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BANK LENDING IN UNCERTAIN TIMES

by Piergiorgio Alessandri* and Margherita Bottero**

Abstract

We study the impact of economic uncertainty on the supply of bank credit using a
monthly dataset that includes al loan applications submitted by a sample of 650,000 Italian
firms between 2003 and 2012. We find that an increase in aggregate uncertainty has three
effects. First, it reduces the likelihood of banks accepting new applications. Second, it
prolongs the time firms have to wait for their loans to be disbursed. Third, it makes banks less
responsive to fluctuations in short-term interest rates, thereby weakening the bank lending
channel of monetary policy. The influence of uncertainty is relatively stronger for poorly
capitalized lenders and geographically distant borrowers.

JEL Classification: E51, G21.
Keywor ds. uncertainty, credit supply, bank lending channel, loan applications.
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1 Introduction

Economic crises generate uncertainty but they also feed on it. As the prolonged recessions
that followed the financial crises of 2008-2012 demonstrate, economic volatility brings about a
widespread reluctance to borrow, lend and invest that can significantly slow down the recoveryf]
The relation between uncertainty, credit and investment is complex because uncertainty can act
through both the demand and the supply side of credit markets. If their choices are irreversible,
firms may choose to invest and borrow less when uncertainty is high (Bernanke, 1983; Bloom,
2009; Bloom et al., 2012). Yet creditors face the same problem: corporate loans — their own
investments — are risky and irreversible too, and they clearly become less attractive when firms’
prospects grow more uncertain (Arellano et al., 2012; Christiano et al., 2014; Gilchrist et al.,
2014). This raises a natural question: is the slow-down in bank lending observed in ‘uncertain
times’ a pure by-product of the firms’ own choices, or does it also reveal a financial acceleration
effect, as increasingly hesitant lenders force firms to borrow less than they would like to? If this

is the case, which firms end up bearing the costs of such a shift in banks’ lending strategies?

In this article we answer these questions by exploiting the microeconomic data available from
the Credit Register of the Bank of Italy. We construct a loan-level dataset that tracks at a
monthly frequency the outcome of all new loan applications submitted by a sample of 650,000
nonfinancial firms between 2003 and 2012 and combine it with bank and firm balance sheet data.
We then examine the impact of various measures of aggregate uncertainty on (i) the probability
that firms’ applications get approved and (ii) the time firms have to wait to receive their loans
conditional on being successful. Approval probabilities are a measure of the extensive margin
of credit supply that has been widely exploited in the banking literature to disentangle supply
from demand dynamics, while delays in banks’ credit granting decisions are studied here for
the first time. We also study the relation between uncertainty and the bank lending channel
of monetary policy (Bernanke and Gertler, 1995; Kashyap and Stein, 2000). The motivation is
straightforward. Nonfinancial firms are known to respond less to changes in fundamentals when

uncertainty is high (Guiso and Parigi, 1999; Bloom et al., 2007). Banks might in principle be

!The paper has benefited from insightful discussions with Ugo Albertazzi, Nick Bloom, Lorenzo Burlon, Chris
Edmond, Leonardo Gambacorta, Giorgio Gobbi, Elisa Guglielminetti, Filippo Mezzanotti, Valentina Michelangeli,
Stefano Neri, Steven Ongena, Matthew Plosser, Enrico Sette, Guillaume Vuillemey and seminar participants at
Banca d’Italia, the Einaudi Institute for Economics and Finance, the Bank of England, the Bank for International
Settlements, the 2016 European Finance Association annual meeting, the 2016 Melbourne Institute Macroeco-
nomic Policy Meeting on "The Macroeconomics of Uncertainty and Volatility”. Any errors and omissions are the
responsibility of the authors. The views expressed in this paper are those of the authors and do not reflect the
position of Banca d’Italia.

2The research on the topic is reviewed below. For the policy side of the debate, see FOMC (2008), Blanchard
(2009), Buti and Padoan (2013).



subject to a similar wait-and-see type of behavior, and if this is the case their response to shifts

in monetary policy might be muted when uncertainty is high.

The identification of a genuine influence of uncertainty on the supply of bank credit faces a
number of complications. Credit demand may change heterogeneously across firms in response to
uncertainty shocks, depending inter alia on the firms’ financial constraints (Alfaro et al., 2016).
The quality of the potential borrowers may worsen in bad times, giving banks an independent
reason to be less accommodating (Bernanke and Gertler, 1989). Furthermore, uncertainty may
propagate differently depending on the banks’ business models, including the strength of their
existing relationships (Chodorow-Reich, 2014; Bolton et al., 2016). We get around these problems
by combining two simple ideas. The first one is to exploit the granularity of the dataset, and the
fact that firms typically apply for funds to a number of different banks at once, to introduce in the
regressions time-varying fixed effects that vary at the firm level, thus controlling for changes in
observed and unobserved firm characteristics as well as general business cycle conditions (Gan,
2007; Khwaja and Mian, 2008; Jimenéz et al. 2012, 2014). The second one is to focus on
bank capital as the key source of heterogeneity in the intermediaries’ behavior, while controlling
extensively for other bank characteristics. With frictional capital markets, leverage constraints
increase the value of banks’ equity rendering them effectively more risk averse (Froot et al. 1993,
Froot and Stein, 1998). Banks’ net worth is indeed likely to be a key driver of their response
to changes in the level of aggregate risk in the economy (Brunnermeier et al., 2012, Adrian
and Shin, 2014). It follows that, if uncertainty matters at all, it must matter more for thinly
capitalized lenders. Once combined, these modelling choices ultimately lead us to analyze the
impact of uncertainty on the applications submitted by a given firm at a given point in time
to banks that differ in their capital buffers, and hence in their willingness and capacity to bear

additional aggregate risk.

We have three main findings. First, a rise in aggregate uncertainty reduces the approval rate
for firms’ loan applications: a one standard deviation increase in the Economic Policy Uncertainty
index of Baker et al. (2016), for instance, is associated with a drop in firms’ approval probability
from 21 to about 19 per cent. Second, even successful firms must wait longer for their loans to
be released when uncertainty is high. Interestingly, interest rates do not have this effect: the
length of a bank’s decision-making process appears to be affected by its confidence about the
future but not by monetary policy in and by itself. Third, uncertainty weakens the bank lending
channel of monetary policy. These mechanisms are quantitatively significant: the direct effects of
uncertainty are comparable to those of monetary policy itself, and the interaction between the two

is such that the bank lending channel essentially disappears in very volatile environments. They



also display interesting cross-sectional patterns. Besides operating more through less capitalized
banks, uncertainty has a stronger impact on firms that are geographically distant from the bank
to which they place their applications. From a firm’s perspective, physical proximity turns out

to be a better hedge against uncertainty shocks than a good credit rating.

Our main contribution to the literature is to leverage on high-quality microeconomic data to
study the causal link between uncertainty and credit supply. Our dataset allows us to track both
approved and rejected loan applications, rather than focusing on changes in credit flows observed
ex-post, and to study within-firm outcomes, checking how applications placed simultaneously by
the same firm are treated by banks with different capital ratios (and hence a different appetite for
bearing aggregate risk). This makes it possible to move from a somewhat speculative interpreta-
tion of the patterns in the data to a more stringent discourse on causality. In this process we also
highlight a dimension of banks’ lending policies that as far as we know has not been examined
in the banking literature thus far, namely the banks’ speed in processing loan applications. This
timing dimension sheds more light on the overall implications of uncertainty, and also on the pe-
culiarity that sets uncertainty aside from other factors that also affect bank decisions, including
monetary policy. A third complementary contribution we offer to the literature is a thorough
investigation of the interaction between uncertainty and the traditional bank lending channel of
monetary policy. Economic uncertainty might in principle matter because of its influence on the
transmission of monetary shocks, as well as its direct negative effect on credit supply, and this

possibility has been largely overlooked thus far.

The remainder of the paper is structured as follows. In Section [2] we review the relevant
literature. Section [3| introduces our dataset and presents a set of stylized facts on the behavior
of credit applications and approvals in Italy between 2003 and 2012. We then move to the
econometric analysis. We begin by studying the dynamics of the loan approval rate, which
provides a direct link between our work and existing studies of the transmission of monetary
policy based on loan-level data (e.g. Jiménez et al., 2012, 2014). Section {4| presents our key
results as well as a set of robustness tests. In Section [5| we switch from the probability of
approval to the second dimension of interest, namely the timing of the banks’ decisions. Section
[6] discusses further identification and robustness issues and Section [7 concludes. The annex to

the paper provides additional estimation results and background material.



