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Abstract 

 

We investigate whether, how, and why individual education attainment depends on 
the educational attainment of schoolmates. Specifically, using longitudinal data on students 
and their friends during the school years in a nationally representative set of US schools, we 
consider the impact of different types of peers on education outcomes. We found that there 
are strong and persistent peer effects in education, but peers tend to be influential in the long 
run only when their friendships last more than one year. This evidence is consistent with a 
network model where convergence of preferences and the emergence of social norms among 
peers require long-term interactions. 
 
JEL Classification: C31, D85, Z13. 
Keywords: spatial autoregressive model, heterogeneous spillovers, 2SLS estimation, 
Bayesian estimation, education. 
 
 

Contents 
 

1. Introduction .......................................................................................................................... 5 
2. Data description ................................................................................................................... 8 
3. Empirical model and estimation strategy .......................................................................... 10 
4. Estimation results ............................................................................................................... 13 
5. Understanding the mechanisms ......................................................................................... 14 
6. Robustness checks ............................................................................................................. 21 
7. Short-run versus long-run effects ...................................................................................... 27 
8. Concluding remarks ........................................................................................................... 29 
References .............................................................................................................................. 30 
Appendices ............................................................................................................................. 36 
Figures and tables ................................................................................................................... 53 
 

 

 

 

_______________________________________ 
$ Cornell University, EIEF and CEPR. E-mail: ep454@cornell.edu 

*Bank of Italy. E-mail: edoardo.rainone@bancaditalia.it.  
# Stockholm University, Research Institute of Industrial Economics (IFN) and GAINS. E-mail: yves.zenou@ne.su.se 





1 Introduction

The influence of peers on education outcomes has been widely studied both in economics

and sociology (Sacerdote, 2011). Yet many questions remain unanswered.1 In particular,

very little is known about the effect of school peers on the long-run outcomes of students.

This is primarily due to the absence of information on peers during teenage years together

with long-run outcomes of individuals in most existing data. Besides, the mechanisms by

which the peer effects affect education are unclear.

In this paper, we provide an analysis on the long-run effects of high-school peers on years

of schooling and put forward the role of different types of ties for educational outcomes.

For that, we use the unique information on friendship networks2 among students in the

United State s provided by the Addhealth data. We exploit three unique features of the

AddHealth data: (i) the nomination-based friendship information, which allows us to recon-

struct the precise geometry of social contacts during high-school years, (ii) the variation in

friendship network topology between Wave I and Wave II, which enables us to distinguish be-

tween short-lived ties and long-lived ties and (iii) the longitudinal dimension, which provides

information about each individual and her/his friends’ outcomes during the adulthood.

More specifically, we use the different waves of the AddHealth data by looking at the

impact of school friends nominated in the first two waves in 1994-1995 and in 1995-1996 on

own educational outcome (when adult) reported in the fourth wave in 2007-2008 (measured

by the number of completed years of full time education). We define a long-lived tie relation-

ship between two students if they have nominated each other in both waves (i.e. in Wave

I in 1994-1995 and in Wave II in 1995-1996) and a short-lived tie relationship if they have

nominated each other in one wave only.

The existing (limited) studies on heterogeneous peer effects have looked at peer effects

for different types of individuals (e.g. males versus femals, whites versus blacks).3 In doing

so, they assume homogeneity within each type. Our goal is to study the individual response

to heterogeneous types of bilateral relationships by considering the case of heterogeneous

links. Previous work avoided this situation because of technical difficulties in the estimation

1The constraints imposed by the available disaggregated data force many studies to analyze peer effects
in education at a quite aggregate and arbitrary level, such as at the high school (Evans et al., 1992), the
census tract (Brooks-Gunn et al., 1993), and the ZIP code level (Datcher, 1982; Corcoran et al., 1992) where
individuals reside. The importance of peer effects as distinct from neighborhood influences is still a matter
of debate in many fields (see, e.g., the literature surveys by Durlauf, 2004, Ioannides and Topa, 2010, and
Ioannides, 2011, 2012).

2The economics of networks is a growing field. For overviews, see Jackson (2008), Blume et al. (2011),
Ionannides (2012), Boucher and Fortin (2015), Graham (2015), and Jackson and Zenou (2015).

3See e.g. Griffith and Rask (2014), Tincani (2015) and Yakusheva et al. (2014).
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of heterogeneous endogenous peer effects.

In this paper, we extend the Liu and Lee (2010) 2SLS approach to a network model with

different interaction matrices. The asymptotic consistency and efficiency of the proposed

estimators are proved. We also employ a Bayesian inferential methods to integrate a network

formation model with the study of behavior over the formed networks. Finally, we consider

possible measurement errors in peer groups using a simulation experiment. Our results

are robust to various types of network topology misspecification. This study is the first to

estimate heterogeneous spillovers in a network model. We do so using both a frequentist and

a bayesian approach.

Our results show that there are strong and persistent peer effects in education. When

looking at the role of short-lived and long-lived ties in educational decisions, it appears

that the education decisions of short-lived ties have no significant effect on individual long-

run outcomes, regardless of whether peers are interacting in lower or higher grades. On the

contrary, we find that the educational choices of long-lived ties have a positive and significant

effect on own educational outcome.

There is a large literature on the role of different ties in the labor market. In particular,

Granovetter (1973, 1974, 1983) initiated a strand of studies looking at the effects of weak

versus strong ties. Strong ties are viewed as stable relationships and weak ties as unstable

relationships.4 Interestingly, compared to the literature on the labor market, we find the

opposite result for education outcomes.5,6 Indeed, we show that stable rather than unstable

ties matter for education. This is reasonable given that outcomes and mechanisms are differ-

ent in the two contexts. While random encounters may be helpful in providing information

about jobs, they typically do not contribute to shape social norms, values and attitudes (see,

e.g. Coleman, 1988, Wellman and Wortley, 1990). The collective value of “social networks”,

which is a relevant driver of long-run influences, need time and repeated interactions to be

established (Putnam, 2000).

4In his seminal papers, Granovetter defines weak ties in terms of lack of overlap in personal networks
between any two agents, i.e. weak ties refer to a network of acquaintances who are less likely to be socially
involved with one another. Formally, two agents A and B have a weak tie if there is little or no overlap
between their respective personal networks. Vice versa, the tie is strong if most of A’s contacts also appear
in B’s network.

5Yakubovich (2005) uses a large scale survey of hires made in 1998 in a major Russian metropolitan area
and finds that a worker is more likely to find a job through weak ties than through strong ties. These results
come from a within-agent fixed effect analysis, so they are independent of workers’ individual characteristics.
Using data from a survey of male workers from the Albany NY area in 1975, Lin et al. (1981) find similar
results. Lai et al. (1998) and Marsden and Hurlbert (1988) also find that weak ties facilitate reaching a
contact person with higher occupational status who, in turn, leads to better jobs, on average.

6See also Patacchini and Zenou (2008) who find evidence of the strength of weak ties in crime.
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In line with these ideas, we propose a theoretical model that is able to explain our

evidence. We consider a dynamic network model (DeGroot, 1974) where there are two

states of the world (or social norms): {It is worth continuing studying} and {It is not worth

continuing studying}, which are unknown to the agents. Agents embedded in a network

update their beliefs by repeatedly taking the weighted average of their neighbors’ beliefs.

We extend the DeGroot model by differentiating between short-lived friends and long-lived

friends. We define short-lived friends as students who interact with each other only once

and long-lived friends as students who interact repeatedly. Because short-lived friendships

only interact once, they will influence the beliefs of each other only in the initial period.

On the contrary, long-lived friends interact repeatedly and thus update their beliefs all the

time as in the standard DeGroot model by repeatedly taking the weighted average of their

(long-lived) neighbors’ beliefs. We show how all students in the network reach a consensus

in the long run and why long-lived friends have more impact over the resulting social norm,

as shown by our empirical results.

We also collect additional evidence, which remains in line with this mechanism. First, we

differentiate between short-lived friends only nominated in Wave I (lower grades) and those

only nominated Wave II (later grades). We find that short-lived friends have no impact on

future education studies, irrespective of whether short-lived friends have been nominated

earlier or later in the school years. This is in accordance with our theoretical model where

short-lived friends only affect others’ beliefs for one period, independently if it is the first

or second period. Second, we investigate the difference between long-run and short-run

effects of peers on education. We show that, while in the long run, only long-lived ties

matter, we find that, in the short run, both short-lived and long-lived ties are important

in determining a student’s performance at school. Our theoretical model can explain this

result since both short-lived and long-lived friends affect the initial beliefs of studying (short

run) but only long-lived friends affect the emergence of a long-term social norm favorable to

higher-education studies.

There are very few studies looking at the long-run effects of friendship on human capital

accumulation. Using the Wisconsin Longitudinal Study of Social and Psychological Factors

in Aspiration and Attainment (WLS), Zax and Rees (2002) were the first to analyze the role

of friendships in school on future earnings. Using the AddHealth data, Bifulco et al. (2011)

study the effect of school composition (percentage of minorities and college educated mothers

among the students in one’s school cohort) on high-school graduation and post-secondary

outcomes.

The paper unfolds as follows. Our data are described in Section 2, while the estimation
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and identification strategy is discussed in Section 3. Section 4 collects the empirical evi-

dence. Section 5 investigates the economic mechanisms behind our peer-effects results by

first proposing a theoretical model (Section 5.1) and then by providing more empirical results

differentiating long-lived friends between those only nominated in Wave I (lower grades) and

those only nominated Wave II (later grades) (Section 5.2). Section 6 shows the robustness of

our results with respect to network formation and network topology misspecification while

Section 7 consider short-run and long-run effects of peers on education. Finally, Section 8

concludes the paper.

