

Temi di Discussione

(Working Papers)

Productivity effects of eco-innovations using data on eco-patents

by Giovanni Marin and Francesca Lotti

Temi di discussione

(Working papers)

Productivity effects of eco-innovations using data on eco-patents

by Giovanni Marin and Francesca Lotti

Number 1067 - June 2016

The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Board: Pietro Tommasino, Piergiorgio Alessandri, Valentina Aprigliano, Nicola Branzoli, Ines Buono, Lorenzo Burlon, Francesco Caprioli, Marco Casiraghi, Giuseppe Ilardi, Francesco Manaresi, Elisabetta Olivieri, Lucia Paola Maria Rizzica, Laura Sigalotti, Massimiliano Stacchini. *Editorial Assistants:* Roberto Marano, Nicoletta Olivanti.

ISSN 1594-7939 (print) ISSN 2281-3950 (online)

Printed by the Printing and Publishing Division of the Bank of Italy

PRODUCTIVITY EFFECTS OF ECO-INNOVATIONS USING DATA ON ECO-PATENTS

by Francesca Lotti^{*} and Giovanni Marin[†]

Abstract

We investigate the productivity effects of eco-innovations at the firm level using a modified version of the CDM model (Crepon et al., 1998). The distinctive nature of environmental innovations, especially as regards the need for government intervention to create market opportunities, is likely to affect the way they are pursued and their effect on productivity. The analysis is based on an unbalanced panel sample of Italian manufacturing firms merged with data on patent applications and balance sheet information. When looking at innovation's return on productivity, we observe that eco-innovations exhibit a generally lower return relative to other innovations, at least in the short run. This differential effect is more pronounced for polluting firms, which are likely to face higher compliance costs for environmental regulations than other firms. This result holds for both the extensive (probability of patenting) and intensive (patent count) margin.

Keywords: R&D, innovation, productivity, patents, eco-patents. **JEL:** L60, Q55.

Contents

1. Introduction	5
2. Are eco-innovation special?	6
3. Data	8
3.1 How to measure environmental innovations	8
3.2 Firm-level data	11
4. The modified "CDM framework"	13
4.1 R&D decision	13
4.2 Knowledge production function	14
4.3 Productivity equation	15
5. Results	15
5.1 R&D decision	16
5.2 The knowledge production function	16
5.3 Productivity analysis	18
6. Conclusions	19
References	20
Tables and figures	23

^{*} Corresponding author. Bank of Italy, DG for Economics, Statistics and Research, via Nazionale, 91, 00184 Roma, Italy. E-Mail: francesca.lotti@bancaditalia.it.

[†] IRCrES-CNR, Research Institute on Sustainable Economic Growth, National Research Council of Italy, Via Bassini, 15, 20133 Milano, Italy; SEEDS Sustainability Environmental Economics and Dynamics Studies, Ferrara, Italy; OFCE - Sciences Po, Sophia Antipolis, France. E-Mail: giovanni.marin@ircres.cnr.it.

1 Introduction^{*}

Structural change, technological progress and changes in consumers' preferences, have largely been acknowledged as crucial factors in achieving environmental sustainability (Jaffe et al., 1995 and 2002; Popp et al., 2010; Popp, 2010). Technological progress might improve environmental performance through different channels: a more efficient use of natural resources, lower emission intensity in production activities and through the supply of new more "sustainable" products as substitutes to other less efficient productions. Indeed, firms are key actors in the creation, adoption, diffusion of - and sometimes resistance to - environmental innovations. In this light, the paper is aimed at exploring the links between R&D, environmental (or eco-) innovation and productivity at the firm level, assessing the effect of eco-innovations on firm-level productivity. The modeling framework is borrowed from the Crépon et al. (1998) model (CDM hereinafter), modified to account for differential effects of eco-innovation with respect to non-eco-innovation. The underlying hypothesis is that while the "public" returns to eco-innovation are clearly positive, the "private" returns are often ambiguous, as ecoinnovations can depress firms' productivity, at least in the short run. Needless to say, this represents a clear disincentive for firms to pursue eco-innovation and leave some room for government intervention. This argument stems directly from the "Porter hypothesis", namely the fact that "strict environmental regulations can induce efficiency and encourage innovations that help improve commercial competitiveness" (Porter, 1991). The hypothesis suggests that strict environmental regulation triggers the discovery and introduction of cleaner technologies and environmental improvements, making production processes more efficient. The cost savings that can be achieved can be sufficient to (over)compensate for both the compliance costs of the new regulations and the innovation costs.

We use four consecutive waves (7th, 8th, 9th and 10th) of the Unicredit survey on Italian manufacturing firms for the periods 1995-1997, 1998-2000, 2001-2003, and 2004-2006. Moreover, in order to recover information on eco- and non-eco-innovation, we match those firms with the EPO and PCT-WIPO patent applications database.

We find a strong and positive effect of patenting activity on productivity, while we observe a generally lower return for eco-innovations relative to other innovations, the difference being greater and significant for polluting firms.

The paper is organized as follows. Section 2 reviews the relevant literature about the drivers of eco-innovation and its effect on firm's performance; Section 3 contains the description of the data used and discusses the definition of eco-innovation. Section 4 focuses on the description of the empirical model; Section 5 discusses the results, while Section 6 concludes.

^{*} We are grateful to the editor of Industrial and Corporate Change and two anonymous referees for very constructive feedbacks on earlier versions of the paper. We also thank Simone Borghesi, Ivan Faiella and Jacques Mairesse and seminars participants at the Bank of Italy, University of Calabria, DRUID Summer conference 2013, EAERE conference 2013 and the XXVIII AIEL conference. The opinions expressed herein are our own and do not necessarily represent those of the Bank of Italy.

2 Are eco-innovation special?

Most of the literature on eco-innovation patterns at the firm level focuses on the identification of the drivers of eco-innovation, with little attention devoted to the effects of eco-innovation on firms' performance. Recent contributions in this field agreed on a taxonomy of three different sets of drivers of eco-innovation (Horbach, 2008; Horbach et al., 2012). Market pull factors mostly refer to demand conditions, such as the demand of more environmentally friendly products exerted by consumer (including public procurement). Technology push drivers and other firm-specific factors refer to supply-side factors such as the availability of capabilities to develop eco-innovations. Finally, regulation aimed at reducing environmental pressures plays a crucial role for eco-innovation due to the "public good" nature of improvements in environmental performance generated by eco-innovation. This latter component is the one that really characterizes eco-innovation as opposed to other innovations.

While eco-innovations are expected to have, by definition, a beneficial effect on the environment, their effect on firms' productivity performance can be negative. This might result into a market failure as social benefits that arise from reduced environmental burden of production are not fully appropriated by the firm that contributes to better environmental performance. According to the so-called Porter's hypothesis (Porter, 1991), however, well designed and stringent environmental regulation can stimulate innovations, which in turn increase the productivity of firms or the value of the product for end users (Porter, 1991; Porter and van der Linde, 1995). Environmental regulation would be beneficial for both society and regulated firms by triggering dynamic efficiency of firms and these benefits may offset the compliance costs of environmental restrictions. However, this view has been criticized on the ground that any policy aimed at limiting environmental by-products of firms will result in a reduction in observed productivity, at least in the short run due to the fact that policies impose additional constraints to firms (Palmer et al., 1995). Since these productivity losses cannot be fully recovered, firms might divert resources devoted to generate or adopt environmental innovations from other more profitable research projects with higher expected returns (crowding out effect) in order to offset regulatory compliance costs. The result would be that those innovations that were induced by environmental regulation will have a smaller return in terms of profitability and productivity when compared to other "autonomous innovations"

Ambec et al. (2013) provides a systematic overview of the theoretical foundations of the Porter Hypothesis that emerged from the literature. A first group of studies has motivated the possibility of a positive link between environmental regulation and competitiveness by departing from the paradigm of profit maximization by firms and by introducing behavioral aspects. Sub-optimal behaviors include the lock-in into established routines, bounded rationality and risk aversion of managers. In this framework, environmental regulation forces firms to change established routines or may signal the presence of inefficiency that were not accounted for by bounded rational managers. A second theoretical aspects that may explain the Porter Hypothesis is the presence of market failures in the form of market power, asymmetric information and R&D spillovers. In presence of imperfect competition, regulation may strategically favor domestic firms by granting them a first-mover advantage vis-a-vis competitors abroad that will follow in adopting stringent regulations. Regulation can also introduce barriers to entry thus favoring incumbent firms and may help to reduce asymmetric information between firms and customers by sorting out 'green' and 'brown' firms.

The existing empirical evidence on the extent to which environmental regulation affects economic performance seems to go in the direction of refusing the Porter Hypothesis even though some case of win-win outcome are found. Christiansen and Haveman (1981) review early investigations that looked at the contribution of environmental regulation to the reduction in productivity in the US for the period 1965-1979. Environmental regulation, as compared to other factors (e.g. reduction in capital deepening), accounted for about ten percent of the overall slowdown in productivity that was observed in that period. A negative relationship between environmental regulatory stringency and measured productivity is also found, for the US, by Gray and Shadbegian (1993) (in the paper, oil and steel industries) and Gollop and Roberts (1983, in telectric power industry) while no effect was found in the food industry (Alpay et al., 2002) and a positive effect for refineries in the Los Angeles Air Basin was found by Berman and Bui (2001). More recently, Greenstone et al. (2012) evaluated the role played by the enforcement of the Clean Air Act on nonattainment counties for a sample of 1.2 million of establishment in the US, finding a negative effect of increased stringency on total factor productivity. It should be noted, however, that most of these studies are based on the evaluation of the Clean Air Act that is a command-and-control regulation, while the Porter Hypothesis emphasizes the need for market-based instruments that are more likely to reward innovative response to regulatory stringency rather than simple compliance to standards. Lanoie et al. (2011) evaluate the effect of environmental regulatory stringency on (eco-) innovation and firm performance for a sample of 4200 firms in 7 OECD countries. They conclude that regulation stimulates eco-innovation but they show that the positive effect of eco-innovation on firm performance does not fully offset the compliance costs. From a more theoretical viewpoint, Acemoglu et al (2012) point out that changes in the relative price of energy inputs have an important effect on the types of technologies that are developed and adopted. Energy intensive, or polluting, firms are likely to have different incentives with respect to other firms, to develop or to adopt eco-innovations. Moreover, the authors argue that without a government intervention, the economy would rapidly go towards an environmental disaster, because the initial productivity advantage would direct innovation and production to the sector of using "dirty" inputs, contributing to environmental degradation. However, an environmental regulation would be sufficient to redirect technical change and avoid an environmental disaster. In the same spirit, Aghion et al (2015) show that firms belonging to the automotive industry innovate relatively more in clean technologies when they face higher tax-inclusive fuel prices, as a proxy of carbon tax.

More recent analyses look empirically at the link between environmental innovation and firm performance: Marin (2014), using a large panel of Italian firms, finds that innovation efforts of polluting firms are significantly biased towards environmental innovations and that eco-innovations tend to crowd out other more profitable innovations, at least in the short run. Rexhäuser and Rammer (2014) consider the role of regulation-induced innovation: using the German CIS (Mannheim Innovation Panel 2009), they find that cost-reducing innovations aimed at reducing energy and material input have a positive effect on firms' profitability while regulation-induced environmental innovations, mainly aimed at reducing environmental pressures, have a

negative but weak effect on profitability. van Leeuwen and Mohnen (2013) investigate the extent to which eco-innovation and other innovations are characterized by complementarity or substitutability in their effect on productivity. Their analysis, based on a panel of Dutch firms, finds no effect of eco-innovation on productivity. Finally, Ghisetti and Rennings (2014) show that for German firms there exists a positive relationship between eco-innovation aimed at improving resource and energy efficiency and financial performance (returns on sales) while a negative relationship emerges for eco-innovations aimed at reducing environmental externalities (e.g. environmental abatement).

A recent contribution by Dechezleprêtre et al. (2014) has investigated whether technologies in the "green" fields differ from technologies in other fields in terms of generation of knowledge spillovers. They show that knowledge spillovers generated by patents that belong to four green technology domains (energy production, automobiles, fuel and lighting) are substantially larger than the ones generated by patents pertaining to the four corresponding substitute brown technologies. Moreover, knowledge spillovers from green patents are greater in magnitude than the ones flowing from other recent breakthrough technology fields such as biotechnology, nanotechnology, robotics and 3D printing while they are only slightly (but significantly) smaller than for information technologies.