2 Related literature

Uncertainty rises sharply in or ahead of economic slowdowns (Bloom, 2014). Risk-aversion
naturally pushes consumers to save more in riskier environments, causing a decline in economic
activity (Bansal and Yaron, 2004; Ferndndez-Villaverde et al. 2011). This basic precautionary
motive can be reinforced by two types of mechanismsf| The first one relates to technology: with
non-convex capital adjustments costs, a rise in volatility pushes firms to postpone investment
and hiring decisions because it increases the likelihood that these will have to be reversed in the
future (Bernanke (1983), Bloom (2009), Bloom et al. (2012)). The second one relates to financial
markets: a rise in uncertainty increases firms’ default probabilities and benefits equity holders
at the expense of debt holders, and this in turn causes an increase in credit spreads, which must
rise to compensate creditors for bearing more risk (Arellano et al., 2012; Christiano et al., 2014;
Gilchrist et al., 2014).

These theories place different frictions at the centre of the transmission mechanism and lead
to opposite conclusions as to which side of the credit market is affected the most by uncertainty.
In the ‘real view’” uncertainty translates into a shock to the demand for credit. In the ‘financial
view’, on the other hand, uncertainty shifts the supply curve by making lenders ceteris paribus
less willing to provide whatever funds firms may require. Importantly, the frictions that underpin
the financial view can also affect the demand side of the credit market. Alfaro, Bloom and Lin
(2016) and Chen (2016) show that financially-constrained firms are more sensitive to uncertainty/]
The impact of credit constraints on firm behavior appears to be quantitatively relevant both in
the USA (Alfaro et al., 2016; Chen, 2016) and in other advanced economies (Choi et al., 2016).
These results suggest that the identification problem posed by the tension between real and
financial view is a particularly hard one to solve. Identifying a genuine credit supply effect on
the basis of aggregate, sectoral or even bank-level data is essentially impossible: at those levels
of aggregation one cannot credibly rule out the possibility that the contraction in credit that
follows a rise in uncertainty is caused by the choices of the borrowers rather than those of the

lenders.

Microeconometric studies of uncertainty have mostly focused on nonfinancial firms and on

idiosyncratic rather than aggregate uncertainty measures. Leahy and Whited (1996) and Bloom

3We limit our discussions to frameworks where risk affects the economic cycle, but causality could in principle
run in the opposite direction — see e.g. Bachmann and Moscarini (2012).

41f external financing is costly, these firms have a precautionary motive to reduce their debt and hoard cash in
an uncertain environment, and this pushes them to scale down their investment more than unconstrained firms
when uncertainty is high.



et al. (2007) document a strong relationship between stock price volatility and investment for
manufacturing firms listed respectively in the USA and in the UK. Guiso and Parigi (1999)
measure subjective uncertainty using the distribution of the firms’ own expectations on future
demand, and find this to have a negative impact on investment. The evidence on the relation
between uncertainty and bank lending is more recent and, crucially, it relies to date on aggregate
or bank-level data only. Using consolidated data from the Call Reports, Baum et al. (2013) find
that the evidence in support of the bank lending channel of monetary policy in the US becomes
weaker after controlling for the volatility of the yields on one-year or five-year Treasury Bills, a
measure of financial risk. Valencia (2013) and Bordo et al. (2016) investigate the relation between
the growth of bank lending and various measures of aggregate uncertainty for the USA (including
disagreement among forecasters, stock price volatility and the Economic Policy Uncertainty index
by Baker et al., 2016), showing that uncertainty appears to discourage lending particularly for
relatively less capitalized or illiquid banks, which provides indirect evidence of a causal impact
of uncertainty on banks’ lending policies. Raunig et al. (2014) reach a similar conclusion using
an event study approach which focuses on lending dynamics around four uncertainty episodes,
including the start of the Iraq war in 1990 or September 11th 2001. Alessandri and Panetta (2015)
document that an increase in economic policy uncertainty predicts a tightening in the lending
standards reported by European banks, as measured by the ECB’s Bank Lending Survey. Gissler
et al. (2016) introduce a specific measure of regulatory uncertainty exploiting the delays that
occurred during the legislative process aimed at defining the new requirements for “qualified
mortgages” in the US, and show that this correlates negatively with mortgage lending by US
banks. Valencia (2016) documents a positive cross-sectional relation between the variance of
banks’ returns or capital buffers and their future capital ratios, consistent with the emergence of

a self-insurance motive.

We share with some of these works the premise that bank capital is important to identify
uncertainty effects. Since borrowing constraints effectively increase their risk aversion, weakly
capitalized banks are likely to be not only less willing to lend, as known, but also more responsive
to changes in the level of non-diversifiable risk in the economy. In other words, they should
respond more to aggregate uncertainty shocks| Our first contribution to the literature is to
leverage on high-quality microeconomic data to test this possibility in a more stringent way
than has hitherto been done. By studying within-firm outcomes, we can check how banks that

differ in their capital buffers (and hence in their capacity to bear aggregate risk) treat credit

5The relation between borrowing constraints, leverage and risk aversion is examined in Froot et al. (1993),
Froot and Stein (1998) and more recently Rampini and Viswanathan (2010). Rampini et al. (2016) demontrate
that equity also affects banks’ risk management strategies and that well-capitalized banks are relatively more
likely to hedge interest rate risk.



applications submitted by the same firm at the same point in time, thus excluding a number
of alternative mechanisms that might in principle generate analogous patterns in bank balance
sheets or aggregate credit flows. In pursuing this avenue, we draw on the extensive empirical
banking literature that has exploited loan applications and rejections to isolate credit supply
from demand, using either official credit register data (Jimenéz et al., 2012; Albertazzi et al.,
2016; Bonaccorsi di Patti and Sette, 2016; Ippolito et al., 2016) or private banks’ dataset (Puri
et al., 2011; Einav et al., 2012; Dell’Ariccia et al., 2012). In particular, we adapt the fixed
effect saturation approach of Jimenéz et al. (2012, 2014) to study the heterogeneous impact of
uncertainty across banks and firms. Our second contribution is to shed light on a dimension
of bank lending — i.e. the time banks take to issue loans to their new borrowers — that has
thus far been overlooked in the literature. Finally, we provide a first systematic analysis of how

uncertainty and monetary policy interact in shaping banks’ lending strategies.

3 The data

Our dataset combines various types of information. At the macro level, we use indicators of
aggregate uncertainty, monetary policy and economic activity. At the micro level, we combine
monthly loan-level observations on firms’ credit applications with data on bank and firm balance
sheets. We provide a brief description of the uncertainty indicators in Section and discuss
in detail the loan-level data in Section [3.2l More information on the remaining series and data
construction details are provided in the Data annex. Throughout the analysis we follow Jimenez
et al. (2014) in using the EONIA rate to capture the monetary policy stance. Using the one-
month Euribor rate does not alter the results (see section @ Importantly, no unconventional
interventions took place in the euro area over our sample period, which runs from August 2003
to December 2012.

3.1 Uncertainty indicators

Our preferred indicator of aggregate uncertainty is the European Economic Policy Uncertainty
index (hereafter EPU) constructed by Baker et al. (2016). The index is calculated counting the
occurrences of uncertainty- and policy-related keywords in a set of daily European newspapers,
and it aims to capture the uncertainty that surrounds monetary, fiscal and regulatory policy
interventions in Europe. Policy and regulatory uncertainty are likely to be an important driver
of bank lending strategies (Gissler et al. 2016). More generally, the EPU index has gained

significant attention since its launch in 2012 and it has been used in a wide range of applied
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micro and macroeconomic empirical works on uncertaintyﬁ

Since there is no commonly accepted way of measuring aggregate uncertainty, and most
proxies are likely to be subject to measurement error, we consider for robustness a number of in-
dicators that differ from EPU in terms of both conceptual grounding and empirical construction.
The first one is the monthly average of the Euro STOXX 50 Volatility Index (VSTOXX), which
measures the option-implied volatility on the Euro STOXX 50 equity price index over a 30 days
horizon. Like VIX in the US, VSTOXX is a “fear” index that provides a market-based gauge of
the volatility perceived by investors in the European stock market. The index is widely used as
a proxy of aggregate risk perceptions in the euro area and it features regularly in official pub-
lications by the European Central Bank (see e.g. ECB Financial Stability Review, May 2014).
A second alternative is disagreement, defined as the cross-sectional standard deviations of the
forecasts issued by the professional forecasters surveyed by Consensus Economics®. We employ
two disagreement indicators that are constructed using respectively forecasts on consumer price
inflation and on the government budget balance in the euro zone[| As these choices make clear,
our analysis focuses on the implications of aggregate rather than idiosyncratic uncertainty: the
indicators are meant to pick up sources of uncertainty that relate to the overall state of economy
and that might in principle affect all banks and firms at once, though not necessarily in the same
way or to the same degree. The proxies we use might reflect both the level of actual risk in the
economy and the agents’ subjective or Knightian uncertainty about it. The difference between

risk and uncertainty is conceptually interesting, but we do not see it as central to our work.