2 Data description

Our analysis is made possible by the use of a unique database on friendship networks from

the National Longitudinal Survey of Adolescent Health (AddHealth). The AddHealth sur-

vey has been designed to study the impact of the social environment (i.e. friends, family,

neighborhood and school) on adolescents’ behavior in the United States by collecting data on

students in grades 7-12 from a nationally representative sample of roughly 130 private and

public schools in the years 1994-1995 (Wave I). Every pupil attending the sampled schools on

the interview day is asked to compile a questionnaire (in-school data) containing questions

on respondents’ demographic and behavioral characteristics, education, family background

and friendship. A subset of adolescents selected from the rosters of the sampled schools,

about 20,000 individuals, is then asked to compile a longer questionnaire containing more

sensitive individual and household information (in-home and parental data). Those subjects

are interviewed again in 1995–1996 (Wave II), in 2001–2002 (Wave III), and in 2007-2008

(Wave IV).

From a network perspective, the most interesting aspect of the AddHealth data is the

friendship information, which is based upon actual friends nominations. Indeed, pupils were

asked to identify their best friends from a school roster (up to five males and five females).7

This information is collected in Wave I and one year after, in Wave II. As a result, one can

reconstruct the whole geometric structure of the friendship networks and their evolution, at

least in the short run. Such detailed information on social interaction patterns allows us

to measure the peer group more precisely than in previous studies by knowing exactly who

nominates whom in a network (i.e. who interacts with whom in a social group).

Moreover, and this has not been done before, one can distinguish between long-lived and

7The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends, both in Wave I and Wave II.
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short-lived ties in the data. We define a long-lived friendship between two students if they

have nominated each other in both waves (i.e. in Wave I in 1994-1995 and in Wave II in

1995-1996) and a short-lived friendship if they have nominated each other in one wave only

(Wave I or Wave II).

By matching the identification numbers of the friendship nominations to respondents’

identification numbers, one can also obtain information on the characteristics of nominated

friends. In addition, the longitudinal structure of the survey provides information on both

respondents and friends during adulthood. In particular, the questionnaire of Wave IV

contains detailed information on the highest education qualification achieved. We measure

educational attainment in completed years of full time education in Wave IV.8 Social contacts

(i.e. friendship nominations) are, instead, collected in Waves I and II.

Our final sample of in-home Wave I students (and friends) that are followed over time

and have non-missing information on our target variables both in Waves I, II and IV consists

of 1,819 individuals distributed over 116 networks. This large reduction in sample size with

respect to the original sample is mainly due to the network construction procedure - roughly

20 percent of the students do not nominate any friends and another 20 percent cannot be

correctly linked. In addition, we exclude networks consisting of 2-3 individuals, those with

more than 400 members and individuals who are not followed in Wave IV.9 In Wave I,

the mean and the standard deviation of network size are roughly 9.5 and 15, respectively.

Roughly 61% of the nominations are not renewed in Wave II, and about 44% new ones are

made. On average, these adolescents have roughly 30% long-lived ties and 70% short-lived

ties. Further details on nomination data can be found in Table A1 in Appendix A. Appendix

A also gives a precise definition of the variables used in our study as well as their descriptive

statistics (see Table A1).10

8More precisely, the Wave IV questionnaire asks about the highest education qualification achieved (dis-
tinguishing between 8th grade or less, high school, vocational/technical training, bachelor’s degree, graduate
school, master’s degree, graduate training beyond a master’s degree, doctoral degree, post baccalaureate
professional education). Those with high school qualifications and higher are also asked to report the exact
year when the highest qualification was achieved. Such information allows us to construct a reliable measure
of each individual’s completed years of education.

9We do not consider networks at the extremes of the network size distribution (i.e. consisting of 2-
3 individuals or more than 400) because peer effects can show extreme values (too high or too low) in
these edge networks (see Calvó-Armengol et al., 2009). The representativeness of the sample is preserved.
Summary statistics are available upon request.

10Information at the school level, such as school quality and the teacher/pupil ratio, is also available but
we do not need to use it since our sample of networks is within schools and we use fixed network effects in
our estimation strategy.
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3 Empirical model and estimation strategy

3.1 Empirical model

Let r̄ be the total number of networks in the sample (i.e. r̄ = 116), nr the number of

individuals in the rth network, and n =
∑r=r̄

r=1 nr the total number of individuals (i.e. n =

1, 819). Let xi,r = (xmi,r, · · · , xMi,r)′ denote the vector of individual observable characteristics

of individual i belonging to network r. Let us denote the adjacency matrix of the long-lived

peers by GL =
{
gLij
}

, where gLij = 1 if i and j are long-lived friends (i.e. students i and j

have nominated each other in Wave I and in Wave II). Similarly, let the adjacency matrix

of the short-lived peers be GS =
{
gSij
}

, where gSij = 1 if i and j are short-lived friends (i.e.

students i and j have nominated each other in one wave only). Our empirical model of agent

i belonging to network r can then be written as:

yi,r,t+1 = φL
nr∑
j=1

gLij,r,tyj,r,t+1 + φS
nr∑
j=1

gSij,r,tyj,r,t+1 + x′i,rδ (1)

+
1

gLi,r,t

nr∑
j=1

gLij,r,tx
′
j,r,t,t+1γ

L +
1

gSi,r,t

nr∑
j=1

gSij,r,tx
′
j,r,t,t+1γ

S + ηr,t + εi,r,t+1,

where yi,r,t+1 is the highest education level reached by individual i at time t+1 who belonged

to network r at time t, where time t+1 refers to Wave IV in 2007-2008 while time t refers to

Wave I in 1994-1995 and/or Wave II in 1995-1996 (depending on whether we consider short-

lived or long-lived ties). Similarly, yj,r,t+1 is the highest education level reached by individual

j at time t+1 who has been nominated as his/her friend by individual i at time t in network

r. Furthermore, x′i,r,t,t+1 = (x1
i,r,t,t+1, · · · , xmi,r,t,t+1)′ indicates the M variables accounting for

observable differences in individual characteristics of individual i both at times t (e.g. self

esteem, mathematics score, quality of the neighborhood, etc.) and t+1 (marital status, age,

children, etc.) of individual i. Some characteristics are clearly the same at times t and t+ 1,

such as race, parents’ education, gender, etc. Also gLi,r,t =
∑n

j=1 g
L
ij,r,t and gSi,r,t =

∑n
j=1 g

S
ij,r,t

are the total number of long-lived and short-lived friends each individual i has in network r

at time t. Finally, εi,r’s are i.i.d. innovations with zero mean and variance σ2 for all i and r.

Let Yr = (y1,r,t+1, · · · , ynr,r,t+1)′, Xr = (x1,r,t,t+1, · · · , xnr,r,t,t+1)′, and εr = (ε1,r, · · · , εnr,r)
′.

Denote the nr × nr adjacency matrix by Gr = [gij,r], the row-normalized of Gr by G∗r, and

the nr-dimensional vector of ones by lnr . As above, let us split the adjacency matrix into two

submatrices GL
r and GS

r , which keep trace of long-lived and short-lived friends, respectively.
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Then, model (1) can be written in matrix form as:

Yr = φLGL
r Yr + φSGS

rYr + X∗rβ + ηrlnr + εr, (2)

where X∗r = (Xr + G∗Sr Xr + G∗Wr Xr) and β = (δ′, γL′, γS ′)′.

For a sample with r̄ networks, stack up the data by defining Y = (Y′1, · · · ,Y′r̄)′,
X∗ = (X∗′1 , · · · ,X∗′r̄ )′, ε = (ε′1, · · · , ε′r̄)′, G = D(G1, · · · ,Gr̄), G∗ = D(G∗1, · · · ,G∗r̄), ι =

D(ln1 , · · · , lnr̄) and η = (η1, · · · , ηr̄)′, where D(A1, · · · ,AK) is a block diagonal matrix in

which the diagonal blocks are nk × nk matrices Ak’s. For the entire sample, the model is

thus:

Y = φLGLY + φSGSY + X∗β + ι · η + ε. (3)

In this model, φL and φS represent the endogenous effects, i.e. the agent’s outcome depends

on that of his/her friends, while γL and γS represent the contextual effect, i.e. the agent’s

choice/outcome depends on the exogenous characteristics of his/her friends. The vector of

network fixed effects η captures the correlated effect where agents in the same network may

behave similarly as they have similar unobserved individual characteristics or they face a

similar (e.g. institutional) environment.11

3.2 Identification and estimation

A number of papers have dealt with the identification and estimation of peer effects with

network data (e.g. Bramoullé et al., 2009; Liu and Lee, 2010, Calvó-Armengol et al., 2009;

Lin, 2010; Lee et al., 2010; Liu et al., 2012). Below, we review the crucial issues, while

explaining how we tackle them.

Reflection problem In linear-in-means models, simultaneity in the behavior of interact-

ing agents introduces a perfect collinearity between the expected mean outcome of the group

and its mean characteristics. Therefore, it is difficult to differentiate between the effect of

peers’ choice of effort (endogenous effects) and peers’ characteristics (contextual effects) that

do have an impact on their effort choice (the so-called reflection problem; Manski, 1993).

Basically, the reflection problem arises because, in the standard approach, individuals inter-

act in groups, that is individuals are affected by all individuals belonging to their group and

by nobody outside the group. In the case of social networks, instead, this is nearly never true

since the reference group is individual specific. For example, take individuals i and k such

11As an analogy with time series models, the model in (3) can be referred to as a SARARMA(p, q) with
p = 0 and q = 2, where p and q are the maximum number of spatial lags for the error and the outcome,
respectively.
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that gik = 1. Then, individual i is directly influenced by gi.=
∑ni

j=1 gijyj while individual k

is directly influenced by gk.=
∑nk

j=1 gkjyj, and there is little chance for these two values to be

the same unless the network is complete (i.e. everybody is linked with everybody).12

Correlated effects While a network approach allows us to distinguish endogenous effects

from correlated effects, it does not necessarily estimate the causal effect of peers’ influence on

individual behavior. The estimation results might be flawed because of the presence of peer-

group specific unobservable factors affecting both individual and peer behavior. For example,

a correlation between the individual and the peer-school performance may be due to an

exposure to common factors (e.g. having good teachers) rather than to social interactions.

