (first-moment) and uncertainty (second-moment) shocks as monthly averages.

The plots show monthly averages of daily shocks obtained by applying ICA and magnitude restrictions to the residuals
of a VAR model that includes 15 financial time series as stock prices, gold and oil prices, credit spreads, VXO and other
uncertainty proxies. The VAR has 10 lags and the estimation sample runs from January 1st, 1986 to December 31st, 2019..

5 Macroeconomic Effects of Uncertainty Shocks

To quantify the macroeconomic effects of uncertainty shocks, we estimate a monthly VAR using

US data for the period 1992:2-2019:12. The system includes the S&P500 Stock Price index(sp),
the VXO volatility index (vxo), Industrial Production, Employment, Hours, Wage, NewOrders Capital
Goods, Capacity Utilization, and the 1-year Treasury Bond Yield. The monthly model provides a

direct link to the existing literature, which is predominantly based onmonthly data, and allows us

to identify the macroeconomic effects of uncertainty shocks (plus the effects of the first-moment

shocks for the sake of comparison). We include variables that capture different dimensions of

the labor market (i.e. extensive vs. intensive margins), as well as capacity utilization and new

orders, in order to shed more light on the channels through which uncertainty propagates in

the economy. All variables are in log-levels except for interest rate and capacity utilization (that

are included in percentage points) and hours (a level based on weekly averages). Following the

standard information criteria, we set the number of lags to 3.

In order to identify uncertainty and first-moment shocks, we use monthly averages of daily

first-moment and uncertainty shocks as an internal instrument in the monthly VAR (see Section
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2).
14

We test the possibility of using the proxy as external instruments but a Granger causality

test of the proxies on the residuals rejects this approach (see Paul, forth and Noh, 2018).
15
While

we employ several specifications that yield comparable results, our favorite specification follows

Paul (forth) by employing the monthly first-moment and uncertainty shocks in an exogenous

block that features three lags as the endogenous one. Since the aggregated uncertainty and first-

moment shocks are unpredictable, we impose that both shocks are not affected by lags of the other

variables to achieve a more efficient estimation. As we show in the Appendix, results are robust

to relaxing this assumption.

The responses to a one-standard deviation uncertainty shock and to a first-moment shock

are depicted in Figure 5: to facilitate the comparison we consider a positive uncertainty shock

(red lines) and a negative first-moment shock (blue lines). First, we note that these shocks affect

strongly both vxo and sp: the recursive restrictions often used in the literature (at monthly or

even lower frequencies) can be rejected based on our high-frequency and non-recursive

identification assumptions. Second, uncertainty shocks are recessionary, leading to a persistent

fall in industrial production, consumer prices, labor market outcomes, and investment decisions.

Finally, the IRFs generated by the two shocks are qualitatively similar for most variables. This

result implies that (at least within the information set we consider) sign restrictions would have

no chance of separating the two shocks. It also supports theoretical mechanisms that create a

strong structural link between first and second moments, such as ambiguity aversion (see

Section 1). The main differences are that, compared to first-moment shocks, uncertainty shocks

have a larger effect on the vxo and a somewhat delayed impact on the other variables in the

system.

The estimated monthly VAR can be used to quantify the contribution of uncertainty and

first-moment shocks to the US business cycle. Figure 6 displays the Forecast Error Variance

Decomposition (FEVD) of all the variables to the two shocks. Uncertainty shocks explain a

significant fraction of most of the variables in the system. In particular, they account for around

20% and 10% of the cyclical fluctuations in industrial production and prices, respectively.

Uncertainty affects both labor and capital markets, explaining nearly 20% of the variance of

employment and 10% of the variance of new orders of capital goods. These estimates suggest

that, although uncertainty is an important driver of the US business cycle, its role has been often

overestimated in the literature (see, for example, Christiano et al., 2014 and Piffer and

Podstawski, 2018). The discrepancy between our results and those obtained in earlier studies is

likely attributable to our stricter definition of uncertainty shocks, and in particular to the sharp

14

Gazzani and Vicondoa (2020) show that averaging is the correct filter to compute the monthly IRFs.

15

The Proxy-SVAR, or external instrument approach, is valid only under the partial invertibility of the shocks

of interest. This property implies that the shocks can be expressed as a linear combination of contemporaneous

reduced-form residuals. We find instead that the shocks are correlated with future residuals and thus, employing

them as internal instruments, we fix this temporal dependence issue that compromises the estimation of the dynamic

effects of the shocks. The Granger causality test are reported in Tables E.1 in the Appendix.
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separation between first- and second-moment shocks enforced by our identification strategy.

First-moment shocks explain between 30% and 40% of the variability of employment and

industrial production in our model: given the strong correlation between prices and volatility,

identification strategies that do not isolate these shocks could seriously overestimate the role of

uncertainty.

