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Abstract 

This paper proposes a novel methodology, the Bridge Proxy-SVAR, which exploits high-
frequency information for the identification of the Vector Autoregressive (VAR) 
models employed in macroeconomic analysis. The methodology is comprised of three 
steps: (I) identifying the structural shocks of interest in high-frequency systems; (II) 
aggregating the series of high-frequency shocks at a lower frequency; and (III) using the 
aggregated series of shocks as a proxy for the corresponding structural shock in lower 
frequency VARs. We show that the methodology correctly recovers the impact effect of the 
shocks, both formally and in Monte Carlo experiments. Thus the Bridge Proxy-SVAR can 
improve causal inference in macroeconomics that typically relies on VARs identified at 
low-frequency. In an empirical application, we identify uncertainty shocks in the U.S. 
by imposing weaker restrictions relative to the existing literature and find that they induce 
mildly recessionary effects. 
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1 Introduction1

The identification of causal relationships in macroeconomics is a challenging task 

because the exogenous innovations are mixed with the endogenous dynamics of the 

variables and multiple shocks affect the economy simultaneously. A recent strand of 

literature exploits fluctuations occurring in a narrow time window around specific 

events to identify a particular structural shock of interest. This identification strategy 

implicitly assumes that only this shock affects the economy during this short time span, 

which is arguably a milder restriction than those traditionally imposed in monthly or 

quarterly Vector Autoregressive models (VARs). To compute the effects of the 

innovations on macroeconomic variables, the shocks identified at the daily/intra-daily 

frequency are aggregated to a monthly/quarterly frequency, usually as the simple 

average or moving average, and used as a proxy for the (unobserved) structural shock in 

VAR models. In an influential work, Gertler and Karadi (2015) identify the 

macroeconomic effects of monetary policy shocks by using the series of monetary policy 

surprises, defined by Gurkaynak et al. (2005) as the change in the price of Fed Fund 

futures in the day of FOMC meetings, aggregated at the monthly frequency. Pioneered 

in the monetary policy literature, this approach has spread to other fields of research.2

    1First Version: May 24th, 2016. We are grateful to Evi Pappa, Fabio Canova and Juan Dolado 
for fruitful discussions and suggestions. We also thank Ambrogio Cesa-Bianchi, Paul Beaudry, Danilo 
Cascaldi, Maarten Dossche, Luca Gambetti, Aeimit Lakdawala, Peter Hansen, Matteo Iacoviello, Francesca 
Loria, Riccardo Jack Lucchetti, Kurt Lunsford, Michele Piffer, Morten Ravn, Juan Rubio-Ramirez, 
Andreas Tryphonides, Sreko Zimic, and seminar participants at the Bank of Italy, CEPR-EABCN-UPF 
Conference on "Measuring the Effects of Unconventional Monetary Policy: What Have We Learned?", 
Computational Financial Econometrics Workshop, EEA-ESEM 2018, European Central Bank, European 
University Institute, IAAE 2018, LACEA-LAMES 2018, 4th Macro Banking and Finance Workshop, Santiago 
Macroeconomics Workshop, SED 2019 Annual Meeting, SidE Workshop in Econometrics, Universidad 
Carlos III de Madrid, Universidad de Chile, Universidad Diego Portales, Universidad de San Andrés, 
SECHI 2019, and the CSEF for helpful comments and suggestions. A previous version of this paper which 
circulated with the title: "Proxy-SVAR as a Bridge between Mixed Frequencies" was awarded the Unicredit 
"Macro, Banking and Finance" Best Paper Award 2016. The views expressed in the paper are those of the 
authors only and do not involve the responsibility of the Bank of Italy.

2Works that use a similar strategy are, among others, Piffer and Podstawski (2018) who use the variation
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This “event-study high-frequency identification” faces two main limitations. First, it

may confound the shock of interest with other shocks that occur during the same

temporal window. For example, monetary policy surprises intertwine the actual

monetary policy shock with releases of information on the state of the economy (see, for

example, Ramey, 2016 and Miranda Agrippino and Ricco, 2018). Second, several

empirical applications, typically those that do not study the effect of economic policies,

cannot rely on specific events. For instance, financial shocks, understood as exogenous

shifts in credit spreads (Gilchrist and Zakrajsek, 2012), can hardly be isolated through

event-studies. Both issues limit the implementability of high-frequency identification.

To overcome these limitations, this paper proposes a novel methodology, the “Bridge

Proxy-SVAR” (Bridge-PSVAR). This methodology allows the high-frequency (HF)

identification of structural shocks in a general framework, deals explicitly with the

correct aggregation of HF shocks to lower frequencies, and thus allows us to correctly

recover the macroeconomic effects of the HF shocks. The Bridge-PSVAR is comprised of

three steps.

First, we identify the structural shocks of interest in a high-frequency (e.g. daily) VAR

(HF-VAR), which enables us to timely control for the information set that agents use

when making decisions. In other words, the HF-VAR is subject to less severe

identification challenges because it is less (or not) affected by the temporal aggregation

bias.3 The identification strategies typically employed in monthly or quarterly VARs (for

in the price of gold on specific days to identify innovations in uncertainty and Bahaj (2019) who follows
a similar approach to investigate the macroeconomic effects of changes in sovereign spreads. A related
approach is taken in Kanzig (2019) who gauges oil supply innovations from financial markets in response
to OPEC meetings.

3The temporal aggregation bias is described in Sims (1971), Christiano and Eichenbaum (1987), Marcet
(1991), Hendry (1992), and Swanson and Granger (1997), among others. To avoid this bias, the literature has
proposed using mixed frequency VAR models that handle data sampled at different frequencies, which are
typically applied for forecasting. There are two main approaches to estimate VARs with mixed frequency
data. The most popular one, developed by Zadrozny (1988), is based on a state space representation. While
the Kalman filter has been shown to be the optimal filter in this framework, the system is driven by latent
shocks whose economic interpretations are not straightforward. Moreover, the computational intensity of
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example the recursive, sign, narrative restrictions, along with many others) can be

exploited to identify the shock of interest at high-frequency.4 Notably, those

identification restrictions impose milder constraints on the data at higher frequencies.

For instance, our empirical application exemplifies that imposing the same timing

restrictions on daily versus monthly data may significantly affect the conclusions of the

analysis.

Second, we compute the average of the identified (high-frequency) series of shocks at

the lower frequency. We show that averaging yields the correct low-frequency structural

shock due to the linearity of VAR models. Further, we test that the aggregated series

of shocks are orthogonal to past information (see Forni and Gambetti, 2014; Stock and

Watson, 2018; Miranda Agrippino and Ricco, 2018; among others), which means that the

HF-VAR is not information deficient.

Third, we use the aggregated series of shocks as a proxy for the corresponding

structural shock at the lower frequency; from now on referred to as LF (see Stock and

Watson, 2012 and Mertens and Ravn, 2013).5 Namely, we draw identifying restrictions

for the LF representation from HF information. The economic intuition is that the HF

identification does not confound the actual shocks with the endogenous responses of the

this technique increases exponentially with the number of states and the frequency mismatch (in particular
in case of irregular frequencies as in daily-monthly or daily-quarterly). The second approach, proposed by
Ghysels (2016), is more similar to standard VARs in being driven only by shocks to observable variables.
This particular type of VAR deals with series sampled at different frequencies through stacking; a variable
sampled at higher frequency is decomposed into several lower frequency variables and directly employed
in the VAR. Its shortcoming consists of the curse of dimensionality, i.e. parameter proliferation. Due to
shortcomings of the mixed frequency VAR in dealing with large frequency mismatches and since our focus
is structural analysis, we take a very different approach that exploits two VAR systems specified at different
frequencies. Directly related to our work is the severity of temporal aggregation biases in SVAR models
as illustrated in Marcellino (1999) and Foroni and Marcellino (2016): impulse response functions and the
forecast error variance decomposition can be strongly biased by temporal aggregation.

4The resulting structural shocks are separated from other economic disturbances under a valid
identification strategy. As we mentioned above, this is not always the case in event-studies.

5While Impulse Response Function (IRFs) and other relevant statistics can be also computed in
alternative ways (for example using local projections), VARs identified with the external or internal
instrument constitute our benchmark. See Section 3 for a more detailed discussion on this point.
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system to the shocks.

