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forecasts. Using a quantile regression approach, I estimate the conditional distribution of 
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are related to the business cycle while upside risks are instead relatively stable over time and 
are not affected by the state of the economy. 
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“If we look at the uncertainty dimension of inflation, we see two phe-

nomena. The first is that tail risks have disappeared. [. . . ] And we also

see that the uncertainty about the path of inflation has also decreased.”

Mario Draghi, 8 June 2017

1 Introduction1

Predicting inflation is of primary importance for several reasons, especially for the

conduct of monetary policy. The literature on forecasting inflation has showed an

increasing effort over the last years in better characterizing the level of uncertainty

associated to point estimates, which is generally captured by means of the predic-

tive density (e.g. Elliott and Timmermann [2008]). An accurate representation of

the possible risks related to future inflation is undoubtedly relevant both for eco-

nomic agents and policymakers. The importance of this point is clear in most of

the economic surveys: indeed, professional forecasters, and more in general market

operators participating in these questionnaires, are asked to provide not only their

point estimates but also the probability distribution of their forecasts. Similarly,

policymakers regularly evaluate the probability of different scenarios, such as de-

flation or high-inflation rate, to gauge possible risks associated to future inflation,

which is a major threat to policy effectiveness.

Macroeconomic conditions are generally considered the major driver of inflation.

Scholars have extensively investigated how the state of the economy propagates into

the dynamics of future prices. This paper takes a step into this direction: indeed, it

contributes to the literature on inflation forecasting by providing a comprehensive

study on how macroeconomic conditions shape the conditional distribution of infla-

tion forecasts in the euro area. To do so, first it uses a quantile-regression approach

to characterize the effects of changes in the current state of the economy with re-

spect to the entire distribution of inflation. Then, it adopts the quantile function

to estimate the conditional distribution of inflation forecasts. This method follows

Adrian, Boyarchenko, and Giannone [2019] who focus on the relation between US

gross domestic product and financial conditions. Their approach fits with the pur-

pose of this paper because it allows to investigate the properties of the conditional

1This paper previously circulated with the title “The Vulnerability of Euro Area Inflation Fore-

casts”. I would like to thank Andrea Gazzani, Domenico Giannone, Alberto Musso, Stefano Neri,
Andrea Nobili, Gabriel Pérez-Quirós and Roberta Zizza for their helpful comments. I also ben-
efited from comments made by participants at seminars at Universitat Autonoma de Barcelona,
ECB, IAEE 2019. All the possible errors remain mine.
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distribution, focusing not only on the first two moments, as generally done in the

literature, but rather on the entire shape of the distribution.

Existing studies have already investigated the distribution of inflation forecasts

using a different perspective. Some examples are Tsong and Lee [2011] who show

asymmetric inflation dynamics for twelve OECD countries and Manzan and Zerom

[2013] who challenged the view that random-walk models are more accurate for

forecasting inflation by exploring the power of leading indicators of economic activity

as valuable predictors, especially at the tails of the distribution. Busetti et al. [2015]

adopt a quantile phillips-curve approach for the euro area with the aim of improving

the accuracy of standard linear forecasting models.

This paper takes a different direction with respect to the existing literature be-

cause it does not propose a standard “horse-race” forecasting exercise for competing

models but rather it uses a quantile regression approach to estimate the conditional

distribution of inflation forecasts in the euro area and analyze its evolution over time

with respect to economic conditions. Loosely speaking, this allows to study how the

current state of the economy shapes the (model-based) uncertainty and risks asso-

ciated to future inflation. The idea is that macroeconomic conditions matter for

future inflation but in an asymmetric way, i.e. more for lower quantiles of inflation

whereas are not informative for the upper quantiles.

The main finding of this paper is that the distribution of euro area inflation

forecasts conditional on the current state of the economy evolves asymmetrically.

Specifically, the left part of the distribution is sensitive to the deterioration of eco-

nomic conditions while the right part remains relatively stable over time, regardless

if the economy is experiencing an expansion phase. In other words, downside risks

to inflation vary considerably with the business cycle whereas upside risks are less

sensitive to economic fluctuations. This finding appears robust to a large and het-

erogeneous set of business cycle indicators commonly used to study the relation

of between prices and output. This asymmetric relation appears important also

for forecasting purpose: the performance of the model in an out-of-sample setting

is higher for lower quantiles and the accuracy gain decreases nearly monotonically

across quantiles.