However, our estimates also reject the extreme conclusion by BDG that uncertainty plays no

role in the business cycle. This divergence is particularly interesting because our exercise follows a

similar logic to BDGbut relies on different assumptions regarding the relation between prices and

implied volatility in the stock market (see Section 9). Our high-frequency identification strategy

allows us to relax an assumption that plays a critical role in BDG, namely that uncertainty does

not affect the realized volatility of the market in a given day or month. Our findings suggest that

this assumption is unduly restrictive and that the recessionary effects of uncertainty shows up

clearly as long as the link between prices and volatility is left unrestricted.

Figure 5: Impulse Responses

IRFs to uncertainty (red) and level (blue) shocks. The VAR is estimated on monthly data and includes 3 lags (AIC). The effects on the variables in the
system are computed using the daily shocks, aggregated as monthly averages, in an exogenous block (VARX). Shaded areas correspond to 90% bootstrapped
confidence bands from 1000 replications.
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Figure 6: Forecast Error Variance Decomposition

FEV contribution of uncertainty (red) and level (blue) shocks. The VAR is estimated on monthly data and includes 3 lags (AIC). The effects on the
variables in the system are computed using the daily shocks, aggregated as monthly averages, in an exogenous block (VARX). Shaded areas correspond to

90% bootstrapped confidence bands from 1000 replications.

6 Ex-post validation of the identification strategy

In this section we validate the procedure from a broader economic perspective. We follow three

complementary routes. First, we provide a narrative account of the trading days that were

associated with the largest shocks in our sample. Second, we relate the shocks to various

alternative estimates available from the literature. Third, we exploit the dataset of Bloom et al.

(2016) to study the impact of uncertainty shocks on the sales, investment, and R&D expenditure

of a large panel of US firms. All tests support the conclusion that the separation between level

and uncertainty shocks obtained through ICA is intuitively plausible and consistent.

6.1 Narrative validation

Do the estimated shocksmap into economically plausible changes in uncertainty? Table 3 displays

the largest negative first-moment shocks and the largest positive second-moment shocks. In all

the cases, the shocks map with important events in the US and worldwide.
16
We explore more in

detail these events with three exercises.

The first one is to examine all dates that were characterized by large second-moment shocks

16

Most of these events are included in the Stock Market Jumps database. https://stockmarketjumps.com/

contains a more detailed description of these events.
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Date εn εu
Event

Largest (negative) first-moment shocks
October 19, 1987 -14.2 16.5 Dow Jones falls 22.6% due to panic-driven trading. The drop

exceeds the one in October 28th 1929 (12.8%). Explanations

mentioned by analysts: inflation fears, increasing interest rates,

and conflict with Iran.

October 26, 1987 -9.9 -0.4 Dow Jones plunges -8.04% in Heavy Trading; Bond Prices Surge,

and Dollar Falls Against the Mark. A Japanese official said the day

before that japanese government foresaw the yen raising further

against the dollar.

December 1, 2008 -9.5 -0.3 Declines in financial indicators accelerated after JP Morgan Chase

CEO James Dimon said on CNBC that home prices could fall 20%

from already depressed levels. Dow Jones fell 196.33 points (2.2%),

lead mainly by the manufacturing and financial components.

November 20, 2008 -8.3 -0.7 S&P registered a 52% fall from its peak, returning to 1997 levels.

In the search for safer securities, Treasury Bond prices are on

their highest levels in more than 35 years. Crude-oil futures are in

their lowest levels in 3.5 years (below $50). Part of the problem is

attributed to the Treasury Department’s recent decision not to buy

the troubled mortgaged-backed debt it onced planned to purchase.

September 29, 2008 -8.1 2.0 Bailout plan rejected, forcing new scramble to solve the crisis. The

House of Representatives defeated the White House’s historic

$700 billion financial-rescue package. Concerns that the US faces

a strong recession if the legislation isn’t revived.

Largest (positive) second-moment shocks
October 19, 1987 -14.2 16.5 Dow Jones falls 22.6% due to panic-driven trading. The drop

exceeds the one in October 28th 1929 (12.8%). Explanations

mentioned by analysts: inflation fears, increasing interest rates,

and conflict with Iran.

February 5, 2018 2.4 13.2 Dow Jones drops more than 1,100 points (largest single-day point

decline ever). Investors comment about "borderline panic-type

selling".

February 27, 2007 0.5 8.3 Very sudden market drop on a heavy trading day. There was a

delay in the mechanism that calculates the averages, exaggerating

the drop. Spooked by a selloff of Chinese shares.

September 9, 2016 1.2 7.1 (1) North Korea conducts its fifth nuclear test at the Punggye-ri

Nuclear Test Site, at the time its largest ever test at 10 kilotons. (2)

Asian Markets Fall After North Korea Nuclear Test (3) Oil prices

fell on a stronger dollar and skepticism that a large drop in US

inventories last week marks the beginning of a trend. (4) US

government bonds weakened, increased speculation that the

Federal Reserve could raise interest rates this month.

August 10, 2017 2.0 7.0 (1) Dow Jones falls 205 points as North Korea tensions persist. (2)

A gauge of US business prices fell in July for the first time in 11

months, suggesting nagging downward pressure on inflation.

Analysts expected the index to rise. (3) Escalating war of words

between US and North Korea drove investors into haven

investments.