By blending the VAR identification techniques with HF data, until now exploited only

in event-studies, our methodology: i) exploits all the available observations at HF and

does not require pinpointing special events, which may not convey enough information

for reliable statistical inference; ii) employs the correct, timely updated, information set of

agents (e.g. it varies day by day) and thus does not confound the actual shocks with their

endogenous responses;6 and iii) ensures that the shock of interest is not contaminated by

other ones, conditional on the identification strategy applied.

This paper provides a flexible tool that achieves identification of VARs based on HF

data, opposed to monthly or quarterly data. The validity of the Bridge-PSVAR rests

upon both analytical econometric results and on Monte Carlo simulations. First, we

show formally that, if the underlying process is a VAR, the causal effects of the shocks

can be recovered by aggregating the HF shocks as averages over the LF period and

projecting the endogenous variables of interest on the aggregated shock. The underlying

intuition steams from the linearity of VAR models and the corresponding IRFs: both the

impact and dynamic effects of the shocks on the endogenous variables are linear

functions of the shocks. Second, we rely on Monte Carlo experiments to provide a

general assessment of the small-sample performances of the Bridge-PSVAR and to

quantify the gains compared to the common practice of LF identification. In particular,

we compare our procedure to a VAR identified using temporally aggregated data

(LF-VAR) and to the best possible (counter-factual) HF estimation (HF-VAR). Our results

show that the Bridge-PSVAR is a suitable method for approximating the true underlying

responses under different data generating processes. It correctly recovers the impact

effect of the shocks at lower frequencies. In fact, the Bridge-PSVAR greatly outperforms

6Formally, this guarantees that the reduced-form residuals (and consequently the structural shocks) of
the VAR system are defined as innovations with respect to the information set of agents.
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the LF-VAR, with a reduction in the temporal aggregation bias between 19% to 85%

depending on the specification of the experimental setup, and yields similar but less

precise estimates than the (counterfactual) HF-VAR.

The potential of the methodology is highlighted through an empirical application on

uncertainty shocks. We revise the analysis of Berger et al. (2019) (BDG) who study the

macroeconomic effects of uncertainty and realized volatility shocks in the equity market

by employing a monthly VAR model of the US economy. BDG identify uncertainty

shocks as the innovations that maximize the forecast error variance of expected volatility

(proxied by the VIX) over 24 months, but that are orthogonal to contemporaneous

changes in realized volatility (proxied by the monthly average of daily squared returns).

They show that, after controlling for realized volatility, uncertainty shocks do not induce

significant macroeconomic effects in contrast with previous works (see, for example,

Bloom, 2009; Basu and Bundick, 2017). Realized volatility shocks instead induce sizable

recessionary effects. However, assuming that realized volatility cannot respond to

uncertainty shocks for a whole month may be regarded as a strong identification

restriction since financial variables react immediately to new information, and this

constraint may affect BDG conclusions on the role of uncertainty shocks. We apply the

strategy proposed by BDG but shift the identification stage to a daily VAR, restricting to

zero the response of realized volatility to uncertainty shocks within the same day instead

of within the same month. Then the Bridge Proxy-SVAR is employed to identify the

macroeconomic effects of exogenous fluctuations in uncertainty. We find that, contrary

to the BDG monthly zero restriction, uncertainty shocks induce a significant response of

realized volatility within the same month and affect employment and industrial

production in a qualitatively similar manner to realized volatility shocks.

The remainder of this paper is organized as follows. Section 2 describes an analytical

example to illustrate the econometric problem. Section 3 illustrates the Bridge-PSVAR
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methodology and its analytical properties. Section 4 presents the Monte Carlo

experiments employed for testing the methodology. Section 5 studies the dynamic

effects of uncertainty shocks. Finally, Section 6 concludes.

2 An Illustrative Case

This section describes a simple analytical case to illustrate the econometric problem, i.e.

structural identification under temporal aggregation, and our proposed solution, i.e. the

Bridge-PSVAR that maintains the identification at HF and correctly aggregates the HF

shocks to the LF. We postpone the full characterization of the econometric framework to

Section 3.

Consider the simple (covariance stationary and causal) bivariate V AR(1) process at

the HF frequency t = 1, 2, ..., T in Eq.(1):

 xt

yt

 =

 a11 a12

a21 a22


 xt−1

yt−1

+

 b11 0

b21 b22


 εxt

ε
y
t

 (1)

where [xt yt]
′

are the two endogenous variables, A =

 a11 a12

a21 a22

 is the

autoregressive matrix, B =

 b11 0

b21 b22

 is the impact matrix that determines the

instantaneous feedback from the structural innovations εt =
[
εxt ε

y
t

]′
to the endogenous

variables, where E
[
εtε
′
t

]
= I2. For simplicity but without loss of generality, we assume

B to be lower triangular, which means that εyt does not affect xt within the same period.

However, from the estimation of the reduced form system only a linear combination of

them is available to the econometrician. The corresponding reduced form residuals
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ut = Bεt are indeed correlated: E
[
utu
′
t

]
= Σut = BB′. In this case, given ut, the

knowledge of the B matrix is sufficient for the correct identification of the shocks.

The variables employed in macroeconomic analysis are often available at different

frequencies. For example, financial variables are available at a daily frequency whereas

GDP is only at a quarterly one. In this illustration, we consider the simplest possible case

where the goal of the empirical analysis is to identify the effect of the innovation εy on

x: when x is observable only in even periods while y is observable every period. This

frequency mismatch (equal to 2) generates an estimation problem as the SVAR in Eq.(1)

is not observable. The problem is commonly solved by temporally aggregating y to the

lower frequency at which y is observable. As we show below, this procedure induces a

bias in the analysis.

The temporally aggregated system includes the variables at the frequency

τ = 2, 4, ..., T that correspond to half of the frequency of t = 1, 2, ..., T :7

 xτ

yτ

 =

 a2
11 + a12a21 a11a12 + a12a22

a11a21 + a21a22 a12a21 + a2
22


 xτ−1

yτ−1

+

 uxτ

u
y
τ

 (2)

where the reduced-form residuals uτ are a linear combination of the structural ones over

periods t− 1 and t:

 uxτ

u
y
τ

 =

 b11ε
x
t + (a11b11 + a12b21) εxt−1 + a12b22ε

y
t−1

b21ε
x
t + b22ε

y
t + (a21b11 + a22b21) εxt−1 + a22b22ε

y
t−1

 (3)

Notice that this process is still a V AR(1) but the variance-covariance matrix of the

7We apply temporal aggregation via skip-sampling over 2 periods, meaning that the variables are
observable only once every two periods (and consider the last observable time) but are not transformed.
This corresponds to applying the filters D(L) = I + AL and W (L) = I to to [xt yt]

′
, where L is the

lag operator. The Online Appendix reports the same analytical example using averaging as a temporal
aggregation filter.
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residuals is affected by this transformation: E [uτuτ ] = Σuτ = (I + A)BB′ (I + A)
′
. It

is simple to verify that Σuτ 6= Σut . Thus, even the correct Cholesky structure implicit in

B, imposed on uτ , cannot (in general) recover the shocks ετ . In other words, temporal

aggregation makes impossible to recover the causal impact of the innovations.

To evaluate the effect of εyτ on xτ , we have to consider the effect of the innovations

occurring in periods t − 1 and t. This implies that the impact effects of shock εy on the

system is the cumulative effect attributable to εyt and ε
y
t−1. In a linear model such as the

VAR, this is captured by the sum of the innovations εyτ = ε
y
t + ε

y
t−1. This is the first crucial

intuition underlying the results in this paper: the linearity of VAR models implies that

the sum of HF shocks exerts their cumulative effect because the latter is the sum of their

individual effect. However, an additional complication arises from the VAR dynamics. In

fact, when evaluating the impact of εyτ on xτ , εyt exerts only its impact effect on the HF-

VAR but εyt−1 can affect [xt yt]
′

during two HF periods. Nonetheless, the second important

ingredient of our results is that temporal aggregation preserves the dynamic effects of the

HF shocks (within the low-frequency time interval), which are also linear functions of

them.8 We label Θτ,0 the impact effect of the shock ε
y
τ , which is given in this particular

case by:

Θτ,0 =

 Θx
τ,0

Θ
y
τ,0

 = B•2 + (AB)•2 =

 a12b22

b22 (2 + a22)

 (4)

where B•2 and (AB)•2 denote the second column of the matrices B and AB,

respectively.