The way in which this has been addressed in the literature is to exploit the architecture

of network contacts to construct valid IVs for the endogenous effect. Since peer groups

are individual specific in social networks, the characteristics of indirect friends are natural

candidates. For example, consider a star network where individual j is the star and is

linked to individuals i and k. In that case, individual k affects the behavior of individual i

only through their common friend j, and she/he is not exposed to the factors affecting the

peer group consisting of individual i and individual j. As a result, the characteristics xk of

individual k are valid instruments for yj, the endogenous outcome of j.

Sorting In most cases, individuals sort into groups non-randomly. For example, kids

whose parents are low educated or worse than average in unmeasured ways would be more

likely to sort with low human capital peers. If the variables that drive this process of selection

are not fully observable, potential correlations between (unobserved) group-specific factors

and the target regressors are major sources of bias. The richness of social network data (where

we observe individuals over networks) provides a possible way out by the use of network fixed

effects. Network fixed effects are a remedy for the selection bias that originates from the

possible sorting of individuals with similar unobserved characteristics into a network. The

underlying assumption is that such unobserved characteristics are common to the individuals

within each network. This is reasonable in our case study where the networks are quite small

(see Section 2).13

To summarize, in this paper, we consider 2SLS estimators (Liu and Lee, 2010) with

network fixed effects and propose two innovations. First, we use two centralities, one for

12Formally, social effects are identified (i.e. no reflection problem) if G2 6= 0, where G2 keeps track of
indirect connections of length 2 in the network. This means that we need at least two individuals in the
networks that have different links. This condition is generally satisfied in every real-world network.

1393% of networks have a size below 35. As a robustness check, in Section 6.1 below, we will also consider an
explicit model of network formation and estimate simulatenously the outcome equation (1) and the network
formation equation.
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long-lived ties and one for short-lived ties. Second, we take advantage of the longitudinal

structure of our data and only include values lagged in time in the different instrumental

matrices (i.e. observed in Wave I). Appendix B reviews the approach proposed by Liu and

Lee (2010) and highlights the modification that is implemented in this paper.14

4 Estimation results

The aim of our empirical analysis is twofold, (i) to assess the presence of long-run peer effects

in education and, (ii) to differentiate between the impact of short-lived and long-lived friends

on education.

4.1 Long-run peer effects

Table 1 collects the estimation results of model (1), without distinguishing between long-lived

and short-lived ties. In other words, students i and j are friends, i.e. gij = 1, if they have

nominated each other in Wave I. We then look at the impact of friends from Wave I on own

educational attainment in Wave IV. The first three columns show the results when using the

traditional set of instruments whereas, in the last three columns, the instrumental set only

contains variables lagged in time (see Appendix B). The first-stage partial F-statistics (Stock

et al., 2002 and Stock and Yogo, 2005) reveals that our instruments are quite informative

and the OIR test provides evidence in line with their validity. Table 2 shows the results of

the first step. The results in Table 1 do not change to any considerable extent across columns

and reveal that the effect of friends’ education on own education is always significant and

positive, i.e., there are long-lived and persistent peer effects in education. This shows that

the “quality” of friends (in terms of future educational achievement) from high school has a

positive and significant impact on the own future educational level, even though it might be

that individuals who were close friends in 1994-1995 (Wave I) might no longer be friends in

2007-2008 (Wave IV). According to the bias-corrected 2SLS estimator,15 in a group of two

friends, a standard deviation increase in the years of education of the friend translates into

14Observe that most of the traditional problems in the identification of peer effects arises when outcome
and linking decisions are taken at the same time. In our analysis, we do not have this problem since there is
a time lag between when friends are chosen (Waves I and II in 1994-1996) and when the outcome (education)
is observed (Wave IV in 2007-2008). In addition, the longitudinal aspect of our analysis provides IVs at
different points in time, i.e. the characteristics of indirect peers when they are at school and when they are
adults. It is thus possible to use only variables lagged in time as instruments to ensure that the instruments
are not correlated with the contemporaneous error term.

15The bias-corrected 2SLS estimator is our preferred one since we have relatively small networks (see
Appendix C).
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a roughly 5.4 percent increase of a standard deviation in the individual years of education

(roughly two more months of education). If we consider an average group of four best friends

(linked to each other in a network), a standard deviation increase in the level of education

of each of the peers translates into a roughly 16 percent increase of a standard deviation in

the individual’s educational attainment (roughly seven more months of education). This is

a non-negligible effect, especially given our long list of controls and the fact that friendship

networks might have changed over time. The influence of peers at school seems to be carried

over time.

4.2 The role of long-lived ties

We would now like to determine how long- and short-lived ties affect educational choices by

estimating the magnitude of φL and φS in equation (1). Table 3 shows the estimation results

of model (1).16 We find that the educational choices of short-lived friends have no significant

impact on individual educational outcomes (years of schooling) while the educational choices

of long-lived friends do have a positive and significant effect on own educational outcome. In

terms of magnitude, a standard deviation increase in aggregate years of education of peers

nominated both in Waves I and II (long-lived friends) translates into roughly a 21 percent

increase of a standard deviation in the individual’s educational attainment (roughly 8.3 more

months of education). In an average group of four best friends (linked to each other in a

network), a standard deviation increase of each of the peers translates into two more years

of education. This is quite an important effect. It suggests that long-lived friends rather

than short-lived friends matter for educational outcomes in the long run.17

5 Understanding the mechanisms

Our empirical results displayed in Table 3 suggest that the distinction between long-lived

and short-lived friends is important for understanding long-run peer effects in education. In

Section 5.1, we propose a simple theoretical model explaining this evidence. The idea under-

lying the theoretical mechanism is that convergence of preferences and formation of social

norms need long-term relationships between peers. In Section 5.2, we provide additional

empirical evidence ruling out alternative explanations.

16We show the results for the bias-corrected 2SLS estimator, with the traditional set of instruments and
when the instrumental set only contains variables lagged in time. The qualitative results when using the
alternative estimators in Appendix C remain qualitatively unchanged. The latter are available upon request.

17When estimating model (1) including only long-lived ties (i.e. GS = 0), we obtain comparable results.
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5.1 Theoretical framework

In order to understand how long-lived and short-lived ties influence long-run educational

outcomes, we extend the DeGroot (1974) model as follows.18 Consider a society consisting

of a finite set of individuals N = {1, 2, ..., n} who are linked in a directed network and who

would like to gather information about an unknown parameter θ. In our context, assume

that there are two states of the world so that θ can be equal to either: {It is worth continuing

studying} or {It is not worth continuing studying}. What is key in the DeGroot model is

that agents update their beliefs by repeatedly taking weighted averages of their neighbors’

beliefs (where neighbors are the people directly linked to each individual) with pij being the

weight that agent i places on the current belief of agent j in forming his or her belief for

the next period. If the network is strongly connected and at least some individuals listen

to themselves, then, in the limit, everybody belonging to the same network will converge to

a consensus and the influence of each person will depend on their position in the network.

This means that, if there are repeated interactions between students from the same network,

then they will all adopt the same social norm, which could be either {It is worth continuing

studying} or {It is not worth continuing studying} depending on what the “influential”

students believe about the social norm.19

We use this theoretical framework to understand why, in our empirical results, short-lived

friends have no impact on own education decision while long-lived friends have. We define

short-lived friends as students who interact with each other only once while long-lived friends

where students who interact for a longer time. There are two types of friend relationships

between students in a network G: short-lived friendships (l = S) and long-lived friendships

(l = L). Quite naturally, we assume that each agent has a long-lived relationship with

him/herself, i.e. gLii = 1 and gSii = 0. As in Section 3, this implies two types of adjacency

matrices: GL =
{
gLij
}

, where gLij = 1 if i and j are long-lived friends and GS =
{
gSij
}

, where

gSij = 1 if i and j are short-lived friends, with GL + GS = G. Denote by G̃L and G̃S the

row-normalized matrices of GL and GS, respectively. Because short-lived friendships only

interact once, they will influence the beliefs of each other only in the initial period. The

updating stops there since short-lived friends do not meet anymore and thus students only

update their beliefs once. On the contrary, long-lived friends interact repeatedly and thus

18Appendix D contains the technical details of the DeGroot model.
19Because students have parents with different incomes or students have different costs of studying (some

like to study while others don’t), we can explain why, within a network with the same social norm, students
take different decisions concerning the number of years they will spend in college. In particular, the students
whose parents have low income or the students who have a high disutility of studying will end up not going
to college even if the social norm in their network of friends says that it is worth continuing studying.
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update their beliefs all the time as in the standard DeGroot model. Then all students in the

network will therefore reach a consensus after many interactions, even though only long-lived

friends will matter in the long run.

How do we solve this model? In the first period, both short-lived and long-lived students

influence each other so that

b(1) = G̃ b(0)

where b(t) is the vector of beliefs of all students at time t (i.e. both short-lived and long-lived

students) and G̃ is the row-normalized matrix of G. Now relabel b(1) as b̃(0), i.e. b̃(0) := b(1).

We are now in the framework of the DeGroot model where the initial beliefs are given by

b̃(0). As a result, we can apply Proposition 8 in Appendix D. If the network G̃L is strongly

connected and if at least some agents pay attention to themselves, i.e. gii > 0 for some i,

then all students will reach a consensus in the long run, which is determined by:

(b)∞ = lim
t→∞

(
G̃L
)t

b̃(0) = lim
t→∞

(
G̃L
)t

G̃ b(0) (4)

In equation (4), we see clearly the distinct influence of short-lived and long-lived friends.