Table 3: Largest adverse first- and second-moment shocks identified through Independent Component

Analysis in the daily VAR model.
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(evxo > 5σ) combined with non-negative first-moment shocks (esp > 0), which should capture
cases where uncertainty rose, but market expectations remained stable or improved. Of the nine

dates isolated by this procedure, five occurred in the period 2016-2019: February 5th, 2018 (strong

decline in stock prices due to “borderline panic-type selling”); September 9th, 2016 (skepticism

that a large drop in US inventories implies lower growth); August 10th 2017 (escalating war of

words between the US and North Korea); May 7th, 2019 (increased likelihood that the US was

going to increase tariffs on Chinese goods soon); and August 17th, 2017 (escalating war of words

between the US and North Korea).

In the second exercise we extract the dates characterized by an adverse combination of large

first- and second-moment shocks (evxo > 3σ, sp < −3σ ). This occurs six times in 40 years:

August 8th, 2011 (when Standard & Poor’s downgraded the US); September 17th, 2001 (the day

when trading resumed after the 9/11 market shutdown); October 27th, 1997 (when the market

collapsed because of the Asian crisis); October 13th, 1989 (fear of repeating the 1987 crisis

increased); January 8th 1988 (volatile trading week with takeovers of US companies by overseas

concerns); and October 19th, 1987 (stock market crash). Since these events arguably represent a

genuine combination of adverse first- and second-moment shocks, the results of the

identification seem plausible.

In the third and final exercise, we extract all dates between 2007 and 2009 that were

characterized by significant first- and/or second-moment shocks of either sign

(|ei| > 3σ, i = vxo, sp). The GFC is obviously punctuated by adverse shocks of both types,

with a prevalence of ’bad news’. Interesting differences emerge between the policy interventions

that took place during this period. Many of the interventions carried out by the Fed in the early

stages of the GFC lowered the VXO index without affecting stock prices.However, the

submission of the first draft of the $700bn bailout plan to Congress on September 18th, 2008

had the opposite effect. There are also policy interventions that reduce both stock prices and

volatility: this is the case, for example, of the announcement of the Commercial Paper Funding

Facility and the increases in deposit insurance (October 7th, 2008), or the deployment of the

Capital Purchase Program (December 18th, 2008) Markets might have learned at once that the

crisis was worse than expected and that the authorities were strongly determined to avoid a

meltdown of the financial sector. The negative price impact might also be caused by the

recourse to public purchases of senior preferred stock (a common ingredient in the cases listed

above), which created dilution risk for private stakeholders. Interestingly, the Fed’s purchase of

MBS from the GSEs (announced on November 26th, 2008 and started on December 30th, 2008),

which do not raise dilution concerns, are associated with positive stock price shocks.
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(1) (2) (3)

VARIABLES pcn pcn
BS pcu

εe
0.59*** 0.70*** -0.44***

(0.072) (0.051) (0.064)

εu
-0.22** -0.32*** 0.55***

(0.095) (0.062) (0.072)

Constant 0.10 0.07 0.01

(0.078) (0.055) (0.067)

Observations 78 107 112

R-squared 0.48 0.68 0.51

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Regression of standardized principal components from the news shocks literature (pcn
) and the

uncertainty shock literature (pcu
) on the news and uncertainty shocks obtained from the daily VARmodel

(εe
t, ε

x
t ). pcn

BS is the principal component for news shocks computed employing only the estimates in Barsky

and Sims (2011) .

6.2 Relation with Existing News and Uncertainty Shock Estimates

To better illustrate the relationship between our work and the literature, we estimate a set of

simple OLS regressions where the principal components of news and uncertainty shocks

identified in previous works (pcn
, pcu

, see Section 1) are regressed on our news and uncertainty

shocks (εe
t, ε

x
t ). The results are summarized in Table 4.

Each of the two shocks has a strong positive correlation with the corresponding principal

component, confirming that our news and uncertainty shock estimates are qualitatively in line

with the existing evidence. Furthermore, the first-moment shock εe
t loads negatively on pcu

and

the second-moment shock εx
t loads negatively on pcn

. Our reading of these results is that the

principal components contain both news and uncertainty shocks and that this confusion stems

from (some combination of) three factors: (a) an identification strategy that focuses on only one

of the two shocks instead of estimating them jointly; (b) a temporal aggregation bias associated to

the use of low-frequency data; (c) identification assumptions that do not fully capture the two-way

interactions between first and second moments.

6.3 The Effects of Uncertainty on US Firms

Our analysis shows that uncertainty shocks have a significant influence on wages and

employment levels. In this section we study their impact on firms using the firm-level dataset of

Bloom et al. (2016), available from the authors’ websites. This dataset contains quarterly data on
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sales and investment for 3799 firms in the US and covers the period 1996:Q2-2013:Q1. Bloom

et al. (2016) consider firm level information from Compustat, excluding firms that belong to the

utilities and financial sectors and firms that declare negative assets, sales, or stockholder’s equity.