The Bridge-PSVAR maintains the identification at HF and aggregates, as the average

or sum, the HF shocks to the lower frequency. Thanks to the two intuitive results

8The temporal aggregation filter correctly preserves the dynamic effects of the HF shocks between
horizon 1 and m and consequently also the aggregated impact effect at LF. Conversely, the LF-VAR
autoregressive components are employed to compute the dynamic effects at LF.
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previously highlighted, this allows us to correctly identify the impact effect of εyτ on xτ .

We estimate a VAR at the frequency t that includes yt and a vector of variables Ωt of

length k, which is defined such that the VAR estimated at frequency t allows the

identification of the shocks (information sufficiency). The HF-VAR can be estimated

using the observables at high-frequency as:

 Ωt

yt

 =

 D11 D12

D21 d22


 Ωt−1

yt−1

+

 C11 0

C21 c22


 εΩ

t

ε
y
t

 (5)

where D =

 D11 D12

D21 d22

 is the autoregressive matrix and C =

 C11 0

C21 c22

 is the

contemporaneous one. The informational sufficiency assumption states that εΩ
t ⊇ εxt and,

under this condition and with the right identification strategy, we recover εyt or at least its

proxy (i.e. a noisy measure of the shock) zt = ε
y
t + ηt, ηt ∼ wn(0, σ2

η), ηt ⊥ ε
y
t .

In this illustrative case, {zt−1, zt} are aggregated to zτ as the average over τ :

zτ =
zt−1 + zt

2
{τ, t} = 2, 4, ..., T (6)

Then, we employ zτ as a proxy for the structural shock ε
y
τ . This strategy is valid

under the typical assumption in the Proxy-SVAR literature on the exogeneity of zt, i.e.

E
[
ztε

x
t

]
= 0, and its strength, i.e. E

[
ztε

y
t

]
6= 0. These two properties are translated to εyτ

under the correct specification of the HF-VAR ensured by our assumptions on Ωt (and a

large enough number of lags compared to the the frequency mismatch). In this way, we

correctly identify the impact effect of the shock εyτ up to a scale factor µ:

Θ
y
τ,0 = E [zτzτ ]−1 E

[
zτu

y
τ
]

= µ (2b22 + a22b22) (7)
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Θx
τ,0 = E [zτzτ ]−1 E [zτu

x
τ ] = µa12b22 (8)

In this way, the ratio
Θxτ,0

Θ
y
τ,0

is correctly estimated (see Eq. 4).

Notice that the aggregation of the shocks in alternative ways would not yield the

correct ratio
Θxτ,0

Θ
y
τ,0

. For example, in the literature, shocks available at a daily frequency

have been sometimes aggregated by using weights proportional to the days left in a

month or as moving averages. Our paper shows that those approaches are inconsistent

with an underlying VAR structure.

3 Methodology

This section formalizes and generalizes the description of the Bridge Proxy-SVAR. Section

3.1 presents the econometric framework used for the analysis, then Sections 3.2 to 3.4

describe the different steps of the methodology in detail.

The framework that we consider is the following: i) the vector of innovations that

drives the variables can be partitioned as ε =
[
ε1 ε1̄

]
, where ε1 denotes the structural

shock of interest and ε1̄ is the vector that comprises all the other shocks of the system; ii)

the objective is to identify the effect the innovation ε1 on a vector of endogenous variables

y; iii) ε1 can be recovered at the frequency t = 1, 2, ..., T higher than the frequency τ

at which y is observable (τ = m, 2m, ..., T where m > 1 is the frequency mismatch).

Therefore the Bridge-PSVAR is comprised of three steps: 1) identify ε1
t in a daily VAR; 2)

correctly aggregate ε1
t transforming it into ε1

τ ; and 3) estimate a VAR at lower frequency

on yτ and use ε1
τ as external instrument to estimate the causal impact effect of ε1 on y.

14



3.1 Econometric Framework

Consider a vector of n time series modeled as a causal and covariance stationary SVAR of

lag-length p:

yt = A1yt−1 + ...+ Apyt−p +Bεt (9)

where εt is a vector of stochastic innovations and B is a n × n matrix whose

coefficients determine how εt contemporaneously affects the variables yt. Such a process

can be expressed via compact notation through the polynomial

A(L) = I − A1L− A2L
2 − ...− ApLp:

A(L)yt = Bεt (10)

where L is the lag operator such that Liyt = yt−i. The SVAR is not observable itself,

but corresponds to a multiplicity of reduced-form VAR representations of the form:

A(L)yt = ut (11)

In what follows we focus exclusively on the problem of identification of matrix B

under temporal aggregation. Temporal aggregation can be expressed as a two-step filter.

First, the data are made observable only once every m periods, which represents the

frequency mismatch, via the filter D(L) = I + D1L + D2L
2 + ... + Dpm−pLpm−p. The

specification of D(L) has to be such that the elements of D(L)A(L) are powers of Lm,

meaning that only the observable data points enter the transformed process. The

conditions for the existence of such a filter, as well as the values taken by the matrices Di

are derived in Marcellino (1999). The second filter, denoted by W (L), depends on the

temporal aggregation scheme considered; skip-sampling (or point-in-time sampling) is

15



usually applied to stock variables (e.g. prices) whereas averaging is typically applied to

flow variables (e.g. volumes). In the former case, W (L) does not modify the original

data, i.e. W (L) = I. For example, consider the VAR(1) process analyzed in the stylized

example: yt = A1yt−1 + Bεt and m = 2. The filter D(L)W (L) = I + A1L transforms the

original process into (I + A1L) yt = (I + A1L)A1yt−1 + (I + A1L)Bεt, which can be

rearranged as yτ = A2
1yτ−1 + Bεt + A1Bεt−1. In the averaging case

W (L) = I + L + L2 + ... + Lm−1 and for the specific process under consideration

W (L) = I + L and D(L)W (L) = (I + A1L) (I + L). The temporally aggregated process

would then become ȳτ = A2
1ȳτ−1 + B (εt + εt−1) + A1B (εt−1 + εt−2) with

ȳτ = yτ + yτ−1.

The typical object of interest in the SVAR literature are the dynamic effects of the

innovations εt on yt+k where k ∈ N represents the horizon. The impact effects of the

innovations are defined as: Θ0,t = EFt−1
[yt/εt = 1] - EFt−1

[yt/εt = 0] with the

information set Ft−1 =
{
yt−1, ..., yt−p

}
. Conversely, there are two possible definitions of

temporally aggregated IRFs Θ0,τ according to the information set considered at LF. A

first possibility employs the relevant information set for the LF representation; the

information set is Fτ−1 = {yτ−1, yτ−2, ...} and consequently Θ0,τ = EFτ−1
[yτ/ετ = 1] -

EFτ−1
[yt/ετ = 0] where ετ = {εt−m+1, εt−m+2, ..., εt} for {t, τ} = m, 2m, . . . , T . This

definition considers all the innovations occurring between τ − 1 and τ . Alternatively, the

LF-IRFs can be defined directly via the temporal aggregation filter, implicitly using the

information set Ft−1 (i.e. using the HF information set). In this case, the LF-IRFs are

defined directly as Θ0,τ = D(L)W (L)Θt
0. Thus, this choice is key to determining how to

correctly use the HF shocks εt. While both definitions are formally correct, we regard the

first as the most interesting from a macroeconomic perspective. Thus we focus on this

definition of LF-IRFs and provide the discussion of the LF-IRFs defined by the temporal

aggregation filters in the Appendix. Chudik and Georgiadis (2019) focus instead on the
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LF-IRFs as defined by the temporal aggregation filter. They propose a mixed frequency

regression (MIDAS) to estimate the effect of shocks already available at a higher

frequency (for example, based on HF event-studies) than endogenous variables. The

Bridge-PSVAR also differs from their approach since it identifies the shock of interest

using a HF-VAR and applies the correct aggregation filter to transform shocks from HF

to LF.