The updating matrix G̃L is only depending on long-lived friends because they are the ones

who interact over time and help reach a consensus. However, the initial beliefs are a function

of the beliefs of both short-lived and long-lived friends since G̃ includes both G̃ L and G̃ S.

In equation (4), we assume that all students have both long-lived and short-lived friends20

so that they are all included in the convergence process (b)∞.

To illustrate this result, consider the example given at the end of Appendix D where the

network is displayed in Figure A1. The adjacency matrix G and the row-normalized one G̃

are given by:

G =

 1 1 1

1 1 0

1 1 1

 and G̃ =

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2


Assume that both agents 1 and 2 and agents 1 and 3 have a long-lived friendship while

agents agents 2 and 3 have a short-lived friendship. As stated above, we assume that each

20Observe that if some students have only short-lived friends, then there will be no consensus. Indeed,
even if just one student i has only short-lived friends, then gLii = 1 and gLij = 0 for all other j. Hence network

G̃L will not be strongly connected, and the baseline deGroot model will not work properly (i.e. depending
on the network structure there will either be more than one component with a different “consensus” each,
or no consensus at all).
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agent has a long-lived relationship with him/herself, i.e. gLii = 1 and gSii = 0. We have:

GL =

 1 1 1

1 1 0

1 0 1

 and GS =

 0 0 0

0 0 0

0 1 0

 so that GL + GS = G

Let us row-normalize these matrices so that

G̃L =

 1/3 1/3 1/3

1/2 1/2 0

1/2 0 1/2

 and G̃S =

 0 0 0

0 0 0

0 1 0


Observe that G̃L has been chosen so that it is equal to P in the example in Appendix D

where we don’t differentiate between short-lived and long-lived friends. As in the example

in Appendix D, assume that the initial beliefs are given by: b(0) =
(

1 0 0
)T

.

Let us first determine the initial beliefs. We have:

b̃(0) := b(1) = G̃ b(0) =

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2


 1

0

0

 =

 1/3

1/2

0


Now we can determine the consensus among all the students where the updates is only on

the matrix G̃L for the long-lived students. It is easily shown that

(
G̃L
)t

=

 3/7 2/7 2/7

3/7 2/7 2/7

3/7 2/7 2/7


so that there is convergence to the following consensus:

(b)∞ = lim
t→∞

(
G̃L
)t

b̃(0) =

 3/7

2/7

2/7


In other words, no matter what beliefs b̃(0) the agents start with, they all end up with
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limiting beliefs corresponding to the entries of (b)∞ = limt→∞

(
G̃L
)t

b̃(0) where

(b1)∞ = (b2)∞ =
(
bL3
)∞

=
3

7
b̃

(0)
1 +

2

7
b̃

(0)
2 +

2

7
b̃

(0)
3

From these limiting beliefs, using the initial beliefs b̃(0), we can then calculate the consensus

reached by all agents in the network. We have:

3

7
b̃

(0)
1 +

2

7
b̃

(0)
2 +

2

7
b̃

(0)
3 =

3

7

1

3
+

2

7

1

2
+ 0 = 0.286

If the consensus is on the state {It is worth continuing studying}, this means that the three

students reach a consensus for which there will agree that it is worth continuing studying

with probability 0.286. This example shows that the beliefs converge over time for all the

students and that they reach a consensus but it also shows that agent 1 has more influence

than agents 2 and 3 over the limiting beliefs. Observe that, compared to the example in

Appendix D where we don’t differentiate between short-lived and long-lived friends, the

consensus of continuing studying here leads to a lower probability since 0.286 < 0.333, even

though we update on the same matrix G̃L = P. This is because of the influence of the

short-lived friends who change the initial beliefs from b(0) to b̃(0) = G̃ b(0).

Along the lines of this model, a possible interpretation of our evidence is that the strength

of interactions between two students may affect how much they learn, the human capital

accumulation and how much they value achievement. It also shapes social norms that accu-

mulate over time, which affect years of schooling both directly and indirectly. This idea is

related to Akerlof’s and Kranton’s (2002) concept of identity in economics, where learning at

school can be viewed within a process of identity formation, resource allocation, and social

interaction. In other words, following the sociology literature, Akerlof and Kranton (2002)

postulate that students often care less about their studies than about what their friends

think.21

5.2 Additional evidence

Our analysis so far suggests that the distinction between long-lived and short-lived ties is

important for understanding long-run peer effects in education. The mechanism for the

21This is also related to the empirical study of De Giorgi et al. (2010) which shows that students from
Bocconi University in Italy are more likely to choose a major if many of their peers make the same choice.
They also show that peers can divert students from majors in which they have a relative ability advantage,
with adverse consequences on academic performance.
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social effects is based on the idea that the convergence of preferences and the emergence of

social norms among peers need long-term interactions. In this section, we aim at ruling out

alternative explanations.

In our analysis, we identified long-lived ties as peers nominated in both Wave I and Wave

II. This definition implies that long-lived ties are friends who are more likely to be peers

at the time of college decisions. One could thus put forward another explanation of why

friends at school may influence education decisions: it could be the timing of friendship or

decision proximity so that friends in the last grades (grades 10 to 12) are likely to have an

impact on college decision, regardless of whether these are long-lived or short-lived ties. In

other words, is it really the frequency and strength of social interactions or is it the timing of

friendship formation that is crucial for future educational outcomes? We would therefore like

to disentangle between the decision proximity effect and the strength of interaction effect. For

this purpose, we select students in the last grades (grades 10 to 12) and distinguish between

short-lived and long-lived ties and examine the effect on college choices. We estimate a

modified version of model (1), that is

yi,r,t+1 = φL
nr∑
j=1

gLij,r,tyj,r,t+1 + φS1

nr∑
j=1

gS1
ij,r,tyj,r,t+1 + φS2

nr∑
j=1

gS2
ij,r,tyj,r,t+1 +

1

gLi,r,t

nr∑
j=1

gLij,r,tx
′
j,r,t,t+1γ

L

+
1

gS1
i,r,t

nr∑
j=1

gS1
ij,r,tx

′
j,r,t,t+1γ

S1 + x′i,rδ +
1

gS2
i,r,t

nr∑
j=1

gS2
ij,r,tx

′
j,r,t,t+1γ

S2 + ηr,t + εi,r,t+1.

We here distinguish between short-lived ties where best friends have only been nominated in

Wave I (lower grades) and not in Wave II (later grades), i.e. φS = φS1 , from short-lived ties

where best friends have only been nominated in Wave II and not in Wave I, i.e. φS = φS2 .

If the decision proximity matters, then coefficient φS2 should be significant while φS1 should

not.

Table 4 contains the estimation results. The empirical results reveal that the education

decision of short-lived ties continues to show a non-significant effect on individual education

outcomes, regardless of whether peers are interacting in lower or higher grades, highlighting

the crucial role of long-lived ties in college decision.

Another concern is that peers nominated in different time periods may have a different

long-run effect because students value peer characteristics differently in friendship decisions

made over time. Do students select peers differently between the first and the second wave

or is it really that distinct types of peers (short-lived versus long-lived ties) are of different

importance? To disentangle these effects, we check whether students select peers differently
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between the first and the second wave. Table 5 compares the observable characteristics of

peers who only appear in Wave I, those who only appear in Wave II, and those who appear in

both waves. One can see that, in fact, there are no differences between these peers in terms

of observable characteristics.To further investigate this issue, we test whether link formation

differs between different waves. For this purpose, we use model (6) and pool the data for

Wave I (t = 1) and Wave II (t = 2):

gij,r,t = α +
M∑
m=1

βm|xmi,r,t − xmj,r,t|+
M∑
m=1

γm|xmi,r,t − xmj,r,t| × dij,r + εij,r,t, t = 1, 2. (5)

In this model, gij,r,t = 1 if there is a link between i and j belonging to network r at time t

(where t = Wave I, Wave II), xmi,r,t indicates the individual characteristic m of individual i

in network r at time t and dij,r is a dummy variable, which is equal to 1 if a link gij,t exists

in Wave II, and zero otherwise. The parameter in front of the dummy variable captures the

differences between the importance of these characteristics in link formation between Wave

I and Wave II. Table 6 shows that most coefficients are not significant and that there are

no observable differences in the link formation process between Waves I and II. We have

also performed an F test that tests the joint significance of the γ parameters.22 Table 6

reports the p value of this test. It reveals that, controlling for network fixed effects, we

cannot reject the null hypothesis of γm = 0, ∀m = 1, . . . ,M . In summary, Tables 4 and 5

provide evidence showing that there are no differences between peers in Waves I and II in

terms of observable characteristics and that the link formation between the different waves

is not different.Finally, we investigate whether there are any structural differences across

Wave I and Wave II in terms of the topology of the network. Over the past years, social

network theorists have proposed a number of measures to account for the variability in

network location across agents (Wasserman and Faust, 1994). We present those indicators

in Appendix C where we define the density and the assortativity of a network and, at the

node and network level, the betweenness centrality, the closeness centrality and the clustering

coefficient. When applied to our Wave I and Wave II networks, we obtain the results collected

in Table 7. It appears that the two networks are topologically very similar.

22The idea is similar to the Chow test in time series analysis to investigate the existence of a structural
break (see e.g. Chow, 1960; Hansen, 2000, 2001).
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6 Robustness checks

In this section, we check the robustness of our results with respect to two different issues:

(i) the presence of unobserved factors different from network fixed effects (Section 6.1); and

(ii) mispecification of the network structure (Section 6.2).

6.1 Endogenous network formation

Our identification strategy hinges on the use of network fixed effects to control for unobserved

factors driving both nertwok formation and behavior over networks. The assumption is that

such unobserved characteristics are common to the individuals within each network. As

highlighed in Section 3.2, this is reasonable in our case study where the networks are quite

small (see Section 2). However, if there are student-level unobservables that drive both

network formation and outcome choice, this strategy fails. A possible way to tackle this

issue is to simultaneously estimate network formation and outcomes. This strategy can be

pursued by using parametric modeling assumptions and Bayesian inferential methods that

allow to integrate a network formation with the study of behavior over the formed networks.23

In this section, we develop this approch for our case and check whether our results still

holds true when network formation is explicitly modeled.