While investment is measured as firms’ capital investment rate (capital expenditures per existing

unit), R&D is proxied by R&D expenditures. Following Bloom et al. (2016), we measure sales and

investment in growth rates, as the change of this variable relative to the previous year divided by

the average of the two years. These growth rates approximate the log-change for small groups,

are symmetric around zero, and accommodate entry and exit with bounded values of plus and

minus two. In order to estimate the effects of uncertainty shocks on firm decisions, we estimate

the following equation:

xi,t = αi + B(L)xi,t−1 + γ0εu
t + γ(L)εu

t + bt+ εi,t (12)

where xi,t denotes the change in the variable of interest (sales, investment, or R&D) and εu
t

denotes the uncertainty shock identified in the previous sections aggregated to the quarterly

frequency. B(L) and γ(L) are two polynomial functions in the lag operator L. Table 5 displays
the estimated coefficients for the different specifications.

17

Uncertainty shocks cause a significant decline in investment, sales, and R&D growth. A one

standard deviation uncertainty shock induces on impact a decline in investment of around 1.3

percentage points , a fall in sales of 5 percent, and a decline in R&D growth of 6 percentage

points. The estimated coefficients are robust to including lags of the dependent variable in the

specification. The muted response of R&D expenditures relative to investments and sales is

consistent with Bloom et al. (2016), who show that R&D is influenced by long-run uncertainty

rather than the short-run uncertainty captured by the VXO index.
18

17

This framework does not require GMM because the shocks employed as regressors are exogenous and not

serially correlated.

18

The VXO captures implied volatility over a 30-day horizon. Bloom et al. (2016) employ the spread between

the six-month and one-month option implied volatility index as a proxy for long-term uncertainty and find that this

variable is the most important driver for R&D.
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(1) (2) (3) (4) (5) (6)

VARIABLES Investment Investment Sales Sales R&D R&D

Yt−1 0.2676*** 0.5794*** -0.6337***

(0.009) (0.038) (0.023)

Yt−2 0.0835*** 0.0720 -0.5706***

(0.006) (0.052) (0.026)

Yt−3 0.0240*** 0.0475* -0.5501***

(0.006) (0.026) (0.027)

Yt−4 0.0424*** 0.1789*** 0.2903***

(0.011) (0.050) (0.025)

εu
t -0.0202*** -0.0130*** -0.1278*** -0.0447*** -0.0132 -0.0566***

(0.002) (0.002) (0.017) (0.009) (0.016) (0.016)

εu
t−1 -0.0134*** -0.0069*** -0.0925*** -0.0063 0.0055 -0.0262***

(0.002) (0.002) (0.013) (0.009) (0.011) (0.008)

εu
t−2 -0.0105*** -0.0035** -0.0712*** 0.0266*** 0.0196* 0.0103

(0.001) (0.002) (0.012) (0.010) (0.010) (0.008)

εu
t−3 -0.0091*** -0.0046** -0.0549*** 0.0078 0.0041 0.0114

(0.002) (0.002) (0.015) (0.010) (0.013) (0.013)

εu
t−4 -0.0061*** -0.0001 -0.0668*** 0.0160** -0.0080 -0.0004

(0.002) (0.002) (0.014) (0.008) (0.015) (0.011)

trend -0.0007*** -0.0003*** 0.0184*** 0.0017*** -0.0001 -0.0006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Constant 0.1054*** 0.0611*** 4.9031*** 0.6738*** 0.2425*** 0.0866***

(0.003) (0.003) (0.057) (0.061) (0.039) (0.011)

Observations 80,799 78,699 81,785 81,660 57,659 53,998

# of firms 3,625 3,625 3,650 3,650 2,558 2,558

R-squared 0.3434 0.4219 0.9522 0.9838 0.0786 0.8014

Firm FE YES YES YES YES YES YES

Quarter FE YES YES YES YES YES YES

Table 5: Estimated Effects of Uncertainty Shocks on Firms’ Decisions

Note. Estimated results using OLS of equation (12). Yt−i denotes the lagged value of the dependent variable of each

specification for the period (t− i) and Ushockt denotes the estimated uncertainty shock aggregated to the

quarterly frequency. All the specifications consider clustered standard errors at 3-digit industry level.

∗ ∗ ∗p<0.01, ∗ ∗ p<0.05, ∗p<0.1.

7 Sensitivity Analysis

This section describes the robustness exercises performed over our baseline specification of

daily and monthly VAR models (the corresponding results are included in Appendix D). First, we

obtain nearly identical shocks (0.99 correlation) if we use 1 or 30 lags in the daily VAR (versus 10

in our baseline). Second, we use 12 lags in the monthly VAR obtaining consistent conclusions

from our exercise (versus 3 in the baseline). Third, we estimate the effect of uncertainty shocks

employing a hybrid VAR (internal instrument) and Proxy-SVAR (external instrument) and obtain

similar results to the baseline VARX. Fourth, results are unchanged if we extend the monthly

sample back to 1986 by excluding capacity utilization and new capital orders from the monthly
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VAR. Overall, our main conclusions are thus robust to several alternative specifications to the

baseline model.