3.2 First Step: Identification at High-Frequency

The first step concerns the identification of a shock or proxy ε1
t at the high-frequency t =

1, 2, ..., T . The HF-VAR has to be specified to achieve informational sufficiency, meaning

that the shock ε1
t can be recovered as a linear combination of the reduced form residuals if

the appropriate identification strategy is applied. Thus, a set of variables Ωt are included

to achieve this goal as in Eq.(12). Å(L) and B̊ denote respectively the autoregressive

matrix and the impact matrix that characterize the HF system
[

Ω y1
t

]′
:

Å(L)

 Ωt

y1
t

 = B̊

 εΩ
t

ε1
t

 (12)

After estimating the reduced form HF-VAR, one can apply any of the different

identification strategies previously used by the literature to identify the structural shock

of interest from the reduced form residuals (i.e. recursive, sign, or narrative

restrictions).9 The identification at HF recovers z1
t , a potentially noisy measure of the

shock ε1
t as described in Eq.(13):

z1
t = ε1

t + wt (13)

9See Ramey (2016) or Kilian and Lutkepohl (2017) for a summary of different identification strategies
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where wt is a measurement error such that E [wtwt] = σ2
w and E

[
ε1
twt
]

= 0. Assuming

that σ2
w = 0 implies that we are recovering the true shock. In what follows, we use zt and

εt interchangeably.

3.3 Second Step: Aggregation and Information Sufficiency Test

In the second step, we aggregate the shocks identified at high-frequency and test for their

partial invertibility. Let ετ = {εt−m+1, εt−m+2, ..., εt} for {t, τ} = m, 2m, . . . , T such that

ετ = 1 implies {εt−m+1 = 1, εt−m+2 = 1, ..., εt = 1}. Considering that the IRFs are defined

in terms of the LF information set Fτ (see Section 3.1 for a discussion on this issue), the

impact response of the system is given by Θ0,τ = EFτ−1
[yτ/ετ = 1] - EFτ−1

[yt/ετ = 0].

This means that the evaluation of the IRFs takes into account all the innovations occurring

between τ−1 and τ . Then we define {Γm−1, Γm−2, ..., Γ0} as the sequence of the LF impact

effects associated respectively to the shocks {εt−m+1, εt−m+2, ..., εt}. For example, in the

stylized process of Section 2 Γ0 = Θ0,t = B and Γ1 = Θ0,t+A1Θ0,t = (I + A1)B. Then the

aggregated response at LF is given by Θ0,τ =
∑m−1
i=0 Γj and can be recovered according

to Proposition I.

Proposition I. Let yt be an underlying HF-VAR process, which is temporally aggregated as a

LF-VAR yτ through the filtersD(L) andW (L). uτ denotes the the reduced form residuals obtained

from the estimation of the LF-VAR. Then, the IRF Θ0,τ is recovered by projecting uτ on the average

of the HF shock that occurred within the LF period ετ =

∑m
i=1 εt−i
m for {t, τ} = m, 2m, ..., T .

Thus the correct filter J(L) applied to εt is J(L) = I + L+ ...+ Lm−1.

Proof: see Appendix B. �

Proposition I relies on the linearity of VAR models: linearity implies that the sum of

the causal effect of the HF shocks ετ = {εt−m+1, εt−m+2, ..., εt} for {t, τ} = m, 2m, . . . , T

is equal to the causal effect of their sum, i.e. the aggregated LF shock ετ . According to
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Proposition I, we define the LF aggregate of zt as zτ =
∑m
i=1 zt−i for {t, τ} = m, 2m, ..., T .10

The crucial property that distinguishes structural shocks from reduced form residuals,

i.e. their orthogonality, is preserved when the HF shocks are aggregated to LF according

to Proposition II. It is worth stressing that the proposition provides sufficient conditions

for the orthogonality of the LF shocks but not a necessary condition.

Proposition II. Given the shocks εt =
[
ε1
t , ε

1̄
t

]
identified in the HF-VAR that by construction

satisfy E
[
ε1
t ε

1̄′
t

]
= 0, if the HF-VAR approximates well enough the data generating process, then

E
[
ε1
τε

1̄′
τ

]
= 0.

Proof: see Appendix B. �

An ancillary result regarding the autocorrelation of the aggregated shocks, which is

based on Proposition II, is contained in Lemma I.

Lemma I. Given the shocks εt identified in the HF-VAR, if the HF-VAR is a good enough

approximation of the data generating process, then the shocks aggregated at the LF ετ do not

display autocorrelation.

Proof: see Appendix B.

Information Sufficiency Test

Our HF identification is performed in a system that does not include the low-frequency

endogenous variables. For example, in case of a daily-monthly frequency mismatch, this

means that macroeconomic variables are not employed for identification but just in the

third step of the Bridge-PSVAR as endogenous variables. The presence of endogenous

macroeconomic variables is neither a necessary nor a sufficient condition to achieve a

correct identification; any small scale VAR may suffer the same problem of potential

10We do not deal explicitly with HF shocks coming from narrative sources and event-studies. However,
our theoretical results showing the correct aggregation of shocks could be relevant for this strand of
literature. For example, past works have aggregated HF shocks to lower frequencies by taking their
moving average or a weighted average with weights proportional to the remaining days within the month.
However those procedures are inconsistent if the underlying model is a HF-VAR.
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omitted variables. In fact, the literature has proposed a number of tests to detect whether

omitted variables contaminate the identified shocks. The most popular is the Forni and

Gambetti (2014) sufficient information test. Such test is discussed in the framework of

external instruments both in Stock and Watson (2018) and Miranda Agrippino and Ricco

(2018).

In practice, following Forni and Gambetti (2014), we regress z1
τ on the lags of factors

or principal components Λ of large datasets. The following relationship should hold:

E
[
Λτ−kz

1
τ

]
= 0 ∀k ∈ N+ (14)

This test assures that the shocks are not predictable and thus are proper structural

shocks. Specific variables, for instance those endogenous variables of LF-VAR, can also

be employed in this test instead of factors to assess whether the identified shock is

contaminated by past macroeconomic variables.

3.4 Third Step: External Instruments and Identification of the LF-VAR

The last step is twofold. First, we estimate the LF-VAR of order p in Eq.(15) including the

relevant HF variables (aggregated at LF) together with the macroeconomic variables of

interest in the system:

yτ = Ã1yτ−1 + Ã2yτ−2 + ...+ Ãpyτ−2 + uτ (15)

where uτ denotes the vector of reduced form residuals. Second, the causal impact

effect of ε1
τ on yτ is identified by employing z1

τ as external instrument. Assuming that the

shock of interest ε1
τ is invertible, i.e. it can be expressed as a linear combination of the

reduced form residuals uτ , inference from the Proxy-SVARs is valid under three

conditions:

20



i) exogeneity: E
[
ε1̄
τz

1
τ

]
= 0

ii) strength: E
[
ε1
τz

1
τ

]
6= 0

iii) limited lag-lead exogeneity: E
[
e1̄
τ+jz

1
τ

]
6= 0 for j 6= 0, where e1̄ denotes the subset of

ε1̄
τ of non-invertible shocks.

The first condition implies that the proxy has to be (contemporaneously) uncorrelated

with the other structural shocks of the system. This condition, analogous to the

exclusion restriction for the IV estimator, cannot be tested directly and rests on the

validity of the identification assumptions. The second condition is related to the

relevance of the instrument. Montiel Olea et al. (2018) argue that the robust first stage

F-stat can be compared to the Stock and Yogo (2005) critical values. The third condition

states that the proxy should be uncorrelated to lags and leads of the non-invertible

shocks affecting the system. These three conditions are discussed in detail in Stock and

Watson (2018) and Miranda Agrippino and Ricco (2018).

By projecting uτ on z1
τ the relative impulse responses are correctly identified:

Θτ
0 ∝ E

[
uτz

1
τ

]
(16)

Under these conditions the external instrument approach is statistically efficient

because it does not estimate additional parameters. z1
τ could be also employed as an

internal instrument or as an exogenous variable in the LF-VAR.