Let us start with the network formation model. Under homophily, linked individuals

are likely to be similar not only in terms of observed characteristics but also in terms of

unobserved characteristics that could influence their behavior.24 By failing to account for

similarities in (unobserved) characteristics, similar behaviors might mistakenly be attributed

to peer influence when they are simply due to similar characteristics. Let us consider a

network formation model where the variables that explain the short- (l = S) or long-lived

(l = L) tie between students i and j belonging to network r, i.e. glij,r, are the distances

between them in terms of observed and unobserved characteristics:25

P (glij,r,t = 1|xi,r, xj,r, zi,r, zj,r) = Λ(αl +
M∑
m=1

δlm|xmi,r − xmj,r| + θl|zi,r − zj,r| + ηlr). (6)

23A similar approach, with a more articulated network formation model, has been used in Goldsmith-
Pinkham and Imbens (2013).

24This is also true under dissortative matching (i.e. heterophily) but, in that case, there are links if people
are dissimilar.

25This is different to the network formation model in equation (5) since we explicitly model how the
difference in observables affects link formation.
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where zi,r denotes the unobserved characteristic at the individual level and Λ() is the lo-

gistic function. In (6), P (glij,r,t = 1|xi,r, xj,r, zi,r, zj,r) is the probability that a link of type

l = S, L between students i and j is formed, given their observable and unobservable charac-

teristics. Homophily behavior in the unobserved characteristics implies that θl < 0, i.e. the

closer two individuals are in terms of unobservable characteristics, the higher is the proba-

bility that they are friends. If zi,r is correlated with εi,r, then the networks GL
r and GS

r in

model (1) are endogenous. Following Hsieh and Lee (2015), we assume a bivariate normal

distribution,

(zi,r, εi,r) ∼ N

((
0

0

)
,

(
σ2
z σεz

σεz σ2
ε

))
. (7)

It implies that E(εi,r|zi,r) = σεz
σ2
z
zi,r, when conditioning on zi,r. Hence, the outcome equation

can be written as:

yi,r,t+1 = φL
nr∑
j=1

gLij,r,tyj,r,t+1 + φS
nr∑
j=1

gSij,r,t+1yj,r,t+1 + x′i,rδ +
1

gLi,r,t

nr∑
j=1

gLij,r,tx
′
j,r,t,t+1γ

L (8)

+
1

gSi,r,t

nr∑
j=1

gSij,r,tx
′
j,r,t,t+1γ

S + ηr,t +
σεz
σ2
z

zi,r + ui,r,t+1,

where ui,r,t+1 ∼ N(0, σ2
z −

σ2
εz

σ2
z

). Bayesian inference requires the computation of marginal

distribution for all parameters. In particular, it requires the integration of complicated

distributions, thus Markov Chain Monte Carlo (MCMC) techniques are usually employed

to obtain random draws from posterior distributions. The unobservable variable (zi,r) is

thus generated according to the joint likelihood of link formation and outcome. The Gibbs

sampling algorithm allows us to draw random values for each parameter from their posterior

marginal distribution.26

Table 8 panel (b) collects the results that are obtained when estimating simultaneously

equations (1) and (6). Panel (a) shows the estimation result of the model, without dis-

tinguishing between short-lived and long lived ties (homogeneous peer effects). The first

column in both panels reports the 2SLS results for comparison. Table 8 reveals that σεz is

not significantly different from zero for both the models with homogeneous and heteroge-

neous peer effects (columns (3) and (6) of Table 8). The Bayesian estimates are close to the

26See Appendix E for more details on the estimation procedure. An introduction to Monte Carlo methods
in Bayesian econometrics can be found in Chib (1996) and Casella and Robert (2004).
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2SLS estimates.27 This evidence is thus in support of our identification strategy. Indeed,

our list of controls and network fixed effects, together with the temporal lag between when

friends are chosen and when education levels are attained, seem to account for unobserved

factors driving both network formation and behavior over networks.

6.2 Measurement errors in network links

In this section, we perform two different robustness checks.

6.2.1 Directed networks

First, our empirical investigation has assumed that friendship relationships are symmetric,

i.e. gij = gji. We check here how sensitive our results are to such an assumption, i.e. to a

possible measurement error in the definition of the peer group. Indeed, our data make it

possible to know exactly who nominates whom in a network and we find that 12 percent

of the relationships in our dataset are not reciprocal. Instead of constructing an undirected

network, in this section, we perform our analysis using directed networks. We focus on the

choices made (outdegrees) and we denote a link from i to j as gij,r = 1 if i has nominated

j as his/her friend in network r, and gij,r = 0, otherwise.28 Table 9 shows the estimation

results of model (1) for directed networks. The results remain qualitatively unchanged and

only slightly higher in magnitude.

6.2.2 A simulation experiment

Second, our identification and estimation strategies depend on the correct identification

of long-lived and short-lived ties. In this section, we test the robustness of our results

with respect to misspecification of long-lived and short-lived network topologies. Indeed,

in our theoretical model, we assume that φL > φS and our empirical analysis confirms

this assumption by finding a significant effect of long-lived ties (but not short-lived ties) on

educational outcomes. These results clearly depend on the definition of a long-lived and a

short-lived tie. In the present robustness check, we want to check whether our results are

27Those estimates are slightly different from those collected in Table 3 because the computational burden
of Bayesian estimation forced us to drop small networks, since they create computational problems when
some covariates are constant across the same network, and big networks, because they slow the computation
time excessively.

28As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally
focus on choices made (outdegrees). The estimation results, however, remain qualitatively unchanged if we
define the link using the nominations received (indegrees).
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robust even if we fail in exactly identifying long-lived and short-lived ties. To be more precise,

we use simulated data to answer such questions as: Do our results change if some links are

not assigned in the right category (short-lived or long-lived ties)? Do our results change if

some links are not reported? To what extent? How many ties need to be misspecified before

our results disappear?

In our analysis, we have defined a long-lived tie as a friend nominated twice, and a short-

lived tie as a friend nominated just once. We can imagine that a student may be more likely

to report a long-lived tie than a short-lived tie. Let us suppose that individual i reports a

long-lived tie (l = L) with probability p, a short-lived tie (l = S) with probability q, with

q < p, and another individual (neither a short- nor a long-lived tie, l = N) with probability

r, with r < q < p.

This probabilistic scheme translates into the following transition table between observed

and true types:

Observed

L S N

L p2 2p(1− p) (1− p)2 1

True S q2 2q(1− q) (1− q)2 1

N r2 2r(1− r) (1− r)2 1

s w n

For example, a long-lived tie appears as a long-lived tie with probability p2, as a short-

lived tie with probability 2p(1 − p), and may be missed with probability (1 − p)2. In the

table, s = p2 + q2 + r2 denotes the probability of observing a long-lived tie, w = 2p(1 −
p) + 2q(1 − q) + 2r(1 − r) denotes the probability of observing a short-lived tie and n =

(1− p)2 + (1− q)2 + (1− r)2 is the probability of not observing a tie.

Our empirical analysis assumes s = p2, w = 2q(1 − q), n = (1 − r)2 and that the off

diagonal elements are equal to zero. A misspecification of the network topology implies that

the off diagonal elements are different from zero. Let us denote these off diagonal elements

as PLM , which are the probabilities of moving from state L to state M ; L,M = {S, L}. In

our numerical exercise, we gradually change those elements from 0 to 1 at a pace of 0.005,

i.e. PLM = [0, 0.005, 0.010, ..., 1].

Our misspecification experiment can be summarized by the following table:
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Observed

L S N

L · PSW PSN

True S PWS · PWN

N PNS PNW ·

For ease of computation, we proceed in two steps. First, we change ties from long-

lived to short-lived and vice versa, i.e. we change PLS = 2p(1−p)
p2+2p(1−p) and PSL = q2

q2+2q(1−q) .

Second, for each combination of PLS and PSL, we change ties to non-ties and vice versa,

i.e. we change PLN = (1−p)2

p2+2p(1−p)+(1−p)2 , PNL = n2

n2+2n(1−n)+(1−n)2 , PSN = (1−q)2

q2+2q(1−q)+(1−q)2 and

PNS = (1−n)2

n2+2n(1−n)+(1−n)2 .

In this framework, the higher are these probabilities, the further away we are from our

observed network topology. For example, the combination PLS = 0.1 and PLN = 0 means

that 10% of the long-lived ties are replaced by short-lived ties; the combination PLS = 0.3 and

PLN = 0.2 means that 30% of the long-lived ties are replaced by short-lived ties and 20% of

the short-lived ties are replaced by unconnected individuals. In other words, our experiment

does not only allow for the fact that long-lived and short-lived ties are not equally likely to

be interchanged, but also considers the possibility that they each have some probability of

generating a misreport that violates the exclusion restrictions. For each combination of PLS,

PSL, PLN , PNL, PSN and PSW , we draw one hundred network structures (samples) of a size

equal to the real one (n = 1, 819). Then, we estimate model (3) replacing the real GL
r and

GS
r matrices with the simulated ones in turn so that, in total, we estimate model (3) eighty

thousand times for each type of estimator described in Appendix B.

Note that this exercise is quite similar to directly changing p, q and r. The advantage of

our approach is that it does not need to specify p, q and r. Indeed, p, q and r are not known

by the econometrician. They can be estimated imposing that observed and true numerosity

are the same for each type of tie, but there is not any clear theoretical reason why this should

be the case. An exploration of the entire space spanned by (p, q, r) would imply a change in

the observed (or true) network density which, in turn, would render our peer effect estimates

non-comparable among combinations.