Interestingly, other previous works investigated possible determinants of inflation

risks: for instance Andrade et al. [2014] look at how financial market data affect

survey-based inflation risk indicators in the euro area and Lopez-Salido and Loria

[2019] document that financial conditions can carry substantial and persistent low-

inflation risks both in the US and in the euro area. This paper differs from them

because it focuses explicitly on the role of business cycle indicators rather than
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financial variables on the inflation outlook.

The rest of the paper is structured as follows. Section 2 illustrates the steps

to estimate the conditional distribution of inflation forecasts which is then used in

section 3 for further analyses. Section 4 performs perform an out-of-sample exercise

while and 5 presents some robustness checks. Section 6 briefly concludes.

2 Estimating the conditional distribution

Characterizing the relation between inflation and the business cycle belongs to the

long-lasting debate on the validity of the Phillips curve. To study this relation, I first

consider the data for the euro area by looking at the year-on-year inflation rate and a

business cycle variable. Specifically, I use the e-coin (Eurocoin) indicator, which is

a measure introduced by Altissimo et al. [2010] and can be considered as a real-time

“thermometer” of the euro area economy2. The choice of using the e-coin rather

than other business cycle indicators as real GDP or unemployment rate is motivated

by the fact that the e-coin is obtained as a smooth estimate that summarizes the

current economic condition for the euro area in one index3. Together with the year-

on-year inflation rate, data are taken at a quarterly frequency and spanned over the

period 1999Q1-2019Q3 as illustrated in figure 11.

Figure 1 shows the scatter plots of the data together with the slope of 10th, 50th

and 90th percentiles and the ordinary least squares (OLS) estimates (black-dashed

line) for two different horizons, i.e. one and four quarters ahead. These charts are

informative about the ability/inability of the OLS in fitting the data at all quantiles:

for instance, if the OLS line is parallel to the ones characterizing the other quantiles,

then it indicates that a linear regression model also does a good job in capturing

the relation between inflation and e-coin in the tails.

The evidence suggests that the OLS performs poorly at both tails, especially at lower

quantiles. In particular, the 10th percentile slope (blue line) behaves remarkably

different from the other lines and this holds at both horizons. This represents a

motivating point for the adoption of the quantile regression for the remaining of this

paper.

2In practice, this index is constructed from a dynamic factor model which uses a large set of
macroeconomic variables (industrial production, business surveys, financial and demand indicators
and others) to extract the information that is relevant to forecast GDP.

3The results of this paper are robust to the choice of using other business cycle indicators as
shown by some evidence are presented in Section 5.
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Figure 1: Scatter plot

2.1 Quantile regression approach

The quantile regression and the simple linear regression model (OLS) mainly differs

in two ways: the minimization problem is based on the sum of absolute errors and

not on the sum of squared errors and in addition the error terms are weighted differ-

ently according to the relative quantile (and not equally as in the OLS framework).

Concretely, as shown by Adrian et al. [2019], the use of the quantile regression ap-

proach presents two main advantages. First, it allows to study the impact of the

explanatory variables on different quantiles of the inflation distribution and not only

on the mean as in the case of OLS. This feature is extremely important since recent

periods have been characterized by two recessions and simple linear regression mod-

els might fail to capture the effects of large shocks on inflation. Second, estimation

and inference in a quantile-regression framework are distribution-free and therefore

no strong assumptions are needed on the distribution of the inflation rate.

Given this background, I estimate a quantile regression (see Koenker and Bassett

[1978]) of yt (euro area headline inflation) on xt (the e-coin plus a constant). This

allows the estimation of the conditional distribution in a second step as described in

the next session. Equation 1 shows a standard quantile regression formula in which

the coefficients βτ,h are chosen to minimize the quantile weighted absolute errors as

follows

βτ,h = argmin
βh∈Rk

T∑
t=1

(τ ·✶(yt ≥ xt−hβh)|yt−xt−hβτ,h|+(1−τ)·✶(yt < xt−hβh)|yt−xt−hβτ,h|)

(1)

where τ represents the different quantiles, h the forecast horizon and ✶(·) denotes
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the indicator function. In what follows, the baseline model, i.e. the one that is used

to construct the conditional distribution, uses as regressors the average inflation rate

over the last four quarters and e-coin indicator. The first term aims at capturing

the persistence of inflation (see Atkeson and Ohanian [2001]) while the second term

describes the relation with the business cycle. Similarly, Lopez-Salido and Loria