The correct way to use external information to estimate the relevant statistics like

IRFs and forecast error variance has been analyzed in the literature (see see, for example,

Plagborg-Møller and Wolf, 2019; Noh, 2018; Miranda Agrippino and Ricco, 2018; and

Paul, forth). The shock captured by the proxy is partial invertible if and only if the proxy

does not Granger cause the residuals of the LF-VAR. If the test is not passed, then the
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inference based on the Proxy-SVAR is not valid but the relative IRFs can be still 

estimated by including the proxy as an exogenous variable in the VAR (Paul, forth). 

Alternatively, the proxy can be used as an internal instrument in the VAR by including 

zτ
1 as an endogenous variable in the VAR and computing the IRFs by ordering the proxy 

first in a Cholesky decomposition (see, for example, Plagborg-Møller and Wolf, 2019; 

Noh, 2018; and Miranda Agrippino and Ricco, 2018). These latter approaches constitute a 

parsimonious equivalent of the popular local projection instrumental variable approach 

(LP-IV) with controls. Notice that, under the testable assumption (14), the lagged 

endogenous variables of the LF-VAR are orthogonal to the proxy, thus the impact effect 

estimated using the proxy as external instrument, as internal instrument, and as 

exogenous variable in the VAR coincide. Therefore, the partial invertibility of the shock 

of interest and the consistent modeling strategy to compute the IRFs matters only when 

estimating the dynamic effects of the shocks of interest.

The confidence bands for the IRFs can be computed using different m ethods. While 

wild bootstrap is the most popular (see, for example, Gertler and Karadi, 2015; Mertens 

and Ravn, 2018), Jentsch and Lunsford (2016) show that this method is asymptotically 

invalid and propose a residual-based moving block bootstrap procedure. Montiel Olea 

et al. (2018) employ instead the Delta method to compute the confidence sets. The 

differences between these methods become larger when the F-statistic for the instrument 

is lower (see, for example, Mertens and Ravn, 2019).

zτ
1 

22



4.1 Experimental Design

We rely on Monte Carlo experiments to test the performance of the Bridge-PSVAR in

identifying the correct impact matrix in a general setup and finite samples. Within the

previous econometric framework, we compare the performances of the HF-VAR

(high-frequency data), LF-VAR (time aggregated data), and the Bridge-PSVAR in

recovering the underlying DGP. The HF-VAR is a counter-factual exercise where all the

variables are observable at HF and by construction it recovers the correct impact effect.

The Bridge-PSVAR identifies the shocks in a HF system that is informationally sufficient

and then uses the aggregated shock to instrument the reduced form residual of the

LF-VAR. Finally, the LF-VAR identifies the shock by applying the same identification

scheme but in a temporally aggregated system. The LF-VAR and the Bridge-PSVAR

temporally aggregate information in opposite ways: in a LF-VAR the aggregation occurs

before the identification, whereas the Bridge-PSVAR identifies the shocks at HF and then

correctly filters them at LF. By applying the correct filter, our methodology correctly

recovers the impact’s causal effects. Conversely, the LF-VAR identifies IRFs that

generally diverge from those implied by the data generating process.

Our experimental design is similar to that in Foroni and Marcellino (2016). The DGP

described in Eq.(17) is a VAR(1) process driven by Cholesky innovations such that the

different methodologies use the same (correct) identification scheme.

 xt

yt

 =

 a11 a12

a22 a21

 xt−1

yt−1

+

 b11 0

b21 b22

 ext

e
y
t

 (17)

where

 ext

e
y
t

 ∼ N (0, I2). The simulations consider the cases of temporal

aggregation via skip-sampling and averaging for both the frequency mismatch m equal
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to 3 (monthly-quarterly case) and to 30 (daily-monthly case). We compare two different

LF sample sizes T to take both short and large samples into account. Specifically we set

T = 100 and T = 1000. The autoregressive coefficients are drawn from a uniform

distribution as {ρl, ρh, δl, δh} ∼ U(−1, 1) . We select those parametrizations with real

eigenvalues that belong to the set (0.7, 0.95) to avoid non-stationarity and to impose

some persistence in the IRFs.11 The impact coefficients are drawn as {b11, b22} ∼ U(0, I2)

and b12 ∼ U(−1, 1). We retain those parametrizations that satisfy b21 < b11 and b21 < b22

to maintain a mapping between shocks and variables. For the same reason, we impose

b11 > 0.1 and b22 > 0.1. In order to provide a representative measure of the parameter

space, we repeat the simulations for 100 random parametrizations.

Each experiment is repeated over 1000 simulations and the performances of the

different methods are evaluated via the cumulative Mean Absolute Distance (MAD) at 8

horizons between the true IRFs and the estimated one. Notice that our synthetic

measure takes into account the precision of the estimates as the MAD is computed for

each replication and then is averaged over the whole set of replications. The MAD is

defined as:

madidi,j =
8∑

h=1

∣∣∣Θ(h)i,j − Θ̂id(h)i,j

∣∣∣ i, j = {1, 2}

for id = {HF-VAR, LF-VAR, Bridge-PSVAR}, where Θ(h)i,j denotes the response of

variable j to shock i at the horizon h. This metric is then aggregated for each

parametrization k, over variables j and shocks i as MADid
k =

∑2
i=1

∑2
j=1mad

id
i,j . Finally,

a unique metric across all parametrizations is obtained as MADid =
∑100
k=1MADid

k .

11This is important because IRFs aggregated at LF are an uninteresting case without persistence, yielding
zero effect at LF independently of the impact matrix.
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4.2 A Specific Parametrization

Before presenting the general performances of the methodologies, this section graphically

illustrates the results from a specific parametrization of the DGP. We select

 a11 a12

a22 a21

 =

 0.71 −0.82

0 0.82

 ,

 b11 0

b12 b21

 =

 0.28 0

0.23 0.95


for the parameters of Eq.(17). For ease of exposition, we focus on the temporal

aggregation via skip-sampling for a monthly-quarterly case (m = 3) with T = 1000.

Figures 1 and 2 display the IRFs of the system to a shock ext and to a shock e
y
t ,

respectively.

There are significant differences in the estimated IRFs by the HF-VAR (blue

continuous line), the Bridge-PSVAR (red diamond line), and the LF-VAR (green plus

line), together with the IRFs implied by the DGP (black). The HF-VAR perfectly recovers

the IRFs, whereas the LF-VAR completely misses the shape and sign of the impact effects

of ex on y, which in turns also implies a wrong estimated dynamic effect on x itself. The

LF-VAR constraints the impact of ey on x to be 0, thus missing the actual negative effect.

The Bridge-PSVAR closely replicates the performances of the HF-VAR but it is less

efficient being a two stage estimation (IV versus OLS).12

12The impact IRFs diverge from the B matrix due to the definition of LF-IRFs that aggregates the effects
of all of the HF shocks.
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Figure 1: IRF TO εx - MONTE CARLO EXPERIMENT

IRFs to a shock in the first variable of the bivariate system (x). The true IRF is represented by the dotted black line. The autoregressive matrix is
[

0.71 −0.82
0 0.82

]
and the

impact matrix is
[

0.28 0
0.23 0.95

]
. The shock is identified through the correct recursive structure in the HF system (blue), the LF system (green) and the Bridge-PSVAR (red).

Shaded areas correspond to the 90% percentile across 1000 replications. Time aggregation follows a skip-sampling scheme and the frequency mistmatch is 3 (monthly-quarterly
case).

Figure 2: IRF TO εy - MONTE CARLO EXPERIMENT

IRFs to a shock in the second variable in the bivariate system (y). The true IRF is represented by the dotted black line. The autoregressive matrix is
[

0.71 −0.82
0 0.82

]
and the

impact matrix is
[

0.28 0
0.23 0.95

]
. The shock is identified through the correct recursive structure in the HF system (blue), the LF system (green) and the Bridge-PSVAR (red).