Simulated evidence

Figure 1 shows the results of our simulation experiment for the 2SLS bias-corrected lagged

estimator.29 It depicts the estimates of long-lived and short-lived tie effects with 90% con-

29The simulation results for the other estimators are similar. They are available upon request.
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fidence bands, in the upper and lower panel, respectively.30 The first important question

concerns the percentage of network-structure misspecifications needed for the long-lived tie

effects on college choice to disappear. The upper panel of Figure 1 shows the estimates for

each combination of replacement rates – between long-lived and short-lived ties (PLS) and

between long-lived ties and no ties (PLN). The graph shows that long-lived tie effects remain

statistically significant for levels of PLS and PLN in the range of 0.005 and 0.35. Figure 2

depicts the conditional results (i.e. PLS conditional on PLN = 0 in the upper panel and

PLN conditional on PLS = 0 in the lower panel). The upper panel shows that long-lived-tie

effects remain statistically significant up to a percentage of randomly replaced links with

short-lived ties of about 35%. The lower panel shows a similar result when increasing the

percentage of links randomly replaced by zeros. This evidence implies that even if we do not

observe or we imprecisely observe a portion of each individual’s long-lived ties, our results

on the existence of this effect still hold. The second question is what is the percentages of

replacement needed in order to have a significant effect of short-lived ties. The lower panel

of Figure 1 shows the estimates of short-lived tie effects for each combination of replacement

rates – between short-lived and long-lived ties (PSL) and between short-lived ties and no

ties (PSN). The graph shows that we need to replace almost 70% of the short-lived ties

with long-lived ties before finding an effect which is statistically different from 0. Naturally,

when replacing short-lived ties with no ties, we continue to detect no effect and the standard

error increases with the percentage of replaced links. The lower panel of Figure 2 shows this

evidence more clearly by depicting the conditional results (i.e. PSL conditional on PSN = 0

in the upper panel and PSN conditional on PSL = 0 in the lower panel). These results show

that the effects of short-lived ties are found to be important only when the large majority of

long-lived ties is labeled as short-lived ties.

Finally, we show in Figure 3 the rejection rates31 when using the 2SLS bias-corrected

estimator and the 2SLS bias-corrected lagged estimator. This graph indicates that the 2SLS

bias-corrected lagged estimator tends to be more robust to a possible misspecification of

30Standard errors have been calculated assuming drawing independence and taking into account the vari-
ation between estimates for each replacement rate. Specifically, the standard error at each replacement rate,
say i, is computed as follows:

σi =
√
Wi +Bi

where Wi = 1
n

∑n
j=1 σ

2
ij , Bi = 1

n

∑n
j=1(φij − φ̄i)2 , σ2

ij is the estimated variance of the jth estimator at the

ith replacement rate, φij is the jth estimate at the ith replacement rate and φ̄i is the mean across the n
estimates. In this experiment, n = 100.

31Rejection refers to the null hypothesis of having φL = 0 or φS = 0, respectively, for long-lived and
short-lived ties effects. Each rate represents the frequency of rejection for the corresponding percentage of
randomly replaced links.
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long-lived and short-lived ties. Indeed, it appears that this estimator needs, on average,

a higher percentage of misspecified ties to accept the hypothesis of no effects for long-

lived ties and to reject it for short-lived ties. To wrap up, in this section, we have shown

that the strength of long-lived ties φL is reduced and becomes insignificant when we have

converted more than 35% of the long-lived ties into short-lived ties while the strength of

short-lived ties φS is increasing and becomes significant after having replaced more than

60% of the short-lived ties with long-lived ties. To illustrate this result, consider a student

i who has twenty friends, ten long-lived ties {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and ten short-lived

ties {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. Even if we incorrectly assign three friends from one

category (long-lived tie) to the other (short-lived tie), our results will still hold. For instance,

if we instead observe {11, 12, 3, 4, 5, 6, 7, 8, 9, 10} as long-lived ties (labeling 11 and 12 as long-

lived when they are short-lived ties) and {1, 2, 13, 14, 15, 16, 17, 18, 19, 20} as short-lived ties

(labeling 1 and 2 as short-lived when they are long-lived ties), we would still have a significant

effect of long-lived ties on education and a non-significant effect of short-lived ties since we

have “only” converted 30% of the links. As a result, from 3 to 8 incorrect assignments

(which correspond to 30% to 80% conversion of long-lived ties into short-lived ties or the

contrary), both effects will still be insignificant. It is only after having converted seven out

of ten ties (i.e. more than 60% of the long-lived ties have been converted into short-lived

ties, or the contrary) that we find that short-lived ties have a significant effect on education

while long-lived ties do not.

7 Short-run versus long-run effects

So far, we have found that students nominate other students as their best friends but only

their long-lived ties (i.e. students who are friends in both waves) influence them in their

educational choices. Using Addhealth data for Wave I only, Calvó-Armengol et al. (2009)

have studied the current effect of peers on education, finding that peers do affect the current

education activity (i.e. grades) of students. They did not differentiate between different

types of peers.

To further investigate this issue, we would now like to oppose the long-run effects to

the short-run effects of peers on education by differentiating between the effect of long-lived

ties and short-lived ties on school performance. For this purpose, we estimate the short-run

27



counterpart of equation (1):

yi,r,t = φL
nr∑
j=1

gLij,r,tyj,r,t + φS
nr∑
j=1

gSij,r,tyj,r,t + x′i,rδ (9)

+
1

gLi,r,t

nr∑
j=1

gLij,r,tx
′
j,r,tγ

L +
1

gSi,r,t

nr∑
j=1

gSij,r,tx
′
j,r,tγ

S + ηr,t + εi,r,t,

where yi,r,t is now the grade of student i who belongs to network r at time t where t refers

to Wave II. The rest of the notation remains unchanged, which implies that we now deal

with a traditional peer effects model where all individual and peer group characteristics are

contemporaneous (i.e. in Wave II in 1995-1996). As in our investigation on long-run effects,

we exploit variations in link formation in Waves I and II to differentiate between long-lived

ties and short-lived ties. We then look at how these different types of peers affect each

student’s grade obtained in Wave II. The identification and estimation strategy remains

unchanged with the difference that now, we cannot use IV variables lagged in time (see

Appendix B).

School performance is measured using the respondent’s scores received in Wave II in

several subjects, namely English or language arts, history or social science, mathematics

and science. The scores are coded as 1=D or lower, 2=C, 3=B, 4=A. For each individual,

we calculate an index of school performance using a standard principal component analysis.

The final composite index (labeled as GPA index or grade point average index) is the first

principal component.32 It ranges between 0 and 6.09, with a mean equal to 2.29 and a

standard deviation equal to 1.49.

The estimation results of model (9) are contained in Table 10. It appears that while in

the long run, only long-lived ties matter, in the short run, both short and long-lived ties are

important in determining a student’s performance at school. A standard deviation increase in

aggregate GPA of peers translates, respectively, into a 8.1 (for long-lived ties) and a 4.8 (for

short-lived ties) percent increase of a standard deviation in the individual’s GPA. Taking our

analysis as a whole, our results suggest that, in the short run, all peers matter for education

(i.e. grades) while, in the long run, only long-lived ties matter for future educational choices

(i.e. years of schooling). This is consistent with the model developed in Section 5.1 where, in

the very short-run, both long-lived and short-lived friends have an impact on current beliefs

while, in the long run, only long-lived friends have an impact on educational decisions since

32The index explains roughly 56 percent of the total variance and captures a general performance at school
since it is positively and highly correlated with the scores in all subjects. Further details on this procedure
are available upon request.
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the latter are influenced by the social norm emerging from the iterations of beliefs. This is

also consistent with the fact that, in the short-run analysis, the outcome is the students’

grades while, in the long-term, the outcome is the number years of education, where social

norms matter more.

8 Concluding remarks

In this paper, we consider the estimation of heterogeneous spillover effects in a network model

by looking at the impact of different types of friends made at school on education decisions.

We find that a long-lived relationship has a positive impact on own education outcomes while

a short-lived relationship does not. We present a theoretical model providing a mechanism

that is consistent with our evidence. In our model, short-lived friends affect each other only

in the initial period while long-lived friends affect each other all the time. We show how a

social norm that favors education arises in the long run and that only long-term relationships

between peers have a crucial influence on the emergence of this norm. Our results provide

new evidences about peer effects heterogeneity in achievement, which may be an issue when

the policy maker wants to determine the effects of regrouping students (Fruehwirth, 2014).

Such policy tool manipulates the length of interactions among students, which, as we show in

this paper, produces different peer effects. Consequently our evidences highlight that further

research needs to be done to robustly understand the effects of regrouping.

In line with several studies in sociology and economics (e.g. Coleman, 1988, Wellman

and Wortley, 1990, Akerlof and Kranton, 2002), our results suggest that long-lasting social

interactions affect how much students value achievement, their human capital accumulation,

and how social norms are formed. On the other hand, we find that, in the short run, any

relationship (whether it is a long or short lived) has an impact on current grades. Our anal-

ysis suggests that more research is needed to further understand the complex relationships

between different types of peers and how they affect educational outcomes.
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[7] Bramoullé, Y., Djebbari, H. and B. Fortin (2009), “Identification of peer effects through

social networks,” Journal of Econometrics 150, 41-55.

[8] Brooks-Gunn, J., Duncan, G.J., Kato Klebanov, P. and N. Sealand (1993), “Do neigh-

borhoods influence child and adolescent development,” American Journal of Sociology

99, 353-395.

[9] Calvó-Armengol, A., Patacchini, E. and Y. Zenou (2009), “Peer effects and social net-

works in education,” Review of Economic Studies 76, 1239-1267.

[10] Casella, G. and C. Robert (2004), Monte Carlo Statistical Methods, Berlin: Springer

Verlag.

[11] Chib, S. (1996), “Calculating posterior distributions and modal estimates in Markov

mixture models,” Journal of Econometrics 75, 79-97.