8 Conclusions

Uncertainty has recently come to the fore as an important driver of the economy. However,

identifying genuine uncertainty shocks is notoriously challenging, and no consensus has

emerged yet on the quantitative relevance of these shocks for the business cycle.

We start by showing that this identification problem originates from a systematic overlap

between changes in uncertainty and the arrival of news on economic fundamentals. Bad news

and uncertainty spikes often come together, and different models can lead to opposite

conclusions as to which of these factors played a key role during the recessions experienced by

the US in the last three decades. We then offer both a methodological and an empirical

contribution to the debate. We propose a new identification strategy that is specifically designed

to disentangle second-moment (uncertainty) shocks from level shocks that affect financial

markets. By applying Independent Component Analysis (ICA) to the residuals of a daily VAR

model, we identify the shocks as fluctuations in the VXO volatility index that are statistically

independent of changes in the S&P500 equity price index. ICA imposes restrictions on the

higher moments of the distribution of the VAR residuals. This strategy allows us to (i) avoid both

timing and sign restrictions, and (ii) recover structural shocks that are unrelated throughout the

distribution and not just around the mean. In order to assess the macroeconomic implications

of uncertainty shocks, we compute monthly averages of the estimated daily shocks and use them

as instruments in a Proxy-SVAR model of the US economy.

Our main result is that uncertainty matters. Uncertainty shocks cause a decline in output

and prices that is both economically sizable and statistically significant: the shocks account for

about 10% and 20% of the fluctuations in employment and industrial production in our sample.

Wages, worked hours and new orders of capital goods all drop following a rise in uncertainty,

suggesting that the shocks propagate through both labor and capital markets. We conclude that,

although identification issues have often caused its role to be overestimated in previous studies,

uncertainty remains a quantitatively important driver of the US business cycle.
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A Additional Results

Cholesky, sp (vxo) first ICA

εe εu εe εu

Monthly data: sp 1 0 (-0.76) n.a n.a

vxo -0.76 (0) 1 n.a n.a

Daily data: sp 1 0 (-0.73) 1 -0.5

vxo -0.73 (0) 1 -0.38 1

Table A.1: Impact matrices across frequency and identification strategy

The matrices show the contemporaneous responses of the S&P500 stock price index (SP) and the VXO volatility index (VXO) to price and volatility
shocks {εe, εu} in bivariate VAR models that employ alternative data and identification strategies. Top and bottom half of the table are based respectively
on monthly and daily observations. The identification schemes are Cholesky with SP ordered first, Cholesky with VXO ordered first, and Independent
Component Analysis (ICA). The sample is 1/1/1986–31/12/2019.

Dependence VAR residuals Cholesky shocks ICA shocks

Daily 100 19.83 4.69

Table A.2: Dependence between shocks

Estimated dependence index between the VAR residuals, Cholesky shocks, and ICA shocks at the monthly and daily frequency. The dependence is measured
by the mutual information contained in pairs, and it is normalized by the value taken for the daily VAR residuals.

Uncertainty shocks εe
Uncertainty shocks εu

Lagged shocks F p-value # obs Lagged shocks F p-value # obs

1 lags 4.9 0 330 1 lags 330 2.51 0.01

2 lags 1.75 0.07 329 2 lags 329 0.45 0.92

3 lags 0.53 0.87 328 3 lags 328 0.44 0.93

4 lags 0.22 0.99 327 4 lags 327 2.17 0.02

5 lags 0.28 0.99 326 5 lags 326 0.78 0.65

6 lags 0.94 0.49 325 6 lags 325 0.72 0.71

7 lags 0.51 0.88 324 7 lags 324 1.2 0.29

8 lags 1.31 0.22 323 8 lags 323 1.05 0.4

9 lags 0.87 0.56 322 9 lags 322 0.46 0.92

10 lags 0.75 0.68 321 10 lags 321 1.66 0.09

11 lags 2.69 0 320 11 lags 320 0.68 0.74

12 lags 0.82 0.61 319 12 lags 319 0.35 0.97

Table A.3: Granger Causality Test
Regression of the VAR residuals on lagged shocks (Granger causality test). Sample 1992:m2-2019:m11.
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(1) (2)

VARIABLES εu
τ εx

τ

εu
τ−1 -0.10*

(0.057)

L.factor1 0.06* -0.06*

(0.036) (0.037)

L.factor2 -0.04 0.01

(0.044) (0.045)

L.factor3 -0.03 0.04

(0.059) (0.061)

L.factor4 -0.04 -0.08

(0.073) (0.077)

L.factor5 -0.03 -0.13*

(0.070) (0.071)

L.factor6 0.08 0.10

(0.063) (0.066)

L.factor7 -0.02 -0.01

(0.059) (0.064)

εx
τ−1 0.02

(0.064)

Constant -0.00 0.01

(0.013) (0.014)

Observations 331 331

R-squared 0.03 0.03

Adjusted R-squared 0.0110 0.00804

F test 0.172 0.225

Table A.4: Invertibility test
Regression of the monthly shocks on lagged factors from FRED-MD database. Sample: 1986-2019.
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Figure A.1: Historical Decomposition

Historical Decomposition from the baseline VARX.