[2019] use the average inflation rate rather than the lag of inflation in conjunction

with some financial indicators to study inflation dynamics in the euro area and in

the US. The estimated coefficients of equation 1 for the conditional model are then

analyzed to characterize their variation across quantiles. The forecast horizon is

arbitrarily selected equal to one and four to provide a short and a medium-term

view of this relation. Figures 2 illustrates the coefficient estimates across all quan-

tiles, considering a grid from 0.1 to 0.9 with a 0.05-interval. First, the blue lines

show that the coefficients are generally statistically significant (with the exception

of the right tail at one-quarter ahead)4. Second, both graphs point out significant

differences across quantiles, especially comparing the lower quantiles with the upper

quantiles. Clearly, this reinforces the idea that OLS estimates (black dashed line)

do not properly capture tails relations and therefore are less informative about tail

behaviours which are better described in a quantile-regression approach.

Figure 2: Estimated coefficients over quantiles

4The confidence bands are obtained by estimating the variance-covariance matrix as described
in Greene [2008].
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2.2 The conditional distribution

Using the estimated coefficients βτ,h from equation 1, the predicted distribution of

inflation Q̂yt+h|xt
can be directly computed as

Q̂yt+h|xt
(τ) = xtβτ,h (2)

where the forecast horizon is h = 1, 4. As described before, the conditional distribu-

tion model is obtained by including in xt the average of the last four lags of inflation

and the e-coin. Note that equation 2 produces a prediction for each quantile τ at

each t which are then used to obtain the predicted distribution by means of a non-

parametric approach as the normal kernel function (e.g. D’Agostino, Giannone, and

Gambetti [2013])5. Figure 3 presents the estimated conditional distributions with

respect to one- (left) and four-quarter (right) ahead forecasts.

Figure 3: Estimated distribution of inflation forecasts

The main finding is that there is a considerable time-variation in the shape of

the conditional distribution which is mainly driven by the different behaviour of the

tails. Indeed, for both horizons, the distribution shows asymmetric moves with the

left tail more sensitive to business cycle developments while the right tail remains

relatively stable over time. Loosely speaking, the conditional distribution of infla-

tion forecasts points out that the left tail moves following business cycle conditions

5The empirical results are robust to different approaches for estimating the conditional distri-
bution. In practice, several specifications for the kernel function or a simple linear interpolation as
in Busetti et al. [2015] produce differences across methods that are negligible.
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while the right one is more stable over time, not increasing even when the economy

goes through an expansion phase. As a consequence, this also implies that changes

in inflation uncertainty are entirely driven by the left tail of the conditional distri-

bution, therefore when an increase in the uncertainty is not generated by symmetric

moves of both tails.

2.3 In-sample fit

One way to look at the importance of business cycle indicators to explain the left

part of the distribution is to consider their contribution in terms of goodness of fit

for the tails of the distribution. To validate the (quantile regression) model, one

can use the pseudo-R2 measure suggested by Koenker and Machado [1999] which

assesses the fit at each quantile by comparing the sum of weighted deviations for

the model of interest with the same sum from a model in which only the intercept

appears, i.e.:

R2(τ) = 1−

∑
yi≥ŷi

τ · |yi − ŷi|+
∑

yi<ŷi
(1− τ) · |yi − ŷi|∑

yi≥yi
τ · |yi − y|+

∑
yi<yi

(1− τ) · |yi − y|
(3)

where ŷi and y are the fitted values derived from the equation with and without

controls, respectively. This represents a local measure of fit since it depends on

each quantile τ , differently from the global R2 commonly used in a standard OLS

framework.

Figure 4: Pseudo R-squared

Figure 4 illustrates the pseudo R2 for both models and both horizons. The fit

appears considerably higher for the left part of this distribution, especially for the

horizon h = 1. Moreover, this fit monotonically decreases over quantiles. This
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finding characterizes the left asymmetry of this distribution and thus validates the

idea that business cycle conditions have an asymmetric effect on the conditional

distribution of inflation forecasts.

3 Asymmetry in the inflation distribution

This section examines in depth the estimated conditional distribution of inflation

to show his asymmetry in three different ways. First, it looks at the role of con-

ditioning the inflation distribution on economic conditions. Second, it provides a

quantification of the evolution of extreme inflation rate scenarios generated by the

estimated distribution. Finally, it illustrates two appealing inflation-related policy

scenarios.

3.1 Relative entropy

In this part I quantify the implications of conditioning on the state of the business

cycle by considering the Kullback-Leibler divergence between the conditional, f(y),

and the unconditional distribution, g(y), of inflation forecasts6. As described by

Adrian et al. [2019], this measure can be used to assess the impact of the conditioning

variable on the distribution of inflation. In other words, the relative entropy provides

the information gain produced by including the current state of the business cycle.

