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ESTIMATION OF COUNTERFACTUAL DISTRIBUTIONS  WITH A 
CONTINUOUS ENDGENOUS TREATMENT 

 

by Santiago Pereda Fernández* 
 

Abstract 

Policy makers are often interested in the distributional effects of a policy. In this paper 
I propose a method to estimate the actual and counterfactual distributions of an outcome 
variable when the treatment variable is endogenous, continuous, and its effect is 
heterogeneous. The model is a triangular system of equations in which the unobservables are 
related by a copula that captures the endogeneity of the treatment, which is 
nonparametrically identified by inverting the quantile processes that determine the outcome 
and the treatment. Both processes are estimated using existing quantile regression methods, 
and I propose a parametric and a nonparametric estimator of the copula. I conduct three 
kinds of counterfactual experiments: changing the distribution of the treatment, changing the 
distribution of the instrument, and changing the rule that determines the treatment, and I 
discuss the estimation of each of these counterfactuals. To illustrate these methods, I 
estimate several counterfactuals that affect the distribution of the share of food consumption. 

 
JEL Classification: C31, C36. 
Keywords: copula, counterfactual distribution, endogeneity, policy analysis, quantile 
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1 Introduction*

Estimation of the effect of a policy is usually one of the main objectives of experiments in

economics. If the treatment effect is homogeneous, IV can be enough to identify the causal

effect of the treatment, and the mean impact of the policy on the variable of interest is

simply the treatment effect multiplied by the mean change in the treatment. However, these

methods do not capture the distributional effects that take place if the treatment effect is

heterogeneous.1 Moreover, even if the treatment affects the outcome variable linearly, the

mean effect of a policy may not be the treatment effect multiplied by the mean increase in

the treatment, and the endogeneity of the treatment poses another problem that needs to

be addressed, as depending on how the policy maker can enforce the treatment, the amount

of treatment may differently depend on its effect.

In this paper I consider a triangular system of equations in which both the outcome

and the treatment monotonically depend on a single unobservable variable each. These

unobservables isolate the endogeneity of the treatment, which can be characterized by a

copula. I discuss the identification and the estimation of the different components of the

distribution of an outcome variable Y : its conditional distribution, which depends on both

equations of the triangular system, the distribution of the instrument, and the copula.

Then, I use the estimators of these functionals to estimate the actual distribution of the

outcome, and the counterfactual distribution that would result from changing some of them.

These estimators of the counterfactual distribution can in turn be used to estimate other

functionals, such as the unconditional quantile treatment effect, or the Gini index.

I consider three types of policy counterfactuals: (i) a change in the distribution of the

treatment and the exogenous covariates; (ii) a change in the distribution of the instrument

*Banca d’Italia, via Nazionale 91, 00184 Roma, Italy. I would like to thank Manuel Arellano,
Stéphane Bonhomme, Domenico Depalo, Bryan Graham, Michael Jansson, James Powell, Demian Pouzo,
Enrique Sentana, and seminar participants at CEMFI and University of California, Berkeley for their
helpful comments and discussion. All remaining errors are my own. I can be reached via email at
santiago.pereda@bancaditalia.it

1A policy maker interested in inequality would also like to know what the impact of the policy would be
on the variance, a particular quantile of the distribution or any measure of inequality such as the Gini index.
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and the exogenous covariates, for which the endogeneity needs to be taken into account in

the estimation of the counterfactuals;2 and (iii) a change in the structural relation between

the treatment and the unobservables, which can happen when the policy maker can only

partially enforce the treatment.

This paper is thus related to several others in the literature of estimation of distributional

effects. Machado and Mata (2005) and Melly (2006) proposed estimators of such effects

using quantile regression under exogeneity, which Chernozhukov et al. (2013) generalized

by a proposing a method to estimate any functional of interest, given an initial estimator

of the conditional quantile curve or the conditional distribution function. The estimator I

propose extends these methods in the presence of endogeneity with an instrumental variables

approach, similarly to Pereda-Fernández (2010). On the other hand, Martinez-Sanchis et al.

(2012) adapted Melly (2006) to the presence of endogeneity using a control function approach.

Firpo et al. (2009) proposed a different method to estimate distributional effects under

exogeneity, based on the influence function rather than on quantile regression methods

as in this paper. Frölich and Melly (2013) proposed a nonparametric estimator of the

unconditional quantile treatment effect for the subpopulation of compliers when the treatment

is an endogenous binary variable. However, in this paper I assume both the outcome and

the treatment to be continuous, which allows me to nonparametrically identify the copula

that captures the endogeneity of the treatment.

The estimation of the unconditional distribution of Y that I propose is valid for any

consistent estimator of the two functions that conform the triangular model, and the copula.

For the first two, I use existing quantile methods.3 For the copula, I propose two estimators:

one nonparametric, that requires the copula to be invariant to the covariates, and one

parametric. Both estimators require the inversion of the estimated quantile processes that

conform the triangular model, and they achieve
√
n convergence rate, which is also achieved

by the estimators of the unconditional distribution based on them.
2Alternatively, one could model the relation between the instrument and the outcome variable,i.e. a

reduced form equation. This possibility is discussed in section 3.4.
3In particular I use instrumental variables quantile regression (Chernozhukov and Hansen, 2006) for the

estimation of the second stage equation, and quantile regression (Koenker, 2005) for the first stage equation.
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The identification of these type of triangular models has received a lot of attention in the

literature, using either instrumental variable or control function approaches. Early works are

Chesher (2003) or Imbens and Newey (2009), who study the nonparametric identification of

nonseparable models using a control function approach. Other papers propose methods that

could be referred to as semiparametric, which do not suffer from the curse of dimensionality,

such as Jun (2009), or Lee (2007) who assumes the model to be separable. Alternatively,

Ma and Koenker (2006) propose a parametric model of Chesher (2003). D’Haultfœuille and

Février (2015) and Torgovitsky (2015) are recent papers that establish the identification of

nonseparable triangular models when the support of the instrument is small, for which they

use the monotonicity of the unobservables. On the other hand, Hoderlein and Mammen

(2007) discusses the identification of such models without monotonicity.

Examples of empirical works that fit into framework presented in this paper include

the impact of education on earnings (Card, 2001) and on adult mortality (Lleras-Muney,

2005), the effect of family income on scholastic achievement (Dahl and Lochner, 2012), or

the impact of class size on scholastic achievement (Angrist and Lavy, 1999) or on long-term

outcomes (Fredriksson et al., 2013). All these studies could benefit by studying the effects

on inequality of an intervention that results in a different assignment of the amount of

treatment for the whole population. In this paper I consider the estimation of Engel curves

using data on Italian households. I estimate the distribution of the proportion of food

consumption as a function of total expenditure, and four counterfactual distributions that

involve either a redistribution of total income from high to low income households, or an equal

number of children by household. The results show that the redistribution of income, despite

substantially reducing income inequality, does not translate into a reduction of consumption

inequality. On the other hand, if all households had the same number of children, inequality

would be reduced, and the more children, the largest the reduction.

The rest of the paper is organized as follows. In section 2 I discuss the identification of

the functionals of interest. In section 3 I propose two estimation methods based on different

assumptions of the copula. In section 4 I carry out a Monte Carlo experiment, and in
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section 5 I apply the methodology presented in this paper to the estimation of Engel curves.

Finally, section 6 concludes.

2 Identification

Let Y be the outcome variable of interest, X ≡ (X1 X
′
2)′ be the vector composed by the

treatment, X1, and a set of exogenous covariates, X2, Z ≡ (Z1 X
′
2)′ be the vector composed

by the instrumental variable, Z1 and the exogenous covariates, and U and V be uniformly

distributed random variables that are not observed by the econometrician. These variables

conform the following triangular model:

Y = g (X1, X2, U) (1)

X1 = h (Z1, X2, V ) (2)

U, V |Z ∼ CUV |X2 (3)

where g (·, ·, ·) and h (·, ·, ·) are nonseparable and strictly increasing in their last argument,

and CUV |X2 is the copula of (U, V ), conditional on the vector of exogenous covariates.4 The

Skorohod representation allows us to isolate the endogeneity of the treatment, captured

by the copula, from the structural equations of the outcome and the treatment.5 In this

setup, h (·, ·, ·) represents the conditional quantile function (CQF) of X1, which satisfies

P (X1 ≤ h (Z1, X2, τ) |Z1, X2) = τ , but because of the endogeneity of the treatment, g (·, ·, ·)

represents instead the structural quantile function (SQF) of Y , which is different from its

CQF, and for which P (Y ≤ g (X1, X2, τ) |Z1, X2) = τ .6

4By definition, a copula is the multivariate distribution of (U1, ..., Ud) such that their marginal
distributions are uniformly distributed on the unit interval. Sklar (1959) showed that any multivariate
distribution of the continuously distributed variables X1, ..., Xd there exists a unique cdf C, such that
P (X1 ≤ x1, ..., Xd ≤ xd) = C (F1 (x1) , ..., Fd (xd)).

5The Skorohod representation states that a random variable ϕi can be written in terms of its quantile
function: ϕi = q (Ui), where Ui ∼ U (0, 1).

6See Chernozhukov and Hansen (2013) for a more detailed discussion on the difference between the SQF
and the CQF of Y .
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2.1 Identification of the Actual Distribution of Y

Before focusing on the counterfactual distribution of Y , I consider its actual distribution and

discuss the identification of the different components upon which it depends. Denote the

conditional distribution of Y by FY |Z , and the conditional copula by CU |V X2 . Then,

FY |Z (y|z) =

ˆ
[0,1]2

1 (g (h (z1, x2, v) , x2, u) ≤ y) dCUV |X2 (u, v|x2)

=

ˆ
[0,1]2

1
(
u ≤ g−1 (h (z1, x2, v) , x2, y)

)
dCU |V X2 (u|v, x2) dv

=

ˆ 1

0

CU |V X2

(
g−1 (h (z1, x2, v) , x2, y) |v, x2

)
dv (4)

where 1 (·) is the indicator function. This implies that by conditioning on (V, Z), there is

a bijection between Y and U , given by FY |ZV (y|z, v) = CU |V X (g−1 (h (z1, x2, v) , x2, y) |v, x2).

To better understand this relation, consider the exogenous case, i.e. U and V are independent

of each other, conditional on Z. The conditional copula would simplify to CU |V X2 (u|v, x2) =

u. Moreover, by equation 2, when Z and V are known, so is X1. Thus, it follows

FY |ZV (y|z, v) = g−1 (h (z1, x2, v) , x2, y) = g−1 (x1, x2, y) ≡ u (5)

whereas under endogeneity

FY |ZV (y|z, v) = CU |V X2 (u|v, x2) 6= u (6)

Consequently, the identification of FY |Z requires the identification of three components:

the SQF of Y , the CQF of X1 and the copula of (U, V ) conditional on X2. Identification of

g (·, ·, ·) has been an active area of research, with recent works by D’Haultfœuille and Février

(2015) and Torgovitsky (2015) establishing its identification with a continuous treatment

even when the support of the instrument Z1 are two points. Although the assumptions

required for identification are different, both of them require the instrument to be strongly

exogenous, strict monotonicity and continuity of both g (·, ·, ·) and h (·, ·, ·), and a normalization
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of U . The identification of h (·, ·, ·), was established by Matzkin (2003), and it follows by the

normalization that V is uniformly distributed, the strict monotonicity, and the continuity of

h (·, ·, ·). As for the identification of the copula, it is obtained by inverting the SQF and the

CQF, which is possible by the continuity and the monotonicity of both functions in their

last argument:

U = g−1 (X1, X2, Y )

V = h−1 (Z1, X2, X1)

Hence, it follows that CUV |X2 (u, v|x2) = P (U ≤ u, V ≤ v|z). Finally, to obtain the

unconditional distribution of Y , integrate FY |Z over the actual distribution of Z:

FY (y) =

ˆ 1

0

FY |Z (y|z) dFZ (z) (7)

2.2 Identification of the Counterfactual Distributions of Y

Deriving the unconditional counterfactual distribution of Y under exogeneity (Chernozhukov

et al., 2013) is relatively straightforward, as there is no dependence between the regressors

and the unobservable. With an endogenous treatment there exist conceptually different types

of counterfactuals, and in this paper I differentiate between three of them: those that change

the distribution of X, which is randomly assigned to the population, those that change the

distribution of Z, and those that change the determination of the treatment, i.e. h (·, ·, ·).7

If the policy maker were able to enforce the values of X for each individual (without knowing

their particular values of (u, v)), then the endogeneity would no longer be relevant for the

derivation of the unconditional distribution of Y , which would be given by

F cf
Y (y) =

ˆ
X

ˆ 1

0

1 (g (x1, x2, u) ≤ y) dudF cf
X (x)

7Throughout this paper I denote the counterfactual distributions by adding the superscript cf .
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On the other hand, if the policy maker cannot directly enforce X, but rather Z, then

equations 4 and 7 suggest the appropriate way to obtain the counterfactual distribution:

F cf
Y (y) =

ˆ
Z

ˆ
[0,1]2

1 (g (h (z1, x2, v) , x2, u) ≤ y) dCUV |X2 (u, v|x2) dF cf
Z (z)

Finally, there is the possibility that the policy maker can only partially enforce the

distribution of X by changing the determination of X1. For instance, in a Mincer equation,

if a policy maker decided to set a minimum level of compulsory schooling, it would not

affect those students who would have attained an education level above this cap, but it

would increase the education level of those below it, whose values of their unobservables are

different. In such cases, the copula distribution is necessary to derive the counterfactuals.