Summing up, a large part the literature has investigated a sort of "reduced form" relationship between environmental regulation and productivity, finding a negative relationship, some more recent work have focused on the contribution of eco-innovation to productivity and, more generally, on firms' performance, with more mixed results. We contribute to this latter field of literature by providing evidence on the return of environmental patents (as opposed to other patents) in terms of productivity for a large sample of Italian firms.

3 Data

3.1 How to measure environmental innovations

First of all, an unambiguous definition of eco-innovation is needed. There has been a rich debate in the economic literature about the distinctive features of environmental innovations as opposed to general innovations (Rennings, 2000). Environmental innovation (or eco-innovation) has been defined by Kemp and Pearson (2007) within the project 'Measuring Eco Innovation' as "the production, assimilation or exploitation of a product, production process, service or management or business method that is novel to the organization (developing or adopting it) and which results, throughout its life cycle, in a reduction of environmental risk, pollution and other negative impacts of resources use (including energy use) compared to relevant alternatives".

Indeed, this is a broad definition, that makes even more difficult to measure environmental innovation in a comprehensive way, even by means of ad hoc surveys.

As a consequence, patent data could represent an objective and viable alternative to measure eco-innovation (Popp, 2002; Oltra et al., 2010). Patents contain rich information about the technological field of the underlying innovation, through the international patent classification (IPC) classes and the text contained in the patent or in the abstract. This information is generally exploited through the identification of

relevant "environmental" IPC classes or through the systematic search of "environmental" keywords. Moreover, patent data are publicly available, they cover long time spans and do not suffer from sample selection.

Nevertheless, the use of patent data as a measure of innovation¹ and in particular as a proxy for environmental innovation is characterized by some limitations.

As largely documented in the empirical literature, patents cover only a part of the innovation output, as many innovations are not patented either because they cannot be patented² or because firms prefer to use alternative means to protect their innovations (secrecy, lead time, etc.).

Moreover, patent data ignore the whole phase of 'adoption' of innovations; thus, it is plausible that a share of patented innovations is not adopted by applicant firms which could act as specialized suppliers of knowledge to other firms (Calel and Dechezleprêtre, 2015). Finally, common to all the patent studies, the distribution of the value of patents is very skewed, with a tiny proportion of extremely valuable patents and a great majority of patents with little or even no commercial value (Hall et al., 2007).

Nevertheless, due to their availability and the objective definition, many recent analysis on environmental innovations are based on patent statistics (Lanjouw and Mody, 1996; Brunnermeier and Cohen, 2003; Wagner, 2007; Johnstone et al., 2010).

In order to identify eco-innovations, we rely on the results provided by the OECD project on "Environmental Policy and Technological Innovation" (ENV-TECH (1) Indicator)³, aimed at evaluating the effects of public environmental policy on technological innovation. As a prerequisite for such work, appropriate indicators of ecoinnovation based on patent data have been constructed. Based on selected IPC and ECLA classifications, eco-innovations have been identified and classified according to their technological class. A second source of relevant information was provided by the World Intellectual Property Organization (WIPO). In 2010 the WIPO launched the "IPC Green Inventory", with the aim of highlighting environmentally sound technologies within the IPC Classification. The IPC Green Inventory contains nearly 200 topics that are directly relevant to environmentally sound technologies, and each topic is linked with the most relevant IPC classes chosen by experts. For this paper, we define ecoinnovation those patents with at least one IPC code belonging to the groups selected by the OECD or by the WIPO⁴ (see Table 11 and Table 12 for a list of the selected IPC

¹ See Griliches (1990).

² An innovation can be patented if it is novel, non-obvious and commercially viable. Moreover, specific patent offices do not allow to patent specific technologies (e.g. living organisms). ³ http://www.oecd.org/env/consumption-innovation/indicator.htm

⁴ We decided to exclude some of the technology fields identified in the Green Inventory. The rationale was that many technologies in these fields were not strictly related to environmental improvements, differently from more established technology fields such as, for example, renewable energy generation technologies and pollution control technologies. We excluded four macro-categories. Costantini et al., (2012) suggest that just a small proportion of patents in the biofuel technology field of the Green Inventory is related to technologies with potential environmentally benign effects. Second, given our focus on manufacturing firms, we excluded patents in the field of agriculture and forestry. The exclusion of the field 'Administrative, regulatory and design aspects' is motivated by the fact that these aspects, although potentially relevant for environmental issues, are too generic (e.g. the actual description of the IPC class in the field labeled as 'Carbon/emissions trading, e.g. pollution credits' is 'Data processing systems or methods, specially adapted for administrative, commercial, financial, managerial, supervisory

codes). Even though it is acknowledged by the same creators of the IPC Green Inventory that their definition of 'environmentally sound technologies' could be too broad⁵, we decided to included most of the technology fields in the IPC Green Inventory for two reasons. This approach reduces the risk of excluding potential environmental patents, leaving them in the 'non-environmental' category, thus further reducing the (already small) number of environmental patents.

Example of environmental technologies are capture, storage, sequestration or disposal of greenhouse gases, renewable energy generation, pollution abatement and waste management.

We further split environment-related technologies into two separate categories, based on their relative content of 'public good'⁶. From the point of view of the generator (i.e. the patent applicant), new environmental technologies could be seen as an impure public $good^7$. New environmental technologies improve the performance of the firm in terms of more innovative turnover or improved production efficiency (private component) while they also provide a joint public component in terms of reduced environmental externalities (public component). This is relevant for our purposes because, as a consequence of the presence of some public component embodied in eco-innovations, they can have different returns and differential impacts on firms' productivity. The assignment of technology fields to the 'private' or 'public' category is based on the expected relative role played by 'private' returns in each technology field. In the category 'private' environmental innovations we include transport technologies (mainly directed to improve overall energy efficiency), technologies to improve energy efficiency of specific devices (e.g. lighting) or services (e.g. heating), technologies for improved input and output energy efficiency and, finally, various technologies with potential or indirect contribution to emissions mitigation The primary aim of innovations in these technology fields is to improve energy efficiency (with clear private benefits). The category 'public' environmental innovations, on the other hand, includes those technologies explicitly aimed at dealing with environmental externalities (polluting emissions, waste generation and treatment, climate change), for which most of the benefits consist in the reduction of negative externalities, or to develop alternative energy production technologies (mainly renewables) that are not ready to compete in production costs with traditiona fossil fuel technologies.

In order to link patent applicants to firm-level data, we apply the procedure described in Lotti and Marin (2013). After cleaning and harmonizing firm and applicant names and addresses, we identified both exact matches as well as score matches (based on

⁶ We thank an anonymous referee for the suggestion.

⁷ Refer to Kotchen (2006) for a theoretical formalization of green markets as providers of impure public goods.

or forecasting purposes; systems or methods specially adapted for administrative, commercial, financial, managerial, supervisory or forecasting purposes, not otherwise provided for'). Finally, patents in the field of nuclear power generation have not been included in the category of environmental patents for two reasons, one related to the choice of Italy to stop the generation of energy with nuclear technologies with a referendum in 1987 following the Chernobyl disaster, the other one linked to the potentially harmful environmental effects of the diffusion of these technologies.

⁵ The creators of the IPC Green Inventory state that 'search results may additionally include irrelevant results not relating to ESTs' (http://www.wipo.int/classifications/ipc/en/est/).

measures of string similarity). Score matches have been checked one-by-one to minimize false matches.

3.2 Firm-level data

We use firm-level data from the 7th, 8th, 9th and 10th waves of the "Survey on Manufacturing Firms" conducted by Unicredit (an Italian commercial bank, formerly known as Mediocredito-Capitalia). These four surveys were carried out in 1998, 2001, 2004, and 2007, respectively, using questionnaires administered to a representative sample of Italian manufacturing firms. Each survey covered the three years immediately prior (1995-1997, 1998-2000, 2001-2003, and 2004-2006) and although the survey questionnaires were not identical in all four of the surveys, they were very similar in the sections used in this work. All firms with more than 500 employees were included in the surveys, whereas smaller firms were selected using a sampling design stratified by geographical area, industry, and firm size. We merged the data from these four surveys, excluding firms with incomplete information or with extreme observations for the variables of interest.⁸ We obtained balance sheet information from the Company Accounts Data Service (CADS) database at the Bank of Italy and we built an unbalanced panel⁹ of 47,990 observations on 11,938 firms throughout the period 1995-2006.

Table 1 contains some descriptive statistics for the unbalanced panel: not surprisingly, the firm size distribution is skewed to the right, with an average of 106 employees, but with a median of 33 only. In our sample, only 29% of the firms invest in R&D, with an average of 3,770 euros per employee, but only 6.1% have filed at least one patent application and even less (around 0.7%) have filed an eco-patent. Even though the proportion of eco-patents in our sample (6.2 percent) is low, it is somewhat in line with the average share of eco-patents by Italian applicants as a whole (7.9 percent) and by EU15 applicants (8.7 percent) in the same period¹⁰. Interestingly, on average, patenting firms have 3 patents each. Nearly 30% of the employees at the median firm are white-collar workers. Turning to the other variables used in the empirical analysis, 62% of the firms in the sample report that they have national competitors, while 27% have international competitors. Nearly a quarter of the firms belong to an industrial group and 38% of the firms in our sample received a subsidy of some kind (mainly for investment and R&D; we do not have more detailed information on the subsidies received).

 $^{^{8}}$ When identifying extreme observations we consider the following variables: log value added per employee and log R&D per employee. An observation is considered to be extreme if its value (for any of the variables) is more than three interquartile ranges greater than the third quartile or smaller than the first guartile. We identify 620 extreme observations (1.28 percent).

⁹ We did not exploit the panel dimension of our dataset due to instability of the panel across waves. In fact, we a balanced panel for only 150 firms (1.26 percent of firms), while 7,360 (61.65 percent) firms were available for one wave (three consecutive years) only.

¹⁰ Own calculation based on the OECD REG-PAT Database (edition July 2013).

Table 2 shows the distribution of observations by sector and macro-region.

Figure 2 and Figure 3 show the propensity to innovate expressed as share of observations reporting R&D expenditure, applying for a patent and applying for environmental patent with, respectively, sectorial and size class breakdowns. The propensity to innovate varies substantially across sectors, with medium-high technology sectors such as electrical and optical equipment (DL), machinery and equipment (DK), petro-chemicals (DF-DG) transport equipment (DM) having very high shares of firms performing formal R&D (about 40 percent) and of firms applying for patents (more than 10 percent). Also the propensity to apply for eco-patents tend to be substantially higher in medium-high technology sectors. Looking at the size class breakdown of innovation propensity, we observe that patent propensity and eco-patent propensity monotonically increase with firms size while the share of R&D-doing firms reaches its peak for the category of firms with 251-500 employees (about 52 percent) while very big firms (more than 500 employees) have lower propensity to perform R&D (about 48 percent).

Table 3 reports the share of observations (with a sector and size class breakdown) for which, despite observing at least one patent application, no R&D is reported by the firm. This phenomenon has been also highlighted by Bugamelli et al (2012) and Hall et al (2009) who stress the fact that non-R&D doers innovators tend to focus on rather marginal improvements to existing technologies. On average, about half of the patenting firms do not report or perform formal R&D even though this evidence is very heterogeneous across sectors and size classes. More specifically, the share of patenting firms with formal R&D activities belonging to the class of medium-big firms (between 251 and 500 employees) is three times as bigger than the share of patenting firms with formal R&D activities belonging to the class of small firms (between 11 and 20 employees). Moreover, it is interesting to note that in most sectors the size class of very big firms (more than 500 employees) applying for at least a patent has a lower propensity to perform formal R&D than medium-big firms (between 251 and 500 employees). Finally, the share of patenting firms also performing and reporting formal R&D tends to be higher for medium-high technology sectors¹¹ than for medium-low technology sectors, reflecting heterogeneity in the complexity of technologies across sectors.