Figure 1 displays the behavior of the two EPU indices over our sample period. For comparison
we also report VSTOXX. All indicators identify the first half of the sample as a relatively calm
period: the end of the 2003 recession is followed by five years of mild and stable uncertainty.

The Lehman crisis marks a clear regime shift. After 2008 uncertainty peaks again during the

6A list of studies based on EPU indices maintained by the authors is available at
http://www.policyuncertainty.com. The European EPU index combines information from ten newspapers,
two for each of five countries (Germany, France, Italy, Spain and Great Britain). The Italian component of the
index is also available separately, and our key results hold if uncertainty is measured with this indicator (see
Section . Our choice to focus on the European index is based on three considerations. First, the Italian
index is noisier: it is calculated using two papers only (Corriere Della Sera and La Repubblica), so it is more
heavily affected by the idiosyncratic choices of a relatively small group of columnists and editors. Second, the
key monetary, regulatory and fiscal policy debates that took place in 2002-2012 clearly had a strong international
dimension. Third, three quarters of total banking assets in Italy are held by banks with branches or subsidiaries
abroad (Caccavaio et al., 2014), and these are likely to respond to uncertainty around the European rather than
just the Italian outlook.

"Inflation forecasts are useful because they summarize a large number of aggregate demand- and supply-side
factors. The fiscal balance took center stage in the debate from the onset of the sovereign crisis. Ilut and Schneider
(2014) use a disagreement indicator to estimate a general equilibrium model where Knightian uncertainty is a
powerful driver of the business cycle.
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sovereign debt crisis in 2010 and 2011. The European EPU index is generally more persistent
than VSTOXX and it reaches its historical maximum in 2011. The Italian version of the index
follows a broadly similar pattern but it appears to be somewhat noisier, possibly on account of

the smaller set of newspapers included in the calculation.

3.2 Loan applications and time to approval: stylized facts

We collect from the Italian Credit Register monthly information on all new loan applications
advanced by a sample of about 650.000 non-financial firms to Italian banks over the period
between August 2003 and December 2012. The sample includes firms from the manufacturing,
industry, services and construction sector and it is broadly representative of the entire universe of
limited liability capital companies. The mean and median firm in the sample have total assets of
about 1 and 10 million Euros, reflecting the widespread presence of small enterprises. On average,
firms who apply for loans have good credit scorings: the mean zscore is 5.2 and the median is
5 on a scale ranging from 1 to 9, where scores below 3 typically indicate solid firms and scores
above 7 identify troubled firms. The quality of the applicants is also fairly constant over time —
see Section [6] We only observe the applications placed to banks with which the borrower has no
outstanding credit relation. As standard in the literature, we assign to each loan application a
binary outcome (“approved” or “rejected”) by inspecting whether, in the three months following
its placement, the Credit Register records an increase in the credit granted to the enquiring firm
by the bank that received the application. Of the almost 3 million of applications we observe,

2.3 were rejected, delivering an average approval rate of about 18%.

An overview of the behavior of applications and rejections over time is provided in Figures
2 and 3. Figure 2 shows the total number of applications along with the average number of
applications per firm between 2003 and 2012. The latter is calculated by averaging over “active”
firms, namely firms that submit at least one application in the month under examination, and
gives an idea of the breadth and intensity of their loan search processf| The grey bars mark the
two recessions that hit Italy over the sample period, as dated by the OECD. The main fact that
stands out from the chart is the steady decline in applications from 2008 onwards, both at the
aggregate and individual firm level. This is a clear sign that demand is an important driver of the

patterns in the data. More specifically, the regression analysis must confront the possibility of a

8The median number of applications per firm is one (in other words, less than half of the firms submit multiple
applications in any given month) and the distribution is highly skewed, with a standard deviation of 0.30 and a
maximum of 6.98 over the full period. The occurrence of multiple simultaneous applications by the same firm is
critical for identification: we discuss it further in section

12



significant drop in demand after the Lehman crisis. A second interesting fact is that the number
of applications does not systematically fall during recessions: both in 2009 and in 2011 there
are distinct phases when the applications actually increase, albeit only temporarily. This raises
interesting questions on the nature and motivations of the applicants: it might be for instance
that recessions bring about ‘lemon markets’ where (otherwise inactive) bad borrowers crowd out
good borrowers; or that, irrespective of their quality, firms shop around more in bad times to
minimize the risk of ending up without loans. Our identification strategy, which relies on within-
firm heterogeneity in the applications’ outcomes, is designed to get around these problems. Since
however these possibilities are interesting and worth investigating in their own right we discuss

them in greater detail in Section [6]]]

Figure 3 shows how the rejections line up against three survey-based measures of credit
conditions. We consider the responses of Italian banks participating to the euro area Bank
Lending Survey (BLS) and two firm surveys conducted respectively by the Italian National
Statistical Office (ISTAT) and the Bank of Italy in cooperation with I1Sole24Ore. We focus
on the 2008-2012 window only, for which all surveys are available. The series shows the net
percentage of respondents —banks or firms, depending on the survey— that reported a perceived
tightening in credit conditions in any given quarter. The monthly rejection series is averaged at
the quarterly frequency to ease the comparison. Rejections track survey responses fairly well,
both in general and in topical moments such as 2008/9 and 2011, when credit conditions are
particularly tight. This illustrates why the Credit Register data is useful in isolating a credit
supply channel. The decision (not) to grant new loans is an important component of a bank’s
overall strategy, and a timely signal of changes in its lending policy, but it is necessarily neglected

when focusing only on observed variations in the outstanding stock of loans.

To study the timing of banks’ decision we resort to a second binary variable, Postponed .
This is created by (i) restricting the sample to the applications that were eventually approved, and
(ii) inspecting whether the corresponding loans were issued in the month following the request
(in which case the dummy is equal to zero) or with a delay of two or three months (dummy
equal to one). Since one month is the shortest horizon over which new loans can appear in the
data, the dummy sets aside all applications that were “postponed” rather than being approved
straightaway. The rationale behind this variables is simple: a rise in uncertainty could induce
banks to take more time before giving out a loan (besides rejecting more applicants), either

because they wait for new or better signals on the state of the economy or because they try

9A third evident fact in chart 2 is a strong seasonality in the data. In the econometric analysis we deal with
it via seasonal dummies or, more radically, firm-month fixed effects.
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to collect more information on the quality of the applicant. This test is also useful from an
identification perspective. By restricting the analysis to successful applications only, we focus
on good borrowers and good projects, which limits concerns on changes in the composition
of applications over time. In other words, with this variable we effectively rely on the banks
themselves (and on some hindsight) to get around the possibility that the pool of projects may
systematically worsen in bad times, which could lead to a spurious negative correlation between

the approval rate and uncertainty.

The applications are accepted on average after 1.4 months, with a standard deviation of 0.6
months. The timing of the approvals displays an interesting behavior at the aggregate level.
The share of postponed applications over total approvals is positively correlated with all our
uncertainty indicators. Some of them, including EPU, also have significant predictive power
for this ratio. In the case of the EONIA rate, on the other hand, the correlation is weak and
predictability runs in the opposite direction (see table A1l in the annex for details). This provides
prima facie evidence that the timing of the approvals is influenced specifically by the level of

uncertainty in the economy.

4 Uncertainty and loan approvals

4.1 1Is there a credit supply channel?