Denote by hcf (z1, x2, v) the counterfactual function that determines X1.8 Then,

F cf
Y (y) =

ˆ
Z

ˆ
[0,1]2

1
(
g
(
hcf (z1, x2, v) , x2, u

)
≤ y
)
dCUV |X2 (u, v|x2) dFZ (z)

3 Estimation

I use the sample analogue to estimate the actual and counterfactual distributions of Y .

First I present the estimators of these distributions based on estimators of the SQF of

Y and the conditional copula distribution. Then, I propose two methods to estimate the

latter. For notational simplicity, define SY (u|z, v) ≡ g (h (z1, x2, v) , x2, u), and u (y, z, v) ≡

C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
.

3.1 Estimation of the Actual Distribution of Y

As shown in equations 4 and 7, the distribution of Y depends on three functionals: SY (u|z, v),

CU |V X2 (u|v, x2) and FZ (z). In this paper I work with the following assumptions:

Assumption 1. (yi, x1i, x
′
2i, z1i)

′ are iid for i = 1, ..., n, defined on the probability space
8In the previous example, hcf = max

(
h (z1, x2, v) , xmin

)
.
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(Ω,F ,P) and take values in a compact set.

Assumption 2. Y and X1 have conditional density that is bounded from above and away

from zero, a.s. on compact sets Y and X1, respectively. The copula CUV |X2 (u, v|x2) is

bounded above and away from zero on [0, 1]2, and it is uniformly continuous and differentiable

with respect to its arguments a.e. Moreover, the marginals are uniformly distributed on the

unit interval and therefore cUV |X2 (u, v|x2) = cU |V X2 (u|vx2) = cV |UX2 (v|ux2).

Assumption 3. Let ŜY (u|z, v) and ĈU |V X2 (u|v, x2) respectively denote an estimator of the

structural function of Y given Z and V , and of the conditional copula. These estimators are

strictly monotone in their first argument and jointly asymptotically Gaussian, i.e.

√
n

 ŜY (u|z, v)− SY (u|z, v)

ĈU |V X2 (u|v, x2)− CU |V X2 (u|v, x2)

⇒ GN (u, v, z)

where GN (u, v, z) is a Gaussian process with zero mean and covariance ΣN (u, v, z, ũ, ṽ, z̃).

Let the estimator of FY (y) be given by9

F̂Y (y) =
1

n

n∑
i=1

ˆ
[0,1]2

1
(
ŜY (u|zi, v) ≤ y

)
dĈUV |X2 (u, v|x2i)

=
1

n

n∑
i=1

ˆ 1

0

ĈU |V X2

(
Ŝ−1
Y (y|zi, v) |v, x2i

)
dv (8)

The following theorem characterizes its asymptotic distribution:

Theorem 1. Let assumptions 1 to 3 hold. The asymptotic distribution of F̂Y is given by

√
n
(
F̂Y (y)− FY (y)

)
⇒ GO (y)

where GO (y) ≡
´
Z

´ 1

0
O (y, v, z)GN (u (y, z, v) , v, z) dvdFZ (z) is a Gaussian process, and

9With this estimator, it is straightforward to estimate the unconditional quantile function of Y , or any
other function that depends on FY (y) by plugging in this estimator, as in Chernozhukov et al. (2013).
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O (y, v, z) =
[
−fY |ZV (y|z, v) 1

]
. GO (y) has zero mean and covariance function given by:

ΣO (y, ỹ) =

ˆ
Z2

ˆ
[0,1]2

O (y, z, v) ΣN (u (y, z, v) , v, z, u (ỹ, z̃, ṽ) , ṽ, z̃)O (ỹ, z̃, ṽ)′ dvdṽdFZ (z) dFZ (z̃)

3.2 Estimation of the Counterfactual Distributions of Y

The estimator of the first type of counterfactual, changing the distribution of X exogenously,

fits the framework of Chernozhukov et al. (2013), so the estimator is

F̂ cf
Y (y) =

1

N

N∑
i=1

ˆ 1

0

1
(
ŜY

(
u|xcfi

)
≤ y
)
du (9)

If the policy maker cannot directly fix the distribution of X, but that of Z, then the

estimator actually requires using the copula:

F̂ cf
Y (y) =

1

N

N∑
i=1

ˆ
[0,1]2

1
(
ŜY

(
u|zcfi , v

)
≤ y
)
dĈUV |X2

(
u, v|xcf2i

)
(10)

Regarding the counterfactual in which the policy maker changes the way the treatment

is determined, the estimator is given by

F̂ cf
Y (y) =

1

N

N∑
i=1

ˆ
[0,1]2

1
(
ĝ
(
ĥcf (z1i, x2i, v) , x2i, u

)
≤ y
)
dĈUV |X2 (u, v|x2i) (11)

Notice that these estimators can be used as an argument to estimate other functionals

of interest, such as the unconditional quantile treatment effect, or the Gini index. See

Chernozhukov et al. (2013) for a detailed discussion on those estimators and their asymptotic

properties.

3.3 Estimation of the SQF and the Copula

The estimators of the distribution of Y presented in this paper depend on the estimators

of the SQF of Y and the Copula (U, V ), which need to be estimated in a first step. I
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propose to estimate the former using the instrumental variables quantile regression estimator

(Chernozhukov and Hansen, 2006), and the quantile regression estimator (Koenker and

Bassett, 1978).10 To derive their asymptotic properties, I impose the following regularity

conditions:

Assumption 4.

g (u, x1, x2) = x′β (u)

h (v, z1, x2) = z′γ (v)

where β (u) and γ (v) are uniformly continuous and g and h are strictly increasing in their

first argument.

Assumption 5. For all (τ, θ),
(
β (τ)′ , γ (θ)′

)′ ∈ intB × G, where B × G is compact and

convex.

Assumption 6.

Π (β, ι, γ, τ, θ) ≡ E

(τ − 1
(
Y < X ′β + Φ (τ)′ ι

))
Ψ (τ)

(θ − 1 (X1 < Z ′γ))Z


Π (β, γ, τ, θ) ≡ E

(τ − 1 (Y < X ′β)) Ψ (τ)

(θ − 1 (X1 < Z ′γ))Z


where Ψ (τ) ≡

[
Φ (τ)′ , X ′2

]′, Φ (τ) is a vector a transformation of instruments, Jacobian

matrices ∂
∂(β′,γ′)

Π (β, γ, τ, θ) and ∂

∂(β′
2,ι

′,γ′)
Π (β, ι, γ, τ, θ) are continuous and have full rank,

uniformly over B × I × G × T × C and the image of B × G under the mapping (β, γ) 7→

Π (β, γ, τ, θ) is simply-connected.11

10Chernozhukov and Hansen (2005) does no longer constitute the state of the art in the identification
of a triangular model. Torgovitsky (2015) and D’Haultfœuille and Février (2015) are the two most recent
contributions to this literature and, as far as I know, no estimator of the structural quantile function is
based on the identification results of these two papers. Proposing such an estimator that is also easily
implementable in current applied research is beyond the scope of this paper.

11Notice that I changed Chernozhukov and Hansen (2006) notation and ι denotes the parameter γ in their
paper.
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Assumption 7. wp → 1, the function Φ̂ (τ, z) ∈ F and Φ̂ (τ, z)
p→ Φ (τ, z) uniformly

in (τ, z) over compact sets, where Φ (τ, z) ∈ F ; the functions f (τ, z) ∈ F are uniformly

smooth functions in z with the uniform smoothness order ω > dim
(
(x1, z

′)′
)
/2, and moreover

‖f (τ ′, z)− f (τ, z)‖ < C |τ − τ ′|a, C > 0, a > 0, for all (z, τ, τ ′).

Let β̂ (·) and γ̂ (·) be the IVQR and QR estimators of the parameters of the processes

defined in assumption 4.12 Then, define the following estimator of the SQF:

ŜY (u|z, v) ≡ x̂ (v)′ β̂ (u) =
(
z′γ̂ (v) x2

)
β̂ (u) (12)

This estimator has the following limiting distribution:

Proposition 1. Let ŜY (u|z, v) ≡ x̂ (v)′ β̂ (u) =
(
z′γ̂ (v) x2

)
β̂ (u). Under assumptions 1, 2,

and 4 to 7, the asymptotic distribution of ŜY (u|z, v) is given by:

√
n
(
ŜY (u|z, v)− SY (u|z, v)

)
⇒ GK (u, v, z)

where GK (u, v, z) ≡ K (u, v, z)GJ (u, v) is a Gaussian Process, GJ (u, v) is the joint

asymptotic distribution of the IVQR and QR estimators, a Gaussian process with zero mean

and covariance function ΣJ (u, v, ũ, ṽ), and K (u, v, z) ≡
[
x (v)′ β1 (u) z′

]
. GK (u, v, z) has

zero mean and covariance function given by:

ΣK (u, v, z, ũ, ṽ, z̃) ≡ K (u, v, z) ΣJ (u, v, ũ, ṽ)K (ũ, ṽ, z̃)′

Regarding the copula, I propose two alternative estimators: one parametric and another

nonparametric. Both estimators require the inversion of the quantile processes to obtain the
12For simplicity, in this paper I assume constant weights in the estimation. Generalizing the estimation

to have non-constant weights is straightforward.
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fitted values of (ui, vi) for each individual:

v̂i =

ˆ 1

0

1 (z′iγ̂ (v) ≤ x1i) dv

ûi =

ˆ 1

0

1
(
x′iβ̂ (u) ≤ yi

)
du

For each of the estimators I work with either one of the following two assumptions:

Assumption 8. The copula CUV |X2 (U, V |x2; ξ) is known up to the vector of parameters

ξ ∈ int (R), where R is bounded and of finite dimension. Moreover, its pdf, denoted

by c (u, v|x2; ξ), is three times continuously differentiable with respect to its arguments on

[0, 1]2.13

Assumption 9. The copula CUV (u, v) is independent of X2.

If the copula satisfies assumption 8, estimate the parameters upon which it depends by

Quasi Maximum Likelihood, yielding the vector ξ̂:

ξ̂ = arg max
ξ

1

n
Σn
j=1 log (c (uj, vj|x2; ξ)) +

1

n
Σn
j=1 log

(
c (ûj, v̂j|x2; ξ)

c (uj, vj|x2; ξ)

)
(13)

The first term in equation 13 is the log likelihood function. However, because the actual

values of the copula are not observed, the function that is maximized differs from the actual

log likelihood function by the second term. Finally, the estimator of the copula is given by

ĈUV |X2 (u, v|x2) ≡ CUV |X2

(
u, v|x2; ξ̂

)
(14)

Alternatively, if assumption 9 holds, the nonparametric estimator of the copula is the

sample analog based on the fitted values of (ui, vi):

ČUV (u, v) ≡ 1

n
Σn
i=11 (ûi ≤ u)1 (v̂i ≤ v) (15)

13Notice that this rules out the cases of perfect correlation, since in those, either P (U = u|V = v) =
1 (u = v) or P (U = u|V = v) = 1 (u = 1− v), implying that the joint pdf takes a value of zero in a large
subspace of [0, 1]

2.
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Both estimators of the copula suffer from the unobservability of ui and vi, which requires

the inversion of the estimated quantile processes. If the copula is sufficiently smooth,

both estimators are consistent, although only the parametric estimator can be shown to

be asymptotically Gaussian. On the other hand, the nonparametric estimator of the copula

does not impose the parametric distribution, but it requires the copula to be invariant with

respect to the covariates, which may constitute a strong assumption for some applications.