Shaded areas correspond to the 90% percentile across 1000 replications. Time aggregation follows a skip-sampling scheme and the frequency mistmatch is 3 (monthly-quarterly
case).
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4.3 General Results

This section describes the general results from our Monte Carlo simulations. Our goal is

to provide a synthetic measure of the accuracy differences across the three methodologies

in estimating IRFs. For this reason, we sum the (replication mean) MAD errors for each

IRF (four in total, two for each of the two shocks) for each of the 100 parametrizations of

the DGP. This absolute measure is transformed into a relative summary statistics as the

MAD percentage reduction compared to the LF-VAR that can be expressed as ˜MAD
id

=

MADid−MADLF

MADLF
for id = {HF-VAR, Bridge-PSVAR}. Table 1 reports a synthetic measure

across the following crucial features of the experiment: the temporal aggregation scheme

(skip-sampling or averaging), the sample size at LF (small - 100 or large - 1000), and the

frequency mismatch (3 or 30 representing the monthly-quarterly or daily-monthly cases,

respectively).13

The HF-VAR represents the first-best procedure and the corresponding MAD gains

constitute thus an upper bound in the accuracy of the estimation. Our simulations

confirm that the informational sufficient Bridge-PSVAR, which applies the appropriate

temporal aggregation filter to the HF shocks, correctly recovers the contemporaneous

matrix of the SVAR. The lower MAD gains reported for the Bridge-PSVAR are due to the

loss of accuracy in a two-stage approach, which resembles a standard loss of efficiency

when using IV estimation compared to OLS. Nonetheless, the MAD gains are sizable

and in many cases quite close to the performances of the HF-VAR, which constitutes the

13Notice that whereas a skip-sampled VAR(1) remains a VAR(1), temporal aggregation by averaging
transforms the process into a VARMA. Consequently, the estimated autoregressive matrix of the LF-VAR
is biased but this bias decreases by the sample size. On the one hand, the impact effect identified by
the Bridge-PSVAR is not affected by the misspecification of the LF-VAR. On the other hand, the biased
autoregressive matrix is common across the LF-VAR and the Bridge-PSVARwhen computing the dynamic
effects.
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(counterfactual) upper bound. All in all, the results from these simulations confirm and

complement the theoretical results from Section 3, validating our methodology. In the

next section, we illustrate its advantages compared to identification in LF-VARs through

an empirical application.

MAD gains over LF-VAR
Skip-sampling Averaging

Small (LF) sample size T=100
Frequency Mismatch: Monthly-Quarterly Case (3)

HF-VAR 65% 83%

Bridge-PSVAR 59% 19%

Frequency Mismatch: Daily-Monthly Case (30)
HF-VAR 80% 97%

Bridge-PSVAR 43% 42%

Large (LF) sample size T=1000
Frequency Mismatch: Monthly-Quarterly Case (3)

HF-VAR 87% 95%

Bridge-PSVAR 85% 21%

Frequency Mismatch: Daily-Monthly Case (30)
HF-VAR 93% 90%

Bridge-PSVAR 79% 79%

Table 1
Performance comparisons across the counter-factual HF-VAR, the LF-VAR, and the Bridge-PSVAR . Performances are evaluated in terms of the
Mean Absolute Distance (MAD) between the true IRFs and the estimated IRFs in 100 randomly parametrized DGPs. One summary statistic is
computed as a mean across all combinations of shocks-variables in the system. The gains are expressed as percentage MAD gains over the LF-VAR.
We analyze different cases for a VAR(1) DGP by varying: i) temporal aggregation scheme, either skip-sampling or averaging; ii) the frequency
mismatch between HF and LF by 3 (monthly-quarterly case) or 30 (monthly-daily case); iii) sample size, either small (100 LF observations) or large
(1000 LF observations).

5 Empirical Applications

5.1 Uncertainty Shocks

The macroeconomic effects of uncertainty shocks have recently been the subject of

considerable debate both on the theoretical side and on the empirical side. Recent

theoretical papers show that the effects of uncertainty shocks are rather ambiguous even
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when simply considering the sign of the output response.14 Berger et al. (2019) (BDG 

henceforth) argue that the major identification p roblem f aced b y t he l iterature i s that 

uncertainty about the future is positively correlated with current economic 

developments, which are reflected in the equity market as realized v olatility. Based on 

this fact, they aim to isolate exogenous fluctuations i n u ncertainty b y a ssuming that 

uncertainty shocks do not affect realized volatility within the same month. BDG employ 

a VAR model of the U.S. economy, estimated over the sample 1986:1m-2014:12m, that 

includes realized volatility (rv), option-implied volatility (v1 - basically the V IX), the fed 

fund rate (ffr), industrial production (ip), and employment (emp); where v1 contains 

crucial information to predict rv. They identify uncertainty shocks as the linear 

combination of the reduced form residuals that maximizes the two-year ahead forecast 

error variance (FEV) of realized volatility but that does not affect realized volatility 

within the same month (MFEV henceforth), following the identification strategy used to 

identify TFP news shocks (see, for example, Barsky and Sims, 2011). Although 

uncertainty shocks account for 30-60 percent of the FEV of realized volatility, they do not 

induce significant macroeconomic effects after controlling for contemporaneous changes 

in realized volatility. This finding c ontradicts p revious w orks t hat f ound uncertainty 

shocks to be significantly recessionary ( see, f or e xample, P iffer a nd P odstawski, 2018). 

BDG instead find that realized volatility shocks ( i.e. surprises in realized volatility) are 

the ones that produce recessionary effects.

We revise the results of BDG on the effects of uncertainty shocks by applying the 

Bridge-PSVAR, that combines HF identification w ith L F e ndogenous v ariables. In 

particular, the subdued role of uncertainty in explaining business cycle fluctuations may 

be driven by the assumption that realized volatility cannot move within the same month

14Basu and Bundick (2017) and Bloom et al. (2018), among others, discuss the compatibility of their
models with both recessionary and expansionary effects of uncertainty shocks.
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in response to uncertainty shocks. In order to test this hypothesis, we use the same

dataset as BDG but apply their identification strategy in daily VAR instead. Then, we

estimate the macroeconomic effects of uncertainty and realized volatility shocks by

means of a monthly VAR. Thus, we are employing a less restrictive identification

restriction since we impose that uncertainty shocks do not affect realized volatility only

within the same day (compared to one month for BDG).

As a preliminary step, we repeat at daily frequency the predictive regression run by

BDG on monthly frequency, where realized volatility is proxied by the daily squared

returns in the equity market. Specifically, we regress future realized volatility rv

cumulated over the leads in the next 6 months (504 days in our case), i.e.
∑504
i=1 rvt+i, on

current v1,t. The regression yields R2 = 0.46, a nearly identical result to those performed

in BDG at the monthly frequency (Table 2 - column 1). We then estimate a daily VAR on

rv and v1 and apply the identification scheme proposed by BDG (including the same

horizon for the MFEV). Then, we aggregate the two series of shocks as monthly averages

and test their orthogonality to lagged factors extracted from the FRED-MD database.

The test cannot reject that the two shocks are not contaminated by previous innovations

(Table 3 - column 1). Thus, we discard the bivariate daily specification and include the

following variables in our daily VAR: s&p500, Fed Funds rate, commodity price index,

BBA corporate spread, euro-dollar exchange rate, economic policy uncertainty index,

gold price, 1y Treasury yield, mortgage rate, and term premia (1y, 2y, 6y, and 10y). We

repeat the same steps as before and update the forecasting regression with the new daily

VAR. Column (2) in Table 2 documents that the R2 increases from 0.46 to 0.68. Column

(2) in Table 3 reports the results from the information sufficiency test, which is passed by

the shocks identified using our richer specification. Therefore, we proceedusing the

aggregated series of shocks as external instruments for the monthly VAR as specified in

BDG.
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Figure 3 compares the response of the system to our uncertainty shocks identified

with the Bridge-PSVAR (left column - red color) vis-à-vis the BDG results (right column -

green color) based on the same identification strategy applied at a monthly frequency.15

First, the zero restriction imposed in BDG at the monthly frequency does not hold

according to our milder identification scheme since realized volatility significantly

increases in response to an uncertainty shock. Second, the (stronger) monthly constraint

is essential for their conclusions on the null macroeconomic effects of uncertainty

shocks. In fact, contrary to BDG, uncertainty shocks have statistically significant effects

on ip and emp, which characterizes them as recessionary. Figure 4 displays the monthly

IRFs to the uncertainty and realized volatility shocks. We apply the same normalization

as BDG such that the two shocks have the same cumulated impact on rv over horizons

2-24. While we reject the conclusion on the null effects of uncertainty shocks, we confirm

the BDG conclusion that realized volatility shocks produce on average larger economic

effects on both industrial production and employment.16

(1) (2)∑504
i=1 rvt+i

∑504
i=1 rvt+i

v1,t 0.68*** 0.47***
(0.01) (0.01)

Additional predictors × X

Observations 7181 7181
R2 − adj 0.46 0.68

Table 2: Predictive Regressions
Predictive regressions of 6-months rv. (1) includes only v1 as regressor; (2) includes all variables included

in the full VAR specification.
Standard errors are reported in parenthesis, *** p<0.01, ** p<0.05, * p<0.1.