The primary objective of our analysis is to establish whether ceteris paribus banks reject more
loan applications when economic uncertainty is high. A second and closely related objective is to
test whether they also become less responsive to monetary policy: fluctuations in interest rates
may matter less in highly uncertain environments. To this dual end, we estimate a set of models
where the dependent variable is a dummy Approval s, which takes value 1 if the credit request
advanced by firm f in month ¢ to bank b is approved within three months and zero otherwise (as
in Jiménez et al., 2014), the key regressor is the EPU uncertainty index by Baker et al. (2016),
and the potential influence of uncertainty on the transmission of monetary policy is captured by
an interaction between EPU and the EONIA rate.

Our loan-level data allows us to estimate regressions that include firm-specific fixed effects
that vary at the monthly frequency (Jimenéz et al. 2014). These present clear advantages in
terms of identification: the firm-month effects capture all changes in business cycle conditions and
firm characteristics that may influence the demand for credit, thus allowing a reliable estimate

of the impact of uncertainty on the supply side of the credit market. Confining the analysis to

14



such a set up, however, would be limiting: the relation between uncertainty and the average
approval rate (which is absorbed by the firm-month fixed effects) is interesting in its own right,
and the cross-sectional results are harder to interpret without some prior knowledge about this
average effect. To fully exploit our data we thus proceed sequentially. We start from relatively
rudimentary regressions that only include macroeconomic and bank-specific controls and then
progressively move towards saturated specifications that include firm-month fixed effects. An
important element of our identification strategy is to exploit heterogeneity in banks’ capital
buffers as a proxy of their risk-bearing capacity and hence of their sensitivity to uncertainty. The
progression towards increasingly rich specifications allows us to thoroughly test this mechanism

and check whether the role of capital changes when tightening the controls for credit demandET]

The estimates are displayed in Table 1. In the first column loan approvals are regressed
exclusively on the EPU index, a set of macroeconomic and bank-specific control variables and
the firms’ credit ratings. The macro controls include CPI inflation, industrial production growth
and unemployment in Italy, all lagged one period. The bank controls are the Tier 1 capital ratio,
the liquidity ratio, and two dummies that identify respectively mutual banks (small-scale lenders
that mostly operate at a local level) and the five largest banks in the sample (more complex and
diversified institution with a national or international dimension). Controlling for credit ratings
is important as a good rating may (and in fact turns out to) systematically improve an applicant’s
chance of being approved. These regressors are included in all subsequent specifications. This
initial regression returns a negative and highly significant EPU coefficient, providing prima facie

evidence that the approval probability drops when uncertainty risesEr]

In column 2 we introduce the EONIA rate, both in isolation and interacted with EPU,
leaving the rest of the specification unchanged. EPU retains its significance. The negative and
significant coefficient of EONIA is in line with the extant literature on the bank lending channel,
that provides ample evidence that a tightening in monetary conditions leads to a decline in the
supply of credit. The interaction between EPU and EONIA is positive and highly significant:
ceteris paribus, high uncertainty weakens the influence of monetary policy on loan approvals.
This result demonstrates that, when faced with changes in economic conditions in uncertain
times, banks adopt a wait-and-see behavior analogous to that of nonfinancial firms (Bloom,

2007, 2014). Tt also offers one explanation why monetary policy might be relatively less effective

0Tn Section we study alternative specifications that include both firm-month and bank-month fixed effects
to assess the influence of uncertainty on the composition of credit.

UErrors are clustered at the bank*month level troughout the paper, following Jimenez et al. (2012). When we
saturate the model with bank*month and firm*month fixed effects we restort to a triple cluster (bank, firm and
month). In general, results are robust to alternative clustering, including by month and by bank and month.
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when the economy is in recession and volatility is high (Tenreyro and Twhaites, 2016). The
estimates suggests that the impact of uncertainty on loan approvals is quantitatively in the same
ballpark as that associated to monetary policy itself. To put the estimates in context, note that
the EONIA rate is expressed in decimal points while EPU is normalized to 1 in 2000 and has a
standard deviation of 0.53. Given this scaling, the coefficients in column 2 imply that, starting
from the current ‘zero lower bound’ on interest rates, a 100 basis points rise in EONIA would
lower the approval probability by 1.1% and a one standard deviation increase in EPU would
lower it by 2.1%.

The next step is to bring bank capital into the picture. The influence of uncertainty should
be stronger for banks that have low capital buffers and hence less capacity for holding aggregate
risk. We investigate this possibility by interacting the banks’ Tier 1 capital ratio with the
EPU terms. Since capital is known to matter for the transmission of monetary policy too, we
also include its interaction with EONIA[™| The test is performed in three alternative set-ups: in
column 3 we simply add the capital-based interactions to the specification of column 2; in column
4 we augment the regression with bank and firm fixed effects; and in column 5 we saturate it
with a full set of firm-month fixed effects. The upshot from this exercise is that capital has a
powerful dampening effect for uncertainty shocks. This mechanism involves both the direct and
the indirect effect of uncertaunty: higher capital makes banks both less responsive to variations
in EPU and less prone to adopting a wait-and-see type of behavior. These patterns appear
consistently across specifications 3 to 5. Column 5 is of course of particular interest. Owing to
the presence of firm-month fixed effects, a confusion between demand and supply channels is in
this case extremely unlikely. The level effects of EPU and EONIA are absorbed by the fixed
effects and the sample size drops by an order of 10 because the estimation relies exclusively on
firms that apply to more than one bank in any given month. In practice this model checks how
the propensity to approve applications coming from the same firm in the same month changes
across banks depending on their capital ratios. Conditional on a rise in uncertainty, the approval
rate drops significantly less for highly capitalized banks. The coefficients in column 5 can be used
to quantify the importance of capital. The median capital ratio in our sample is 8.7%. Relative
to the case of the median bank, the drop in the approval probability caused by a one standard
deviation rise in EPU is 0.3 percentage points higher for a bank with a 6.1% capital ratio (the
lowest decile of the distribution) and 0.7 percentage points lower for a bank with a 15.5% capital
ratio (the highest decile). Note that both the average effects of EPU and EONIA (columns 1 to

12As we noted above the capital ratio is included as a control variable in all regressions of table 1. Not
surprisingly its coefficient is positive and significant in most cases, suggesting that well-capitalized banks are on
average more willing to accept new customers.
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4) and the dampening role of capital (columns 3 to 5) turn out to be very robust across models.

In table 2 we replicate the analysis using alternative indicators of economic uncertainty. In
panel (a) the European EPU index is replaced first by VSTOXX (columns 1 to 4) and then by
the Italian EPU (columns 5 to 8). In panel (b) we use forecasters’ disagreement on CPI inflation
(columns 1 to 4) and the public budget balance of the euro area (columns 5 to 8). For each of
the indicators we estimate the same models used in Table 1, replicating the progression from a
specification with bank and macroeconomic controls to a fully saturated regression with firm-
month fixed effects. The key results of our analysis are remarkably robust. In all combinations
of proxies and specifications we estimate a negative coefficient for uncertainty and a positive
coefficient for the interaction between uncertainty and EONIA. In the saturated regressions,
the dampening effect of bank capital appears for three indicators out of four, the exception
being VSTOXX. This suggests that measurement problems are extremely unlikely to constitute

a first-order problem in our analysis (we discuss measurement problem more in section @

Another important concern is the stability of the estimates over time. Economic conditions
changed significantly between 2003 and 2012, as the Italian economy transitioned from a relatively
calm phase, with constant or rising interest rates, to two crisis episodes — the global financial crisis
of 2008-2009 and the subsequent sovereign debt crisis — that were accompanied by significant
monetary expansions. To check how the transmission of uncertainty changed in these periods
we re-estimate the saturated specification in column 5 of table 1 separately for each year of
the sample. The estimated coefficients are displayed in figure 4. The figure reports the point
estimate and a 90% confidence interval for each of the three interactions involving bank capital.
The estimates are generally larger and less accurate in the second half of the sample, but the signs
of the coefficients are extremely robust. In particular, the interaction between capital and EPU
always enters the regression with a positive coefficient except in 2005, when it is approximately
zero. The significance levels of the estimates are also surprisingly high considering that each of
these year-specific regressions only relies on 12 observations on EPU and on an overall sample

size of approximately 250,000 observations due to the fixed effect saturation.