Before moving to the description of the CDM framework, it is worth discussing some preliminary descriptive evidence on the relationship between productivity and patents, both environmental and non-environmental. Table 4 shows the average and median labor productivity (real value added per employee, in thousand euro,) by size class and patenting status. It is evident that patenting firms (second column) are more productive than non-patenting firms (first column), for all size classes. The difference tends to be larger for average than for median values, meaning that, for patenting firms, the average is particularly influenced by few firms with very high levels of productivity. With the only exception of small firms (less than 20 employees), firms with at least one environmental patent (column 4) are characterized by larger productivity (average and median) than patenting firms with no environmental patents (column 3). Conditional on size only, firms involved in the development of environmental technologies tend to be

¹¹ DL - electrical and optical equipment, DK - machinery and equipment n.e.c., DM - transport equipment, DH - rubber and plastic products, DF-DG - coke, refined petroleum products, nuclear fuel, chemicals, chemical products and man-made fibers.

more productive than firms that innovate in other fields. Also in this case, differences in median values are substantially smaller than differences in average values. Table 5 shows pairwise correlations between productivity and patents (simple count and count per employee), both for the full sample and the sub sample of observations with at least one patent. We observe a positive correlation between all patenting indicators and productivity. However, correlation coefficients tend to be rather small (ranging from 0.16 and basically zero) and systematically greater when considering total patents than environmental patents alone. The unconditional correlation does not seem to highlight strong links between patenting and productivity. However, many confounding factors are expected to influence these relationships and motivate the use of a more "structural" approach to evaluate these links.

4 The modified "CDM framework"

The so-called "CDM framework" (Crépon et al., 1998) intends to shed some light in the black box of the innovation process at the firm level, by linking innovation inputs to innovation outputs and innovation outputs to productivity, and not only by considering a reduced form relation from innovation inputs to productivity. The CDM framework follows the logic of firms' decisions by distinguishing three types of equations (or groups of equations) for respectively investment in innovation inputs, the production of innovation outputs (or knowledge production function) and the traditional production function augmented to include innovation outputs as additional factors of productivity. We extend the CDM model to include eco-innovations as possible output and to evaluate their impact on productivity, similarly to van Leeuwen and Mohnen (2013) and Marin (2014). The framework encompasses three groups of relations as shown in Figure 1. The first consists of the decision whether to invest in R&D or not and how much to spend. The second step is an equation for innovation outcomes (in several versions of the CDM models these are dummy variables for the introduction of a new or significantly improved process, introduction of a new or significantly improved product, organizational change associated with process innovation, or organizational change associated with product innovation). The final equation is a conventional labor productivity regression that includes the innovation outcomes as well.

Summing up, productivity is assumed to depend on innovation, and innovation to depend on investment choices. Of necessity, our estimation is cross-sectional only, for two reasons: first, we have few firms cases with more than one year of observation. Second, the timing of some of the questions of the survey is such that we cannot really assume a direct causal relationship since they are measured over the preceding three years in the questionnaire. Therefore, the results that we report should be viewed as associations rather than as causal relationships.

4.1 R&D decision

In the first stage, as in the standard CDM model, we consider the decision to invest in R&D. A firm must decide whether to perform R&D or not; then, given that the firm chooses to do R&D, it must choose its intensity. This statement of the problem can be modeled in a standard sample selection framework. We use RD_i to denote R&D investment of firm *i*, and define this decision as follows:

$$D_R D_i = \begin{cases} 1 & \text{if } RD_i^* = w_i \alpha + \varepsilon_i > \hat{c} \\ 0 & \text{if } RD_i^* = w_i \alpha + \varepsilon_i \le \hat{c} \end{cases}$$
(1)

where D_RD_i is an (observable) indicator function that takes the value 1 if firm *i* has or reports - positive expenditures on *RD*, RD_i^* is a latent indicator variable such that firm *i* decides to perform - or to report - expenditures if it is above a given threshold \hat{c} , w_i is a set of explanatory variables affecting the decision, and ε_i is the error term. For those firms performing R&D, we observe the intensity of resources spent for these activities:

$$RD_i = \begin{cases} RD_i^* = z_i\beta + e_i & \text{if } D_RD_i = 1\\ 0 & \text{if } D_RD_i = 0 \end{cases}$$
(2)

where RD_i^* is the unobserved latent variable corresponding to the firm's intensity of investment, and z_i is a set of determinants of the expenditure intensity. We measure expenditure intensity as the logarithm of real R&D spending per employee. Moreover, we assume that the error terms in Equations (1) and (2) are bivariate normal with zero mean and covariance matrix given by:

$$\Sigma = \begin{pmatrix} 1 \\ \rho \sigma_{\varepsilon} & \sigma_{\varepsilon}^2 \end{pmatrix}$$
(3)

The system of Equations (1) and (2) can be estimated by maximum likelihood methods: in the literature, this model is sometimes referred to as a Heckman selection model (Heckman, 1979) or Tobit type II model (Amemiya, 1984).

4.2 Knowledge production function

The combination of innovation inputs (R&D) with internal and external resources may result in the introduction of innovations. Successful innovations have been measured in CDM models in several ways, depending on data availability. Crépon et al (1998) use patent applications count and share of innovative sales as indicators of successful innovations, while other authors (e.g. Hall et al (2009) for Italy and Griffith et al (2006), for France, Germany, Spain and the UK) use survey-based dummy variables describing the introduction of innovations, generally distinguishing between process and product innovations. In this paper, we use the number of European Patent Office (EPO) and PCT-WIPO patent families¹² sorted by priority year as a measure of innovation output. In this second step, we estimate a knowledge production function with the probability of filing a patent and, alternatively, the number of patent applications as dependent variables. In order to account for that part of innovation activity that has not been

¹² A simple patent family is defined by the European Patent Office as follows: "All documents having exactly the same priority or combination of priorities belong to one patent family" http://www.epo.org/searching/essentials/patent_families/definitions.html

 $[\]underline{http://www.epo.org/searching/essentials/patent-families/definitions.html}$

The use of patent families count instead of row count of patents allows to avoid double counting of inventions covered by different documents.

formalized, we do not restrict estimation to R&D performing firms only. This is likely to be especially important for small and medium-sized enterprises, which represent nearly 90% of our sample. The outcomes of the knowledge production function are EPO and PCT-WIPO patent families, but classified according two broad categories: eco-patents, as defined in Section 2, and non-eco patents.

$$\begin{cases}
PAT_{i} = RD_{i}^{*}\gamma_{1} + x_{1,i}\delta_{1} + u_{1,i} \\
ECOPAT_{i} = RD_{i}^{*}\gamma_{2} + x_{2,i}\delta_{2} + u_{2,i}
\end{cases}$$
(4)

where RD_i^* is the latent R&D effort, which is proxied by the predicted value of R&D intensity from the model in the first step, $x_{1,i}$ and $x_{2,i}$ are set of covariates and the error terms $u_{1,i}$ and $u_{2,i}$ are distributed normally with covariance matrix. Moreover, using the predicted value instead of the realized value is a sensible way to instrument the innovative effort in the knowledge production function in order to deal with simultaneity problem between R&D and the expectation of innovative success. However, given the fact that the model is estimated in sequential stages, conventional standard errors.

4.3 Productivity equation

In the third and final step of the model, production is modeled by means of a simple Cobb-Douglas technology with labor, capital, and knowledge as inputs:

$$y_i = k_i \pi_1 + l_i \pi_2 + INNO_i^* \pi_3 + m_i \pi_4 + \nu_{1,i}$$
(5)

where y_i is the labor productivity (real value added per employee, in logs), k_i is the log of capital stock¹³ per worker, l_i is the log of employment (headcounts), *INNO*_i* is the predicted number (or the predicted probability) of innovation from the second step, and the m_i represents a set of other control variables.

5 Results

All of the equations in the model are projected on a list of "exogenous" variables that include a the log of firm size, the log of firm age, year dummies, survey wave dummies, industry dummies (13 industries), and regional dummies (4 regions)¹⁴. The survey wave dummies are a set of indicators for the firm's presence or absence in the four waves of the survey.¹⁵ The left-out categories for the control dummies in all equations are: sector

¹³ Capital stock has been computed by means of the perpetual inventory method.

¹⁴ Table 2 reports the distribution of observations by industry and by region together with the list and definition of industries and regions.

¹⁵ For example, a firm present in all the four waves will have a '1111' code, '1000' if present in the first only, '1100' if in the first and in the second only, and so forth. These codes are transformed into a set of 14 dummies (24 = 16 minus the 0000 case and the exclusion restriction).

DA (food and beverage), Central Italy region, year 1995 and the indicator for firms included in the last wave only.

5.1 R&D decision

We estimate the first step by means of a Heckman sample selection model Table 6). To test for selection in R&D reporting, we first estimated a probit model in which the presence of positive R&D expenditures is regressed on the set of firm characteristics and whether the firm exported at least part of its production. We use this latter variable as an exclusion restriction: with no assumption on the causality link, we assume that being involved in international trade may affect the likelihood of doing R&D, but it does not have any effect of R&D intensity. It is very difficult to identify those variables that could affect the R&D choice, but not the subsequent R&D expenditures conditional on the decision to perform R&D, since both phenomena are quite similar. As a consequence, our assumption is, inevitably, empirically grounded: we compare the average likelihood of performing R&D and, for positive R&D, the log of its intensity (per employee) between exporting and non-exporting firms (Table 7). Exporting firms are substantially more likely to perform formal R&D than non-exporting firms, with the difference (0.1973) being significantly different from zero. However, conditional on performing R&D, no statistically significant difference is found between exporting and non-exporting firms in terms of R&D intensity.

Unlike van Leeuwen and Mohnen (2013), we do not have data to separate green R&D from traditional R&D, and this is the reason why, in this step, we model R&D decision as a whole. Nevertheless, in our view, this first stage of the CDM model is necessary to avoid simultaneity problems in the subsequent knowledge production functions.

The results confirm the presence of selection, with a significant correlation coefficient of 0.31. The interpretation of this result is that if we observe R&D for a firm for whom R&D was not expected, its R&D intensity will be relatively high given its characteristics. Conversely, if we fail to observe R&D, its R&D intensity is likely to have been low conditional on its characteristics. In line with the results provided by Hall et al (2012), conditional on investing, R&D intensity decreases with size. It also falls with age, but this is barely significant. Firms facing international competitors have much higher R&D intensities, as do firms that are members of a group or who receive subsidies of some kind. These last two results suggest that financial constraints may be relevant for these firms when dealing with R&D investments. Finally, human capital (in terms of share of "white collars" on total employees) is, as expected, positively related to both the probability of performing R&D and its intensity.

5.2 The knowledge production function

The second step of this modified version of the CDM model has been performed by including in the knowledge production function the predicted log of R&D intensity coming from the first step, mainly to address simultaneity issues. The innovation outcome is estimated for three classes of patents: all patent applications (*Total patents*), non-eco patents (*Non environmental patents*) and eco-patents (*Environmental patents*).

As before, we try to separate the extensive margin from the intensive margin, estimating first a class of models with the probability of having a patent and then, since patents are typically a count measure, another class of models with a Negative Binomial regression

as in Hall et al (1984), namely the NB2 version with the variance of the disturbance expressed as a quadratic function of the conditional mean.¹⁶

The first three columns of Table 8 reports the coefficients of a probit model for the probability of having at least one patent (col. 1), and of a bivariate probit for the likelihood of having a non environmental patent and an environmental patent (col 2a and 2b, respectively). The same structure can be found in Table 9, that reports the estimated coefficients of the count data model, which can be interpreted as elasticities for logarithmic independent variables (expected relative changes in patent applications count for a relative change in the independent variable) and, for dummy variables as relative change in patent applications count when the variable switches from zero to one (Cameron and Trivedi, 1998). The predicted R&D intensity is positively related both to the probability of having any patent and to the number of patents. Firm size is correlated to patent propensity, less so if it is an environmental patent, suggesting the existence of smaller firms specializing in green innovations; the same results hold for the count of patent families. However, in the latter case, the elasticity is smaller than unity, meaning that larger firms have on average a relatively lower patent intensity (per employee) than smaller firms. The regional patent stock per capita (as a proxy for the stock of knowledge locally available) has no effect on the likelihood of having patents; human capital turns out to have no direct effect (or negative but weak) on innovative output (for either type of patent applications), once its effect on R&D intensity is taken into account. The extent of competition has no relation with the probability of patenting nor with the number of patent families.

Being involved in a "market for technology" (Arora et al., 2001), i.e. having bought a patent in the past, is a strong predictor of current patenting activity for all classes of patent applications. Polluting firms¹⁷ are expected to show a systematic bias towards environmental innovations relative to other firms. Firms at least one big polluting plant are expected to be more affected by environmental regulations and more likely to be inspected in order to enforce environmental standards, thus triggering the likelihood of improving their environmental performance by means of environmental innovations. This fact is partly reflected in the patent equation, with polluting firms applying for a greater number of environmental patents even though the effect is barely significant.