The asymptotic distribution of the parametric estimator of the copula, together with the

structural quantile function is given by:

Proposition 2. Under assumptions 1, 2, and 4 to 8, the joint asymptotic distribution of

ŜY (u|z, v) and ĈU |V X2 (u|v, x2) is given by

√
n

 ŜY (u|z, v)− SY (u|z, v)

ĈU |V X2 (u|v, x2)− CU |V X2 (u|v, x2)

⇒ GN (u, v, z)

where GN (u, v, z) ≡ N (u, v, z)GM (u, v) is a Gaussian process, GM (u, v) is the joint

asymptotic distribution of the IVQR and QR estimators, and the estimator of the copula

parameters, a Gaussian process with zero mean and covariance matrix ΣM (u, v, ũ, ṽ), and

N (u, v, z) ≡

x (v)′ β1 (u) z′ 0

0 0 ∂
∂ξ
CU |V X2 (u|v, x2; ξ)

. The process GN (u, v, z) has zero

mean and covariance function given by:

ΣN (u, v, z, ũ, ṽ, z̃) ≡ N (u, v, z)′ΣM (u, v, ũ, ṽ)N (ũ, ṽ, z̃)′

Let the estimator of the distribution of Y based on the nonparametric estimator of the

copula be given by

F̌Y |Z (y|z) ≡
ˆ 1

0

1
(
x̂ (v)′ β̂ (u) ≤ y

)
dČUV (u, v) =

1

n
Σn
j=11

(
x̂ (v̂j)

′ β̂ (ûj) ≤ y
)

(16)

The uniform convergence of ČUV (u, v) can be shown to be at a rate
√
n, which in turn

allows to show that F̌Y |Z (y|z) is indeed uniformly consistent at that rate. However, it is not
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possible to obtain asymptotic Gaussianity by the usual arguments: the nonlinearity of the

indicator function prevents us from using the extended continuous mapping theorem, which

is required because (ui, vi) are estimated. This issue could be overcome by using a smooth

function that converges uniformly to the indicator function, but even in this scenario it would

not be possible to establish the asymptotic normality based on theorem 1, as the estimator

of the conditional copula converges at rate slower than
√
n.14 Nevertheless, F̌Y |Z (y|z) is a

uniformly consistent estimator, as shown by the following proposition:

Proposition 3. Let lemma 3 and assumptions 1, 2, 4 to 7, and 9 hold. Then,

sup
y,z

√
n
∣∣F̌Y |Z (y|z)− FY |Z (y|z)

∣∣ = Op (1)

Estimation of the asymptotic variance of the different estimators is feasible, but computationally

cumbersome: many of these variances need to be computed for a large number of values,

making it particularly impractical. For example, ΣO (y, ỹ) would need to be computed for

every possible combination of (yi, yj), for i, j = 1, ..., n, and ΣN (u, v, z, ũ, ṽ, z̃) would require

the computation of an even larger number of combinations of the arguments upon which it

depends. Nevertheless, the estimators of the variance can be found in appendix C.

3.4 Discussion of Alternative Methods and their Validity

The method presented in this paper is not the only one to estimate the counterfactual

distribution when the treatment is endogenous. When the counterfactual involves changing

the distribution of Z, then it is possible to directly estimate the CQF of Y given Z,

i.e. a reduced form regression, and then apply Chernozhukov et al. (2013) to obtain the

counterfactual unconditional distribution of Y . However, this approach does not provide

an estimator of the distribution of the treatment in the counterfactual, which may be of

interest for the policy maker if, for example, the treatment is costly to implement. Moreover,

this strategy is not feasible to implement for the third type of counterfactuals, when the
14See appendix B.8.
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distribution of the treatment is only partially affected. When this type of counterfactuals

are more relevant, such as an increase in compulsory education, this method is not an

alternative to the one proposed in this paper.

Another possibility is to estimate the triangular equation model using a control function

approach, and then estimate the counterfactual distribution of Y based on these estimates.

For example, Lee (2007) proposes a control function quantile regression estimator for the

following triangular model:

Y = Xβ (τ) + Z ′1γ (τ) + U

X = µ (α) + Z ′π (α) + V

The identification of this model is based on different conditions than those considered

in this paper. In particular, he assumes that QU |XZ (τ |x, z) = QU |V (τ |v) ≡ λτ (v), so this

model and the one I use in this paper are not nested, and the joint distribution of U and

V , as defined in this model is not the copula given in equation 3. Martinez-Sanchis et al.

(2012) propose an estimator of the unconditional distribution of Y based on Lee (2007)

estimator.15 This estimator can consistently estimate the actual distribution of Y , and the

counterfactual distribution when the distribution of Z is changed, but it fails to do so when

the distribution of the treatment is partially affected. The reason is that, by definition,

U and V are heteroskedastic in the covariates, and changing the way the determination of

the treatment implies a different conditional distribution of (U, V ) given Z, which is not

captured by the fitted values of (U, V ). On the other hand, the copula is invariant to such

counterfactuals, and it is thus appropriate to estimate the distribution of Y .
15Note that Martinez-Sanchis et al. (2012) do not show the asymptotic distribution of their estimator,

thus not providing a way to carry out uniform inference.
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4 Monte Carlo

To evaluate the finite sample performance of the estimator, I carried out a simulation study

with the following data generating process:

X1i = Z1iγ1 (vi) +X2iγ2 (vi) + γ3 (vi)

Yi = X1iβ1 (ui) +X2iβ2 (ui) + β3 (ui)

where the parameters are given by γ (θ) =
[
4 + 2 tan (θ) , 2 + 3 (θ − 0.5)3 , 4F−1

t5 (θ)
]′
, and

β (τ) =
[
1 + 4 log (1 + τ) , 3 + 4eτ (1 + τ)−1 , 5Φ−1 (τ)

]′
, the instrument and the exogenous

variables are drawn from Z1i ∼ U (1, 3), X2i ∼ U (10, 15), and the copula is drawn from

(ui, vi) ∼ Clayton (2). The sample size equals N = 2000, the number of repetitions is

M = 200 and the quantile grid for both the first and second stage equations estimation was

made out of H = K = 99 evenly spaced quantiles.

Figure 1 shows the scatter plot of the fitted values of (ui, vi) and their actual values, since

they are required to estimate the copula. Both estimates are reasonably close to the 45 degree

line, and therefore to their true values, but the estimates of vi are more accurate than those of

ui. Figure 2 compares the performance of the different estimators of the actual distribution:

the estimator with the parametric copula, the estimator with the nonparametric copula,

the estimator proposed by Martinez-Sanchis et al. (2012), and the estimator proposed by

Chernozhukov et al. (2013) using the reduced form regression of Y on Z. All four estimators

approximate the true distribution reasonably well, as shown in table 1, particularly around

the center of the distribution. Regarding their precision, the parametric estimator performs

slightly worse than the other three. Increasing the number of quantiles used in the estimation

to approximate the integrals results in a better approximation at the tails.16

Now consider a counterfactual in which the policy maker sets a compulsory minimum

treatment, i.e. x1 = max {z′γ (v) , 100}. Figure 3 compares the performance of the two

estimators proposed in this paper and Martinez-Sanchis et al. (2012) estimator in the
16Results available upon request.
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Figure 1: Fitted Values of the Copula Realizations
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Each graph is the scatterplot of the true values of conditional quantiles and their fitted values.

Figure 2: Unconditional CDF Estimators
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In each of the four graphs, the solid line represents the actual distribution of Y , the dashed line represents
the median (pointwise) across repetitions of the estimator, and the dotted line represent the 2.5 and 97.5
percentiles (pointwise) across repetitions. The first estimator uses the parametric estimator of the copula,
the second one uses the nonparametric estimator of the copula, the third one is the estimator proposed by
Martinez-Sanchis et al. (2012), and the fourth one is the estimator proposed by Chernozhukov et al. (2013).

Table 1: Fit of the Copula Distributions
Parametric Nonparametric Martinez et al. CQF (y|z)´

Y

∣∣∣Q0.5

(
F̂Y (y)

)
− FY (y)

∣∣∣ dy 0.002 0.016 0.010 0.013

supy

∣∣∣F̂Y (y)− FY (y)
∣∣∣ 0.010 0.022 0.022 0.031´

Y ∇
0.975
0.025Q

(
F̂Y (y)

)
dy 0.021 0.015 0.014 0.014

supy∇0.975
0.025Q

(
F̂Y (y)

)
0.054 0.042 0.040 0.042

Notes: The first row represents the integral of the difference between the median across repetitions of the estimated counterfactual

cdf and the true cdf; the second row represents the maximum of this difference; the third and fourth rows represent the same

differences between the 97.5 and 2.5 percentiles.
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estimation of the difference between the counterfactual and the actual distributions. The

estimators proposed in this paper do a good job at estimating the counterfactual distribution,

with the true difference of the distributions being inside the 95% confidence bands. However,

the converse is not true for Martinez-Sanchis et al. (2012) estimator, which is particularly

biased at the lower tail of the distribution, i.e. the part of the distribution most affected

by the counterfactual. This is confirmed by difference between the actual counterfactual

distribution and the median estimate across repetitions in table 2. Regarding their accuracy,

it is very similar for all three estimators.

Figure 3: Difference between the Actual and Counterfactual Unconditional CDF Estimators
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In each of the three graphs, the solid line represents the actual distribution of Y , the dashed line represents
the median (pointwise) across repetitions of the estimator, and the dotted line represent the 2.5 and 97.5
percentiles (pointwise) across repetitions. The first estimator uses the parametric estimator of the copula,
the second one uses the nonparametric estimator of the copula, and the third one is the estimator proposed
by Martinez-Sanchis et al. (2012)

Table 2: Fit of the Copula Distributions
Parametric Nonparametric Martinez et al.´

Y

∣∣∣F̂Y (y)− FY (y)
∣∣∣ dy 0.009 0.007 0.042

supy

∣∣∣F̂Y (y)− FY (y)
∣∣∣ 0.031 0.020 0.115´

Y ∇
0.975
0.025Q

(
F̂Y (y)

)
dy 0.210 0.204 0.137

supy∇0.975
0.025Q

(
F̂Y (y)

)
0.337 0.348 0.326

Notes: The first row represents the integral of the difference between the median across repetitions

of the estimated counterfactual cdf and the true cdf; the second row represents the maximum of

this difference; the third and fourth rows represent the same differences between the 97.5 and 2.5

percentiles.
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5 Empirical Application

To illustrate this estimation method, I consider the estimation of Engel curves.17 I evaluate

the effect on the distribution of consumption under different counterfactuals involving a

redistribution of income or a change in the number of children of the different families. I

use the 2012 wave of the Bank of Italy’s Survey of Households’ Income and Wealth (SHIW),

focusing on the subsample of married couples in which the head of family is between 30

and 65 years old, giving us a cross section of size 3238. Following Deaton and Muellbauer

(1980), I model the share of food consumption as a function linear in the logarithm of total

consumption, plus a set of dummies for the number of children in the household,18 and three

macro regions of Italy19 To address the endogeneity between food consumption and total

consumption I instrument the latter using the logarithm of the household’s income.

In line with previous findings in this literature, an increase in total consumption is

associated with a decrease in the share of food consumption, as shown in figure 4. This

effect, however, is far from constant across quantiles, and it is closer to zero at low quantiles

and it increases significantly at high quantiles. Having one child results in an increase of

the food consumption share of about two percentage points, and families with two or more

children see that share increase by almost four percentage points. This effect does not vary

much across quantiles, with the largest variation taking place at quantiles above 0.9. The

precision of the estimates at those quantiles is however quite poor. Geographically, the North

and Center macroregions have a smaller food share consumption than the South and Isles.