Analytically, this can be written as

LD
t (ft, g) =

∫ F−1(0.5)

−∞

(log g(y)− log ft(y)) ft(y)dy (4)

LU
t (ft, g) =

∫ ∞

F−1(0.5)

(log g(y)− log ft(y)) ft(y)dy . (5)

where the downside entropy LD
t refers to the difference between the unconditional

and conditional distribution for the left part of the distribution (namely from the

first percentile to the median) and the upside entropy LU
t which is the analogous

for the right part of the distribution. Figure 5 points out one main evidence: the

downside entropy (red line) is significantly more volatile than the upside entropy

(black line) which indeed remains stable over time. This confirms that economic

conditions do not provide any information gain about the upper quantiles of the

6The Kullback-Leibler divergence, also known as relative entropy or information divergence, is
a measure of the non-symmetric difference between two distributions. It is generally used because
differently from other measures of distance, it has a direct counterpart in the logarithmic scoring
rule, which is commonly used for evaluating density forecasts (see Amisano and Giacomini [2007]).
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inflation distribution, while they are extremely important for the bottom ones. In

other words, the variation of the conditional distribution is mainly driven by the

movements in the left tail and not by those in the right tail which remains relatively

constant over time.

Figure 5: Downside (red) and upside (black) entropy

Note: the grey shaded areas corresponds to the CEPR recession periods in the euro area

3.2 Expected shortfall and longrise

The estimated conditional distribution can also be used to quantify the expected

values of extreme scenarios, namely either low or high values of inflation that a

forecaster might predict according to this quantile-regression model. This is imple-

mented by considering the expected shortfall and expected longrise which are two

measures commonly used in the finance literature to represent the expected return

on the portfolio in the worst (or best) τ% of cases. In practice, these two measures

can be defined as

SFt =

∫ 0.05

0

F−1t (τ) dτ LRt =

∫ 1

0.95

F−1t (τ) dτ (6)

and they correspond to the integral of the inverse cumulative distribution function

F−1t (·) at its extreme 5-percentile tails, i.e. from 1 to the 5-th percentile and from

95-th to the 100 percentile.

Figure 6 shows that for both horizons the expected longrise remains roughly stable

over time fluctuating around values of 3% while the expected shortfall is much more

volatile in the interval between -1% and 1%. The main message of these two figures

is that the expectation of low inflation is sensitive to the fluctuations in the business

cycle whereas the upside risk is less responsive to changes in economic conditions.
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Figure 6: Expected Shortfall (red) and Longrise (black)

Note: the grey shaded areas corresponds to the CEPR recession periods in the euro area

3.3 Policy-scenario probabilities

Price stability is the main target of the majority of central banks. In the euro area,

the European Central Bank (ECB) is the institution which pursues medium- and

long-term price stability, with the mandate to keep headline inflation “close but

below to two percent”. Recent episodes as the Europe’s Double-Dip recessions and

oil turmoils in the period 2014-2015 had a considerable impact on the level of prices

and brought the inflation rate also in negative territory.

With this is mind, this section uses the estimated conditional distribution to propose

the quantification of two relevant policy scenarios, namely the risk of deflation (π <

0) and the probability of being below the target (π < 2), which for simplicity is

assumed to be at a 2 percent inflation rate. Using the same notation of equation 6,

this can be specified as

FDEFL
t (0) =

∫ (0)

−∞

ft(y)dy FBT
t (2) =

∫ (2)

−∞

ft(y)dy . (7)

where ft(y) is the conditional distribution of inflation and F
DEFL,BT
t (·) is the cor-

responding cumulative distribution function. Figure 6 illustrates the quantitative

results in following way: the red line represents the probability of a future inflation

rate in negative territory while the black line corresponds to the probability of an

inflation rate below the 2% target. Similarly, the red and the grey shaded areas

represent the periods in which the euro area was in deflationary time and below the

target, respectively.

The charts present similar results for both horizons. The probability of being

below the target is well-captured: indeed, the odds of having inflation below 2%

is generally above 0.5 for all the period after 2013, which is commonly known as
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Figure 7: Policy-scenario analysis

Note: the red shaded areas correspond to deflationary periods and the grey shaded areas represent

the periods in which the inflation rate was below 2%.

“missing inflation”. Similarly, the probability of deflation rises in 2009 related to

the severity of the recession and then it spikes again in 2016 in the period of very

low inflation due to some turmoil in oil dynamics.