¹⁶ Overdispersion in our count variables are mainly driven by excess zeros. An alternative way to deal with excess zeros is to assume that part of the observed zeros is the result of a different data generation process than the one for positive counts and hence to employ zero inflated (Poisson or Negative Binomial) models (Cameron and Trivedi, 1998). We experienced some problems of convergence of the likelihood function when computing bootstrapped standard errors. Point parameters were in line with the results obtained for the negative binomial while standard errors were substantially higher. Results remain available upon request.

¹⁷ A firm is considered "polluting" if it is the owner of a plant included into the EPER (European Pollutant Emission Register) or the E-PRTR (European Pollutant Release and Transfer Register) registers. EPER includes all facilities and plants above a certain threshold of air or water pollution. The E-PRTR substituted the EPER register (in place for 2001 and 2004) starting from the year 2007 onwards. Differently from the EPER, the E-PRTR includes waste-intensive plants. Plants have been assigned to firms in our sample by matching firm name and address with the parent company name and address reported in the EPER and E-PRTR database. We employed name harmonization procedures similar to the ones described in Lotti and Marin (2013).

Results are largely confirmed using forward citations count¹⁸ instead of raw families count (Table 10). The count of forward citations has been acknowledged to be a good proxy for the technological importance and the economic value of the patent (Squicciarini et al., 2013), thus allowing to account for the heterogeneity of patents in that respect.

5.3 Productivity analysis

Following the structure of the CDM model, we use the predicted probabilities and the predicted number of patents coming from the second step as explanatory variables in the productivity equations. Productivity is measured as real value added per employee. Looking at the last three columns of Table 8, Table 9 and Table 10, one can see that innovation success has a generally positive impact on productivity. This effect, very strong both in economic and statistical terms, is in line with expectations and highlights the relevance of indicators of innovation output based on patents.

Exploiting the partition on eco- and non-eco-patents (col. 4 of Table 8) there is evidence of a nihil return in terms of productivity from eco-innovations, while the returns for non-eco-patents are positive and significant, though we cannot reject the null of equality of the coefficients due to the large standard errors of the environmental patents coefficient. The differential effect for polluting firms is negative and statistically different from zero.¹⁹ When considering the number of patent families (Table 9, our baseline model) and the number of forward citations (Table 10) we still find a strong positive effect of patenting activity on productivity, while the effect of environmental patents turns out to be negative and significant when using the indicator of forward citations rather than a simple raw count. Moreover, the negative effect on productivity of eco-innovations for polluting firms is confirmed.²⁰ An increase in the likelihood of filing for eco-patents for polluting firms has a negative and significant effect on productivity.

As a further robustness check, we split the broader set of environmental patents into 'private' and 'public' environmental patents, as described in section 3.1. We adopt the same specifications of our baseline model, with the count of patent families as a dependent variable. Results, displayed in Table 13, show that the productivity returns of 'public' eco patents are negative and significant, while those of 'private' eco-patents are sizeable and positive.²¹ This gap is in line with expectations: environmental innovations with a relatively more pronounced 'public' component (within a mixed good framework) tend to generate private losses in the short run while 'private' environmental innovations tend to be more similar to other innovations in terms of productivity gains.

¹⁸ We retrieve patent forward citations from the OECD EPO Indicators Database (Squicciarini et al., 2013). We use the indicator counting forward citations received by the patent in the five years after its publication (variable *fwd_cits5_xy* in the OECD EPO Indicators Database). ¹⁹ The negative net effect of environmental patents for polluting firms is statistically different from the

positive effect found for non-environmental patents (p-value: 0.0134). ²⁰ The negative net effect of environmental patents for polluting firms (column 6 of Table 9) is

statistically different from the positive effect found for non-environmental patents (p-value: 0.0029).

²¹ The return of 'private' environmental patents is greater than the one of non-environmental patents and the difference is statistically significant (p-value: 0.0026).

In accordance with the literature reviewed in the first part of the paper (van Leeuwen and Mohnen, 2013; Marin, 2014; Rexhäuser and Rammer, 2014), the generally lower return of environmental innovations relative to other innovations could depend on two, possibly combined, factors. First, the expected positive link between compliance costs of environmental regulations and environmental innovations is likely to divert innovation inputs from general innovations towards eco-innovations with a loss in terms of returns from innovations if the firm, in absence of the regulation, would have chosen to focus on other more promising innovative projects. Second, eco-innovations, especially if they have a 'public' content, are likely to be systematically different from other innovations in terms the distribution of the returns through time due to the fact that they regard newly created markets which are small and fast growing. In this context, short run returns from eco-innovations could be negligible while medium-long run returns could be very high. When considering the differential effect of ecoinnovations for polluting firms, it is important to highlight that these firms are the ones which are expected to face more stringent environmental policies than other firms. This asymmetry in the policy environment forces them to bias their innovation patterns towards innovations aimed at reducing compliance costs (eco-innovations) characterized by a low content of private (i.e. productivity-enhancing) returns.

6 Conclusions

In this paper we investigate the innovation patterns of Italian manufacturing firms, with a specific focus on the productivity effects of environmental innovations. Our modified version of the CDM model describes innovation patterns consistently with expectations, with R&D being an important input for innovation and patent applications having strong positive effects on labor productivity. Environmental innovations systematically differ from other innovations in their effect on firm's productivity, with a generally lower return than non-environmental innovations, especially so when considering those with a "public" nature and when looking at the effect of environmental innovations in polluting firms. This result, coupled with the limited availability of financial resources to be devoted to R&D activities, is a possible evidence of crowding out of environmental innovations relative to non-environmental ones. It is important to stress that the evidence of crowding out refers to short term indicators of productivity. It is reasonable to assume, however, that positive effects of policy-induced environmental innovations on competitiveness (and possibly measured productivity) predicted by the "strong" version of the Porter Hypothesis (Porter and van der Linde, 1995) would eventually show up, if any, in the medium-long run due to the fact that the returns from eco-innovations mainly depend on early-mover advantages of eco-innovators and on the creation of new markets for "green" technologies.

References

- Acemoglu, D., Aghion P., Bursztyn L., and Hemous D.. 2012. The Environment and Directed Technical Change. American Economic Review, 102(1):131-66.
- Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R., and Van Reenen, J. 2015. Carbon Taxes, Path Dependency and Directed Technical Change: Evidence from the Auto Industry. Journal of Political Economy, forthcoming.
- Alpay, E., Kerkvliet, J., and Buccola, S. 2002. Productivity growth and environmental regulation in Mexican and US food manufacturing. American Journal of Agricultural Economics, 84(4):887-901.
- Ambec, S., Cohen, M. A., Elgie, S., and Lanoie, P. 2013. The Porter hypothesis at 20: can environmental regulation enhance innovation and competitiveness? Review of Environmental Economics and Policy, 7(1), 2-22.
- Amemiya, T. 1984. Tobit models: A survey. Journal of Econometrics 24:3-61.
- Arora, A., Fosfuri, A., and Gambardella, A. 2001. Markets for Technology. The MIT Press.
- Berman, E., and Bui, L. 2001. Environmental Regulation and Productivity: Evidence from Oil Refineries. Review of Economics and Statistics, 83(3), 498-510.
- Brunnermeier, S. B. and Cohen, M. A. 2003. Determinants of environmental innovation in US manufacturing industries. Journal of Environmental Economics and Management 45:278–293.
- Bugamelli, M., Cannari, L., Lotti, F., and Magri, S. 2012. The innovation gap of Italy's production system: roots and possible solutions (only in Italian), Occasional Papers, n. 121, Bank of Italy.
- Calel, R. and Dechezleprêtre, A. 2015. Environmental policy and directed technological change: Evidence from the European carbon market. Review of Economics and Statistics, forthcoming.
- Cameron, A. C. and Trivedi, P. K. 1998. Regression Analysis of Count Data. Number 9780521632010 in Cambridge Books. Cambridge University Press.
- Christiansen, G. B., and Haveman, R. H., 1981. The Contribution of Environmental Regulations to the Slowdown in Productivity Growth. Journal of Environmental Economics and Management 8(4):381–390.
- Costantini, V., Crespi, F., and Curci, Y. 2012. Exploring technology in the biofuels sector through patent data: the BioPat database. Departmental Working Papers of Economics University 'Roma Tre' No. 154.
- Crépon, B., Duguet, E., and Mairesse, J. 1998. Research, innovation, and productivity: An econometric analysis at the firm level. Economics of Innovation and New Technology 7:115–158.
- Dechezleprêtre A., Martin, R., and Mohnen, M. 2014. Knowledge spillovers from clean and dirty technologies: A patent citation analysis, CEP Discussion Papers dp1300, Centre for Economic Performance, LSE..

- Ghisetti C., and Rennings, K. 2014. Environmental innovations and profitability: How does it pay to be green? An empirical analysis on the German Innovation survey. Journal of Cleaner Production, 75:106-117.
- Gollop, F. M., and Roberts, M. J., 1983. Environmental regulations and productivity growth: the case of fossil-fuelled electric power generation. Journal of Political Economy 91: 654–674.
- Gray, W., and Shadbegian, R. 1993. Environmental regulation and manufacturing productivity at the plant level. NBER working paper n. 4321.
- Greenstone, M., List, J., and Syverson, C. 2012. The Effects of Environmental Regulation on the Competitiveness of U.S. Manufacturing. NBER working paper n. 18392.
- Griffith, R., Huergo, E., Mairesse, J., and Peters, B. 2006. Innovation and productivity across four European countries. Oxford Review of Economic Policy 22:483–498.
- Griliches, Z. 1990. Patent statistics as economic indicators: A survey. Journal of Economic Literature 28:1661–1707.
- Hall, B. H., Lotti, F., and Mairesse, J. 2009. Innovation and productivity in SMEs: empirical evidence for Italy. Small Business Economics 33:13–33.
- Hall, B. H., Lotti, F., and Mairesse, J. 2012. Evidence on the Impact of R&D and ICT Investments on Innovation and Productivity in Italian Firms. Economics of Innovation and New Technology 0:1–29.
- Hall, B. H., Thoma, G., and Torrisi, S. 2007. The market value of patents and R&D: Evidence from European firms. NBER Working Papers 13426, National Bureau of Economic Research, Inc.
- Hall, B. H., Hausman, J., and Griliches, Z. 1984. Econometric Models for Count Data with an Application to the Patents-R&D Relationship. Econometrica 52:909–938.
- Heckman, J. J. 1979. Sample selection bias as a specification error. Econometrica 47:153–161.
- Horbach, J. 2008. Determinants of environmental innovation-new evidence from German panel data sources. Research Policy 37:163–173.
- Horbach, J., Rammer, C., and Rennings, K. 2012. Determinants of eco-innovations by type of environmental impact the role of regulatory push/pull, technology push and market pull. Ecological Economics 78:112–122.
- Jaffe, A., Newell, R., and Stavins, R. 2002. Environmental policy and technological change. Environmental & Resource Economics 22:41–70.
- Jaffe, A. B., Peterson, S. R., Portney, P. R., & Stavins, R. N., 1995. Environmental regulation and the competitiveness of US manufacturing: What does the evidence tell us? Journal of Economic Literature, 33(1):132–163.
- Johnstone, N., Hascic, I., and Popp, D. 2010. Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental & Resource Economics 45:133–155.
- Kemp, R. and Pearson, P. 2007. Final report MEI project about measuring ecoinnovation. http://www.merit.unu.edu/MEI.
- Kotchen, M. J. 2006. Green Markets and Private Provision of Public Goods. Journal of Political Economy 114(4):816:834.