In Section [6] we examine the robustness of the results in table 1 along various other dimensions
and discuss a range of microeconomic phenomena that might in principle interfere with our
identification strategy, including changes in the quality and composition of the applications or in
their distribution across banks. In the remainder of this section we investigate instead how the
transmission of uncertainty changes depending on banks’ liquidity, size and business model. Like
capital, liquidity might in principle dampen banks’ reaction to aggregate uncertainty. Liquidity

is unlikely to directly affect a bank’s attitude towards credit risk, but it might for instance
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increase its tolerance for maturity risk, making it more willing to commit its funds for longer
time periods. Banks’ size and business models are also likely to play some role, as small local
lenders and international players are unlikely to deal with uncertainty (or even perceive it) in
the same way. To explore these possibilities, in table 3 we re-estimate the regressions interacting
uncertainty with liquidity, size or business model indicators instead of the banks’ capital ratios.
The exercise is performed for both the regression based on bank and firm fixed effects (where
EPU and EONIA appear independently) and the saturated specification with firm-month fixed

effects (where they only appear through their interaction with the relevant bank indicator).

We find that liquidity plays a role in dampening the transmission of both monetary policy
and uncertainty. Interestingly, in the latter case liquidity works mainly by reducing banks’
inaction region: this implies that liquid banks respond less on average to monetary shocks, as
demonstrated by the bank lending channel literature, but their response is also more stable, i.e.
less dependent on the prevailing level of uncertainty. While large intermediaries do no appear to
behave differently from the average bank, mutual banks display a lower-than-average sensitivity
to uncertainty (column 6). This may indicate that they are less informed, or that their business
model leads them to pay less attention to the aggregate, economy-wide risks captured by the
EPU indefo] In section we explore heterogeneity across applicants in order to discriminate

between these mechanisms.

4.2 The composition effects of uncertainty

Our loan-level dataset makes it possible to push the saturation of the model one step further
and introduce bank*month fixed effects alongside the firm*month effects used in the previous
section. A similar exercise is proposed in a different context by Jimenez et al. (2012, 2014). In
this set up the interaction between uncertainty and bank capital is also absorbed by the fixed
effects and the analysis must focus on triple interaction terms where uncertainty is combined with
both bank and firm characteristics. This specification follows a different logic than those pursued
in Section[4.1] In this case the objective is not to refine the identification of the supply-side effects
of uncertainty, but rather to draw a more detailed picture of its compositional implications: which
bank-firm relations are most affected by uncertainty? And what are the features of the ‘marginal

borrowers’ that get rejected in uncertain times?

Table 4 reports the results of a range of “fully saturated” specifications that include both

13Mutual banks appear less sensitive even if we use the Italian EPU index instead of the European one, dispelling
any concerns that the latter might simply measure uncertainty at the wrong geographical level (the results are
available upon request).
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bank- and firm-level monthly fixed effects. For each specification we report the estimated coeffi-
cients for the triple interactions between EONIA or EPU and some combination of bank and firm
characteristics. The specifications only differ because of these combinations. On the bank side,
following the analysis in the previous section we consider the capital ratio (panel (a), columns 1
to 3), the liquidity ratio (panel a, columns 4 to 6) and two dummies that identify mutual banks
(panel b, columns 1 to 3) and the five largest banks in our sample (panel b, columns 4-6). On
the firm side, we condition on the new potential borrowers being large (assets above the 90th
percentile of the distribution), having a good credit rating (Altman’s et. al. (1994) z-score below
3, where 1 is assigned to the best borrower and 9 to the worst ones) or being headquartered in the
same province as the bank they apply to. Since in these models the estimation relies exclusively
on banks and firms that engage in multiple relation at any given point in time, the size of the

sample drops considerably relative to Table 1E£]

The dampening role of bank capital emerges again consistently in columns 1 and 3 of panel
a. This provides an important validation of the results discussed in Section 4.1} Although they
do not change the basic message, these estimates show that capital remains important for the
transmission of uncertainty even if one controls for the observed and unobserved factors that
affect the average behavior of each bank at a given point in time. Notably, such factors include
the banks’ (time-varying and potentially idiosyncratic) views on both the path of future economic
activity and the real state of their balance sheets, which are unlikely to be captured by balance
sheet data.

Liquidity reduces the transmission of uncertainty to local borrowers (on which see below) but
not to large firms. The comparison between mutual banks and large banks is also informative.
These banks behave roughly in the same way when dealing with large or highly rated firms. The
only factor that really sets them apart is their attitude towards local firms: mutual banks have
much higher approval rates for firms that are located in their own province (panel b, column
3), whereas geographical proximity is completely irrelevant for large banks (column 6). The
emergence of a positive role for physical proximity is coherent with the literature on distance,
monitoring and credit supply (see Degryse et al. 2007 for a survey). In our case, the findings
shed some light on the reasons why small lenders are less responsive to uncertainty. Given
that their approval rates drop for the average borrower more than the local ones, their behavior
cannot be driven by lack of information on the state of the economy. The discrimination suggests

instead that local borrowers are preferable from their perspective when uncertainty is high, either

MErrors are here clustered at the bank, firm and month level, following Jimenez et al. (2014). Note that the
number of observation changes across columns because it also depends on the availability of bank-level data.
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because gathering information about them is easier or less costly or because their projects have a
high ‘alpha’ but a low ‘beta’ (i.e. they carry significant idiosyncratic risk but are less correlated
with the aggregate risks captured by the EPU indicator). What is also interesting, and perhaps
somewhat puzzling, is that distance matters more than firms’ credit ratings: in table 4 the ‘same
province’ dummy is positive in three cases out of four (when interacted with capital, liquidity,
and the mutual bank status) while the rating dummy is never significant in the interactions
involving EPU. From a firm’s perspective, geographical proximity is thus a far better hedge

against uncertainty shocks than a sound credit record.

5 Uncertainty and the timing of loan approvals

Uncertainty could also affect the timing of the approvals: obtaining a loan may take longer when
uncertainty is high. To test this proposition we separate firms’ applications depending on how
quickly they got approved and then check if the likelihood of a longer approval process rises
systematically after an increase in uncertainty. More specifically, we restrict the analysis to the
subsample of applications that were ultimately successful (i.e. those for which Approvals, = 1),
and define in this set a dummy Postponed s, that takes value zero for the applications that were
approved within a month following the submission and value one for those that were instead
“postponed” and incurred a delay of one month or more[””] Besides being interesting in its own
right, this variable is valuable from an identification perspective. In some of the regressions
examined in Section failure to fully capture banks’ expectations on the economy might mean
that bad news (that are typically associated with a rise in EPU) may bias our estimate of the
uncertainty coefﬁcientm This should be less of an issue with Postponeds, because the natural
response to outright bad news is to reject more applications, not to postpone the decisions.
More importantly, by restricting the analysis to successful applicants we focus on good projects
only and hence limit any concerns one might have on how the composition of the applications
changes over time. This variable effectively allows us to rely on the banks themselves to rule out
the possibility that the pool of projects in the estimation sample worsens in bad times, leading

spuriously associate drops in the approval rate to uncertainty/""|

5Tn principle one could estimate a multivariate logit model including all approval dates (¢ + 1, t + 2, t + 3)
as alternative outcomes. Since however our objective is to test the null hypothesis that uncertainty does not
influence the approval timing at all, a linear model based on a binary dummy is valid and simpler alternative to
it.

16We emphasize however that this problem cannot arise in the models of Section where the bank-month
fixed effects also capture banks’ (potentially heterogeneous) expectations on the macroeconomic outlook.

1"The saturated regressions in Section |4| already control for changes in the composition of the pool of firms
via firm-month effects. Here we go one step further and try to fix selection problems at the level of projects (i.e.
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A set of loan-level regressions of Postponedys, on EPU are reported in Table 5. Since we
have no priors on whether the timing of banks’ decisions should respond to the level or to the
variation in uncertainty we provide results based on both specifications. We again build up the
specifications going progressively from plain OLS regressions (columns 1 and 4) to regressions
that include bank and firm fixed effects (columns 3 and 6), including in all cases the usual set
of controls. The coefficient is positive and significant across specifications, implying that the
likelihood of an application being postponed increases systematically when uncertainty is high
or on the rise. Interestingly, Postponed is not correlated to levels and changes in the EONIA
rate (see table A2 in the annex). Given that EONIA contains information on the current and
expected state of the economy, but not on the uncertainty that surrounds them, its lack of
significance confirms that these regressions isolate a genuine uncertainty effect. The delays are
associated with the banks’ difficulty in forming forecasts on the future path of the economy rather

than with (downward) revisions in those forecasts.