[12] Chow, G.C. (1960), “Test of equality between sets of coefficients in two linear regres-

sions,” Econometrica 28, 591-603.

30



[13] Coleman, J. (1988), “Social capital in the creation of human capital,” American Journal

of Sociology 94, 95-120.

[14] Corcoran, M., Gordon, R., Laren, D. and G. Solon (1992), “The association between

men’s economic status and their family and community origins” Journal of Human

Resources 27, 575-601.

[15] Datcher, L. (1982), “Effects of communuty and family background on achievement,”

Review of Economics and Statistics 64, 32-41.

[16] DeGroot, M. H. (1974), “Reaching a consensus,” Journal of the American Statistical

Association 69, 118-121.

[17] De Giorgi, G., Pellizzari, M. and S. Redaelli (2010), “Identification of social interac-

tions through partially overlapping peer groups,” American Economic Journal: Applied

Economics 2, 241-275.

[18] DeMarzo, P., D. Vayanos, and J. Zwiebel (2003), “Persuasion bias, social influence, and

unidimensional opinions,” Quarterly Journal of Economics 118, 909-968.

[19] Donald, S.G., and W.K. Newey (2001), “Choosing the number of instruments,” Econo-

metrica 1161-1191.

[20] Durlauf, S.E. (2004), “Neighborhood effects,” In: J.V. Henderson and J-F. Thisse

(Eds.), Handbook of Regional and Urban Economics Vol. 4, Amsterdam: Elsevier Sci-

ence, pp. 2173-2242.

[21] Evans, W.N, Oates, W.E and R.M. Schwab (1992), “Measuring peer group effects: A

study of teenage behavior,” Journal of Political Economy 100, 966-991.

[22] Fruehwirth, J. C. (2014), “Can achievement peer effect estimates inform policy? A view

from inside the black box, ” Review of Economics and Statistics 96(3), 514-523.

[23] Goldsmith-Pinkham, P. and G.W. Imbens (2013), “Social networks and the identifica-

tion of peer effects,” Journal of Business and Economic Statistics 31, 253-264.

[24] Golub, B. and M.O. Jackson (2010), “Naive learning in social networks and the wisdom

of crowds,” American Economic Journal: Microeconomics 2, 112-149.

[25] Golub, B. and M.O. Jackson (2012), “How homophily affects the speed of learning and

best-response dynamics,” Quarterly Journal of Economics 127, 1287-1338.

31



[26] Graham, B.S. (2015), “Methods of identification in social networks,” Annual Review of

Economics, forthcoming.

[27] Granovetter, M.S. (1973), “The strength of short-lived ties,” American Journal of So-

ciology 78, 1360-1380.

[28] Granovetter, M.S. (1974), Getting a Job: A Study of Contacts and Careers, Cambridge,

MA: Harvard University Press.

[29] Granovetter, M.S. (1983), “The strength of short-lived ties: A network theory revisited,”

Sociological Theory 1, 201-233.

[30] Griffith, A.L. and K.N. Rask (2014), “Peer effects in higher education: A look at het-

erogeneous impacts,” Economics of Education Review 39, 65-77.

[31] Hansen, B.E. (2000), “Testing for structural change in conditional models,” Journal of

Econometrics 97, 93-115.

[32] Hansen, B.E. (2001), “The new econometrics of structural change: Dating breaks in

U.S. labor productivity,” Journal of Economic Perspectives 15, 117-128.

[33] Hansen, C., Hausman, J. and W. Newey (2008), “Estimation with many instrumental

variables,” Journal of Business and Economic Statistics 26, 398-422.

[34] Hsieh, C.-S. and L.-F. Lee (2015), “A social interaction model with endogenous friend-

ship formation and selectivity,” Journal of Applied Econometrics, forthcoming.

[35] Ioannides, Y.M. (2011), “Neighborhood effects and housing,” In: J. Benhabib, A. Bisin,

and M.O. Jackson (Eds.), Handbook of Social Economics, Vol. 1B, Amsterdam: Elsevier

Science, pp. 1281-1340.

[36] Ioannides, Y.M. (2012), From Neighborhoods to Nations: The Economics of Social In-

teractions, Princeton: Princeton University Press.

[37] Ioannides, Y.M. and G. Topa (2010), “Neighborhood effects: Accomplishments and

looking beyond them,” Journal of Regional Science 50, 343-362.

[38] Jackson, M.O. (2008), Social and Economic Networks, Princeton: Princeton University

Press.

32



[39] Jackson, M.O. and Y. Zenou (2015), “Games on networks,“ In: P. Young and S. Zamir

(Eds.), Handbook of Game Theory, Vol. 4, Amsterdam: Elsevier, pp. 91-157.

[40] Lai, G., N. Lin and S.-Y. Leung (1998), “Network resources, contact resources, and

status attainment,” Social Networks 20, 159-178.

[41] Lee, L-F. (2002), “Consistency and efficiency of least squares estimation for mixed

regressive, spatial autoregressive models,” Econometric Theory 18, 252-277.

[42] Lee, L-F. and Liu X. (2010), “Efficient GMM estimation of high order spatial autore-

gressive models with autoregressive disturbances,” Econometric Theory 26, 187-230.

[43] Lee, L-F., Liu, X. and X. Lin (2010), “Specification and estimation of social interaction

models with network structures,” Econometrics Journal 13, 145-176.

[44] Lin, X. (2010), “Identifying peer effects in student academic achievement by a spatial

autoregressive model with group unobservables,” Journal of Labor Economics 28, 825-

860.

[45] Lin, N., W.M. Ensel and J.C. Vaughn (1981), “Social resources and strength of ties:

Structural factors in occupational status attainment,” American Sociological Review 46,

393-405.

[46] Liu, X. and L-F. Lee (2010), “GMM estimation of social interaction models with cen-

trality,” Journal of Econometrics 159, 99-115.

[47] Liu, X., Patacchini, E., Zenou, Y. and L-F. Lee (2012), “Criminal networks: Who is

the key player?” CEPR Discussion Paper No. 8772.

[48] Manski, C.F. (1993), “Identification of endogenous effects: The reflection problem,”

Review of Economic Studies 60, 531-542.

[49] Marsden, P.V. and J.S. Hurlbert (1988), “Social resources and mobility outcomes: A

replication and extension,” Social Forces 66, 1038-1059.

[50] Patacchini, E. and Y. Zenou (2008), “The strength of weak ties in crime,” European

Economic Review 52, 209-236.

[51] Putnam, R. (2000), Bowling Alone: The Collapse and Revival of American Community,

New York: Simon and Schuster.

33



[52] Sacerdote, B. (2011), “Peer effects in education: How might they work, how big are they

and how much do we know thus far?”, In: E.A. Hanushek, S. Machin and L. Woessmann

(Eds.), Handbook of Economics of Education, Vol. 3, Amsterdam: Elevier Science, pp.

249-277.

[53] Tincani, M.M. (2015), “Heterogeneous peer effects and rank concerns: Theory and

evidence,” Unpublished manuscript, University College London.

[54] Wasserman, S. and K. Faust (1994), Social Network Analysis. Methods and Applications,

Cambridge: Cambridge University Press.

[55] Wellman, B. and S. Wortley (1990), “Different strokes from different folks: Community

ties and social support,” American Journal of Sociology 96, 558-588.

[56] Yakubovich, V. (2005), “Short-lived ties, information, and influence: How workers find

jobs in a local Russian labor market,” American Sociological Review 70, 3, 408-421.

[57] Yakusheva, O., Kapinos, K.A. and D. Eisenberg (2014), “Estimating heterogeneous

and hierarchical peer effects on body weight using roommate assignments as a natural

experiment,” Journal of Human Resources 49, 234-261.

[58] Zax, J.S. and D.I. Rees (2002), “IQ, academic performance, environment, and earnings,”

Review of Economics and Statistics 84, 600-616.

34



Appendix A: Data Appendix

Table A1 provides a detailed description of the variables used in our study as well as

the summary statistics for our sample. Among the individuals selected in our sample, 53

percent are female and 19 percent are blacks. The average parental education is high-school

graduate. Roughly 10 percent have parents working in a managerial occupation, another

10 percent in the office or sales sector, 20 percent in a professional/technical occupation,

and roughly 30 percent have parents in manual occupations. More than 70 percent of our

individuals come from households with two married parents and from households of about

four people on average. In Wave IV, 42 percent of our adolescents are now married and

nearly half of them (43 percent) have at least a son or a daughter. The mean intensity in

religion practice slightly decreases during the transition from adolescence to adulthood. On

average, during their teenage years, our individuals felt that adults care about them and

they had a good relationship with their teachers. Roughly, 30 percent of our adolescents

were high-performing individuals at school, i.e. had the highest mark in mathematics. On

average, these adolescents declare having the same number of best friends both in Wave I

and Wave II (about 2.50 friends), although the composition of the friends changes.
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Appendix B: Estimation - Technical details -

Our econometric methodology extends Liu and Lee’s (2010) 2SLS estimation strategy to

a social interaction model with two different network structures. Let us expose this approach

and highlight the modification that is implemented in this paper. Model (3) can be written

as:

Y = Zθ + ι · η + ε, (10)

where Z = (GLY,GSY,X∗), θ = (φL, φS, β′)′ and ι = D(ln1 , · · · , lnr̄).

We treat η as a vector of unknown parameters. When the number of networks r̄ is large,

we have the incidental parameter problem. Let J = D(J1, · · · ,Jr̄), where Jr = Inr− 1
nr

l′nr
lnr .