Before explicitly stating some counterfactuals and looking at their distributional effects,

let us compare the fit of the estimator of the unconditional cdf of the share of food consumption

when the copula is estimated both parametrically and nonparametrically.20 Figure 5 plots

both estimators, as well as the 95% confidence bands which were computed using the
17The study of the relation between consumption on a particular set of goods and total expenditure,

can be traced back to Engel (1857). Lewbel (2006) describes Engel curves in detail, as well as some of
the challenges in their estimation. For more recent developments in the estimation of Engel curves see, for
example, Blundell et al. (2007) or Battistin and Nadai (2013).

18No children, one child, and at least two children.
19North, Center, and South and Isles.
20The parametric estimator uses a Clayton copula. See appendix D for details on its choice.
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Figure 4: IVQR Estimates
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From left to right, the coefficients shown in the first row are for log consumption, a dummy for households
with one children, and a dummy for households with two or more children, and those in the second row are
dummies for the North and Center regions, and the constant term.

bootstrap. Clearly, the fit of the estimator based on the nonparametric estimator of the

copula is the best. The empirical cdf lies always inside the confidence bands, and it is very

close to the estimator F̌Y (y). On the other hand, the estimator F̂Y (y) fails to be a good fit

at around the center of the distribution and the right tail.

Figure 5: Unconditional CDF of Y
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The solid blue line represents the actual distribution of Y ; the dashed red line represents the median across
repetitions of the estimated distribution of Y with the parametric estimator (left) and the nonparametric
estimator (right); the green dotted lines represent the bootstrapped 2.5 and 97.5 percentiles across repetitions
of the estimated distribution of Y .

Now consider the following counterfactual: a social planner redistributes income among

agents. In particular, each household is taxed a 10% of their income and then they receive

a transfer that is an equal share of the total collected income. This counterfactual would

reduce the Gini index of income from 0.316 to 0.284.21 Figure 6 shows the effect of such
21Notice that this is the Gini index of the subpopulation considered in this exercise, not of the whole
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counterfactual distribution of income on the distribution of food consumption share. The

effect of this policy is so tiny, that the counterfactual distribution is almost indistinguishable

from actual one. To give some numbers to this change, the Gini index of the share of food

consumption would decrease from 0.241 to 0.239 (using the parametric estimator of the

copula), and from 0.221 to 0.219 (using the nonparametric estimator of the copula).22

Figure 6: Counterfactual 1
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The solid blue line represents the estimated distribution of Y ; the dashed red line represents the estimated
distribution of Y with the parametric estimator (left) and the nonparametric estimator (right) of the
counterfactual 1.

A different counterfactual would be to consider the distribution of food share consumption

if all households had the same number of children. Given the classification of households

into households with no children, one child, and two or more children, there are three

more counterfactuals to consider. Figure 7 shows the estimated distribution of food share

consumption for each of the three different counterfactuals. Simple inspection of the figure

reveals that increasing the number of children leads to a right displacement of the distribution

of food share consumption, i.e. an overall increase in food share consumption. This shift,

however, is neither parallel, nor of the same magnitude for each of the counterfactuals.

Table 3 shows the changes in the Gini index. If every couple had no children, then not only

food consumption share would be the lowest, but also the most unequal. On the other hand,

if every couple had at least two children, the inequality would be the minimum attained by

the considered counterfactuals. Notice that these estimates are quite noisy, and the 95%

population.
22The Gini index is not computed for the empirical cdf of the share of food consumption, but for the

estimators F̂Y (y) and F̌Y (y). This is done so to make the counterfactual Gini index comparable to the
factual Gini index in both cases.
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confidence interval of each of the counterfactuals would include the estimated Gini index

with the actual distribution of X.

Figure 7: Counterfactuals 2 to 4
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The solid blue line represents the estimated distribution of Y ; the dashed red line, the dotted green line, and
the dashed-dotted light blue line represent the estimated distributions of Y with the parametric estimator
(left) and the nonparametric estimator (right), of the counterfactuals 2 to 4, respectively.

Table 3: Gini Index Estimates
Actual Counterfactual 2 Counterfactual 3 Counterfactual 4

ĜY (y) 0.241 0.252 0.240 0.233
(0.230, 0.252) (0.239, 0.264) (0.226, 0.253) (0.221, 0.244)

ǦY (y) 0.221 0.233 0.220 0.212
(0.216, 0.229) (0.224, 0.246) (0.212, 0.230) (0.207, 0.222)

Notes: The first row represents the actual and counterfactual Gini indices using the parametric estimator of the

copula, whereas the second row represents the same using the nonparametric estimator of the copula. Bootstrapped

95% confidence intervals reported in parentheses.

6 Conclusions

In this paper I propose an estimator of actual and counterfactual unconditional distribution

functions in the presence of an endogenous continuous treatment with heterogeneous effects.

This estimator is based on the estimators of the quantile processes that characterize a

triangular system of equations, and the estimator of the distribution of the copula that

capture the endogeneity of the treatment. The latter is nonparametrically identified by

inverting the quantile processes of the triangular system, and it can be estimated either

parametrically, resulting in an estimator that is asymptotically Gaussian with the usual
√
n

convergence rate, or nonparametrically using the empirical cdf of the estimated values of
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the copula. I consider three types of counterfactuals: exogenously changing the distribution

of the treatment, exogenously changing the distribution of the instrument, and partially

affecting the distribution of the treatment by changing the way it is determined, i.e. by

affecting the structural relation between the treatment and the instrument.

I show the performance of these estimators in a Monte Carlo simulation, comparing them

to alternative estimators of the unconditional distribution of the outcome variable. In the

empirical application I estimated the Engel curve for food consumption and I considered

four different counterfactuals: the first one involved a redistribution of households’ income;

the other three assumed that every couple had no children, one child, and at least two

children, respectively. The first counterfactual had little impact on the inequality in food

share consumption, whereas the other three showed that, the more children the couples had,

the largest the share of food consumption over total expenditure, and also the most equal

the distribution of food share consumption is.
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Appendix
Let W ≡ (Y,X1, X2, Z1). The following notation is used throughout the appendix:23

f 7→ En [f (W )] ≡ 1

n

n∑
i=1

f (Wi)

f 7→ Gn [f (W )] ≡ 1√
n

n∑
i=1

f (Wi)− E (f (Wi))

f̂ (W,β, ι, γ, τ, θ) ≡

ϕτ (Y −X ′β − Φ̂ (τ)′ ι
)

Ψ̂ (τ)

ϕθ (X1 − Z ′γ)Z


f (W,β, ι, γ, τ, θ) ≡

ϕτ (Y −X ′β − Φ (τ)′ ι
)

Ψ (τ)

ϕθ (X1 − Z ′γ)Z


ĝ (W,β, ι, γ, τ, θ) ≡

ρτ (Y −X ′β − Φ̂ (τ)′ ι
)

Ψ̂ (τ)

ρθ (X1 − Z ′γ)Z


g (W,β, ι, γ, τ, θ) ≡

ρτ (Y −X ′β − Φ (τ)′ ι
)

Ψ (τ)

ρθ (X1 − Z ′γ)Z


Qn (β, ι, γ, τ, θ) ≡ En [ĝ (Y,W, β, ι, γ, τ, θ)]

Q (β, ι, γ, τ, θ) ≡ E [g (Y,W, β, ι, γ, τ, θ)]

ε = Y − X ′β, ε (τ) = Y − X ′β (τ), ε̂ (τ) = Y − X ′β̂ (τ), η = X1 − Z ′γ, η (θ) = X1 −

Z ′γ (θ), η̂ (θ) = X1 − Z ′γ̂ (θ), Ψ (τ) ≡
(
Φ (τ)′ , X2

)′, Ψ̂ (τ) ≡
(

Φ̂ (τ)′ , X2

)′
, Φ (τ) ≡ Φ (τ, Z),

Φ̂ (τ) ≡ Φ̂ (τ, Z), ϕτ (u) ≡ (1 (u < 0)− τ), ρτ (u) ≡ (τ − 1 (u < 0))u, and `j (u, v, ξ) ≡

log (c (u, v|x2j; ξ)).
23Some of this notation is the standard in the literature of empirical processes. See van der Vaart (2000).
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A Mathematical Proofs

A.1 Proof of Theorem 1

Begin by showing the asymptotic distribution of F̂Y |Z (y|z), for which I add and subtract the

unfeasible estimator: F̃Y |Z (y|z) ≡
´

[0,1]2
1
(
ŜY (u|z, v) ≤ y

)
dCUV |X2 (u, v|x2).

√
n
(
F̂Y |Z (y|z)− FY |Z (y|z)

)
=
√
n
(
F̂Y |Z (y|z)− F̃Y |Z (y|z)

)
+
√
n
(
F̃Y |Z (y|z)− FY |Z (y|z)

)
The first term can be expressed as

√
n
(
F̂Y |Z (y|z)− F̃Y |Z (y|z)

)
=
√
n

ˆ 1

0

[
ĈU |V X2

(
Ŝ−1
Y (y|z, v) |v, x2

)
− CU |V X2

(
Ŝ−1
Y (y|z, v) |v, x2

)]
dv

=
√
n

ˆ 1

0

[
ĈU |V X2

(
S−1
Y (y|z, v) |v, x2

)
− CU |V X2

(
S−1
Y (y|z, v) |v, x2

)]
dv + o∗P (1)

where I have used the extended continuous mapping theorem, the uniform continuity

of CUV |X2 (u, v|x2), and the uniform consistency of ŜY (y|z, v). As for the second term, by

assumption 3, lemmas 1 and 2, the functional chain rule, the extended continuous mapping

theorem and the functional delta method

√
n
(
F̃Y |Z (y|z)− FY |Z (y|z)

)
=
√
n

ˆ 1

0

[
CU |V X2

(
Ŝ−1
Y (y|z, v) |v, x2

)
− CU |V X2

(
S−1
Y (y|z, v) |v, x2

)]
dv

= −
√
n

ˆ 1

0

fY |ZV (y|z, v)
[
ŜY (u (y, z, v) |z, v)− SY (u (y, z, v) |z, v)

]
dv + o∗P (1)

Therefore,

√
n
(
F̂Y |Z (y|z)− FY |Z (y|z)

)
⇒
ˆ 1

0

N (y, z, v)GM (u (y, z, v) , z, v) dv
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By assumption 1 and the functional delta method,

√
n
(
F̂Y (y)− FY (y)

)
⇒
ˆ
Z

ˆ 1

0

N (y, z, v)GM (u (y, z, v) , z, v) dvdFZ (z)

�

A.2 Proof of Proposition 1

Start by expanding
√
n
(
ŜY (u|z, v)− SY (u|z, v)

)
around (γ (v) , β (u))

√
n
(
ŜY (u|z, v)− SY (u|z, v)

)
=
√
n
[
x (v)′

(
β̂ (u)− β (u)

)
+ (x̂ (v)− x (v))′ β̂ (u)

]
=
√
n
[
x (v)′

(
β̂ (u)− β (u)

)
+ β1 (u) z′ (γ̂ (v)− γ (v))

]
+ o∗P (1)

By lemma 3 and the functional delta method it follows that

√
n
(
x̂ (v)′ β̂ (u)x (v)′ β (u)

)
⇒ GK (u, v, z)

�

A.3 Proof of Proposition 2

For the estimator of the copula I have that

√
n
(
ĈU |V X2 (u|v, x2)− CU |V X2 (u|v, x2)

)
≡
√
n
(
CU |V X2

(
u|v, x2; ξ̂

)
− CU |V X2 (u|v, x2; ξ)

)
=

∂

∂ξ
CU |V X2

(
u|v, x2; ξ

)√
n
(
ξ̂ − ξ

)
=

∂

∂ξ
CU |V X2 (u|v, x2; ξ)

√
n
(
ξ̂ − ξ

)
+ o∗P (1)

where the first equality follows by a mean value expansion around ξ, and the second by the

consistency of ξ̂ and the continuous mapping theorem. Together with proposition 1, apply
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the functional delta method to lemma 6 and it follows that

√
n

 ŜY (u|z, v)− SY (u|z, v)

ĈU |V X2 (u|v, x2)− CU |V X2 (u|v, x2)

⇒ GN (u, v, z) = N (u, v, z)GM (u, v)

�

A.4 Proof of Proposition 3

sup
y,z

√
n
∣∣F̌Y (y|z)− FY (y|z)

∣∣
≤ sup

y,z

√
n
∣∣∣F̌Y |Z (y|z)− F̃Y |Z (y|z)

∣∣∣+ sup
y,z

√
n
∣∣∣F̃Y |Z (y|z)− FY |Z (y|z)

∣∣∣
= sup

y,z

√
n

∣∣∣∣ˆ 1

0

1
(
ŜY (u|z, v) ≤ y

)
d
(
ČUV (u, v)− CUV (u, v)

)∣∣∣∣+O∗P (1)

≤
√
n

ˆ 1

0

d
∣∣ČUV (u, v)− CUV (u, v)

∣∣+O∗P (1)

≤ sup
u,v

√
n
∣∣ČUV (u, v)− CUV (u, v)

∣∣+O∗P (1) = O∗P (1)

where the first inequality follows from the triangle inequality, the first equality from the

definition of the estimators and the uniform consistency of F̃Y |Z (y|z) shown in theorem 1,

the second inequality from the fact that the indicator function is no larger than one, the

third inequality by taking the supremum of the difference, and the last equality by lemma 7.