Additional regressions reported in the annex to the paper confirm that this relation is robust
across uncertainty indicators (tables A3), and show that it varies across firm (but not bank)
characteristics (table A4). In particular, firms that are located close to the bank to which they
place the application face a probability of being postponed that is low on average but rises
relatively more in response to an increase in uncertainty. Combined with the results of section
[4.2] this suggests that, although proximity is a good hedge against uncertainty-driven rejections,
local applicants are kept on hold for longer when uncertainty rises, possibly because banks exploit
some degree of informational hold-up power on close-by firm (Diamond, 1991). A similar pattern

emerges indeed for firms that are below the 90" percentile of the total asset distribution.

6 Discussion

In this section we examine briefly a range of additional robustness tests and then discuss alterna-
tive mechanisms that might in principle give place to the patterns we observe in our data. The
estimates of the level effect of uncertainty on the average approval rate displayed in column 2 of
table 1 keep their sign and significance when including bank and firm fixed effects, irrespective
of how uncertainty is measured (see table A5 and A6 in the annex). Since EONIA and our
main uncertainty proxies are defined at the European level, and are consequently not driven by
economic conditions in Italy, endogeneity with respect to the Italian business cycle is unlikely

to be a serious problem. At any rate, using lags of these variables in the regression, either in

applications) too.
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combination with or instead of their contemporaneous values, leaves the estimates essentially

unchanged (table A7, columns 1 and 2).

Another set of problems relates to measurement, at both the macroeconomic and microeco-
nomic level. To check the potential mismeasurement of monetary policy we replace EONIA with
the one-month EURIBOR rate (table A7, column 3). Results are unchanged. Since EPU might
conceivably pick up the effect of plain bad news about the future of the economy, as well as
genuine uncertainty, we also add to the regression two survey-based measures of expectations. In
particular, we use the Economic Sentiment Indicator for Italy (a broad indicator that combines
consumer and firm information) and a measure of Italian firms’ expectations on production, em-
ployment and selling prices over the following 12 months constructed using the surveys run by
the European Commission. The results are again in line with the baseline (table A7, column 4);
if anything, the EPU coefficients turn out to be larger, suggesting that the uncertainty indicator

is not inflated by the occurrence of bad news.

Measurement issues may also involve the loan application data. The reporting threshold in
the Credit Register was lowered in 2009 from 75,000 to 30,000 euros, resulting in an increase in
the number of loans traceable in the records. This change is of course irrelevant for the regressions
that include firm*month fixed effects, or are estimated separately year by year (see Section [4.1)),
but it must be dealt with in all other cases. To bypass the break, in our analysis we consider
only loans above 75,000 euros throughout the sample (as in Bonaccorsi di Patti and Sette, 2016).
As a further robustness we estimate the model using only large firms (those with assets above
90" percentile of the distribution), which are virtually unaffected by the change, or relying on
the raw, unadjusted data. Our main conclusion hold in both cases (see table A7, columns 5
and 6). During the period we consider the banking sector underwent a number of mergers and
acquisitions. In principle M&As should not affect our dependent variable, as this only covers
new requests for credit. However, when assessing the existing credit relations of the acquired
bank(s), the acquirer might possibly place for convenience queries to the Credit Register which
appear as new applications in the data. If M&A activity were to concentrate in periods of low
uncertainty, this could create a negative correlation between uncertainty and the probability of
approval. For this reason in our baseline analysis we exclude from the sample all queries advanced
by newly formed groups in the year when the M&A takes place. Including these observations,
however, does not affect the results (table A7, column 7). Finally, the applications display
strong seasonal patterns, with regular falls in August and December (see Figure 2). To account
for this, we include in the model a full set of month dummies: the impact on the coefficients of

interest is again negligible (table A7, column 8). For completeness, we have also carried out these
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robustness tests for the specifications augmented with the interaction with capital (table 1), in
both the case with bank and firm fixed effects (table A8) and with bank and firm*month fixed
effect (table AQ)F_g] Table A10 presents the baseline results for the restricted sample of firms that
advance more than one application in the same month (table 1, column 5). This smaller set of
observations is that actually used in the estimation of the causal impact of uncertainty, obtained
by including the firm*month fixed effects. Holding this sample constant, we re-estimates the

other specifications considered in table 1: results are unchanged.

Going beyond robustness, the credibility of our results can also be scrutinized from a broader
economic perspective. Our findings could in principle also be explained by changes in the com-
position of the applicants over time: if the pool of applicants deteriorates during downturns,
we might wrongly link to uncertainty an increase in the rejection rate that depends instead on
the declining quality of the borrowers. Surprisingly, though, the borrowers do not get worse in
recessions. In Figure 5 we plot the average credit rating of the applicants over time. Lower
numbers are associated to better borrowers, with 1 representing the highest credit quality[”] The
chart shows that the average rating improves after Lehman, suggesting a self-selection process
on the firms’ side that should -if anything- run against our results. Another interesting fact is
that this qualitative improvement is even more visible in the case of successful (i.e. approved)
borrowers: the average ratings of applicants and successful applicants overlap in the first half of
the sample but a clear gap opens up between them after 2008, indicating a stronger selection
on the banks’ side too. This might of course represent yet another adjustment of the lenders
to a riskier environment. In any case, these dynamics are fully controlled for at the firm level
by the firm-month fixed effects. Furthermore, our analysis of the timing of banks’ decisions in
Section [5] is not affected by credit quality concerns even at the project level, as it focuses only

on applications that are eventually approved by the banks.

Another possibility is that our results are partly driven by a “congestion” problem. If they
systematically get more applications in bad times, banks could become more willing to reject
marginal applicants and slower at processing the applications, leading at once to an increase
in rejections and a lenghtening of the waiting time for successful firms. In aggregate terms, the
number of applications generally declines rather than increasing in the highly uncertain years that

follow the Lehman crisis (see Figure 1 and 2). There are however episodes when the applications

18In the latter case we cannot perform the robustness tests that require the inclusion of lags and of controls for
expectations, which would be collinear with the firm*month fixed effects.

Ynformation on credit quality is missing for about 20% of the firms in the sample. This is due either to the
fact that these companies are not surveyed in Cerved in a particular year, reflecting the rotation of the sample, or
to the fact that their balance sheets are too coarse to compute the indicator. These two cases account respectively
for 13% and 8% of the missing observations.
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do increase — for instance in the middle of the 2009 recession — and in any case the aggregate
pattern might mask heterogeneity in their distribution across banks. To shed more light on this
possibility we look at the average number of application received per month by different bank
categories. This is roughly constant for all bank categories, with the exception of a short-lived
increase in the applications submitted to ‘large’ banks in the first half of 2011 (see figure Al in
the annex). Re-estimating our Postpone regression without these observations leaves the results
unaffected, confirming that the congestion explanation can be safely ruled out (the results are

available upon request).

7 Conclusions

Credit systematically dries up when the future is uncertain. The theory suggests that this
phenomenon might reflect both demand dynamics — uncertain firms are more likely to postpone
their investment decisions — and supply-side effects, as lenders are less willing to finance new
projects when their returns become more volatile. In this article we exploit confidential loan-
level data from the Italian Credit Register to test the existence and the scope of the second
transmission mechanism. We study the outcome of loan applications submitted to Italian banks
by a large sample of firms between 2003 and 2012. To isolate the impact of uncertainty on
the supply of credit we exploit the occurrence of multiple bank-firm relations and compare the
outcomes of applications placed in the same time period by the same firm to banks that have

different capital buffers, and hence a different propensity to hold aggregate risk.

Our conclusion is that the credit market is all but a sideshow to the propagation of uncertainty
shocks. We obtain three main results. First, a rise in aggregate uncertainty lowers the likelihood
that firms’ applications will be successful, reducing the supply of new credit. Second, uncertainty
delays the flow of funds to the economy: even successful applicants must wait longer for their
loans to be issued when uncertainty is high. Third, uncertainty interferes with the bank lending
channel of monetary policy. When uncertainty is high banks become less sensitive to changes in
interest rates, displaying a wait-and-see behavior that is entirely analogous to that traditionally
documented for nonfinancial firms. Uncertainty matters relatively more for thinly capitalized
banks, as predicted by the theory, and it is more likely to affect firms that are geographically
distant from the bank to which they apply.
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Figures

Figure 1. Uncertainty indicators over time
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Note: Note: VSTOXX (left scale) is the monthly average of the daily VSTOXX stock price option-implied
volatility index. EPU (right scale) is the Economic Policy Uncertainty indicators constructed by Baker et al.
(2015) using the frequency of uncertainty-related keywords occurring in a set of European and Italian daily

newspapers. Sources: Datastream and www.policyuncertainty.com.