- Lanjouw, J. O. and Mody, A. 1996. Innovation and the international diffusion of environmentally responsive technology. Research Policy 25:549–571.
- Lanoie, P., J. Laurent-Luccheti, N. Johnstone, and S. Ambec, 2011. "Environmental policy, innovation and performance: New insights on the Porter hypothesis". Journal of Economics and Management Strategy, 20(3):803-842.
- Lotti, F. and Marin, G. 2013. Matching of PATSTAT applications to AIDA firms Discussion of the methodology and results. Occasional Papers n. 166, Bank of Italy.
- Marin, G. 2014. Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model. Research Policy 43(2):301-317.
- Oltra, V., Kemp, R., and de Vries, F. P. 2010. Patents as a measure for eco-innovation. International Journal of Environmental Technology and Management 13:130–148.
- Palmer, K., Wallace, W. E., Oaetes, and Portney, P. R. 1995. Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm? Journal of Economic Perspectives, 9(4)119-132.
- Popp, D. 2002. Induced innovation and energy prices. American Economic Review 92:160–180.
- Popp, D. 2010. Innovation and climate policy. Annual Review of Resource Economics, 2: 275-298.
- Popp, D., Newell, R. G., and Jaffe, A. B. 2010. Energy, the environment, and technological change. In (eds. Hall, B. H., Rosenberg, N.) Handbook of the Economics of Innovation, Volume 2, Elsevier.
- Porter, M. E. 1991. America's Green Strategy. Scientific American 264(4)
- Porter, M. E. and van der Linde, C. 1995. Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives 9:97–118.
- Rennings, K. 2000. Redefining innovation eco-innovation research and the contribution from ecological economics. Ecological Economics 32:319–332.
- Rexhäuser, S. and Rammer, C. 2014. Environmental Innovations and Firm Profitability: Unmasking the Porter Hypothesis. Environmental and Resource Economics 57(1):145-167.
- Squicciarini, M., Dernis, H. and Criscuolo C. 2013. Measuring Patent Quality: Indicators of Technological and Economic Value, OECD Science, Technology and Industry Working Papers, 2013/03, OECD Publishing.
- van Leeuwen, G. and Mohnen, P. 2013 Revisiting the Porter Hypothesis: An Empirical Analysis of Green Innovation for the Netherlands. CIRANO Working Papers 2013s-2, CIRANO.
- Wagner, M. 2007. On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms. Research Policy 36:1587–1602.

Tables and Figures

In black are reported the three steps of the classic CDM model. In red the extension proposed, to take explicitly into account the role of eco-innovations.

Figure 2: Propensity to innovate by sector

Sectors (Nace Rev. 1.1 sub-sections). DA: food products, beverages and tobacco. DB: textiles and textile products. DC: leather and leather products. DD: wood and wood products. DE: pulp, paper and paper products, publishing and printing. DF-DG: coke, refined petroleum products, nuclear fuel, chemicals, chemical products and man-made fibers. DH: rubber and plastic products. DI: other non-metallic mineral products. DJ: basic metals and fabricated metal products. DK: machinery and equipment n.e.c.. DL: electrical and optical equipment. DM: transport equipment. DN: manufacturing n.e.c

Figure 3: Propensity to innovate by firm size (# employees)

Table 1: Descriptive statistics

Period: 1995-2006			
Number of observations (firms)	47,990 (11,938)	Exporting firms	69.3%
Number of employees (mean/median)	105.7 (33)	Firms within a group	23.5%
Age (mean/median)	24.4 (20)	Firms subsidies recipients	37.7%
Firms with R&D	29.2%	Observations with patents	6.1%
Share of white-collar workers in employees (mean/median)	33.9% (29.3%)	Observations with eco-patents	0.69%
R&D intensity ^a for R&D doers (mean/median)	5.07 (1.61)	Observations with both eco- and non-eco- patents	0.39%
Average capital intensity ^a (mean/median)	76.6 (51.6)	Count of patent families (for observations with patents - mean/median)	3 (1)
Labor productivity ^a (VA - mean/median)	48.2 (42.3)	Count of eco-patent families (for observations with eco-patents - mean/median)	1.64 (1)
Firms with large firms as competitors	37.8%	Average forward citations (for observations with patents)	0.83
Firms with mid-sized firms as competitors	49.5%	Average forward citations for eco-patents (for observations with eco-patents)	0.48
Firms with national compatitors	44 10/	Chara of (nublic' (chara of (nrivata') and natanta	46.8%
Firms with national competitors	44.1%	share of public (share of private) eco-patents	(81.4%)
Firms with international compatitors	27.20/	Observations with polluting plants (firms)	4.55%
Firms with international competitors	21.2%	observations with poliuting plants (firms)	(4.03%)

^a Units are real thousand euros per employee (base year = 2000)

	North-West	North-East	Central Italy	Southern Italy	Total
DA	1,071	1,190	537	1,434	4,232
DB	2,261	977	1,551	661	5,450
DC	154	511	977	278	1,920
DD	397	582	280	173	1,432
DE	1,200	707	735	254	2,896
DF-DG	1,271	507	412	385	2,575
DH	1,281	691	343	373	2,688
DI	798	964	663	652	3,077
DJ	3,812	2,376	1,010	1,007	8,205
DK	3,280	2,858	754	349	7,241
DL	1,918	1,230	473	345	3,966
DM	616	325	187	227	1,355
DN	706	1,243	711	293	2,953
Total	18,765	14.161	8.633	6.431	47.990

Table 2: Distribution of observations by sector and macro-region

Macro-regions. North-West: Valle d'Aosta, Piemonte, Liguria and Lombardia. North-East: Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia and Emilia-Romagna. Central Italy: Toscana, Umbria, Marche and Lazio. Southern Italy: Abruzzo, Molise, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna. *Sectors* (Nace Rev. 1.1 sub-sections). DA: food products, beverages and tobacco. DB: textiles and textile products. DC: leather and leather products. DD: wood and wood products. DE: pulp, paper and paper products, publishing and printing. DF-DG: coke, refined petroleum products, nuclear fuel, chemicals, chemical products. DJ: basic metals and fabricated metal products. DK: machinery and equipment n.e.c.. DL: electrical and optical equipment. DM: transport equipment. DN: manufacturing n.e.c.

Table 3: Probability of performing formal R&D conditional on patenting (by sector and size class – employees count)

	11-20	21-50	51-250	251-500	501+	Total
DA	20%	25%	47%	40%	40%	32%
DB	21%	35%	50%	60%	63%	44%
DC	44%	38%	39%	90%	0%	47%
DD	7%	39%	50%	100%	50%	35%
DE	14%	10%	40%	50%	33%	25%
DF-DG	27%	56%	52%	72%	43%	52%
DH	11%	50%	71%	61%	56%	54%
DI	10%	38%	53%	63%	48%	43%
DJ	9%	35%	52%	48%	57%	42%
DK	37%	38%	70%	66%	58%	58%
DL	32%	48%	63%	90%	68%	62%
DM	10%	55%	43%	46%	80%	57%
DN	17%	46%	55%	44%	69%	47%
Total	22%	40%	60%	66%	59%	52%

Sectors (Nace Rev. 1.1 sub-sections). DA: food products, beverages and tobacco. DB: textiles and textile products. DC: leather and leather products. DD: wood and wood products. DE: pulp, paper and paper products, publishing and printing. DF-DG: coke, refined petroleum products, nuclear fuel, chemicals, chemical products and man-made fibers. DH: rubber and plastic products. DI: other non-metallic mineral products. DJ: basic metals and fabricated metal products. DK: machinery and equipment n.e.c.. DL: electrical and optical equipment. DM: transport equipment. DN: manufacturing n.e.c.

Size class	No patent	Any patent	Only non-env patents	Also env patents	Total
	47.19	57.18	58.21	47.47	47.45
11-20	(40.66)	(44.03)	(44.15)	(38.27)	(40.72)
21 50	45.33	55.61	54.40	66.76	45.68
21-50	(39.80)	(43.69)	(43.17)	(47.07)	(39.94)
51-250	48.81	57.85	57.15	64.49	49.56
	(44.11)	(51.01)	(50.77)	(53.78)	(44.62)
251-500	53.45	60.26	58.53	70.04	54.67
	(48.03)	(54.57)	(53.92)	(61.27)	(49.42)
E00 I	61.96	63.20	62.00	69.34	62.33
500+	(53.14)	(56.03)	(55.54)	(58.78)	(54.18)
Total	47.54	58.56	57.69	65.27	48.21
TOLAT	(41.83)	(50.35)	(50.10)	(53.77)	(42.33)

 Table 4: Average and median labor productivity by size class (in terms of employees) and patenting status

Average (median) value added per employee in thousand euro.

 Table 5: Correlations between patenting and labor productivity

Dainwise correlations with VA/I	Full comple	Sample of
	Full sample	patenting firms
Count of non-env patents	0.0849	0.1600
Count of env patents	0.0421	0.0672
Count of non-env patents (per employee)	0.0550	0.0262
Count of env patents (per employee)	0.0194	0.0083

(1)	(22)	(2h)		
	(Ζα) ΗΕ <u>Γ</u> ΚΜΔΝΙ	Select en		
_0 1/65***		0 1099***		
(0,0208)	(0.0265)	(0.0125)		
(0.0208)	0.0203)	(0.0133)		
-0.0646	-0.0256	(0.0200)		
(0.0458)	(0.0489)	(0.0266)		
0.1461***	0.2610***	0.3637***		
(0.0478)	(0.0610)	(0.0298)		
1.2807***	1.4278***	0.5743***		
(0.0962)	(0.1045)	(0.0542)		
0.1639***	0.1765***	0.0573**		
(0.0430)	(0.0438)	(0.0282)		
-0.0497**	-0.0434*	0.0198		
(0.0243)	(0.0247)	(0.0152)		
0.2577***	0.3463***	0.3270***		
(0.0358)	(0.0459)	(0.0224)		
. ,		0.3170***		
		(0.0277)		
0.1476				
	1080.	7009		
	1.2	786		
	0.3	141		
	0.40	016		
9.6950***				
	-481	85.4		
14035	479	990		
	(1) OLS -0.1465*** (0.0208) -0.0646 (0.0458) 0.1461*** (0.0478) 1.2807*** (0.0962) 0.1639*** (0.0430) -0.0497** (0.0243) 0.2577*** (0.0358) 0.1476	(1) (2a) OLS HECKMAN -0.1465*** -0.0929*** (0.0208) (0.0265) -0.0646 -0.0258 (0.0458) (0.0489) 0.1461*** 0.2610*** (0.0478) (0.0610) 1.2807*** 1.4278*** (0.0962) (0.1045) 0.1639*** 0.1765*** (0.0430) (0.0438) -0.0497** -0.0434* (0.0243) (0.0247) 0.2577*** 0.3463*** (0.0358) (0.0459) 0.1476 1080. 1.22 0.33 0.447 9.695 -481 14035		

Table 6: R&D equation. Dependent variable: R&D per employee (col 1 and 2a) and probability of performing R&D (col 2b).

Standard errors clustered by firm in parenthesis. * p< 0.1, ** p< 0.05, *** p< 0.01. Other control variables: industry dummies, macro-region dummies, year dummies, survey wave dummies.

	Exp=1	Exp=0	Diff.	Ν	t-stat	p-value
Perform R&D	0.353	0.1557	0.1973	47990	44.73	0.000
ln(R&D/L)	0.4548	0.4449	0.0099	14035	0.32	0.745

Table 7: Exclusion restriction: firm exports

	Patent equation			Productivity equation		
	(1)	(2a)	(2b)	(3)	(4)	(5)
Estimator	Probit	Bivariat	e probit	OLS	OLS	OLS
	Tot patents	Non-env	Env			
Dependent variable	(0/1)	(0/1)	(0/1)	log(VA/L)	log(VA/L)	log(VA/L)
Fitted log(R&D/L)	0.4319***	0.4147***	0.4771***			
	(0.0579)	(0.0790)	(0.1360)			
log(L)	0.3430***	0.3416***	0.2596***	-0.0590***	-0.0567***	-0.0630***
	(0.0097)	(0.0148)	(0.0248)	(0.0064)	(0.0064)	(0.0065)
log(reg pat stock)	0.0213	0.0322	-0.0783			
	(0.0333)	(0.0510)	(0.0791)			
Share white collars	-0.2537***	-0.2486*	-0.2558			
	(0.0971)	(0.1342)	(0.2374)			
National competitors	0.0056	0.0024	-0.0108			
	(0.0281)	(0.0385)	(0.0724)			
Foreign competitors	0.0853**	0.0880*	0.0173			
	(0.0336)	(0.0477)	(0.0853)			
Big competitors	-0.0375	-0.0389	0.0044			
	(0.0352)	(0.0499)	(0.0938)			
Mid-sized competitors	-0.0162	-0.0197	-0.0174			
	(0.0364)	(0.0529)	(0.1006)			
log(age)	-0.0241*	-0.0175	-0.0410	0.0055	0.0049	0.0054
	(0.0144)	(0.0217)	(0.0374)	(0.0047)	(0.0046)	(0.0046)
Bought patents	0.5001***	0.5034***	0.1853			
	(0.0552)	(0.0811)	(0.1274)			
Polluter			0.1666*			0.1276***
			(0.0976)			(0.0201)
log(K/L)				0.2402***	0.2403***	0.2377***
				(0.0047)	(0.0047)	(0.0047)
Fitted probability of patenting (any pat)				0.8877***		
				(0.0926)	0 =000***	0 0 0 = 4 * * *
Fitted probability of patenting (non-env)					0.7999***	0.8354***
					(0.1416)	(0.1472)
Fitted probability of patenting (env)					0.4955	0.7294
Dellutery Fitted and of actorian (any)					(0.5738)	(0./15/)
Polluter x Fitted prob of patenting (env)						-1.5938***
Decudo P couprod	0 1712					(0.0001)
Pseudo K squared	0.1/12			0 2117	0 2115	0 2122
K Squared		0 5021		0.3117	0.5115	0.5133
	3752 1576	1050 7277		5002 1/100	5001 8669	6097 5520
	-9088 5	-10260.7		5555.1450	5554.0000	0097.3320
	47990	47990		47990	47990	47990
IN	4/330	47330		47330	47330	47330

Table 8: Patent and productivity equations (probability model)

Bootstraped standard errors (500 repetitions) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Other control variables: industry dummies, macro-region dummies, year dummies, survey wave dummies.