�
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B Auxiliary Lemmas

B.1 Hadamard Derivative of FY |ZV (y|z, v) with Respect to SY (u|z, v)

Lemma 1. Define FY (y|z, v, ht) ≡
´ 1

0
1 (SY (u|z, v) + tht (u|z, v) ≤ y) dCU |V X2 (u|v, x2) .

Under assumption 2, as t↘ 0,

Dht (y|z, v, ht) =
FY |ZV (y|z, v, ht)− FY |ZV (y|z, v)

t
→ Dh (y|z, v)

where Dh (y|z, v) ≡ −fY |ZV (y|z, v)h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
. The convergence

holds uniformly in any compact subset of YZV for any ht : ‖ht − h‖∞ → 0, where YZV ≡

{(y, z, v) : y ∈ Yz, z ∈ Z, v ∈ [0, 1]} and ht ∈ `∞ (UZV) and h ∈ C (UZV).

Proof. ∀δ > 0∃ε > 0 such that if u ∈ Bε

(
C−1
U |V X2

(FY (y|z, v) |v, x2)
)
and t ≥ 0 small enough,

1 (SY (u|z, v) + tht (u|z, v) ≤ y)

≤ 1
(
SY (u|z, v) + t

[
h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
− δ
]
≤ y
)

and if u /∈ Bε

(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

))

1 (SY (u|z, v) + tht (u|z, v) ≤ y) = 1 (SY (u|z, v) ≤ y)

So for small enough t ≥ 0,

1
t

´ 1

0
[1 (SY (u|z, v) + tht (u|z, v) ≤ y)− 1 (SY (u|z, v) ≤ y)]CU |V X2 (u|v, x2) du

≤ 1
t

´
Bε(FY (y|z,v))

[1 (SY (u|z, v) + tht (u|z, v) ≤ y)− 1 (SY (u|z, v) ≤ y)]CU |V X2 (u|v, x2) du

(17)

Let ỹ = SY (u|z, v), so that u = C−1
U |V X2

(
FY |ZV (ỹ|z, v, ) |v, x2

)
and J be the image of
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Bε

(
FY |ZV (y|z, v)

)
under u→ SY (u|z, v). Then, equation 17 equals

1

t

ˆ
J∩[y,y−t(h(FY |ZV (y|z,v)|z,v)−δ)]

fY |ZV (ỹ|z, v) dỹ

For fixed ε and t↘ 0

J ∩
[
y, y − t

(
h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
− δ
)]

=
[
y, y − t

(
h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
− δ
)]

fY |ZV (ỹ|z, v)→ fY |ZV (y|z, v)

as FY |ZV (ỹ|z, v) → FY |ZV (y|z, v). Therefore, the right hand term in equation 17 is no

greater than

−fY |ZV (y|z, v)
(
h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
− δ
)

+ o (1)

Similarly, −fY |ZV (y|z, v)
(
h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
+ δ
)

+o (1) bounds equation 17

from below. Since δ can be arbitrarily small, the result follows.

To show uniformity of this result, apply Lemma 5 in Chernozhukov et al. (2013). Let

(y, z, v) ∈ K, where K is a compact subset of YZV . Take a sequence (yt, zt, vt) in K that

converges to (y, z, v) ∈ K, since the function

(y, z, v) 7→ −fY (y|z, v)h
(
C−1
U |V X2

(
FY |ZV (y|z, v) |v, x2

)
|z, v

)
is uniformly continuous on K it follows that the preceding argument applies to this sequence.

This result follows by the assumed continuity of h (u|z, v), FY |ZV (y|z, v) and fY |ZV (y|z, v)

in all of its arguments, and the compactness of K.
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B.2 Hadamard Derivative of FY |Z (y|z) with Respect to FY |Z (y|z, v)

Lemma 2. Define FY |Z (y|z, ht) ≡
´ 1

0

[
FY |Z (y|z, v) + tht (y|z, v)

]
dv. As t↘ 0,

Dht (y|z, ht) =
FY |Z (y|z, ht)− FY |Z (y|z)

t
→ Dh (y|z)

where Dh (y|z) ≡
´ 1

0
h (y|z, v) dv. The convergence holds uniformly in any compact subset

of YZ ≡ {(y, z) : y ∈ Yz, z ∈ Z, } for any ht : ‖ht − h‖∞ → 0, where ht ∈ `∞ (UZ) and

h ∈ C (UZ).

Proof.

Dht (y|z, ht) =
FY |Z (y|z, ht)− FY |Z (y|z)

t

=
1

t

ˆ 1

0

[
FY |Z (y|z, v) + tht (y|z, v)− FY |Z (y|z, v)

]
dv

=

ˆ 1

0

ht (y|z, v) dv →
ˆ 1

0

h (y|z, v) dv

B.3 Asymptotic Distribution of the IVQR and QR Estimators

The proof of the following lemma is an extension of the proof in Chernozhukov and Hansen

(2006) to account for the joint distribution of both estimators.

Lemma 3. Let γ̂ (v) and β̂ (u) denote the conditional QR and conditional IVQR estimators

of quantiles v and u of equations 2 and 1, respectively. Under assumptions 1, 2 and 4 to 7,

their joint asymptotic distribution is given by:

√
n

β̂ (u)

γ̂ (v)

−
β (u)

γ (v)

⇒ GJ (u, v)

where GJ (u, v) is a zero-mean Gaussian process with covariance function ΣJ (u, v, ũ, ṽ),
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given by:

ΣJ (u, v, ũ, ṽ) =

Σ11
J (u, ũ) Σ21

J (u, ṽ)′

Σ21
J (ũ, v) Σ22

J (v, ṽ)


where

Σ11
J (u, ũ) ≡ J (u)−1 (u ∨ ũ− uũ)E [Ψ (u, z) Ψ (ũ′, z)] J (ũ)−1

Σ21
J (ũ, v) ≡ H (v)−1 E

[
(1 (y ≤ x′β (ũ))1 (x1 ≤ z′γ (v))− ũv) zΨ (ũ, z)′

]′
J (ũ)−1

Σ22
J (v, ṽ) ≡ H (v)−1 (v ∨ ṽ − vṽ)E [zz′]H (ṽ)−1

H (v) ≡ E [fX1 (z′γ (v) |z) zz′]

J (u) ≡ E [fY (x′β (u) |x, z1) Ψ (u, z)x′]

Proof. Step 1 (Consistency) By assumption 2, Q (β, ι, γ, τ, θ) is continuous over B×I×G×

T × C. Furthermore, by lemma 5, sup(β,ι,γ)∈B×I×G ‖Qn (β, ι, γ, τ, θ)−Q (β, ι, γ, τ, θ)‖ p→ 0.

By lemma 4, have uniform convergence of sup(β1,τ,θ)∈B1×T ×C

∥∥∥ϑ̂ (β1, τ, θ)− ϑ (β1, τ, θ)
∥∥∥ p→

0, which by lemma 4 implies that sup(β1,τ)∈B1×T

∥∥∥‖ι̂ (β1, τ)‖B1(τ) − ‖ι (β1, τ)‖B1(τ)

∥∥∥ p→ 0.

By lemma 4, supτ∈T

∥∥∥β̂1 (τ)− β1 (τ)
∥∥∥ p→ 0, and therefore supτ∈T

∥∥∥β̂2 (τ)− β2 (τ)
∥∥∥ p→ 0,

supτ∈T

∥∥∥ι̂(β̂1 (τ) τ
)
− 0
∥∥∥ p→ 0 and supθ∈C ‖γ̂ (θ)− γ (θ)‖ p→ 0.

Step 2 (Asymptotics) Consider a collection of closed balls Bδn (β1 (τ)) centered at

β1 (τ)∀τ , δn independent of τ and δn → 0 slowly enough. Let β1n (τ) be any value inside

Bδn (β (τ)). By Theorem 3.3 in Koenker and Bassett (1978),

O

(
1√
n

)
=
√
nEf̂

(
W,β1n (·) , ϑ̂ (β1n (·) , ·, ··) , ·, ··

)
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By lemma 5, the following expansion holds for any supτ∈T ‖β1n (τ)− β1 (τ)‖ p→ 0

O

(
1√
n

)
= Gnf̂

(
W,β1n (·) , ϑ̂ (β1n (·) , ·, ··) , ·, ··

)
+
√
nEf̂

(
W,β1n (·) , ϑ̂n (β1n (·) , ·, ··) , ·, ··

)
= Gnf̂ (W,β1 (·) , ϑ (β1 (·) , ·, ··) , ·, ··) + oP (1)

+
√
nEf̂

(
W,β1n (·) , ϑ̂n (β1n (·) , ·, ··) , ·, ··

)
in `∞ (T × C)

= Gnf̂ (W,β1 (·) , ϑ (β1 (·) , ·, ··) , ·, ··) + oP (1)

+ (Jϑ (·, ··) + oP (1))
√
n
(
ϑ̂ (β1n (·) , ·, ··)− ϑ (·, ··)

)
+ (Jβ1 (·) + oP (1))

√
n (β1n (·)− β1 (·)) in `∞ (T × C)

where

Jϑ (·, ··) ≡ ∂

∂ (β′2, ι
′, γ′)

E

ϕ· (Y −X ′1β1 (·)−X ′2β2 − Φ (·)′ ι
)

Ψ (·)

ϕ·· (X1 − Z ′γ) z

∣∣∣∣∣∣
ϑ=ϑ(·,··)

Jβ1 (·) ≡

 ∂
∂β1

E [ϕ· (Y −X ′1β1 −X ′2β2 (·)) Ψ (·)]
∣∣∣
β1=β1(·)

0dim(X )×1


For any supτ∈T ‖β1n (τ)− β1 (τ)‖ p→ 0

√
n
(
ϑ̂ (β1n (·) , ·, ··)− ϑ (·, ··)

)
= −J−1

ϑ (·, ··)Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··)

− J−1
ϑ (·, ··) Jβ1 (·) [1 + oP (1)]

√
n (β1n (·)− β1 (·)) + oP (1)

in `∞ (T × C). So I have

√
n (ι̂ (β1n (·) , ·)− 0)− J̄ι (·, ··)Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··)− J̄ι (·, ··) Jβ1 (·) [1 + oP (1)]

in `∞ (T × C), where
[
J̄β2 (·, ··)′ : J̄ι (·, ··)′ : J̄γ (·, ··)′

]
is the comfortable partition of J−1

ϑ (·, ··).
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By step 1, wp→ 1,

β̂1 (τ) = arg inf
β1n(τ)∈Bn(β1(τ))

‖ι̂ (β1n (τ) , τ)‖B1(τ) ∀τ ∈ T

By lemma 5, Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··) = Op (1), so it follows that

√
n ‖ι̂ (β1n (·) , ·)‖B1(·) =

∥∥Op (1)− J̄ι (·, ··) Jβ1 (·) [1 + oP (1)]
√
n (β1n (·)− β1 (·))