29



Figure 2. Loan applications
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Note: The blue line shows the total number of loan applications placed by firms (left scale). The red line shows
the average number of applications placed by firms who submitted at least one application (right scale). Grey
bars identify the recessions dated by the OECD. The sample period is August 2003 — December 2012. Source:

Italian Credit Register and authors’ calculations.
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Figure 3. A comparison between rejections and survey responses
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Note: The lines shows the quarterly mean of applications placed against a number of survey indicators of credit
supply conditions in Italy. The black line is the net percentage of the responses of Italian banks participating
in the euro area bank lending survey that indicate a tightening in credit standards and those indicating a
loosening, compared with the previous quarter (increases indicate that credit supply have been tightened).
The blue line is the net percentage of firms surveyed in the Bank of Italy-Il Sole24Ore survey that indicate
to have perceived a restiction in credit supply. This is conducted quarterly on a sample of medium-sized and
large firms (with at least 50 employees) in industry (excluding construction) and services. The dotted line is
ditto for the Istat business confidence surveys are conducted on samples of manufacturing and service firms
(excluding retail and wholesale trade) and construction companies. Source: Italian CredRegister, ISTAT, Bank

Lending survey and authors’ calculation.
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Figure 4. Parameter stability.
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Note: The chart present the resutl of a robustness test assessing the stability
of the findings acroos the sample period. The panels report the point
estimates and a 90% confidence interval for each of the three interaction terms.
Estimation is based on a regression model where the dependent variable is
the loan approval probability and the controls include the interaction between
bank capital and EONIA, the interaction between bank capital and the EPU
index, a triple interaction between capital, EONTIA and EPU and a full set of
firm-month fixed effects (see table 1, column 5). The regression is estimated
separately for each year between 2004 and 2012.
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Figure 5. Number and credit quality of the applicants.
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Note: Green bars indicate the number of firms that submitted loan applications in any given month (left axis).
The red dashed line shows the average credit rating of the applicants (right axis) and the black continuous
line shows the average credit rating of those whose applications were approved (right axis). Credit ratings are
calculated by Cerved and range from 1 to 9, with 1 denoting the best firms. Source: Bank of Italy Credit

Register and authors’ calculations

33

5.6

4.6

4.4



Tables

Table 1. The impact of uncertainty on loan approval

approval
) @ ®) @) &)
EPU EU;, -0.023%** -0.039%** -0.061%*%*  _0.062***
(0.003) (0.006) (0.011)  (0.007)
eoniay -1.133** -1.483*%  -2.609***
(0.486) (0.816)  (0.427)
EPU EU,*eonia; 1.753*** 2.713%*%* 2 820%**
(0.329) (0.578)  (0.361)
capitaly *EP Uy 0.002** 0.001 0.002%*
(0.001)  (0.001)  (0.001)
capitaly; *eoniay 0.019 0.102%**  0.114**
(0.049)  (0.034)  (0.055)
capitaly, *EPU,*eonia, -0.078%*  -0.069***  -0.067*

(0.035)  (0.026)  (0.038)

bank controls yes yes yes yes yes
firm rating yes yes yes yes -
macro controls yes yes yes yes -
bank FE no no no yes yes
firm FE no no no yes -
firm*month FE no no no no yes
observations 2259892 2259892 2259892 2078492 260390
estimation OLS OLS panel FE panel FE panel FE

Note: these regressions examine the effect of an increase in uncertainty on the probability that an
application is approved, considering the transmission via bank capital. The dependent variable
is approval, taking value 1 if the loan application is approved. EPU EU is the monthly value
of Baker et al. (2015) measure for policy uncertainty index for Europe. capital is the banking
group’s risk weighted assets to total assets (capital ratio) lagged by one quarter. bank controls
are the banks’ liquidity ratio, a dummy for the five largest banking groups and a dummy for
mutual banks. macro controls are the unemployment rate, the inflation rate and the industrial
production rate for Italy, lagged by one quarter. Some covariates included in the model are not
reported to improve clarity. Sample period is 2003:08 to 2012:12. Errors are clustered at the bank
group*month level. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5. The impact of uncertainty on postponed applications.

postponed
M @) @) @) &) ©)
EPU;, 0.029%**  0.030***  0.024**
(0.005)  (0.006)  (0.011)
AEPU, 0.037*%*  0.028%**  (.027***

(0.006)  (0.006)  (0.008)

bank controls yes yes yes yes yes yes
firm rating yes yes - yes yes -
macro controls yes yes - yes yes -
bank FE no no yes no no yes
firm FE no yes - no yes -
firm*year FE no no yes no no yes
observations 399024 240944 78424 393691 236469 77699
estimation OLS panel FE panel FE OLS panel FE panel FE

Note: these regressions examine the effect of an increase in uncertainty on the probability that
the decision on an application that is eventually approved is postponed to the next one or two
month. The dependent variable is postponed, taking value 1 if the loan application is approved in
the month(s) following the first one after reception. EPU is the monthly value of Baker’s policy
uncertainty index for Europe (3-month delta and levels). Sample period is 2003:08 to 2012:12.
Robust standard errors in parentheses. Errors are clustered at the bank group*month level. ***
p<0.01, ** p<0.05, * p<0.1.
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ANNEX

A. Data description

Monthly data on loan applications are corrected for mergers and acquisition by discarding the
applications advanced to the acquiring bank by costumers of the acquired bank in the quarter
before the completion of the M&A. To account for the change in reporting threshold (January
2009) we consider only the applications that were not affected by it. Both correction are relaxed
in the robustness tests in section 6| Other features of loan applications and uncertainty indicators
are discussed in Section [3| of the paper.

To these data we merge bank balance sheet information drawn from the Bank of Italy su-
pervisory records. We use consolidated quarterly series on banks’ Tier 1 capital ratio, liquidity
ratio (defined as the ratio of cash and securities to total assets), a dummy to single out banks
belonging to the five largest groups and one for mutual banks. Information on firms comes
from the proprietary database managed by Cerved Group®, from which we initially randomly
selected the firms in our data. These firms are broadly representative of the universe of corpora-
tions, e.g. companies whose equity is completely separated from its owners; in other words, the
liability of owners/shareholders is limited to the amount they have invested. The dataset gives
us yearly information on total assets and the Cerved® rating, a synthetic indicator of the firm’s
overall credit quality’] We also separately collect information on the distance between the firms’
headquarters and the offices of the banks that receive their credit applications.

Table S1 in this Annex displays some information regarding the composition of firms in the
sample. Consistent with the industrial landscape in Italy, the majority of firms are active in
the service sector, followed by those active in industry (predominantly manufactoring) and by
those in the construction sector. Regarding the geographical disposition of these firms, 33.4%
are located in the North-West of the country (Piemonte, Val d’Aosta, Lombardia and Liguria);
24.5% in the North-West (Trentino Alto-Adige, Veneto, Friuli-Venezia Giulia, Emilia Romagna);
22.7% in the Centre (Toscana, Umbria, Marche, and Lazio); 14% in the South (Abruzzi, Molise,
Campania, Puglie, Basilicata and Calabria) and finally 5.5% in the Islands (Sicilia and Sardegna).

Table S1. Composition of firms in the sample

Obs. % of total
Total firms in the sample 645,873 -
of which active in industry 144,392 22%
of which in manufactoring 137,743 21%
active in construction 100,419 16%
active in services 367,718 57%
other 33,344 5%

20Cerved computes a z-score (rating) based on the methodology developed in Altman (1994) to all firms that
present a balance sheet sufficiently detailed to compute the indicator.