4 Out-of-sample

The empirical results presented so far are obtained using an in-sample estimation

approach. Although this is extremely useful for understanding the properties of

the estimated distribution of inflation forecasts, it does not fully replicate the true

experience of a forecaster. For this reason, this section proposes an out-of-sample

exercise to assess the forecasting abilities of this quantile model. The forecasting

exercise evaluates the performance of the model over a period of seven years, i.e. 28

quarters between 2012Q4 and 2019Q3, using a recursive estimation procedure with

a focus on two specific dimensions: (i) the quantile score, which assesses the forecast

accuracy across different quantiles, and (ii) the probability integral transformation

(PIT), that measures the calibration of the predictive density.

4.1 Quantile score

In the case of a non-parametric distribution, the standard approach to evaluate

the performance of a model is to use the predictive score which corresponds to

the value of the predictive density generated by the model at the realized value of

inflation following the logic that the higher the score, the more accurate the model is.

However, in the presence of a considerable asymmetry as in this case, looking at the

score per sè is not very informative. Indeed, the most appropriate way to evaluate

these model is to assess the specific performance across quantiles (see Gneiting and
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Raftery [2007] and Busetti et al. [2015]). In practice, this corresponds to consider

the loss function L(τ) evaluated as

L(τ) =
∑

yt≥Qτ,t

τ |yt − Q̂τ,t|+
∑

yt<Qτ,t

(1− τ)|yt − Q̂τ,t| (8)

where Q̂τ,t is the out-of-sample prediction for each quantile τ at each time t. Clearly,

the logic of this loss function is the lower L(τ), the better the performance. To quan-

tify the accuracy gain obtained by conditioning on the business cycle, figure 8 shows

the ratio between the quantile score of the conditional model and the unconditional

model. Two results appear clear: first, the accuracy gain (black line) is below one

for both horizons at each quantile. This implies that the conditional distribution

has an overall superior performance with respect to the unconditional distribution.

Second, this accuracy gain is more marked for the lower quantiles, in general around

40 per cent for the left part of the distribution while it is considerably lower for the

upper quantiles.

Figure 8: Relative quantile score

Note: the black line indicates the relative quantile score. A number below one indicates that the

conditional model outperforms the unconditional model in terms of the quantile score.

4.2 Probability integral transformation

This part analyzes the calibration of the predictive distribution by looking at the

empirical cumulative distribution of the probability integral transformation (PIT),

a tool introduced by Diebold et al. [1998]. In a nutshell, this measure indicates

the percentage of observations that are below any given quantile τ and it is used to

evaluate whether the empirical predictive distribution matches the true (unobserved)

distribution that generates the data. In other words, this is equivalent to test
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whether the generated distribution zt+h, which is obtained as

zt+h =

∫ yt+h

−∞

ft+h(yt+h)dy, (9)

is distributed as an iid Uniform (0, 1) distribution. To test for the correct specifi-

cation of the conditional predictive density, I adopt the test proposed by Rossi and

Sekhposyan [2019] which preserves the estimation error of the parameters used to

construct the densities and focuses on evaluating the absolute performance of the

model’s predictive density7. In this context, a perfectly calibrated density should be

equal to the 45-degree line, therefore any deviation from the bisector line suggests a

bias in the predictive density. Figure 9 shows the results for the conditional (black

line) and unconditional (blue dashed line) distribution together with the critical val-

ues (red dotted lines). A line outside these 5% critical values indicates the rejection

of the null hypothesis of correct calibration, therefore considering the model as not

correctly calibrated.

Figure 9: Probability integral transformation

Interestingly, the overall difference in terms of calibration between the two dis-

tributions is relatively small. However, for the horizon h = 1 the test rejects the null

hypothesis of correct calibration for the conditional distribution due to the left part

of the distribution. Viceversa, the null hypothesis is rejected only for the uncondi-

tional distribution for h = 4. One explanation of these results is that the business

cycle conditions lead the conditional model to be relatively pessimist on the infla-

tion outlook, generating a left asymmetry. In the second case, the lack of correct

calibration is probably due to the persistency of inflation.