35



B Relation with Berger, Dew-Becker and Giglio (2019) (2019)

Berger et al. (2019) (2019, BDG) study uncertainty shocks using an identification strategy that,

like the one proposed in this paper, exploits equity prices and implied volatility as proxies of

news and uncertainty on the economic outlook. The key difference between the two approaches

lies in the identification assumptions: BDG restrict the relationship between realized and implied

stock market volatility, while we also place restrictions on higher-order moments (e.g. third-

and fourth-moments) of the price and implied volatility series. In this Appendix we illustrate

analytically the relationship between the two approaches using a stylized asset pricing model.

The analysis shows that our approach is more general. BDG require uncertainty shocks to be

symmetrically distributed and/or to have no contemporaneous impact on stock prices: if these

assumptions do not hold the BDG restrictions fail, and their failure can cause an underestimation

of the role of uncertainty in driving the business cycle. By contrast, our strategy remains valid

irrespective of the distribution of these shock because it does not restrict the response of prices

and realized volatility to uncertainty shocks.

Assume that the log-stock price spt follows a randomwalk with time-varying volatility σt:
1B

st = st−1 + σt−1εt

σ2
t = α + ρσ2

t−1 + vt (B.1)

Assume further that the reduced-form innovations capture two distinct structural shocks,

which represent respectively news on the fundamentals of the economy (εe
t) and uncertainty, i.e.

news on future volatility (εu
t ): [

εt

vt

]
=

[
1 β

θ 1

] [
εe

t
εu

t

]
(B.2)

Under the assumptions above, the realized volatility of the stock market in period t, defined
as in BDG as the squared within-period return, includes the squares and the cross-product of the

two structural shocks:

rvt ≡ (∆st)
2 = σ2

t−1

[
(εe

t)
2 + β2(εu

t )
2 + 2βεe

tε
u
t

]
(B.3)

The S&P500 and VXO indices employed in our empirical analysis represent proxies of st

and σt, while the squared stock return rvt plays an important role in BDG (see below). Notice

1B

BDG use this set-up to study the implications of their identification strategy: see in particular equation A.3 and

A.4 in the Appendix to the paper. The time interval t can be a day or a month: The frequency of the data is clearly

important from an empirical perspective (our identification restrictions require non-gaussian observations, and are

thus best suited to daily data), but it is not relevant for the derivations below.
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that the diagonal elements of the impact matrix in (B.2) are normalized to unity, whereas the

off-diagonal elements are left unrestricted. These coefficients capture two interactions between

prices and volatility that are well-known in the finance literature. The first one is the ’volatility

feedback’ effect, by which a rise in volatility can reduce the investors’ discount factor, causing

ceteris paribus a drop in equity prices (β<0). The second one is the ’leverage effect’: an

unexpected drop in prices reduces the net worth of the firms, increasing their leverage and thus

rendering their equity more volatile going forward (θ<0). Both mechanisms contribute to the

strong negative correlation between prices and volatility that is well-documented in the

literature. The difference among them, however, is crucial for our purposes. The leverage effect

is a confounding factor: it causes endogenous fluctuations of the VXO in response to economic

news that should be filtered out by the identification restrictions. The volatility feedback effect,

by contrast, is a key link in the transmission mechanism: it captures the first and most obvious

implication of an exogenous rise in uncertainty, namely a drop in stock prices.

The system (B.1)-(B.3) can be written as a VAR as follows:

 rt

rvt

σ2
t

 = C + Γ

 rt−1
rvt−1
σ2

t−1

+ Σt−1

1 0 β

0 1 0
θ γ 1


 εe

t
εrv

t
εu

t

+ σ2
t−1

 0
ut

0

 (B.4)

where εrv
t ≡

(
εe

t
) 2

, ut ≡ β2(εu
t )

2 + 2βεe
tε

u
t , and C, Γ, Σt−1 are known matrices of fixed or

predetermined parameters. In this formulation the innovation to rvt is split into two components:

a realized volatility shock given by the squared price level news (εrv
t ), and an additional term

that depends on both level and volatility news (ut). Equation (B.4) also shows that the vxo can

in principle respond to both price and squared price shocks, which implies that both must be

expunged from the data in order to identify the actual uncertainty shock εu
t . The question is thus

which identification scheme is most effective in achieving this objective.
2B

B.1 Restricting the impact matrix

BDG assume that rvt does not respond on impact to εe
t . Equation (B.4) shows that the impact

matrix is lower-triangular for εrv
t and εu

t , which is consistent with this assumption. However, it

also shows that another condition is necessary for the assumption to hold: ut must be orthogonal

to εu
t . This condition can be written as follows:

2B

Note that εe
t and εrv

t may ormay not be orthogonal. If εe
t has a symmetric distribution they are, and the system in

equation (B.4) includes three genuine fundamental shocks. If not, it is a "tall" system that includes more observables

than shocks. We find that adding rvt to our baseline specification does not affect the result; BDG also show that

adding st to a model that includes rv makes little difference. Both results are consistent with the presence of price

jumps causing a strong correlation between εe
t and εrv

t .
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E(utε
u
t ) = β2E(εu

t )
3 + 2βE

[
εe

t (ε
u
t )