∥∥
B1(·)

in `∞ (T × C). Hence,

√
n
(
β̂1 (·)− β1 (·)

)
= arg inf

µ∈R

∥∥−J̄ι (·)Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··)− J̄ι (·, ··) J̄β1 (·)µ
∥∥
B1(·)

+ oP (1)

in `∞ (T × C). So jointly in `∞ (T × C)

√
n
(
β̂1 (·)− β1 (·)

)
= −

(
Jβ1 (·)′ J̄ι (·, ··)′B1 (·) J̄ι (·, ··) Jβ1 (·)

)−1

·
(
Jβ1 (·)′ J̄ι (·, ··)′B1 (·) J̄ι (·, ··)

)
Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··) + oP (1)

= Op (1)

√
n
(
ϑ̂
(
β̂1 (·) , ·, ··

)
− ϑ (·, ··)

)
= −J−1

ϑ (·, ··)
[
I − Jβ1 (·)

(
Jβ1 (·)′ J̄ι (·, ··)′B1 (·) J̄ι (·, ··) Jβ1 (·)

)−1 (18)

· Jβ1 (·)′ J̄ι (·, ··)′B1 (·) J̄ι (·, ··)
]
Gnf (Y,W, β1 (·) , ϑ (·, ··) , ·, ··) + oP (1) = OP (1)
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Due to invertibility of Jβ1 (τ) J̄ (τ, θ),

√
n
(
ι̂
(
β̂1 (·) , ·

)
− 0
)

= −J̄ι (·, ··)
[
I − Jβ1 (·)

[
Jβ1 (·)′ J̄ι (·, ··)′

]−1
J̄ι (·, ··)

]
Gnf (W,β1 (·) , ϑ (·, ··) , ·, ··) + oP (1)

= 0×OP (1) + oP (1) (19)

in `∞ (T × C). Because
(
β1n (·) , ϑ̂ (β1n (·) , ·, ··)

)
=
(
β̂1 (·) , β̂2 (·) , 0 + oP

(
1√
n

)
, γ̂ (··)

)
, and

if I substitute it into the expansion, I have:

−Gnf (W,β1 (·) , ϑ (·, ··) , ·, ··) =

 J (·) 0dim(X )

0dim(X ) H (··)

√n
 β̂ (·)− β (·)

γ̂ (··)− γ (··)

+ oP (1)

in `∞ (T × C). By lemma 5, Gnf (W,β1 (·) , ϑ (·, ··) , ·, ··) ⇒ GG (·, ··) in `∞ (T × C), a

Gaussian process with covariate function S (τ, θ, τ ′, θ′) = E
[
GG (τ, θ)GG (τ ′, θ′)′

]
, which

yields

√
n

 β̂ (·)− β (·)

γ̂ (··)− γ (··)

⇒
J (·)−1 0dim(X )

0dim(X ) H (·)−1

G (·, ··) = GJ (τ, θ) in `∞ (T × C)

B.4 Argmax Process

Lemma 4. (Chernozhukov and Hansen, 2004) suppose that uniformly in π in a compact

set Π and for a compact set K (i) Zn (π) is s.t. Qn (Zn (π) |π) ≥ supz∈K Qn (z|π)−εn, ε↘ 0;

Zn (π) ∈ K wp → 1, (ii) Z∞ (π) ≡ arg supz∈K Q∞ (z|π) is a uniquely defined continuous

process in `∞ (Π), (iii) Qn (·|·) p→ Q∞ (·|·) in `∞ (K × Π), where Q∞ (·|·) is continuous.

Then Zn (·) = Z∞ (·) + oP (1) in `∞ (Π)

Proof. See Chernozhukov and Hansen (2005).
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B.5 Stochastic Expansion

Lemma 5. Under assumptions 1 and 4 to 7, the following statements hold:

1. sup(β,ι,γ)∈B×I×G |En [ĝ (W,β, ι, γ, τ, θ)]− E [g (W,β, ι, γ, τ, θ)]| = oP (1)

2. Gnf (W,β (·) , 0, γ (··) , ·, ··) ⇒ GG (·, ··) in `∞ (T , C), where GG is a Gaussian process

with covariance function S ((τ, θ) , τ ′, θ′) defined below in the proof.

Furthermore, for any sup(τ,θ)∈T ×C

∥∥∥(β̂ (τ) , ι̂ (τ) , γ̂ (θ)
)
− (β (τ) , 0, γ (θ))

∥∥∥ = oP (1),

sup(τ,θ)∈T ×C

∥∥∥Gnf̂
(
W, β̂ (τ) , ι̂ (τ) , γ̂ (θ) , τ, θ

)
−Gnf (W,β (τ) , 0, γ (θ) , τ, θ)

∥∥∥ = oP (1)

Proof. Let π = (β, ι, γ) and Π = B × I × G, where I is a closed ball around 0. Define the

class of functions H as

H ≡

h = (Φ,Ψ, π, τ, θ) 7→

ϕτ (Y −X ′β − Φ (Z)′ ι
)

Ψ (Z)

ϕθ (X1 − Z ′γ)Z

 π ∈ Π,Φ,Ψ ∈ F


where F is the class of uniformly smooth functions in z with the uniform smoothness

order ω < dim(w)
2

and ‖f (τ ′, z)− f (τ, z)‖ < C (τ − τ ′)a , C > 0, a > 0 ∀ (z, τ, τ ′)∀f ∈ F . H

is Donsker, and the bracketing number of F , by Corollary 2.7.4 in van der Vaart and Wellner

(1996) satisfies

logN[·] (ε,F , L2 (P )) = O
(
ε−

dim(z)
ω

)
= O

(
ε−2−δ′

)
for some δ′ < 0. Therefore, F is Donsker with a constant envelope. By Corollary 2.7.4

in van der Vaart and Wellner (1996), the bracketing number of

D1 ≡
{

(Φ, π)→
(
X ′β + Φ (X,Z)′ ι

)
, π ∈ Π,Φ ∈ F

}
satisfies

logN[·] (ε,X , L2 (P )) = O
(
ε−

dim(w)
ω

)
= O

(
ε−2−δ′′

)
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for some δ′′ < 0. Also, by Corollary 2.7.4 in van der Vaart and Wellner (1996), the

bracketing number of

D2 ≡ {(π)→ (Z ′γ) , π ∈ Π}

satisfies

logN[·] (ε,D2, L2 (P )) = O
(
ε−

dim(z)
ω

)
= O

(
ε−2−δ′′′

)
for some δ′′′ < 0 such that δ′′′ < δ′′. Since the indicator function is bounded and

monotone, and the density functions fY |X1Z (y) and fX1|Z (x1) are bounded by assumption 2,

then I have that the bracketing number of

E ≡
{

(Φ, π)→ 1
(
Y < X ′β + Φ (X,Z)′ ι

)
+ 1 (X1 < Z ′γ) , π ∈ Π,Φ ∈ F

}
satisfies

logN[·] (ε, E , L2 (P )) = O
(
ε−2−δ′′

)
Since E has a constant envelope, it is Donsker. Let T ≡ {τ → τ} and C ≡ {θ 7→ θ}.

Then I have that H ≡ T ×F + C ×F − E ×F . Since H is Lipschitz over (T × C × F × E),

it follows that it is Donsker by Theorem 2.10.6 in van der Vaart and Wellner (1996).

Define

h ≡ (Φ,Ψ, π, τ, θ) 7→ Gn

ϕτ (ε− Φ (Z)′ ι
)

Ψ (Z)

ϕθ (η)Z)
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h is Donsker in `∞ (H). Consider the process

(τ, θ) 7→ Gn

ϕτ (ε− Φ (Z)′ ι
)

Ψ (Z)

ϕθ (η)Z


By the uniform Hölder continuity of (τ, θ) 7→

(
τ, β (τ)′ ,Φ (τ, Z)′ ,Ψ (τ, Z)′ , θ, γ (θ)′

)′ in
(τ, θ) with respect to the supremum norm, it is also Donsker in `∞ (H). Therefore, I have

Gn

ϕ· (ε (·)) Ψ (·, Z)

ϕ·· (η (··))Z

⇒ GG (·, ··)

with covariate function

S (τ, θ, τ ′, θ′) = E
[
GG (τ, θ)GG (τ ′, θ′)

′] ≡
S11 (τ, τ̃) S21

(
τ, θ̃
)′

S21 (τ̃ , θ) S22
(
θ, θ̃
)


where

S11 (τ, τ̃) = (τ ∨ τ̃ − τ τ̃)E
[
Ψ (τ, Z) Ψ (τ̃ , Z)′

]
S21 (τ̃ , θ) = E

[
(1 (y ≤ x′β (τ̃))1 (x1 ≤ z′γ (θ))− τ̃ θ)ZΨ (τ̃ , Z)′

]
S22
(
θ, θ̃
)

=
(
θ ∨ θ̃ − θθ̃

)
E [ZZ ′]

Since Ψ̂ (·) p→ Ψ (·), and Φ̂ (·) p→ Φ (·) uniformly over compact sets and π̂ (τ, θ)
p→ π (τ, θ)

uniformly in (τ, θ). δn ≡ sup(τ,θ)∈T ×C ξ (h′ (τ, θ) , h (τ, θ))| p→ 0 by assumptions 6 and 7, for

h′ (τ, θ) = ĥ (τ, θ), where

ξ (h, h′) ≡

√√√√√√E

∥∥∥∥∥∥
ρτ (ε− Φ (Z)′ ι

)
Ψ (Z)

ρθ (η)Z

−
ρτ̃ (ε̃− Φ̃ (Z)′ ι̃

)
Ψ̃ (Z)

ρθ̃ (η̃) Z̃

∥∥∥∥∥∥
2
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As δn
p→ 0

sup
(τ,θ)

∥∥∥∥∥∥ Gn

ρτ (ε̂ (τ)− Φ̂ (τ, Z)′ ι̂ (τ)
)

Ψ̂ (τ, Z)

ρθ (η̂ (θ))Z

−Gn

ρτ (ε (τ)− Φ (τ, Z)′ ι (τ)
)

Ψ (τ, Z)

ρθ (η (θ))Z

∥∥∥∥∥∥
≤ sup

ξ(h̃,h)≤δn,h̃,h∈H

∥∥∥∥∥∥Gn

ρτ (ε− Φ̃ (Z)′ ι̃
)

Ψ̃ (Z)

ρθ (η)Z

Gn

ρτ (ε− Φ (Z)′ ι
)

Ψ (Z)

ρθ (η)Z

∥∥∥∥∥∥ = oP (1)

by stochastic equicontinuity of h 7→ Gn

ρτ (ε− Φ (Z)′ ι
)

Ψ (Z)

ρθ (η)Z

, which proves claim 2.

To prove claim 1, define

A ≡

(Φ, β, ι, γ, τ, θ) 7→

ρτ (ε− Φ (Z)′ ι
)

ρθ (η)


This class of functions is uniformly Lipschitz over (F × B × I × G × T × C) and bounded

by assumption 4, so by Theorem 2.10.6 in van der Vaart and Wellner (1996), A is Donsker.

Therefore, the following Uniform Law of Large Numbers hold:

sup
h∈H

∣∣∣∣∣∣En
ρτ (ε− Φ (Z)′ ι

)
ρθ (η)

− E

ρτ (ε− Φ (Z)′ ι
)

ρθ (η)

∣∣∣∣∣∣ p→ 0

which gives,

sup
(β,ι,γ,τ,θ)

∣∣∣∣∣∣En
ρτ (ε− Φ̃ (τ, Z)′ ι

)
ρθ (η)

− E

ρτ (ε− Φ̃ (τ, Z)′ ι
)

ρθ (η)

∣∣∣∣∣∣
Φ̃=Φ̂

p→ 0

By uniform consistency of Φ̂ (·) and assumption 7, I have that

sup
(β,ι,γ,τ,θ)

∣∣∣∣∣∣E
ρτ (ε− Φ̃ (τ, Z)′ ι

)
ρθ (η)

− E

ρτ (ε− Φ (τ, Z)′ ι
)

ρθ (η)

∣∣∣∣∣∣ p→ 0
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which implies claim 1.