	Patent equation			Pro	ductivity equa	tion
	(1)	(2)	(3)	(4)	(5)	(6)
Estimator	NB2	NB2	NB2	OLS	OLS	OLS
	Total	Non-env	Envipatoria			
	patents	patents	Env paterits	log(VA/L)	log(VA/L)	log(VA/L)
Fitted log(R&D/L)	0.9810***	0.9796***	1.3046***			
	(0.1978)	(0.2020)	(0.4145)			
log(L)	0.8146***	0.8228***	0.7385***	0.0186***	0.0218***	0.0141***
	(0.0413)	(0.0420)	(0.0760)	(0.0043)	(0.0044)	(0.0047)
log(reg pat stock)	0.0582	0.0943	-0.3124			
	(0.1285)	(0.1290)	(0.2507)			
Share white collars	-0.6097*	-0.6272*	-0.8531			
	(0.3553)	(0.3625)	(0.7167)			
National competitors	0.1431	0.1409	0.0643			
	(0.1091)	(0.1081)	(0.2330)			
Foreign competitors	0.1856	0.1870	0.0630			
	(0.1195)	(0.1195)	(0.2610)			
Big competitors	-0.1907	-0.2029	-0.0378			
	(0.1278)	(0.1298)	(0.2689)			
Mid-sized competitors	-0.1332	-0.1551	-0.0067			
	(0.1341)	(0.1349)	(0.3030)			
log(age)	-0.0467	-0.0370	0.0039	0.0147***	0.0112**	0.0126***
	(0.0547)	(0.0553)	(0.1260)	(0.0048)	(0.0048)	(0.0048)
Bought patents	1.0342***	1.0404***	0.8047**			
	(0.1332)	(0.1387)	(0.4005)			
Polluter			0.3290			-0.0992
			(0.3108)			(0.0800)
log(K/L)				0.2365***	0.2354***	0.2339***
				(0.0047)	(0.0047)	(0.0047)
Fitted log(pat tot)				0.1618***		
				(0.0099)		
Fitted log(pat no_env/L)					0.0924***	0.1309***
					(0.0231)	(0.0234)
Fitted log(pat env/L)					0.0646***	0.0308
					(0.0204)	(0.0210)
Polluter x fitted log(pat env/L)						-0.0335**
						(0.0135)
Pseudo R sq	0.1254	0.1274	0.1300			
R squared				0.3178	0.3182	0.3196
Chi squared	1401.8716	1412.9564	505.1102	6373.2825	6371.6071	6522.5930
Alpha	9.0232	9.1416	26.1792			
Log likelihood	-13947.3	-13323.7	-2009.1			
N	47990	47990	47990	47990	47990	47990

Table 9: Patent and productivity equations (count of patent families)

Bootstraped standard errors (500 repetitions) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01. Other control variables: industry dummies, macro-region dummies, year dummies, survey wave dummies.

	Patent equation			Pro	ductivity equa	tion
	(1)	(2)	(3)	(4)	(5)	(6)
Estimator	NB2	NB2	NB2	OLS	OLS	OLS
	Citations	Citations	Citations			
Dependent variable	(total)	(non-env)	(env)	log(VA/L)	log(VA/L)	log(VA/L)
Fitted log(R&D/L)	1.3222***	1.3065***	1.3349			
	(0.3175)	(0.3273)	(1.0642)			
log(L)	1.0897***	1.0972***	0.9615***	-0.0230***	-0.0257***	-0.0326***
	(0.0698)	(0.0726)	(0.1685)	(0.0039)	(0.0038)	(0.0039)
log(reg pat stock)	-0.0028	0.0618	-0.9468*			
	(0.2309)	(0.2381)	(0.5658)			
Share white collars	-0.9169*	-0.8320	-2.0553			
	(0.5496)	(0.5618)	(1.8996)			
National competitors	-0.0611	-0.0210	-0.6287			
	(0.1766)	(0.1770)	(0.6028)			
Foreign competitors	-0.0711	-0.0435	-0.3016			
	(0.1987)	(0.2076)	(0.5880)			
Big competitors	-0.0394	-0.1101	0.9370			
	(0.2043)	(0.2100)	(0.9089)			
Mid-sized competitors	0.1267	0.0692	0.9320			
	(0.2260)	(0.2302)	(0.9606)			
log(age)	0.0311	0.0414	0.1105	0.0049	0.0054	0.0063
	(0.0839)	(0.0837)	(0.2409)	(0.0046)	(0.0046)	(0.0046)
Bought patents	0.4970*	0.5226*	0.3323			
	(0.2626)	(0.2788)	(2.1948)			
Polluter			0.5460			0.0879***
			(0.7536)			(0.0283)
log(K/L)				0.2349***	0.2362***	0.2333***
				(0.0047)	(0.0047)	(0.0047)
Fitted log(citat tot)				0.1535***		
				(0.0090)		
Fitted log(citat no_env/L)					0.1829***	0.1884***
					(0.0097)	(0.0097)
Fitted log(citat env/L)					-0.0390***	-0.0468***
					(0.0061)	(0.0061)
Polluter x fitted log(citat env/L)						-0.0027*
						(0.0014)
Pseudo R sq	0.1402	0.1414	0.1902			
R squared				0.3190	0.3220	0.3244
Chi squared	868.8435	817.8438	672.1205	6370.5825	6512.9343	6667.0430
Alpha	25.4517	26.1553	118.2651			
Log likelihood	-4724.9	-4486.9	-499.1			
Ν	47990	47990	47990	47990	47990	47990

Table 10: Patent and productivity equations (patent citations)

Bootstraped standard errors (500 repetitions) in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Other control variables: industry dummies, macro-region dummies, year dummies, survey wave dummies.

Table 11 – Environmental patent classes (source: ENV-TECH Indicator Database, OECD, 2013)

Macro-category	Sub-category	IPC (or ECLA for VO2 classes)
wacio-calegoiy	Jub-category	READING DOLDAT DOLDAD DOLDED DOLDED DOLDED 24 70 00000 CADINO 000
		BUID40, BUID47, BUID49, BUID50, BUID51, BUID53/34-72, BU3C3, C10L10/02,
ц.	Air pollution abatement	C10L10/06, C21B//22, C21C5/38, F01N3, F01N5, F01N7, F01N9, F23B80, F23C9,
len		F23G7/06, F23J15, F27B1/18
em	Water pollution abatement	B63J4, C02F, C05F7, C09K3/32, E02B15/04-06, E02B15/10, E03B3, E03C1/12,
Jag		E03F
nai	Solid waste collection	E01H15, B65F
alr		A23K1806-10, A43B1/12, A43B21/14, B03B9/06, B22F8, B29B7/66, B29B17,
ent		B30B9/32, B62D67, B65H73, B65D65/46, C03B1/02, C03C6/02, C03C6/08,
Ĕ	Material recovery, recycling and re-use	C04B7/24-30, C04B11/26, C04B18/04-10, C04B33/132, C08J11, C09K11/01,
ror		C10M175, C22B7, C22B19/28-30, C22B25/06, D01G11, D21B1/08-10, D21B1/32,
ix		D21C5/02, D21H17/01, H01B15/00, H01J9/52, H01M6/52, H01M10/54
ale	Fertilizers from waste	C05F1, C05F5, C05F7, C05F9, C05F17
Jera	Incineration and energy recovery	C10L5/46-48, F23G5, F23G7
Jec	Waste management n.e.c.	B09B, C10G1/10, A61L11
-	Soil remediation	B09C
	Environmental monitoring	F01N11, G08B21/12-14
	Wind energy	Y02E10/7
omo	Solar thermal energy	Y02E10/4
n-fc	Solar photovoltaic (PV) energy	Y02E10/5
noi s	Solar thermal-PV hybrids	Y02E10/6
nd rce	Geothermal energy	Y02E10/1
e a sou	Marine energy	V02E10/3
abl abl	Hydro operav	V02E10/3
erg e X	Diefuele	102L10/2 V02FF0/1
En	Fuel from waste	102E50/1
	Fuel Irom waste	102E50/3
oustion ogies with gation ential	Technologies for improved output efficiency (combined combustion)	Y02E20/1
Com technol miti pot	Technologies for improved input efficiency	Y02E20/03
late nge ation	CO2 capture or storage	Y02C10
Clim chai mitig	Capture or disposal of greenhouse gases other than CO2	Y02C20
lor tt on to on	Energy storage	Y02E60/1
entia Indirec Ibutio Inissio tigati	Hydrogen technology	Y02E60/3
Pod ii icontri er	Fuel cells	Y02E60/5
fuel	Integrated emissions control	F02B47/06, F02M3/02-055, F02M23, F02M25, F02M67, F01N9, F02D41, F02D43, F02D45, F01N11, G01M15/10, F02M39-71, F02P5, F02M27, F02M31/02-18
nent and nsportati	Post-combustion emissions control	F01M13/02-04, F01N5, F02B47/08-10, F02D21/06-10, F02M25/07, F01N11, G01M15/10, F01N3/26, B01D53/92, B01D53/94, B01D53/96, B01J23/38-46, F01N3/08-34, B01D41, B01D46, F01N3/01, F01N3/02-035, B60, B62D
tra	Technologies specific to propulsion	B60K1, B60L7/10-20, B60L11, B60L15, B60R16/033, B60R16/04, B60S5/06,
/ in	usin electric motor	B60W10/08, B60W10/26, B60W10/28, B60K16, B60L8
sions ciency	Technologies specific to hybrid propulsion	B60K6, B60W20
Emis effi	Fuel efficiency-improving vehicle design	B62D35/00, B62D37/02, B60C23/00, B60T1/10, B60G13/14, B60K31/00, B60W30/10-20
in v g	Insulation	E04B1/62, 04B1/74-78, 04B1/88, E06B3/66-677, F06B3/24
nergy :iency ildings lightir	Heating	F24D3/08, F24D3/18, F24D5/12, F24D11/02, F24D15/04, F24D17/02, F24F12, F25B29, F25B30
E bu nd	Lighting	H01I61 H05B33
a e	LIGHTUNE	101101,1101055