40



Our baseline monetary policy indicator is the monthly average of daily EONIA rates, as in
Jiménez et al. (2014). Using EONIA has two important advantages. The first one is that EONIA
might capture at least in part the impact of unconventional monetary interventions that we do not
account for explicitly in the regressions (Ciccarelli et al., 2015). The second one is that, given its
short (overnight) maturity, EONIA is relatively less affected by liquidity and credit risk premia.
This point is clearly critical for our purposes: using interest rates that are heavily driven by
agents’ risk perceptions would greatly complicate our attempts to disentangle uncertainty effects
from the ordinary bank lending channel of monetary policy. In the robustness analysis we use a
one-month Euribor rate, though this is less attractive because it might have been partly driven
by risk-related concerns, particularly after 2007 (Angelini et al. 2011). Our main macroeconomic
control variables are the monthly series on inflation, industrial production and the unemployment
rate in Italy available from the European Central Bank’s Statistical Data Warehouse. Inflation
is the quarterly growth rate in the Harmonized Consumer Price Index (HCPI) that excludes
food and energy (a proxy of “core” inflation). Since GDP is not available on a monthly basis, we
measure economic activity with the quarterly growth in industrial production and unemployment.
In addition to these, in the robustness analysis we use two measure of expectations on future
economic activity constructed with survey data from the European Commission. The first one
is the Economic Sentiment Indicator (ESI), a broad sentiment measure published directly by
the European Commission which includes household and firm expectations and perceptions on
the current state of the economy. The second one is an “expected activity” indicator that we
construct by averaging firms’ expectations on their own production levels, employment and selling
prices over the following 12 months.

The variables in the data are organized in such a way to reproduce the information set avail-
able to the evaluating bank in the month when the application is formulated. More precisely,
data on the monetary policy rate and on uncertainty are contemporaneous; the other macroeco-
nomic variables and information on banks refer to the quarter preceding the loan application;
and the firm-level variables refer to the end of the previous year. The Summary statistics table
S2 in this Annex provides a description of the variables used in the paper.
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B. Figures

Figure A1l. Number of applications per bank category.
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Note: The red line displays the average number of application received in a certain month by mutual banks.

The blue line ditto for banks belonging to one of the top five banking groups. The black dotted link is the

average applications per banks in the sample.
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C. Additional tables

Table A1l. Correlation between uncertainty and postponed applications.

EONIA EPUEU EPUIT  VSTOXX  Disagr  Disagr

CPI BB
Panel A.
Contemporaneous correlation
with Postpone
Statistic -0.153 0.170 0.188 0.215 0.098 0.163
p-value 0.11 0.07 0.05 0.02 0.30 0.08
Panel B.
Granger causality test:
X is not predicted by Postpone
Statistic 2.840 1.217 1.149 0.536 1.308 0.397
p-value 0.01 0.30 0.34 0.78 0.26 0.588
Panel C.
Granger causality test:
X does not predict Postpone
Statistic 1.649 2.444 1.330 1.519 1.365 2.277
p-value 0.14 0.031 0.25 0.18 0.24 0.04

Note: the table documents the comovements between Postpone, which is defined as the share of loan applications that
are approved with a delay of one month or more over all approved applications, and the macroeconomic indicators
listed along the colums: the EONIA rate, the European and Italian Economic Policy Uncertainty indices of Baker et
al. (2016), VSTOXX, and disagreement among forecasters on CPI inflation or the government budget balance of the
eurozone. For each indicator, panel A report the contemporaneous correlation with Postpone, panel B a test of the null
hypothesis that the indicator is not predicted by Postpone, and panel C a test of the null hypothesis that Postpone is
not predicted by the indicator. The tests are run using bivariate regressions that include six lags of Postpone and the

indicator of interest. The sample is August 2003 to December 2012.
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Table A2. Postponed applications: robustness tests.

posponed
M @) ) @) ) ©)
EPU; 0.019%F*  0.026%**  (0.024**
(0.007) (0.008) (0.011)
eoniay -0.501 -0.600 0.072
(0.401) (0.458) (1.590)
AEPU; 0.036%*F*  0.027***  0.026***
(0.007) (0.006) (0.008)
Aeoniay -1.170 -1.966 -1.396
(3.238) (2.692) (2.879)
bank controls yes yes yes yes yes yes
firm rating yes yes - yes yes -
macro controls yes yes - yes yes -
bank FE no no yes no no yes
firm FE no yes - no yes -
firm*year FE no no yes no no yes
observations 399024 240944 78424 393691 236469 77699
estimation OLS panel FE panel FE OLS panel FE panel FE

Note: these regressions examine the effect of an increase in uncertainty on the probability that the

decision on an application that is eventually approved is postponed to the next one or two month. The

dependent variable is postponed, taking value 1 if the loan application is approved in the month(s)

following the first one after reception. FPU is the monthly value of Baker’s policy uncertainty index
for Europe (3-month delta and levels). Sample period is 2003:08 to 2012:12. Robust standard errors
in parentheses.Errors are clustered at the bank group*month level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A4. Postponed applications: heterogeneity across banks.

postponed
1) @) ® @)

EPU; 0.027** 0.045%%* 0.030%** 0.0697***

(0.012) (0.012) (0.007) (0.007)
Xpt -0.001 0.001 -0.035%**%  -0.080%**

(0.001) (0.001) (0.009) (0.010)
EPU;*xy; 0.000 -0.001 0.027%** 0.059%**

(0.001) (0.001) (0.007) (0.007)
s capital liquidity same small

ratio ratio province firms
bank controls yes yes yes yes
firm rating yes yes yes yes
macro controls yes yes yes yes
bank FE yes yes yes yes
firm FE yes yes yes yes
observations 240944 240944 335458 191849
estimation panel FE panel FE panel FE panel FE

Note: these regressions examine heterogeneity across bank characteristics of the effect of
an increase in uncertainty on the probability that the decision on an application that is
eventually approved is postponed to the next one or two months. The dependent variable
is postponed, taking value 1 if the loan application is approved in the month(s) following
the first one after reception. FEPU is the monthly value of Baker’s policy uncertainty
index for Europe (3-month delta and levels). bank controls as defined in the table and
described in table 4. Sample period is 2003:08 to 2012:12. Robust standard errors in paren-
theses. Errors are clustered at the bank group*month level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A5. The impact of uncertainty on loan approvals: robustness to fixed effects.

approval
M @) @)
EPU EU, -0.039%** -0.035%** -0.056***
(0.006) (0.004) (0.004)
eoniay -1.133%%* -0.759%*** -1.617%%*
(0.486) (0.281) (0.272)
EPU EU;*eonia; 1.753%** 1.623%*** 2.151%%*
(0.329) (0.235) (0.220)
bank controls yes yes yes
firm rating yes yes yes
macro controls yes yes yes
bank FE no yes yes
firm FE no no yes
observations 2259892 2259883 2078492
estimation OLS panel FE panel FE

Note: these regressions examine the effect of an increase in uncertainty on the probability that an

application is approved. The dependent variable is approval, taking value 1 if the loan application

is approved. EPU is the monthly value of Baker’s policy uncertainty index for Europe. Sample

period is 2003:08 to 2012:12. Robust standard errors in parentheses. Errors are clustered at the
bank group™ month level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A10. The impact of uncertainty on loan approval,
firms with multiple applications in the same month only

approval
(1) (2) (3) (4) (5)
EPU EU;, -0.017*** -0.034*** -0.058***  _(.084***
(0.003) (0.006) (0.013)  (0.012)
eoniay -1.298*** -1.879%*F  _3.253%**
(0.476) (0.842)  (0.716)
EPU EU,*eonia, 1.426%** 2.490%*** 2 .844%**
(0.310) (0.575)  (0.486)
capitaly; *EPU; 0.002** 0.002* 0.002*
(0.001)  (0.001)  (0.001)
capitaly; *eoniay 0.044 0.107%* 0.114%*
(0.057)  (0.052)  (0.055)
capitaly; *EPU; *eoniay -0.090**  -0.069** -0.067*

(0.038)  (0.035)  (0.038)

bank controls yes yes yes yes yes
firm rating yes yes yes yes -
macro controls yes yes yes yes -
bank FE no no no yes yes
firm FE no no no yes -
firm*month FE no no no no yes
observations 260390 260390 260390 260390 260390
estimation OLS OLS panel FE  panel FE panel FE

Note: these regressions examine the effect of an increase in uncertainty on the probability that
an application is approved, considering the transmission via bank capital. Sample considers only
firms with multiple applications in the same month. The dependent variable is approval, taking
value 1 if the loan application is approved. FPU EU is the monthly value of Baker et al. (2015)
measure for policy uncertainty index for Europe. capital is the banking group’s risk weighted
assets to total assets (capital ratio) lagged by one quarter. bank controls are the banks’ liquidity
ratio, a dummy for the five largest banking groups and a dummy for mutual banks. macro
controls are the unemployment rate, the inflation rate and the industrial production rate for
Italy, lagged by one quarter. Some covariates included in the model are not reported to improve
clarity. Sample period is 2003:08 to 2012:12. Errors are clustered at the bank group*month level.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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