15We consider their unrestricted VAR specification for comparability reasons. Results are very close to
their benchmark restricted specification.

16In a self-contained but related work, Alessandri et al. (2019) propose an alternative identification
strategy of uncertainty shocks with the Bridge-PSVAR. The work identifies uncertainty shocks from equity
market data as those fluctuations in the vxo that are independent of first-moment shocks (sp) and without
assuming that they have no impact effect on sp within the same day.
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(1) Bivariate DVAR (2) Full DVAR
εuτ εrvτ εuτ εrvτ

F − stat(8,338) 2.42** 1.10 1.10 0.41
F − test (pval) 0.01 0.36 0.38 0.89

Observations 347 347 347 347
R2 − adj 0.06 0.07 0.01 0.01

Table 3: Invertibility Test - Uncertainty Shocks
The regressions include seven lagged factors from FRED-MD database, one lag of the dependent, and a

constant. εuτ and εrvt denote the uncertainty and realized volatility shocks . F-stat denotes the value of the F
test statistic and F-test is the pvalue on the joint test of all coefficients associated with the factors being 0.

Standard errors are reported in parenthesis, *** p<0.01, ** p<0.05, * p<0.1.

Figure 3: Comparison with BDG
IRFs to an uncertainty shock identified with the Bridge-PSVAR (red) and as in the BDG (green). The VAR includes [rv, v1, ffr, ip, emp] and is
estimated in log-levels with the optimal number of lags (4) and includes a deterministic constant (the same specification as BDG). Light and dark

shaded areas correspond respectively to 90% and 68% bootstrapped confidence bands, computed using 1000 wild bootstrap replications.
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Figure 4: Comparison of IRFs: Uncertainty versus Realized Volatility Shocks
IRFs to an uncertainty (red) and to a realized volatility shock (blue) identified from our daily VAR and aggregated at the monthly frequency as

averages. The VAR includes [rv, v1, ffr, ip, emp] and is estimated in log-levels with the optimal number of lags (4) and includes a deterministic
constant (the same specification as BDG). Shaded areas correspond to 90% bootstrapped confidence bands, computed using 1000 wild bootstrap

replications.

5.2 Monetary Policy Shocks

Recent works have documented that the monetary policy surprises (Gurkaynak et al.,

2005) employed in the macro literature (Gertler and Karadi, 2015) are not proper

monetary shocks because they are: i) correlated with previous macroeconomic

conditions and contaminated with releases of information from the central bank (Ramey,

2016, Karadi and Jarocinski, 2018, and Miranda Agrippino and Ricco, 2018); and ii) are

predictable using past equity returns (Neuhierl and Weber, 2018). We apply the

Bridge-Proxy SVAR to identify monetary policy shocks in a daily VAR and estimate their

macroeconomic effects. We show that our daily VAR yields monetary policy shocks that
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are orthogonal to past information (macro and financial) and can consequently be

interpreted as shocks. The IRFs obtained from the Bridge-Proxy SVAR are in line with

the consensus in the literature.The results of this ancillary exercise are reported in Online

Appendix for ease of exposition.

6 Conclusions

High-frequency identification has been recently introduced in empirical

macroeconomics by means of event-studies. However, this approach can be applied only

in particular cases and does not necessarily allow the researcher to fully isolate an

economic shock of interest. In this paper we develop a novel methodology, the Bridge

Proxy-SVAR, that identifies a shock of interest in a high-frequency VAR by employing

the identification approaches developed in the SVAR literature. This allows us to isolate

shocks of interest in a very general framework. The resulting innovations are aggregated

as averages and used as proxies for the structural shocks in a VAR estimated at lower

frequencies. This procedure allows for the identification of the shock of interest by

imposing weaker assumptions compared to the traditional monthly/quarterly VAR

commonly employed in the literature. Furthermore, this methodology does not mix the

real innovations with the endogenous response of the system to the shocks because it

employs the correct information set of agents.

Can structural analysis be performed by modeling disjointedly variables sampled at

different frequencies? Yes. The positive answer to this question, and thus the validity of

our methodology, rests upon both econometric propositions and Monte Carlo

experiments. The Bridge Proxy-SVAR can correctly recover the impact effect of the shock

of interest. We illustrate the usefulness of the Bridge Proxy-SVAR with an empirical

application on the dynamic effects of uncertainty shocks. This empirical analysis
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highlights that the same identification scheme may lead to different conclusions if

applied at two different frequencies. Uncertainty shocks identified at the monthly

frequency as innovations in expected volatility that have no impact on realized volatility

have null macroeconomic effects. However, once the same identification strategy is

shifted to a daily frequency, uncertainty shocks are recessionary and the monthly

restriction is not supported by the data. Thus, the Bridge-PSVAR is particularly

promising to improve SVARs analysis that can exploit information from financial

markets and other daily sources, e.g. the macroeconomic effects of financial shocks.
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Appendix

A Alternative Definition of LF-IRFs

In this Section, we show how the HF shocks should be aggregated to the low-frequency

if one employs the definition of LF-IRFs based on the temporal aggregation filters, which

are specific to the particular temporal aggregation scheme applied. Proposition IIA is then

employed in the proof of Proposition I.

A.1 Skip-Sampling

The skip-sampling case is simpler because the second step of the temporal aggregation

process consists of the trivial filter W (L) = I that leaves the variables unaffected.

Skip-sampling is usually applied by taking the last value: for example the last daily

observation within the month. We focus on this skip-sampling scheme without loss of

generality.1A Eq.(10) is modified by temporal aggregation as:

D(L)A(L)yt = D(L)Bεt (A.1)

Under skip-sampling, the impact effect of ε on y is trivially given Θ0,τ = Θ0,t = B.

Suppose that the HF shocks are identified under the assumptions described in Equation

12.

Proposition IA. Given an underlying HF-VAR temporally aggregated via skip-sampling, the

IRF Θ0,τ = B can be recovered by projecting the reduced form residuals estimated from the LF-

VAR, uτ , on the last HF shock within the LF period. Thus the correct filter J(L) applied to εt is

J(L) = I such that ετ = εt for {τ, t} = m, 2m, . . . , T .

1ANotice that the same results that we provide hold simply by using the shock corresponding to the
skip-sampling scheme (e.g. take the first shock if skip-sampling is performed using the first HF value)
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Proof: The correct impact matrix can be recovered simply projecting uτ on εt,m−1. The

LF reduced form residuals are given by:

uτ = D(L)ut = D(L)Bεt (A.2)

Recall that D(L) = I +D1L+D2L
2 + ...+Dpm−pLpm−p always contains the identity

matrix as first term. Thus

D(L)Bεt = Bεt +D1Bεt−1 +D2Bεt−2 + ...+Dpm−pBεt−pm+p (A.3)

Independently of the values of Di (that depend on the HF-VAR lag length p and

frequency mismatch m) and considering that εt are uncorrelated, the following

relationship holds:

Proj (uτ/εt) = B = Θ0,τ (A.4)

A.2 Averaging

The averaging case is more complex as the second filter is W (L) = I + L + L2 + ... +

Lm−1. We use the summing filter, which is equivalent to averaging up to a constant.

Consequently, the system becomes

D(L)W (L)A(L)yt = D(L)W (L)Bεt (A.5)

The HF impact effect is again Θt
0 = B but the IRFs must be consistently temporally

aggregated if we want to dispose of a reliable metric of comparison. Under linearity, the

impact effect of ε on y at low-frequency is given by Θτ
0 = Θt

0 + Θt
1 + . . .+ Θt

m−1.

Proposition IIA. Given an underlying HF-VAR temporally aggregated via averaging, the IRF
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Θ0,τ can be recovered by projecting the reduced form residuals estimated from the LF-VAR, uτ , on

the first HF shock within the LF period. Thus, the correct filter J(L) applied to εt is J(L) = Lm−1

such that ετ = εt−m+1 for {τ, t} = m, 2m, . . . , T .