2
]
= β2E (εu

t )
3 = 0 (B.5)

(the second term in the summation is zero under the maintained assumption that the

structural shocks are statistically independent). Equation (B.5) clarifies that orthogonality holds

as long as (i) there is no volatility feedback effect (β = 0) and/or εu
t is symmetrically distributed(

E
(
εu

t
)3

= 0
)
. Neither condition is trivial. The asset pricing literature provides ample

evidence of strong volatility feedback effects, particularly for the S&P500 index (Carr and Wu,

2017). The distribution of εu
t is unobservable and its symmetry cannot be taken for granted.

Asset pricing models typically include discrete "volatility jumps" to account for the non-gaussian

features of the data. Intuitively, large spikes in uncertainty could be generated by wars and

financial or political crises; the geopolitical risk shocks of Iacoviello and Caldara (2018), for

instance, have a skewness coefficient of 2.3.
3B

The example also clarifies the implications of a failure of the BDG assumptions. If equation

(B.5) does not hold, εu
t has a contemporaneous impact on rvt that is wrongly neglected by the

identification strategy. The BDG model interprets the correlation between realized volatility

and vxo residuals exclusively as an endogenous response of vxo to (εe
t)

2
, ignoring the causal

mechanism that operates in the opposite direction and distorting the estimation of εu
t . The

direction of the bias depends on the skewness of the shock: if E
[(

εu
t
)3
]
> 0 the correlation is

positive and uncertainty shocks are unduly downplayed by the identification restrictions.

B.2 Restricting the correlation and co-skewness of εe
t and εu

t

By placing restrictions directly on the higher moments of εe
t and εu

t we can achieve identification

without relying on the BDG assumption or restricting the impact matrix in any way. When

applied to a bivariate VAR in (st, σt), the moment restrictions impose three conditions on the

underlying structural shocks: E
[
εe

tε
u
t
]
= 0, E

[(
εe

t
)2

εu
t

]
= 0, E

[
εe

t
(
εu

t
)2
]

= 0. These

conditions guarantee that εu
t is orthogonal not just to the price level shock εe

t but also to the

realized volatility shock

(
εe

t
)2
. This separation is achieved without taking a stance on the

distribution of the shocks or the impact matrix, where β and γ are left unrestricted. The third

restriction lacks a theoretical justification, but it is innocuous: if the shocks are truly structural

they should be statistically independent, so imposing E
[
εe

t
(
εu

t
)2
]
= 0 can do not harm. In

principle, one could also use the realized volatility series and apply the moment restrictions to a

bivariate VAR in (rvt, σt) or to a trivariate VAR in (st, rvt, σt). In practice, though, this is not a

good idea. If st is replaced by rvt the moment restrictions are imposed on

3B

We estimate the shock using a VAR that includes Gilchrist and Zakrajsek (2012) bond spread, unemployment

rate, CPI and 1-year and 10-Y Tbill rates along with the along with the GPR index. The GPR is ordered first, as in

Iacoviello & Caldara (2018).
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{(
εe

t
)2 ,
(
εe

t
)4 , εu

t ,
(
εu

t
)2
}
, while the relation between εe

t and εu
t is left unrestricted. This

relation is strong and negative in the data, whereas fourth-moment effects are unlikely to be

important, so the change weakens identification. If rvt is added to st the system is subject to 6

additional moment restrictions, but most of them (i.e. those where

(
εe

t
)2

is replaced by εrv
t ) are

redundant. Robustness checks confirm that adding realized volatility to the daily and monthly

VARs has no impact on the estimation of the shocks and the impulse-response functions.

C Independent Component Analysis

C.1 Setup and Estimation

Let ε =
{

ε1, ..., εn
}

be n independent and identically distributed random variables, defined

over the supports {S1, ..., Sn}, respectively. Assume that at most one of the shocks is normally

distributed and that we observe over time only a linear combination of them:

ut = Bεt (C.1)

In aVAR framework, εt are the stochastic innovations that drive the system, ut are the reduced

form residuals, and the impact matrix B is unknown. Due to the assumed independence and non-

gaussianity, higher moments of the distribution of the data can be used to identify B, rather than
resorting to timing assumptions or restrictions derived by the economic theory. Independence

means that the product of themarginal distributions is equal to the joint distribution of ε as shown

in eq.(C.2); in other words, nomutual information is contained in ε and no additional information

on f
(

εi
)
can be drawn by observing f (ε).