B.6 Asymptotic Distribution of the IVQR and QR Estimators and

the Estimator of the Copula Parameters

Lemma 6. Under assumptions 1, 2, and 4 to 8,

√
n


β̂ (u)− β (u)

γ̂ (v)− γ (v)

ξ̂ − ξ

⇒ GM (u, v)

where GM (u, v) is a Gaussian process with covariance matrix ΣM (u, v, ũ, ṽ) equal to

ΣM (u, v, ũ, ṽ) ≡

ΣJ (u, v, ũ, ṽ) Σ21
M (u, ṽ)′

Σ21
M (ũ, v) Σξ



Σ21
M (u, v) = H−1

1 E

∂`j (uj, vj, ξ)

∂ξ

(1 (yj ≤ x′jβ (u)
)
− u
)

Ψ (u, zj)
′ J (u)−1(

1
(
x1j ≤ z′jγ (v)

)
− v
)
z′jH (v)−1


+H−1

1 E
[
∂2`j (uj, vj, ξ)

∂ξ∂ (u, v)
M (yj, x1j, zj) ΣJ (u, v, uj, vj)

]

where the expectation is taken with respect to FZ (zj)CUV |X2 (uj, vj|x2j; ξ), and where I have

used M (yj, x1j, zj) ≡ −

gY (yj|xj)x′j 0

0 fX1 (x1j|zj) z′j

, Σξ ≡ H−1
1 (H1 +H2)H−1

1 , and

H1 ≡ E
[
−∂

2`j (uj, vj, ξ)

∂ξ∂ξ′

]
H2 ≡ E

[
∂2`j (uj, vj, ξ)

∂ξ∂ (u, v)
M (yj, x1j, zj) ΣJ (uj, vj, uh, vh)M (yj, x1j, zj)

′ ∂
2`h (uh, vh, ξ)

∂ (u, v)′ ∂ξ′

]

Proof. Begin by writing ξ̂ in terms of the influence function. To do so, apply the mean value
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theorem to the score:

0 = En

∂`j
(
ûj, v̂j, ξ̂

)
∂ξ

 = En
[
∂`j (ûj, v̂j, ξ)

∂ξ

]
+ En

[
∂2`j

(
ûj, v̂j, ξ

)
∂ξ∂ξ′

](
ξ̂ − ξ

)

where ξ lies between ξ̂ and ξ. Rearranging the previous equation yields

√
n
(
ξ̂ − ξ

)
=

[
En

[
∂2`j

(
ûj, v̂j, ξ

)
∂ξ∂ξ′

]]−1
√
nEn

[
∂`j (ûj, v̂j, ξ)

∂ξ

]
(20)

Now show the uniform convergence of the Hessian:

∣∣∣∣∣∂2`j
(
ûj, v̂j, ξ

)
∂ξ∂ξ′

− ∂2`j (uj, vj, ξ)

∂ξ∂ξ′

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∇

3`j

(
uj, vj, ξ

)
ûj − uj

v̂j − vj

ξ − ξ


∣∣∣∣∣∣∣∣∣

=
∣∣∣∇3`j

(
uj, vj, ξ

)∣∣∣
∣∣∣∣∣∣∣∣∣


ûj − uj

v̂j − vj

ξ − ξ


∣∣∣∣∣∣∣∣∣

≤ K · o∗P (1) = o∗P (1)

where ∇3`j (u, v, ξ) is a three dimensional array whose (i, j, k) element is the partial

derivative of log (c (u, v|xj; ξ)) with respect to the ith element of ξ, its jth element of ξ and

its kth element of (u, v, ξ′)′. The first equality follows by the mean value theorem, and the

last equality follows by assumptions 2 and 8. Using this result,

∣∣∣∣En [∂2`j (ûj, v̂j, ξ)

∂ξ∂ξ′

]
− E

[
∂2`j (uj, vj, ξ)

∂ξ∂ξ′

]∣∣∣∣
≤ En

∣∣∣∣∂2`j (ûj, v̂j, ξ)

∂ξ∂ξ′
− ∂2`j (uj, vj, ξ)

∂ξ∂ξ′

∣∣∣∣+

∣∣∣∣En [∂2`j (uj, vj, ξ)

∂ξ∂ξ′

]
− E

[
∂2`j (uj, vj, ξ)

∂ξ∂ξ′

]∣∣∣∣
= o∗P (1)

where the inequality follows by the triangular inequality, the first term is o∗P (1) by the
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argument above, and the second term by uniform law of large numbers. Then, show the

asymptotic distribution of
√
nEn

[
∂`j(ûj ,v̂j ,ξ)

∂ξ

]
. Apply the mean value theorem to (ûj, v̂j) for

all j = 1, ..., n.

√
nEn

[
∂`j (ûj, v̂j, ξ)

∂ξ

]
= Gn

[
∂`j (uj, vj, ξ)

∂ξ

]
+
√
nEn

∂2`j (uj, vj, ξ)

∂ξ∂ (u, v)

ûj − uj
v̂j − vj

 (21)

The first term is simply the usual term that appears in the maximization of the log

likelihood function, and the second term takes into account that (uj, vj) are estimated, but

not observed. Leaving aside the first term and focusing on the second, it follows that

√
n

ûj − uj
v̂j − vj

 =
√
n

 ´ 1

0
1
(
ŜY (u|xj) ≤ yj

)
du−

´ 1

0
1 (SY (u|xj) ≤ yj) du´ 1

0
1
(
ĥ (z1j, x2j, vj) ≤ x1j

)
dv −

´ 1

0
1 (h (z1j, x2j, vj) ≤ x1j) dv


Define GY (y|x) ≡

´ 1

0
1 (SY (u|x) ≤ y) du = S−1

Y (y|x), and gY (y|x) ≡ ∂
∂y
GY (y|x).24

Apply Lemma 4 in Chernozhukov et al. (2013) to get

√
n

ûj − uj
v̂j − vj

 =
√
nM (yj, x1j, zj)

β̂ (uj)− β (uj)

γ̂ (vj)− γ (vj)

+ o∗P (22)

where the ∗ denotes that the convergence in probability is uniform in (uj, vj).

By the extended continuous mapping theorem, assumption 8, and the uniform consistency

of (ûj, v̂j), it follows that

∂2`j (uj, vj, ξ)

∂ξ∂ (u, v)
=
∂2`j (uj, vj, ξ)

∂ξ∂ (u, v)
+ o∗P (1)

By the information equality, the asymptotic variance of the first term equals H1. After
24These would be the conditional cdf and pdf of Y if U and X were independent. These

functions are different from the actual conditional cdf and pdf of Y , which are given by FY (y|x) ≡´ 1
0
1 (SY (u|x) ≤ y) f (u|x) du, and fY (y|x) ≡ ∂

∂yFY (y|x). Under endogeneity f (u|x) 6= 1, and hence
GY 6= FY . Even though the actual data is not going to depend on GY , the way uj is identified makes
it convenient for inference.
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some tedious algebra, it is possible to show that the asymptotic variance of the second

term equals H2, and the asymptotic covariance equals zero. Hence, using this result and

equation 20, I can rewrite the estimators as

√
n


β̂ (u)− β (u)

γ̂ (v)− γ (v)

ξ̂ − ξ

 =



√
n

β̂ (u)− β (u)

γ̂ (v)− γ (v)


H−1

1 En

∂2`j(uj ,vj ,ξ)
∂ξ∂(u,v)

M (yj, x1j, zj)
√
n

β̂ (uj)− β (uj)

γ̂ (vj)− γ (vj)

+

+H−1
1 Gn

[
∂`j(uj ,vj ,ξ)

∂ξ

]
+ o∗P (1)


By lemma 3, the extended continuous mapping theorem, and the functional delta method,

it follows that

√
n


β̂ (u)− β (u)

γ̂ (v)− γ (v)

ξ̂ − ξ

⇒ GM (u, v)

B.7 Uniform consistency of ČUV (u, v)

Lemma 7. Let assumptions 1, 2, and 9 hold, and (ûi, v̂i) be uniformly consistent estimators

for (ui, vi). Then,
√
n supu,v

∣∣ČUV (u, v)− CUV (u, v)
∣∣ = OP (1).

Proof. Define C̃UV (u, v) ≡ En [1 (ui ≤ u)1 (vi ≤ v)] and split the proof into showing the

probability limit of C̃UV (u, v) and ČUV (u, v) is the same, and then that C̃UV (u, v) is a

consistent estimator of CUV (u, v).

√
n
∣∣∣ČUV (u, v)− C̃UV (u, v)

∣∣∣ =
1√
n
|Σn

i=11 (ûi ≤ u)1 (v̂i ≤ v)− 1 (ui ≤ u)1 (vi ≤ v)|

≤ Gn |1 (ûi ≤ u)− 1 (ui ≤ u)|+ Gn |1 (v̂i ≤ v)− 1 (vi ≤ v)|
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Consider the sequence sn that satisfies sn → 0 and sn
√
n→∞ as n→∞.

sup
u

P
(√

n |1 (ûi ≤ u)− 1 (ui ≤ u)1| > ε
)

= sup
u

P (1 (ûi ≤ u) 6= 1 (ui ≤ u))

≤ sup
u

P (|ui − u| ≤ sn) + P (|ui − ûi| > sn)

≤ 2sn + P (|ui − ûi| > sn)

Take limits to conclude that limn→∞ supu P (
√
n |1 (ûi ≤ u)− 1 (ui ≤ u)| > ε) = 0. By

a parallel argument, limn→∞ supv P (
√
n |1 (v̂i ≤ v)− 1 (vi ≤ v)| > ε) = 0. Consequently,

limn→∞ supu,v P
(√

n
∣∣∣ČUV (u, v)− C̃UV (u, v)

∣∣∣ > ε
)

= 0

As for the second step, consider the class CUV ≡ {{(x1, x2) : x1 ≤ u, x2 ≤ v} , u, v ∈ [0, 1]}.

This is a VC class with VC dimension V (CUV ) = 3. Therefore, by Theorem 2.6.4 in

van der Vaart and Wellner (1996), its covering number is bounded: N (ε, CUV , L2 (P )) ≤

3 · 43Ke3ε−4 < ∞ for some constant K and 0 < ε < 1. By theorem 2.5.2 in van der Vaart

and Wellner (1996), it is P-Donsker, so
√
n supu,v

∣∣∣C̃UV (u, v)− CUV (u, v)
∣∣∣ = OP (1). Hence,

√
n
(
ČUV (u, v)− CUV (u, v)

)
=
√
n
(
ČUV (u, v)− C̃UV (u, v)

)
+
√
n
(
C̃UV (u, v)− CUV (u, v)

)
= O∗P (1)

B.8 Uniform consistency of ČU |V (u|v)

Consider the estimator ČUV (u, v) defined by equation 15. This estimator can be seen as the

integration over [0, 1] of a nonparametric estimator of the conditional copula distribution

CU |V (u|v), given by

ČU |V (u|v) ≡ Hn + 1

n
Σn
i=11 (ûi ≤ u)1

(
θ (v) ≤ v̂i < θ (v)

)
where Hn denotes the number of evenly spaced quantiles that are used in the estimation
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of the quantile process h (z1, x2, v),25 and θ (v) and θ (v) are defined as {maxi θi : θi < v}

and {mini θi : θi ≥ v}. It can be checked that ČUV (u, v) = 1
Hn+1

Σ
(Hn+1)θ(v)
h=0 ČU |V (u, θh).

Geometrically, I am splitting the [0, 1] interval into Hn + 1 intervals of equal length, and

each vi belong to any of these intervals almost surely. The probability of vi being in any of

these intervals is equal to 1
Hn+1

, since vi ∼ U (0, 1). Hn is the (inverse of the) bandwidth of

this kernel estimator, and Hn →∞ as n→∞. For each of the cells, compute the conditional

distribution of the copula. The following lemma establishes the uniform consistence of this

conditional estimator of the copula, which unlike the conditional estimator, converges at a

rate slower than
√
n.