Proof: It is convenient to express the IRFs at horizon k employing the companion form

of the VAR:

xt = F xt−1 + ηt (A.6)

where

F =



A1 A2 A3 . . . Ap

I 0 0 . . . 0

0 I 0
. . . 0

... . . . . . . . . . ...

0 0 . . . I 0


(A.7)

ηt =



ut = Bεt

0

0

...

0


(A.8)

xt =
[
yt yt−1 ... yt−p−1

]′
where p is the lag length of the VAR and xt−1 = Lxt, such that

xt is a vector of (n× p) variables. Then, considering that Θ0,t = B, the dynamic effects

can be written as well in companion form as:

Θ̃k,t = F Θ̃k−1,t k ∈ N (A.9)

We are interested in the matrix that contains the impulse response at horizon k,
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positioned in Θ̃k,t (1, 1) = Θk,t.

Kalman (1982) and Kilic (2007) have shown that this formulation of the IRFs

corresponds to a generalized Fibonacci sequence of order p in the matrices A1, A2, ..., Ap

(also referred to as generalized order p Fibonacci polynomial), denoted by

Sp
(
A1, ..., Ap

)
. Given an initial condition B, Sp

(
A1, ..., Ap

)
generates a sequence whose

elements are a linear combination of the previous terms in the sequence weighted by

A1, ..., Ap. A1 is the weight associated to the previous element of the sequence whereas

Ap multiplies the p-th previous element. For instance S0 = B, S1 = A1S0,

S2 = A1S1 + A2S0, and so on and so forth.

Following Marcellino (1999), we define the following vector of matrices Dv and Av

with dimension 1 × pm, where m denotes the frequency mismatch, and the matrix of

matrices G with dimension (pm− p)× pm

Dv =
(
D1, D2, ..., Dpm−p

)
Av =

(
A1, A2, ..., Ap, 0, ..., 0

)

G =



−I A1 A2 ... Ap−1 Ap 0 0 . . . 0

0 −I A1 A2 ... Ap−1 Ap 0 0 . . . 0

0 0 −I A1 A2 ... Ap−1 Ap 0 0 . . . 0

... 0 0 −I . . . . . . . . . . . . . . . . . . . . . ...
... 0

. . . . . .
... . . . Ap−1 Ap 0

0 0 · · · . . . 0 −I A1 A2 ... Ap−1 Ap


Marcellino (1999) shows that D(L) exists if |G−k|6= 0 where G−k corresponds to the

G matrix whose columns multiple of m (i.e. m, 2m, ...) have been deleted. Then, the

44



coefficients of D(L) are given by Dv = −Av−k (G−k)−1. The intuition is that they have

to be such that only the powers of Lm can have a coefficient different from 0 (since the

variables are unobserved between Lm and L2m).

Since our goal is the identification of the impact effect Θτ
0 , we focus exclusively on the

upper square block of G of dimension (m− 1)× (m− 1) , denoted by G̃. Consistently, we

denote Ãv and D̃v the vector containing the first m−1 elements of the original Av and Dv

vectors. The matrix G̃ is a very special matrix, being a Toeplitz upper triangular matrix

with main diagonal −I. Sahin (2018) shows that, if invertibility is satisfied, the inverse of

this class of matrices, denoted in our case by G̃−1, contains the elements of the Fibonacci

sequence in the matrix A1, ..., Ap. By considering that

D̃v = −ÃvG̃−1

it follows that the elements of D̃v correspond to Sp
(
A1, ..., Ap

)
, the Fibonacci

sequence in A1, ..., Ap. Disregarding the initial effect B, the IRFs Θt
0,Θ

t
1, ...,Θ

t
m−1 and the

elements of the temporal aggregation filter I, D1, D2, ..., Dm−1 are generated by the

same generalized Fibonacci sequence Sp
(
A1, ..., Ap

)
.. Finally, the temporally aggregated

residuals are given by uτ = D(L)W (L)εt. The filter W (L) = I + L + ... + Lm−1 implies

the first shock within the LF period, i.e. εt,1, enter uτ through all the terms

Θ0,t,Θ1,t, ...,Θm−1,t and thus recovers the correct Θ0,τ = Θ0,t + Θ1,t + ...+ Θm−1,t. Thus,

the projection of uτ on εt−m+1 yield the correct IRFs Θ0,τ :

Proj (uτ/εt−m+1) = Θ0,τ (A.10)

�
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B Proofs of the Propositions included in Section 3.3

This Section contains the proofs of Propositions I-II and Lemma I included in Section 3.3.

B.1 Proof of Proposition I

This proof follows directly from the proof of Proposition IIA, which showed that the IRFs

Θt
0,Θ

t
1, ...,Θ

t
m−1 and the elements of the temporal aggregation filter I, D1, D2, ..., Dm−1

are generated by the same generalized Fibonacci sequence Sp
(
A1, ..., Ap

)
(for the given

initial condition B). This implies that the contemporaneous LF impact effect of the shock

εt−m+1 is given by the sum of the first m elements of the Fibonacci sequence denoted by

Sm−1
p . The effect of εt−m+2 is given by the sum of the elements in Sm−2

p and so on and so

forth until the last HF shock εt that impacts throughB = S0
p . In the case of skip-sampling,

Θ0,τ = S0
p whereas in the case of averaging Θ0,τ =

∑m
i=1BS

i
p. In both cases, projecting uτ

on ετ recovers Θ0,τ .

Consider that ετ =
(
I + L+ ...+ Lm−1

)
εt and uτ = D(L)W (L)Bεt where the first m

elements of D(L) are I+D1L+ ...+Dm−1L
m−1 and W (L) =

(
I + L+ ...+ Lm−1

)
. By the

result in Proposition IIA on the equivalence between the recursive definition of IRFs and

the matrices I, D1, D2, ..., Dm−1, it is straightforward to verify that:

Proj (uτ/ετ ) = E
[
(ετετ )−1

]
E [ετuτ ]

=
m−1∑
i=0

Γj = Θ0,τ

�
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B.2 Proof of Proposition II

Under standard assumptions, the Wold Representation Theorem implies that the

innovations {ηt} of a time series process {yt} are white noise. If the underlying process is

well approximated by a V AR(p), then this property extends to the residuals estimated

by the VAR {ut} (Canova, 2007 Ch.4). Thus, it holds that:

E
[
utu
′
t−j

]
= Σ for j = 0

E
[
utu
′
t−j

]
= 0 for ∀j 6= 0

(A.11)

Property A.11 extends to the structural shocks εt = B−1ut because they are a linear

transformation of ut: E
[
εtε
′
t−j

]
= 0 for j = 1, ..., p. Furthermore, it follow from

identification that E [εtεt] = 0. Without loss of generality, partition εt =
[
ε1
t ε

1̄
t

]′
and

define ε1
t = b•1ut and ε1̄

t = b•1̄ut, where b•1 denotes the first column of the impact matrix

B and b•1̄ the remaining columns. Combining the previous properties, it holds

E
[
ε1
t ε

1̄′
t−j
]

= 0 for ∀j (A.12)

Consider now the aggregated shocks ετ =
∑m−1
i=0 εt−i. To evaluate E

[
ε1
τε

1̄′
τ

]
, we need

to compute the correlations between all the elements that are summed into ε1
τ and ε1̄

τ ,

which are all null by (A.12). Thus, E
[
ε1
τε

1̄′
τ

]
= 0. �

B.3 Proof of Lemma I

Notice that ε1t = b1•ut and ε2t = b2•ut are two structural shocks obtained as linear

combination of the residuals ut,. where b•1 denotes the first column of the impact matrix

B and b•1̄ the remaining columns Based on Proposition II, E
[
utu
′
t−j

]
= 0 for ∀j 6= 0.

This extends to E
[
ε1tε

′
it−j

]
for ∀j 6= 0 and i = 1, 2 by the property of the linear operator
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b1•. Plus, E [ε1tε2t] = 0 since they are structural shocks. Thus, each element of the sum in

ε1τ is uncorrelated to the elements in ε2τ and so it is their sum. Based on Proposition II,

the lack of autocorrelation of order 1 holds. �
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