7Critical values (red dotted lines in the graphs) are obtained using the method proposed by
Rossi and Sekhposyan [2019] which also provide an interesting review of the related literature.
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5 Robustness checks

The results obtained so far are based on the e-coin as the indicator of the busi-

ness cycle in the euro area. Although its validity has been extensively analyzed

(see Altissimo et al. [2010]), it is interesting to study whether the left asymmetry

of the distribution of inflation forecasts is also robust to other main business cycle

variables. For this reason, the analysis of Section 3 is repeated by conditioning on a

list of standard business cycle indicators for the euro area: more precisely, I consider

real GDP, industrial production, unemployment rate and ISM PMI manufacturing

index8. To assess the robustness of the results, figure 10 presents the pseudo R-

squared statistic as in section 2.3. In this case, the pseudo-R2 of the unconditional

and the conditional model are compared to the corresponding values for the models

with the other business cycle indicators. These two charts confirm the main result of

the paper, namely the existence of an left asymmetry in the distribution of inflation

forecasts which is generated by the deterioration of the business cycle. In some cases

the evidence of a left asymmetry appears less strong than the case of the e-coin

but this is due to the fact that the latter is obtained by including a large variety of

indicators of business cycle, therefore it appears to better capture the current state

of the economy.

Figure 10: Robustness over business cycle indicators

8A complete description of the variables is available in the Data Appendix.

18



6 Conclusions

Recent years of low inflation rates have posed new important questions for scholars

(see Ciccarelli and Osbat [2017] for the euro area). Evaluating possible risks to

inflation has become of primary importance, especially for policymakers. Quanti-

tatively, this is commonly measured by the predictive density which corresponds to

an estimate of the expected probability distribution of the target variable.

This paper proposes a comprehensive analysis of the evolution of the distribution

of inflation forecasts conditional on macroeconomic conditions to formally evaluate

the risk to inflation conditional on the current state of the economy. More specifi-

cally, I first adopt a quantile-regression approach to appropriately capture the effects

of changes in economic conditions on all quantiles of the inflation distribution. Then,

I use the quantile function to estimate the conditional distribution of inflation fore-

casts. The main finding is that there is a significant time-variation in the shape of

the distribution which is mainly due to the relation of the lower quantiles of infla-

tion with the business cycle. In other words, the conditional distribution presents a

dynamics of the downside risk which is sensitive to the current state of the economy

while the upside risk remains stable over time. This evidence is generally robust to

several business cycle indicators.

This paper also performs some other interesting exercises using the estimated

conditional distribution. First, it shows the implication of conditioning on the busi-

ness cycle by means of the relative entropy. Second, it quantifies the probability of

possible but extreme inflation outcomes and lastly it performs some relevant policy

scenario analyses to study the ability of the model in capturing inflation dynamics.

Last but not least, the main finding of this paper might have some important

policy implications. The asymmetric behaviour of the inflation distribution might

be related to the different effectiveness of the monetary policy. Indeed, the evidence

of this paper supports the idea that the central bank seems more in control of prices

during period of booms, while it appears somehow less effective during downturns,

since it can not avoid the possibility of periods of low inflation. However, the

sensitivity of this point and the centrality for policy purposes represent a stimulating

point for future research.
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Data Appendix

The data are taken from the ECB Statistical Data Warehouse. The sample covers

the period Q1.1999-Q3.2019, using quarterly observations.

• HICP: Euro area (changing composition) - HICP - Overall index, Monthly in-

dex, backdated, fixed euro conversion rate used for weights, European Central

Bank, Working day and seasonally adjusted;

• e-coin : Euro area (changing composition), Centre for Economic Policy Re-

search and Banca d‘Italia, Coincident indicator of business cycle, based on

quarterly changes in cyclical component of the GDP, see Altissimo et al. [2010];

For the robustness exercise:

• real GDP Gross domestic product at market prices - Euro area 19 (fixed

composition) Chain linked volume (rebased), Non transformed data, Calendar

and seasonally adjusted data;

• ISM PMI Manufacturing: Euro area 19 (fixed composition), Markit, Man-

ufacturing - output, Total, Seasonally adjusted, not working day adjusted;

• Industrial production: Euro area 19 (fixed composition) - Industrial Pro-

duction Index, Total Industry (excluding construction); Working day and sea-

sonally adjusted;

• Unemployment rate: Euro area 19 (fixed composition) - Standardised un-

employment, Rate, Seasonally adjusted, not working day adjusted, percentage

of civilian workforce;

• Oil price index: annual growth rate of the Brent oil price converted in Euro;

• ECB commodity price index: annual growth rate of the ECB commod-

ity price index, import weighted, Euro denominated, neither seasonally nor

working day adjusted.
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Figure 11: Raw data

Data for the section on robustness checks

Note: the grey shaded areas corresponds to the recession periods in the euro area as defined by

the CEPR business cycle dating committee.
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