Shaded categories: 'public' environmental innovations

Macro-category	Sub-category				
wacio-category	Integrated assification combined cycle				
	(IGCC)	C10L3, F02C3/28			
	Fuel cells	H01M4/86-98, H01M8/00-24, H01M12/00-08			
Alternative energy production	Pyrolysis or gasification of biomass	C10B53, C10J			
		C10L5, C10L5/42-44, F23G7, C10J3/02, C10J3/46, F23B90, F23G5/027, B09B3,			
	Harnessing energy from manmade	F23G7, C10L5/48, F23G5, F23G7, C21B5/06, D21C11, A62D3/02, C02F11/04,			
	waste	C02F11/14, F23G7, B09B3, F23G5, B09B, B01D53/02, B01D53/04, B01D53/047,			
		B01D53/14, B01D53/22, B01D53/24, C10L5/46, F23G5			
	Hydro energy	E02B9, F03B, F03C, B63H19/02, B63H19/04			
	Ocean thermal energy conversion	F03G7/05			
	Wind energy	F03D, H02K7/18, B63B35, E04H12, F03D11/04, B60K16, B60L8, B63H13			
	Solar energy	H01L27/142, H01L31, H01G9/20, H02N6, H01L27/30, H01L21/42-48, H01L25,			
		C01B33/02, C23C14/14, C23C16/24, C30B29/06, G05F1/67, F21L4, F21S9/03,			
		H02J7/35. H01H9/20. H01M14. F24J2. F24D17. F24D3. F24D5. F24D11. F24D19.			
		F24J2/42, F03D1/04, F03D9, F03D11/04, F03G6, C02F1/14, F02C1/05,			
		H01L31/058, B60K16, B60L8, F03G6, E04D13, F22B1, F24J1, F25B27, F26B3,			
		F24J2/06. G02B7/183. F24J2/04			
	Geothermal energy	F01K, F24F5, F24J3/08, H02N10, F25B30/06, F03G4, F03G7/04			
	Other production or use of heat, not				
	derived from combutstion	F24J1, F24J3, F24D11/02, F24D15/04, F24D17/02, F24H4, F25B30			
	Using waste heat	F01K27, F01K23/06-10, F01N5, F02G5, F25B27/02, F01K17, F01K23/04,			
		F02C6/18, F25B27/02, FC02C6/18, F25B27/02, C02F1/16, D21F5/20, F22B1/02,			
		F23G5/46, F24F12, F27D17, F28D17, F28D18, F28D19, F28D20, C10J3/86			
	Devices producing mechanical power from muscle energy	F03G5			
Transportation	Vahiclas in general	B60K6, B60W20, F16H3, F16H48, H02K29/08, H02K49/10, B60L7/10-22, B60L8,			
	Venicies in general	B60L9, B60L11/18, F02B43, F02M21/02, F02M27/02, B60K16, H02J7			
	Vehicles other than rail vehicles	B62D35, B63B1/34-40, B62K, B62M1, B62M3, B62M5, B62M6			
	Rail vehicles	B61			
	Marine vessel propulsion	B63H9, B63H13, B63H19/02-04, B63H16, B63H21/18, B64G1/44			
	Storage of electrical energy	B60K6/28, B60W10/26, H01M10/44-46, H01G9/155, H02J3/28, H02J7, H02J15			
c	Power supply circuitry	H02J			
Energy conservation	Measurement of electricity	B60L3, G01R			
	Consumption Storage of thermal energy	COOKE E34H7 E28D30			
	Low energy lighting	F21R99, F21L4/02, H01L33, H01L51/50, H05B33			
	Thermal building insulation, in general	EU4B1/62, EU4B1/74-80, EU4B1/88, EU4B1/90, EU4C1/40, EU4C1/41, EU4C2/284-			
		290, EU0B3/203, EU4B2, EU4F13/08, EU4B5, EU4F15/18, EU4B7, EU4D1/28, E04D2/2E, E04D12/16, E04D0, E04F12/08			
		E04D3/35, E04D13/10, E04B9, E04F13/08			
	Recovering mechanical energy				
Waste management	Treatment of wests				
	Concerning waste	A01L11, A02D3, A02D101, G21F9, B03B9/00, B09C, D21B1/08, D21B1/32			
	Consuming waste by compustion				
	Reuse of waste materials	A43B1/12, A43B21/14, B22F8, C04B7/24-30, C04B18/04-10, C05F, C08J11,			
		CU9K11/U1, C11B11, C11B13, C14C3/32, C21B3/04, C25C1, DU1F13, B29B1/,			
		B62D67, C08J11/04-28, C10G1/10, C10L5/46, C10L5/48, C22B7, C22B19/30,			
	Pollution control	C22B25/06, D01G11, D21C5/02, H01J9/50, H01J9/52, H01M6/52, H01M10/54			
		B01D53/14, B01D53/22, B01D53/62, B05G5, C01B31/20, E21B41, E21B43/16,			
		E21F1//16, F25J3/02B01D53, F01N3, B01D53/92, F02B/5/10, C21C5/38,			
		C10821/18, F23880/02, F23C9, F23G7/06, F01N9, 801D45, 801D46, 801D47,			
		BUID48, BUID49, BUID50, BUID51, BU3C3, C21B7/22, C21C5/38, F2/B1/18,			
		F27B15/12, C10L10/02, C10L10/06, F23J7, F23J15, C09K3/22, G08K21/12, B63J4,			
		CU2F, CU3F7, CU3F3/32, EU2B13/04, EU3C1/12, CU2F1, CU2F3, CU2F3, EU3F, C21C12/10			

Table 12 – Environmental patent classes (source: Green Inventory, WIPO, 2013)

Shaded categories: 'public' environmental innovations

	Patent equation		Productivity equation	
	(1)	(2)	(3)	(4)
Estimator	NB2	NB2	OLS	OLS
Dependent variable	Priv env pat	Publ env pat	log(VA/L)	log(VA/L)
Fitted log(R&D/L)	1.286**	1.527***		
	(0.530)	(0.482)		
log(L)	0.704***	0.813***	0.0289***	0.0208***
	(0.0860)	(0.104)	(0.00466)	(0.00504)
log(reg pat stock)	-0.364	-0.586**		
	(0.277)	(0.259)		
Share white collars	-0.682	-1.316		
	(0.863)	(0.834)		
National competitors	0.181	0.419		
	(0.259)	(0.301)		
Foreign competitors	0.0705	0.0166		
	(0.347)	(0.334)		
Big competitors	-0.371	-0.112		
	(0.287)	(0.365)		
Mid-sized competitors	-0.319	-0.0500		
	(0.324)	(0.386)		
log(age)	0.00213	-0.0755	-0.00224	0.000949
	(0.128)	(0.162)	(0.00495)	(0.00497)
Bought patents	1.289***	0.665		
	(0.313)	(0.574)		
Polluter	0.308	0.168		-0.0460
	(0.364)	(0.344)		(0.0532)
log(K/L)			0.237***	0.235***
			(0.00467)	(0.00467)
Fitted log(pat no_env/L)			0.0907***	0.139***
			(0.0265)	(0.0274)
Fitted log(pat env private/L)			0.164***	0.108***
			(0.0278)	(0.0298)
Fitted log(pat env public/L)			-0.122***	-0.101***
			(0.0172)	(0.0177)
Polluter x fitted log(pat env private/L)				-0.0136**
				(0.00633)
Polluter x fitted log(pat env public/L)				-0.00621
				(0.00582)
R squared			0.320	0.322
Chi squared	454.3	464.8	6444.0	6555.0
Alpha	28.24	32.56		
Log likelihood	-1645.0	-1395.6	-25416.5	-25376.2
N	47990	47990	47990	47990

Table 13: Patent and productivity equations (patent families – 'private' and 'public' environmental patents)

Bootstraped standard errors (500 repetitions) in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01. Other control variables: industry dummies, macro-region dummies, year dummies, survey wave dummies.

- N. 1043 *Exposure to media and corruption perceptions*, by Lucia Rizzica and Marco Tonello (November 2015).
- N. 1044 *The supply side of household finance*, by Gabriele Foà, Leonardo Gambacorta, Luigi Guiso and Paolo Emilio Mistrulli (November 2015).
- N. 1045 *Optimal inflation weights in the euro area*, by by Daniela Bragoli, Massimiliano Rigon and Francesco Zanetti (January 2016).
- N. 1046 *Carry trades and exchange rate volatility: a TVAR approach*, by Alessio Anzuini and Francesca Brusa (January 2016).
- N. 1047 A new method for the correction of test scores manipulation by Santiago Pereda Fernández (January 2016).
- N. 1048 *Heterogeneous peer effects in education* by by Eleonora Patacchini, Edoardo Rainone and Yves Zenou (January 2016).
- N. 1049 Debt maturity and the liquidity of secondary debt markets, by Max Bruche and Anatoli Segura (January 2016).
- N. 1050 *Contagion and fire sales in banking networks*, by Sara Cecchetti, Marco Rocco and Laura Sigalotti (January 2016).
- N. 1051 How does bank capital affect the supply of mortgages? Evidence from a randomized experiment, by Valentina Michelangeli and Enrico Sette (February 2016).
- N. 1052 Adaptive models and heavy tails, by Davide Delle Monache and Ivan Petrella (February 2016).
- N. 1053 Estimation of counterfactual distributions with a continuous endogenous treatment, by Santiago Pereda Fernández (February 2016).
- N. 1054 *Labor force participation, wage rigidities, and inflation,* by Francesco Nucci and Marianna Riggi (February 2016).
- N. 1055 Bank internationalization and firm exports: evidence from matched firm-bank data, by Raffaello Bronzini and Alessio D'Ignazio (February 2016).
- N. 1056 *Retirement, pension eligibility and home production*, by Emanuele Ciani (February 2016).
- N. 1057 The real effects of credit crunch in the Great Recession: evidence from Italian provinces, by Guglielmo Barone, Guido de Blasio and Sauro Mocetti (February 2016).
- N. 1058 *The quantity of corporate credit rationing with matched bank-firm data*, by Lorenzo Burlon, Davide Fantino, Andrea Nobili and Gabriele Sene (February 2016).
- N. 1059 *Estimating the money market microstructure with negative and zero interest rates*, by Edoardo Rainone and Francesco Vacirca (February 2016).
- N. 1060 *Intergenerational mobility in the very long run: Florence 1427-2011*, by Guglielmo Barone and Sauro Mocetti (April 2016).
- N. 1061 An evaluation of the policies on repayment of government's trade debt in Italy, by Leandro D'Aurizio and Domenico Depalo (April 2016).
- N. 1062 Market timing and performance attribution in the ECB reserve management framework, by Francesco Potente and Antonio Scalia (April 2016).
- N. 1063 *Information contagion in the laboratory*, by Marco Cipriani, Antonio Guarino, Giovanni Guazzarotti, Federico Tagliati and Sven Fischer (April 2016).
- N. 1064 EAGLE-FLI. A macroeconomic model of banking and financial interdependence in the euro area, by by Nikola Bokan, Andrea Gerali, Sandra Gomes, Pascal Jacquinot and Massimiliano Pisani (April 2016).
- N. 1065 *How excessive is banks' maturity transformation?*, by Anatoli Segura Velez and Javier Suarez (April 2016).

^(*) Requests for copies should be sent to: Banca d'Italia – Servizio Studi di struttura economica e finanziaria – Divisione Biblioteca e Archivio storico – Via Nazionale, 91 – 00184 Rome – (fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.

2014

- G. M. TOMAT, *Revisiting poverty and welfare dominance*, Economia pubblica, v. 44, 2, 125-149, **TD No. 651** (December 2007).
- M. TABOGA, *The riskiness of corporate bonds*, Journal of Money, Credit and Banking, v.46, 4, pp. 693-713, **TD No. 730 (October 2009).**
- G. MICUCCI and P. ROSSI, *Il ruolo delle tecnologie di prestito nella ristrutturazione dei debiti delle imprese in crisi*, in A. Zazzaro (a cura di), Le banche e il credito alle imprese durante la crisi, Bologna, Il Mulino, **TD No. 763 (June 2010).**
- F. D'AMURI, *Gli effetti della legge 133/2008 sulle assenze per malattia nel settore pubblico*, Rivista di politica economica, v. 105, 1, pp. 301-321, **TD No. 787 (January 2011).**
- R. BRONZINI and E. IACHINI, Are incentives for R&D effective? Evidence from a regression discontinuity approach, American Economic Journal : Economic Policy, v. 6, 4, pp. 100-134, **TD No. 791** (February 2011).
- P. ANGELINI, S. NERI and F. PANETTA, *The interaction between capital requirements and monetary policy*, Journal of Money, Credit and Banking, v. 46, 6, pp. 1073-1112, **TD No. 801 (March 2011).**
- M. BRAGA, M. PACCAGNELLA and M. PELLIZZARI, *Evaluating students' evaluations of professors,* Economics of Education Review, v. 41, pp. 71-88, **TD No. 825 (October 2011).**
- M. FRANCESE and R. MARZIA, Is there Room for containing healthcare costs? An analysis of regional spending differentials in Italy, The European Journal of Health Economics, v. 15, 2, pp. 117-132, TD No. 828 (October 2011).
- L. GAMBACORTA and P. E. MISTRULLI, Bank heterogeneity and interest rate setting: what lessons have we learned since Lehman Brothers?, Journal of Money, Credit and Banking, v. 46, 4, pp. 753-778, TD No. 829 (October 2011).
- M. PERICOLI, *Real term structure and inflation compensation in the euro area*, International Journal of Central Banking, v. 10, 1, pp. 1-42, **TD No. 841 (January 2012).**
- E. GENNARI and G. MESSINA, How sticky are local expenditures in Italy? Assessing the relevance of the flypaper effect through municipal data, International Tax and Public Finance, v. 21, 2, pp. 324-344, TD No. 844 (January 2012).
- V. DI GACINTO, M. GOMELLINI, G. MICUCCI and M. PAGNINI, *Mapping local productivity advantages in Italy: industrial districts, cities or both?*, Journal of Economic Geography, v. 14, pp. 365–394, **TD No. 850** (January 2012).
- A. ACCETTURO, F. MANARESI, S. MOCETTI and E. OLIVIERI, Don't Stand so close to me: the urban impact of immigration, Regional Science and Urban Economics, v. 45, pp. 45-56, TD No. 866 (April 2012).
- M. PORQUEDDU and F. VENDITTI, Do food commodity prices have asymmetric effects on euro area inflation, Studies in Nonlinear Dynamics and Econometrics, v. 18, 4, pp. 419-443, TD No. 878 (September 2012).
- S. FEDERICO, *Industry dynamics and competition from low-wage countries: evidence on Italy*, Oxford Bulletin of Economics and Statistics, v. 76, 3, pp. 389-410, **TD No. 879 (September 2012).**
- F. D'AMURI and G. PERI, *Immigration, jobs and employment protection: evidence from Europe before and during the Great Recession,* Journal of the European Economic Association, v. 12, 2, pp. 432-464, TD No. 886 (October 2012).
- M. TABOGA, *What is a prime bank? A euribor-OIS spread perspective*, International Finance, v. 17, 1, pp. 51-75, **TD No. 895 (January 2013).**
- G. CANNONE and D. FANTINO, *Evaluating the efficacy of european regional funds for R&D*, Rassegna italiana di valutazione, v. 58, pp. 165-196, **TD No. 902 (February 2013).**
- L. GAMBACORTA and F. M. SIGNORETTI, *Should monetary policy lean against the wind? An analysis based on a DSGE model with banking*, Journal of Economic Dynamics and Control, v. 43, pp. 146-74, **TD No. 921 (July 2013).**
- M. BARIGOZZI, CONTI A.M. and M. LUCIANI, Do euro area countries respond asymmetrically to the common monetary policy?, Oxford Bulletin of Economics and Statistics, v. 76, 5, pp. 693-714, TD No. 923 (July 2013).
- U. ALBERTAZZI and M. BOTTERO, *Foreign bank lending: evidence from the global financial crisis,* Journal of International Economics, v. 92, 1, pp. 22-35, **TD No. 926 (July 2013).**