∫
S1
· · ·

∫
Sn

f (ε) =
∫

S1
f
(

ε1
)

d · · ·
∫

Sn
f
(

ε1
)

(C.2)

The deviations of the product of marginals distribution from the joint one can be expressed

by the Kullback–Leibler divergence (KLIC)

KLIC =
∫

S1
· · ·

∫
Sn

f (ε) log
f (ε)

f
(
ε1
)
· · · f (εn)

dε1 · · · dεn

While the final objective would be the minimization of such divergence, the direct

computation of KLIC is not straightforward as it requires to approximate a n dimensional joint

distribution. On the other hand, the Central Limit Theorem tells us that u, being a linear

combination of the original ε, are “more gaussian” than the original ε. Exploiting entropy theory

(which goes beyond this discussion), ICA maximizes the non-gaussianity of the components

(negentropy), thus recovering the underlying structural innovations. Our implementation of
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ICA relies on the FastICA and Icasso packages developed in Hyvarinen (1999) and Himberg et al.

(2004), but the GMM estimation proposed in Keweloh (2020) yields very similar results.

The FastICA algorithm consists of the following steps:

1. An orthogonalization is applied to the reduced form residual to impose no correlation

(principal components analysis). The principal components are rotated so to solve the

following optimization problem

max
B

J(B)

J(B) ≈ {E [G(Bε)]−E [G(v)]}2

s.t.E [Bε] = 1

where B is the impact matrix of the shocks (demixing matrix in the ICA jargon), and G(x)
is the contrast function that we select as a−1

1 logcosh (a1x) with a1 a fine tuning

parameter, whose derivative is given by g1(u) = tanh(a1u), J(.) measures the deviation

from gaussianity (G (v) is the contrast function under the normal distribution of all the

components). The optimization problem is solved via a fixed-point procedure based on

adaptive neural algorithms

2. Icassowas developed to enhance the robustness of FastICA, which is known to be sensitive
to initial conditions while taking into account the statistical uncertainty of the estimated

components. It consists of:

(a) runningFastICA H times, changing the initial conditions and bootstrapping the data;

(b) clustering the resulting H ∗ n estimated components according to their mutual

similarities. Icasso uses the absolute value of the linear correlation coefficient

between the independent components as a measure of similarity and applies the

agglomerative hierarchical clustering with average-linkage selection.

(c) The final estimates of the independent components, i.e. the shocks, are the centrotype

of the cluster: they have the minimum sum of distances to other points in the cluster

C.2 Diagnostics

An essential diagnostic of the stability and statistical difference among the components is

displayed in Figure C.1. Of particular relevance is the marked separation between the VXO and

the SP500 components, which corroborates the validity of our identification assumptions.
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Figure C.1: Similarity graph of the estimated components.

Similarity is evaluated by means of clustering, displayed by the grey sets. The robustness and stastical reliability
of the estimates are increasing with the compactness of the clusters, displayed by the red intensity. VXO and
SP500 are extremely robust.
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D Sensitivity Analysis

Figure D.1: Impulse Responses - Hybrid VAR (internal instruments identification)

Figure D.2: Forecast Error Variance Decomposition - Hybrid VAR (internal instruments identification)
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Figure D.3: Impulse Responses - Proxy SVAR

Figure D.4: Forecast Error Variance Decomposition - Proxy SVAR
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Figure D.5: Impulse Responses - VARX with 12 lags

Figure D.6: Forecast Error Variance Decomposition - VARX 12 lags
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Figure D.7: Impulse Responses - VARX smaller Specification

Figure D.8: Forecast Error Variance Decomposition - VARX smaller specification
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E Bivariate VAR Evidence

Figure E.1 displays the shocks estimated by applying two alternative orderings (sp - vxo and vxo
- sp) to the two samples (monthly and daily). We focus on the Global Financial Crisis only (GFC)

for brevity. In the monthly model, the interpretation of the shocks (’news’ versus ’uncertainty’)

is almost entirely determined by the ordering. Using daily data mitigates the problem, but does

not solve it: the differences across orderings are still striking, for instance, around October 2008

and in the Spring of 2009. The impact matrices estimated in each of the four cases are reported

in the left column of Table A.1. The negative response of VXO (SP) to shocks that hit SP (VXO)

confirms the interlinkage between first- and second-moment perturbations. However, the fact

that the responses are entirely dependent on the ordering of the variables, which is arbitrary,

prevents any conclusion on how the transmission works.

We compare the results from ICA when applied at daily versus monthly data. With monthly

data, the estimated response of vxo to sp innovations is very close to zero, as in the recursive

identificationwhere VXO is ordered first (left column - Table A.1). However, the diagnostics show

that the observations are ’too Gaussian’ for ICA to deliver a reliable solution (the stability index is

0.68, see Appendix B). With daily data, this limitation is removed (the stability index reaches 0.97,

close to the theoretical maximum of 1) and the estimates differ significantly from those obtained

with the recursive schemes: VXO responds to a positive 1% SP shock (i.e. a positive update on the

fundamentals) with a -0.38% drop, while SP responds to a 1%VXO shock (i.e. a rise in uncertainty)

with a -0.5% drop.
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Figure E.1: Alternative estimates of first- and second-moment shocks during the Global Financial Crisis.

The top row shows estimates obtained frommonthly data and Cholesky decomposition where either the stock price
(left column) or the VOX index (right column) are ordered first. The bottom row replicates the analysis using daily
data.
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