Lemma 8. Let assumptions 1, 2, and 9 hold, (ûi, v̂i) converge uniformly in probability to

(ui, vi) at a rate
√
n, Hn →∞, and nan

log(n)
→∞ as n→∞, where an ≤ 1

Hn
. Then,

supu,v
∣∣ČU |V (u|v)− CU |V (u|v)

∣∣ = oP (1)

Proof. The proof is split into two steps: first show the consistency of the unfeasible estimator

C̃U |V (u|v) ≡ Hn+1
n

Σn
i=11 (ui ≤ u)1

(
θ (v) ≤ vi < θ (v)

)
, and then show that ČU |V (u|v) and

C̃U |V (u|v) converge to the same limit.

Consider the class CUV ≡ {{(x1, x2) : x1 ≤ u, vl ≤ x2 < vu} , u, vl, vu ∈ [0, 1] , vl < vu}. It

is a VC class with VC dimension V (CUV ) = 4. Therefore, by Theorem 2.6.4 in van der Vaart

and Wellner (1996), its covering number is bounded: N (ε, CUV , L2 (P )) ≤ 45Ke4ε−6 < ∞

for some constant K and 0 < ε < 1. By Corollary 1 in Einmahl et al. (2005)

lim
n→∞

sup
an≤ 1

Hn+1
≤bn

sup
(u,v)∈[0,1]

∣∣∣C̃U |V (u|v)− CU |V (u|v)
∣∣∣ = 0

This result implies that sup(u,v)∈[0,1]

∣∣∣C̃U |V (u|v)− CU |V (u|v)
∣∣∣ = oP (1).

Regarding the second step, notice that it is not possible to apply the extended continuous

mapping theorem to conclude that if ûi
p→ ui and v̂i

p→ vi, then 1 (ûi ≤ u)
p→ 1 (ui ≤ u)

25These quantiles are denoted by 0 = θ0, θ1, ..., θHn
, θHn+1 = 1.
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or 1
(
θ (v) ≤ v̂i < θ (v)

) p→ 1
(
θ (v) ≤ vi < θ (v)

)
uniformly in (u, v). Hence, a different

argument is required for the proof:

sup
u,v

P
(∣∣1 (ûi ≤ u)1

(
θ (v) ≤ v̂i < θ (v)

)
− 1 (ui ≤ u)1

(
θ (v) ≤ vi < θ (v)

)∣∣ ≥ εrn
)

≤ sup
u

P (|1 (ûi ≤ u)− 1 (ui ≤ u)| ≥ εrn)

+ sup
v

P
(∣∣1 (θ (v) ≤ v̂i < θ (v)

)
− 1

(
θ (v) ≤ vi < θ (v)

)∣∣ ≥ εrn
)

Examine the convergence of each term separately:

sup
u

P (|1 (ûi ≤ u)− 1 (ui ≤ u)| > εrn) = sup
u

P (1 (ûi ≤ u) 6= 1 (ui ≤ u))

≤ sup
u

P (|ui − u| ≤ sn) + P (|ui − ûi| > sn)

≤ 2sn + P (|ui − ûi| > sn)

where sn is a sequence that satisfies sn → 0 and
√
nsn → ∞ as n → ∞. The second

inequality follows from the fact that ui ∼ U (0, 1). Since ui − ûi = O∗P

(
1√
n

)
, it follows that,

if
√
nsn →∞ as n→∞, ui − ûi = o∗P (sn), and therefore

lim
n→∞

sup
u

P (|1 (ûi ≤ u)− 1 (ui ≤ u)| > εrn) = 0

Similarly,

sup
v

P
(∣∣1 (θ (v) ≤ v̂i < θ (v)

)
− 1

(
θ (v) ≤ vi < θ (v)

)∣∣ ≥ εrn
)

= sup
v

P
(
1
(
θ (v) ≤ v̂i < θ (v)

)
6= 1

(
θ (v) ≤ vi < θ (v)

))
≤ sup

v
P (|vi − θ (v)| ≤ sn) + sup

v
P
(∣∣vi − θ (v)

∣∣ ≤ sn
)

+ P (|ui − ûi| > sn)

≤ 4sn + P (|vi − v̂i| > sn)
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And under the same conditions as before, I get that

lim
n→∞

P
(∣∣1 (θ (v) ≤ v̂i < θ (v)

)
− 1

(
θ (v) ≤ vi < θ (v)

)∣∣ ≥ εrn
)

= 0

Hence, 1 (ûi ≤ u)1
(
θ (v) ≤ v̂i < θ (v)

)
− 1 (ui ≤ u)1

(
θ (v) ≤ vi < θ (v)

)
= o∗P (r−1

n ). As

a consequence, sup(u,v)

∣∣∣ČU |V (u|v)− C̃U |V (u|v)
∣∣∣ = oP (Hnrn). Since rn can converge to zero

at any speed, it follows that the previous quantity equals oP (1) if Hn → ∞ at any speed.

By the triangle inequality,

∣∣ČU |V (u|v)− CU |V (u|v)
∣∣ ≤ ∣∣∣ČU |V (u|v)− C̃U |V (u|v)

∣∣∣+
∣∣∣C̃U |V (u|v)− CU |V (u|v)

∣∣∣
Therefore, it follows that supu,v

∣∣ČU |V (u|v)− CU |V (u|v)
∣∣ = oP (1).

Some remarks are in order: First of all, this lemma limits the rate of growth of the number

of cells of the unit interval, which has to satisfy Hn = oP

(
n

log(n)

)
. This, however, does not

imply that the estimator achieves the maximum possible convergence rate because of the

kernel choice, K (vi, v,Hn) ≡ (Hn + 1)1
(
θ (v) ≤ vi < θ (v)

)
. This kernel is not symmetric

around zero, which would improve the convergence rate of the estimator. Furthermore, it

depends on two nonlinear functions of v: θ (v) and θ (v), which means that one cannot use

a Taylor expansion around v to establish the asymptotic normality of this estimator.

If instead of using indicator functions, one used functions that are (uniformly) smooth

in u and v, then one could use the extended continuous mapping theorem. Consequently, it

would be possible to estimate CU |V (u|v) by C̀U |V (u|v) = 1
nhn

Σn
i=1f̀ (ui, u, n) K̀

(
vi−v
hn

)
, where

f̀ (ui, u, n) is a function that is uniformly smooth in u and that converges to 1 (ui ≤ u) as

n → ∞, and K̀
(
vi−v
hn

)
is a kernel function that is continuous in its argument and that, in

order to improve the convergence rate, is symmetric around zero. Studying the asymptotic

properties of such estimator is beyond the scope of this paper.
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C Estimator of the Asymptotic Variance of F̂Y (y)

Begin by estimating the asymptotic variance of the estimator given by equation 8:

Σ̂O (y, ỹ) =
1

n2H2
n

n∑
i=1

n∑
j=1

Hn∑
k=1

Hn∑
h=1

Ô (y, zi, vk) ΣN (u (y, zi, vk) , zi, vk, u (ỹ, zj, vh) zj, vh) Ô (ỹ, zj, vh)
′

where Ô (y, z, v) =
(
−f̂Y |ZV (y|z, v) 1

)
and

f̂Y |ZV (y|z, v) = ΣKn
k=1

(τk+1 − τk) cU |V X2

(
τk|v, x2; ξ̂

)
x̂ (v)′

(
β̂ (τk+1)− β̂ (τk)

) 1
(
x̂ (v)′ β̂ (τk) ≤ y ≤ x̂ (v)′ β̂ (τk+1)

)

If the SQF and the copula are estimated by equations 12 and 14, then the central term

of the variance equals

Σ̂N (u, v, ũ, ṽ) = N̂ (u, v, ũ, ṽ) Σ̂M (u, v, ũ, ṽ) N̂ (u, v, ũ, ṽ)′

where N̂ (u, v, z) =

x̂ (v)′ β̂1 (u) z′ 0

0 0 ∂
∂ξ
CU |V X2

(
u|v, x2; ξ̂

)
 and

Σ̂M (u, v, ũ, ṽ) =

Σ̂J (u, v, ũ, ṽ) Σ̂21
M (u, ṽ)′

Σ̂21
M (ũ, v) Σ̂ξ



Σ̂ξ = Ĥ−1
1

(
Ĥ1 + Ĥ2

)
Ĥ−1

1

Ĥ1 = − 1

n
Σn
i=1

∂2`i

(
ûi, v̂i, ξ̂

)
∂ξ∂ξ′

Ĥ2 =
1

n2
Σn
i=1Σn

j=1

∂2`i

(
ûi, v̂i, ξ̂

)
∂ξ∂ (u, v)

M̂ (yi, x1i, zi) ΣJ (ûi, v̂i, ûj, v̂j) M̂ (yj, x1j, zj)
′
∂2`j

(
ûj, v̂j, ξ̂

)
∂ (u, v)′ ∂ξ′
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M̂ (y, x1, z) =

ĝY (y|x)x′ 0

0 f̂X1 (x1|z) z′



ĝY (y|x) = ΣKn
k=1

τk+1 − τk
x′
(
β̂ (τk+1)− β̂ (τk)

)1(x′β̂ (τk) ≤ y ≤ x′β̂ (τk+1)
)

f̂X1 (x1|z) = ΣHn
h=1

θh+1 − θh
z′ (γ̂ (θh+1)− γ̂ (θh))

1 (z′γ̂ (θh) ≤ x1 ≤ z′γ̂ (θh+1))

Σ̂21
M (u, v) = Ĥ−1

1

1

n
Σn
i=1

∂`j

(
ûi, v̂i, ξ̂

)
∂ξ

(1(yi ≤ x′iβ̂ (u)
)
− u
)

Ψ̂ (u, zi)
′ Ĵ (u)

(1 (x1i ≤ z′iγ̂ (v))− v) z′iĤ (v)


+ Ĥ−1

1

1

n
Σn
i=1

∂`j

(
ûi, v̂i, ξ̂

)
∂ξ∂ (u, v)

M̂ (yj, x1j, zj) Σ̂J (u, v, ûi, v̂i)

Σ̂J (u, v, ũ, ṽ) =

Σ̂11
J (u, ũ) Σ̂21

J (u, ṽ)′

Σ̂21
J (ũ, v) Σ̂22

J (v, ṽ)


Σ̂11
J (u, ũ) = Ĵ (u)−1 (min {u, ũ} − uũ)

1

n
Σn
i=1Ψ̂ (u, zi)

′ Ψ̂ (ũ, zi) Ĵ (ũ)−1

Σ̂21
J (u, v) = Ĥ (v)−1 1

n
Σn
i=1

(
1
(
yi ≤ x′iβ̂ (u)

)
1 (x1i ≤ z′iγ̂ (v))− uv

)
ziΨ̂ (u, zi)

′ Ĵ (u)−1

Σ̂22
J (v, ṽ) = Ĥ (u)−1 (min {v, ṽ} − vṽ)

1

n
Σn
i=1ziz

′
iĤ (ṽ)−1

and the matrices Ĵ (u) and Ĥ (v) are estimated using Powell (1986) estimator:

Ĵ (u) =
1

2nhn
Σn
i=11 (|ε̂i (u)| ≤ hn)

(
Φ̂ (u, zi) , x

′
2i

)′ (
Φ̂ (u, zi) , x

′
2i

)
Ĥ (v) =

1

2nhn
Σn
i=11 (|η̂i (v)| ≤ hn) ziz

′
i

for some appropriately chosen bandwidth hn.
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D Fit of the Parametric Copulas to the Data

Table 4 compares the performance of the estimators based on different parametric copulas.

The first row represents the integral of the difference between the estimated cdf and the

empirical cdf, and the second row represents the largest difference between the two cdfs.

Among the parametric copulas, the Clayton copula has the best fit in both cases. However,

the fit of the estimator based on the nonparametric estimator of the copula is remarkably

better than the fit of any of the estimators based on the parametric copulas.

Table 4: Fit of the Copula Distributions
Gaussian Clayton Frank Gumbel Nonparametric

´
Y

∣∣∣F̂Y (y)− FY (y)
∣∣∣ dy 0.012 0.009 0.015 0.014 0.003

supy

∣∣∣F̂Y (y)− FY (y)
∣∣∣ 0.056 0.043 0.070 0.055 0.013

Notes: The first row represents the integral of the difference between the median across repetitions of the estimated

counterfactual cdf and the true cdf; the second row represents the maximum of this difference.
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