- R. DE BONIS and A. SILVESTRINI, *The Italian financial cycle: 1861-2011*, Cliometrica, v.8, 3, pp. 301-334, **TD No. 936 (October 2013).**
- G. BARONE and S. MOCETTI, *Natural disasters, growth and institutions: a tale of two earthquakes, Journal of Urban Economics, v. 84, pp. 52-66, TD No. 949 (January 2014).*
- D. PIANESELLI and A. ZAGHINI, *The cost of firms' debt financing and the global financial crisis*, Finance Research Letters, v. 11, 2, pp. 74-83, **TD No. 950 (February 2014).**
- J. LI and G. ZINNA, *On bank credit risk: sytemic or bank-specific? Evidence from the US and UK*, Journal of Financial and Quantitative Analysis, v. 49, 5/6, pp. 1403-1442, **TD No. 951 (February 2015).**
- A. ZAGHINI, *Bank bonds: size, systemic relevance and the sovereign,* International Finance, v. 17, 2, pp. 161-183, **TD No. 966 (July 2014).**
- G. SBRANA and A. SILVESTRINI, *Random switching exponential smoothing and inventory forecasting,* International Journal of Production Economics, v. 156, 1, pp. 283-294, **TD No. 971 (October 2014).**
- M. SILVIA, Does issuing equity help R&D activity? Evidence from unlisted Italian high-tech manufacturing firms, Economics of Innovation and New Technology, v. 23, 8, pp. 825-854, TD No. 978 (October 2014).

2015

- G. DE BLASIO, D. FANTINO and G. PELLEGRINI, Evaluating the impact of innovation incentives: evidence from an unexpected shortage of funds, Industrial and Corporate Change, v. 24, 6, pp. 1285-1314, TD No. 792 (February 2011).
- M. BUGAMELLI, S. FABIANI and E. SETTE, The age of the dragon: the effect of imports from China on firmlevel prices, Journal of Money, Credit and Banking, v. 47, 6, pp. 1091-1118, TD No. 737 (January 2010).
- R. BRONZINI, The effects of extensive and intensive margins of FDI on domestic employment: microeconomic evidence from Italy, B.E. Journal of Economic Analysis & Policy, v. 15, 4, pp. 2079-2109, TD No. 769 (July 2010).
- A. DI CESARE, A. P. STORK and C. DE VRIES, *Risk measures for autocorrelated hedge fund returns*, Journal of Financial Econometrics, v. 13, 4, pp. 868-895, **TD No. 831 (October 2011).**
- G. BULLIGAN, M. MARCELLINO and F. VENDITTI, *Forecasting economic activity with targeted predictors,* International Journal of Forecasting, v. 31, 1, pp. 188-206, **TD No. 847 (February 2012).**
- A. CIARLONE, *House price cycles in emerging economies*, Studies in Economics and Finance, v. 32, 1, **TD No. 863 (May 2012).**
- D. FANTINO, A. MORI and D. SCALISE, Collaboration between firms and universities in Italy: the role of a firm's proximity to top-rated departments, Rivista Italiana degli economisti, v. 1, 2, pp. 219-251, TD No. 884 (October 2012).
- A. BARDOZZETTI and D. DOTTORI, *Collective Action Clauses: how do they Affect Sovereign Bond Yields?*, Journal of International Economics, v 92, 2, pp. 286-303, **TD No. 897 (January 2013).**
- D. DEPALO, R. GIORDANO and E. PAPAPETROU, *Public-private wage differentials in euro area countries:* evidence from quantile decomposition analysis, Empirical Economics, v. 49, 3, pp. 985-1115, **TD No. 907 (April 2013).**
- G. BARONE and G. NARCISO, Organized crime and business subsidies: Where does the money go?, Journal of Urban Economics, v. 86, pp. 98-110, **TD No. 916 (June 2013).**
- P. ALESSANDRI and B. NELSON, *Simple banking: profitability and the yield curve,* Journal of Money, Credit and Banking, v. 47, 1, pp. 143-175, **TD No. 945 (January 2014).**
- M. TANELI and B. OHL, *Information acquisition and learning from prices over the business cycle*, Journal of Economic Theory, 158 B, pp. 585–633, **TD No. 946 (January 2014).**
- R. AABERGE and A. BRANDOLINI, *Multidimensional poverty and inequality*, in A. B. Atkinson and F. Bourguignon (eds.), Handbook of Income Distribution, Volume 2A, Amsterdam, Elsevier, TD No. 976 (October 2014).
- V. CUCINIELLO and F. M. SIGNORETTI, *Large banks,loan rate markup and monetary policy*, International Journal of Central Banking, v. 11, 3, pp. 141-177, **TD No. 987 (November 2014).**
- M. FRATZSCHER, D. RIMEC, L. SARNOB and G. ZINNA, *The scapegoat theory of exchange rates: the first tests*, Journal of Monetary Economics, v. 70, 1, pp. 1-21, **TD No. 991 (November 2014).**

- A. NOTARPIETRO and S. SIVIERO, Optimal monetary policy rules and house prices: the role of financial frictions, Journal of Money, Credit and Banking, v. 47, S1, pp. 383-410, TD No. 993 (November 2014).
- R. ANTONIETTI, R. BRONZINI and G. CAINELLI, *Inward greenfield FDI and innovation*, Economia e Politica Industriale, v. 42, 1, pp. 93-116, **TD No. 1006 (March 2015).**
- T. CESARONI, *Procyclicality of credit rating systems: how to manage it,* Journal of Economics and Business, v. 82. pp. 62-83, **TD No. 1034 (October 2015).**
- M. RIGGI and F. VENDITTI, *The time varying effect of oil price shocks on euro-area exports,* Journal of Economic Dynamics and Control, v. 59, pp. 75-94, **TD No. 1035 (October 2015).**

2016

- E. BONACCORSI DI PATTI and E. SETTE, Did the securitization market freeze affect bank lending during the financial crisis? Evidence from a credit register, Journal of Financial Intermediation, v. 25, 1, pp. 54-76, TD No. 848 (February 2012).
- M. MARCELLINO, M. PORQUEDDU and F. VENDITTI, Short-Term GDP Forecasting with a mixed frequency dynamic factor model with stochastic volatility, Journal of Business & Economic Statistics, v. 34, 1, pp. 118-127, TD No. 896 (January 2013).
- M. ANDINI and G. DE BLASIO, *Local development that money cannot buy: Italy's Contratti di Programma,* Journal of Economic Geography, v. 16, 2, pp. 365-393, **TD No. 915 (June 2013).**
- L. ESPOSITO, A. NOBILI and T. ROPELE, *The Management of Interest Rate Risk During the Crisis: Evidence from Italian Banks*, Journal of Banking & Finance, v. 59, pp. 486-504, **TD No. 933 (September 2013).**
- F. BUSETTI and M. CAIVANO, The Trend–Cycle Decomposition of Output and the Phillips Curve: Bayesian Estimates for Italy and the Euro Area, Empirical Economics, V. 50, 4, pp. 1565-1587, TD No. 941 (November 2013).
- M. CAIVANO and A. HARVEY, *Time-series models with an EGB2 conditional distribution*, Journal of Time Series Analysis, v. 35, 6, pp. 558-571, **TD No. 947 (January 2014).**
- G. ALBANESE, G. DE BLASIO and P. SESTITO, *My parents taught me. evidence on the family transmission of values,* Journal of Population Economics, v. 29, 2, pp. 571-592, **TD No. 955 (March 2014).**
- R. BRONZINI and P. PISELLI, *The impact of R&D subsidies on firm innovation*, Research Policy, v. 45, 2, pp. 442-457, **TD No. 960 (April 2014).**
- L. BURLON and M. VILALTA-BUFI, A new look at technical progress and early retirement, IZA Journal of Labor Policy, v. 5, **TD No. 963 (June 2014).**
- A. BRANDOLINI and E. VIVIANO, *Behind and beyond the (headcount) employment rate,* Journal of the Royal Statistical Society: Series A, v. 179, 3, pp. 657-681, **TD No. 965 (July 2015).**
- D. DOTTORI and M. MANNA, *Strategy and Tactics in Public Debt Management*, Journal of Policy Modeling, v. 38, 1, pp. 1-25, **TD No. 1005 (March 2015).**
- A. CALZA and A. ZAGHINI, *Shoe-leather costs in the euro area and the foreign demand for euro banknotes,* International Journal of Central Banking, v. 12, 1, pp. 231-246, **TD No. 1039 (December 2015).**
- E. CIANI, *Retirement, Pension Eligibility and Home Production,* Labour Economics, v. 38, pp. 106-120, **TD** No. 1056 (March 2016).
- L. D'AURIZIO and D. DEPALO, An Evaluation of the Policies on Repayment of Government's Trade Debt in *Italy*, Italian Economic Journal, v. 2, 2, pp. 167-196, **TD No. 1061 (April 2016).**

FORTHCOMING

- S. MOCETTI, M. PAGNINI and E. SETTE, *Information technology and banking organization*, Journal of Financial Services Research, **TD No. 752 (March 2010).**
- F BRIPI, *The role of regulation on entry: evidence from the Italian provinces*, World Bank Economic Review, **TD No. 932 (September 2013).**

- G. DE BLASIO and S. POY, *The impact of local minimum wages on employment: evidence from Italy in the* 1950s, Regional Science and Urban Economics, **TD No. 953 (March 2014).**
- A. L. MANCINI, C. MONFARDINI and S. PASQUA, *Is a good example the best sermon? Children's imitation of parental reading*, Review of Economics of the Household, **TD No. 958 (April 2014).**
- L. BURLON, *Public expenditure distribution, voting, and growth,* Journal of Public Economic Theory, **TD** No. 961 (April 2014).
- G. ZINNA, Price pressures on UK real rates: an empirical investigation, Review of Finance, TD No. 968 (July 2014).
- A. BORIN and M. MANCINI, Foreign direct investment and firm performance: an empirical analysis of *Italian firms*, Review of World Economics, **TD No. 1011 (June 2015).**
- F. CORNELI and E. TARANTINO, *Sovereign debt and reserves with liquidity and productivity crises*, Journal of International Money and Finance, **TD No. 1012 (June 2015).**