The network fixed effect can be eliminated by a transformation with J such that:

JY = JZθ + Jε. (11)

Let M = (I−φLGL−φSGS)−1. The equilibrium outcome vector Y in (10) is then given by

the reduced form equation:

Y = M(X∗β + ι · η) + Mε. (12)

It follows that GLY = GLMX∗β + GLMιη + GLMε and GSY = GSMX∗β + GSMιη +

GSMε. GLY and GSY are correlated with ε because E[(GLMε)′ε] = σ2tr(GLM) 6= 0 and

E[(GSMε)′ε] = σ2tr(GSM) 6= 0. Hence, in general, (11) cannot be consistently estimated

by OLS.33 If G is row-normalized such that G · ln = ln, where ln is a n-dimensional vector

of ones, the endogenous social interaction effect can be interpreted as an average effect.

Liu and Lee (2010) use an instrumental variable approach and propose different estimators

based on different instrumental matrices, here denoted by Q1 and Q2. They first consider

the 2SLS estimator based on the conventional instrumental matrix for the estimation of (11):

Q1 = J(GX∗,X∗) (finite-IVs 2SLS ). Then, they propose to use additional instruments (IVs)

JGι and enlarge the instrumental matrix: Q2 = (Q1, JGι) (many-IVs 2SLS). The additional

IVs of JGι are based on the row sums of G and are indicators of centrality in the networks.

Liu and Lee (2010) show that those additional IVs could help model identification when the

conventional IVs are short-lived and improve on the estimation efficiency of the conventional

2SLS estimator based on Q1. However, the number of such instruments depends on the

number of networks. If the number of networks grows with the sample size, so does the

33Lee (2002) has shown that the OLS estimator can be consistent in the spatial scenario where each spatial
unit is influenced by many neighbors whose influences are uniformly small. However, in the current data,
the number of neighbors are limited, and hence that result does not apply.
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number of IVs. The 2SLS could be asymptotic biased when the number of IVs increases

too fast relative to the sample size (see, e.g., Bekker, 1994; Bekker and van der Ploeg, 2005;

Hansen et al., 2008). As detailed in Section 2, in this empirical study, we have a number of

small networks. Liu and Lee (2010) also propose a bias-correction procedure based on the

estimated leading-order many-IV bias (bias-corrected 2SLS ). The bias-corrected many-IV

2SLS estimator is properly centered, asymptotically normally distributed, and efficient when

the average group size is sufficiently large. Thus, it is the more appropriate estimator in our

case study.34

Let us now derive the best 2SLS estimator for equation (11). From the reduced form

equation (10), we have E(Z) = [GLM(X∗β + ι · η),GSM(X∗β + ι · η),X∗]. The best IV

matrix for JZ is given by

Jf = JE(Z) = J [GLM(X∗β + ι · η),GSM(X∗β + ι · η),X∗] (13)

which is an n× (3m + 2) matrix. However, this matrix is infeasible as it involves unknown

parameters. Note that f can be considered as a linear combination of the vectors in Q0 =

J [GLM(X∗+ι),GSM(X∗+ι),X∗]. As ι has r̄ columns the number of IVs in Q0 increases as

the number of groups increases. Furthermore, as M = (I−φLGL−φSGS)−1 =
∑∞

j=0(φLGL+

φSGS)j when sup ||φLGL + φSGS||∞ < 1, MX∗ and Mι, can be approximated by linear

combinations of

(GLX∗,GSX∗,GSGLX∗,
(
GL
)2

X∗,
(
GS
)2

X∗,
(
GS
)2

GLX∗,
(
GS
)2 (

GL
)2

X∗, · · ·)

and

(GLι,GSι,GSGLι,
(
GL
)2
ι,
(
GS
)2
ι,
(
GS
)2

GLι,
(
GS
)2 (

GL
)2
ι, · · ·),

respectively. Hence, Q0 can be approximated by a linear combination of

Q∞ = J(GL(GLX∗,GSX∗,GSGLX∗, · · ·,GLι,GSι,GSGLι, · · ·),
GS(GLX∗,GSX∗,GSGLX∗, · · ·,GLι,GSι,GSGLι, · · ·),X∗).

Let QK be an n × K submatrix of Q∞ (with K ≥ 3m + 2) including X∗. Let QS be an

n×KS submatrix of QS∞ = GL(GLX∗, GSX∗, GSGLX∗, · · ·, GLι, GSι, GSGLι, · · ·) and QS

an n×KS submatrix of QW∞ = GS(GLX∗, GSX∗, GSGLX∗, · · ·, GLι, GSι, GSGLι, · · ·). We

assume that KS

KS
= 1. Let PK = QK(QK

′QK)−1QK
′ be the projector of QK. The resulting

34Liu and Lee (2010) also generalize this 2SLS approach to the GMM using additional quadratic moment
conditions.
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2SLS estimator is given by:

θ̂2sls = (Z′PKZ)
−1

Z′PKy. (14)

Asymptotic properties of 2SLS estimator

As shown by Liu and Lee (2010), the 2SLS with a fixed number of IVs would be consistent

but not efficient. Asymptotic efficiency can be achieved using a sequence of IVs in which

the number of IVs grows slow enough relative to the sample size. In general, K may be

seen as an increasing function of n. Following Liu and Lee (2010), we assume the following

regularity conditions:

Assumption C1: The elements of ε are i.i.d with zero mean, variance σ2 and a moment

of order higher than four exists.

Assumption C2: The elements of X∗ are uniformly bounded constants, X∗ has the full

rank k and limn→∞ X∗′X∗ exists and is nonsingular.

Assumption C3: The sequences of matrices
{
GL
}

,
{
GS
}

, {M} are uniformly bounded.

Assumption C4: H = limn→∞
1
n
f ′f is a finite non singular matrix.

Assumption C5: There exists a K× (3m+2) matrix πK such that ‖f −QKπK‖∞ → 0

as n,K →∞.

The 2SLS estimator with an increasing number of IVs approximating f can be asymp-

totically efficient under some conditions. However, when the number of instruments in-

creases too fast, such an estimator could be asymptotically biased, which is known as the

many-instrument problem. Let ΨK,S = PKGLM and ΨK,W = PKGSM. The following

proposition shows consistency and asymptotic normality of the 2SLS estimator (14).

Under assumptions C1-C5, if K/n→ 0, then
√
n
(
θ̂ − θ − b2sls

)
d→ N

(
0, σ2H

−1
)

, where

b2sls = σ2 (Z′PKZ)−1 [tr (ΨK,L) , tr (ΨK,S) ,03m×1]′ = Op (K/n).

Proof: Let JZ = J(f+v), where v = [GLMε,GSMε,0n×3m]. Assuming Lemma B.1-3

in Liu and Lee (2010) and Lemma A.3 in Donald and Newey (2001), we have

1

n
Z′PKZ = H− ef +

1

n
v′PKf +

1

n
f ′PKv +

1

n
v′PKv

= H + O(tr(ef )) +Op(
√
K/n) + Op(K/n)

= H + op(1)

where H = 1
n
f ′f and ef = 1

n
f ′(I − PK)f , because ef = O(tr(ef )),

1
n
v′PKv = Op(K/n) and
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1
n
v′PKf = Op(

√
K/n). Furthermore, we have

(Z′PKε−σ2 [tr (ΨK,L) , tr (ΨK,S) ,03m×1]′)/
√
n

= h− f ′(I −PK)ε/
√
n+ (

1

n
v′PKε−σ2 [tr (ΨK,L) , tr (ΨK,S) ,03m×1]′)/

√
n

= h+ Op(
√

tr(ef )) + Op(
√
K/n)

= h+ op(1)
d→ N

(
0, σ2H

)
,

where h = f ′ε/
√
n. Then, applying the Slutzky theorem, the proposition follows.

Due to the increasing number of IVs
√
n
(
θ̂ − θ

)
has the bias

√
nb2SLS, when K2/n→ 0

the bias term converges to zero and the sequence of IV matrices QK gives the best IV

estimator as σ2H
−1

reaches the efficiency lower bound for the IV estimators.

Under assumptions C1-C5, if K2/n→ 0, then
√
n
(
θ̂ − θ

)
N
(

0, σ2H
−1
)

.

In summary, having a sequence of IV matrices {QK}, condition K/n→ 0 is fundamental

for the estimator to be consistent, while having K2/n→ 0 provides the asymptotically best

estimator because σ2H
−1

brings the lower bound for the IV estimators.

In this paper, we use 2SLS estimators and propose two innovations. First, we use two

centralities, one for long-lived ties and one for short-lived ties inQ2 (many-IVs 2SLS). Second,

we take advantage of the longitudinal structure of our data and only include in the different

instrumental matrices values lagged in time (i.e. observed in wave I). Let Q1L and Q2L

denote the set of instruments Q1 and Q2 which only include variables in Wave I (i.e. lagged

in time).

Note that [GLι, GSι] has 2r̄ columns, so if we include Bonacich centralities for both short-

lived and long-lived ties from each of the r̄ groups in QK, then 2r̄/K → 0. Hence, K/n→ 0

implies that 2r̄/n = 2/s̄→ 0 where s̄ is the average group size. Then, as shown by Liu and

Lee (2010) for the case of a single endogenous variable (i.e. coming from one interaction

matrix), the average group size needs to be large enough, it should also be large relative

to the number of groups because for the asymptotic efficiency it must be K2/n → 0 and

it implies (2r̄)2/n = 2r̄/s̄ → 0. If the network is not characterized by these properties, a

bias correction should be used. Given the topology of the Add Health network, which is

composed by quite a large number of relatively small networks, the best (feasible) estimator

is the bias-corrected one

θ̂c2sls = (Z′PQK
Z)
−1

[
Z′PQK

y− σ̃2
[
tr
(
Ψ̃K,L

)
, tr
(
Ψ̃K,S

)
,03m×1

]′]
, (15)
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where Ψ̃K,S = PKGLM(φ̃L, φ̃S) and Ψ̃K,S = PKGSM(φ̃L, φ̃S) are estimated with initial
√
n-consistent estimators of σ̃, φ̃L and φ̃S. This estimator adjusts the 2SLS estimator by the

estimated leading order bias b2sls, which is presented in Proposition 8.

Under assumptions C1-C5, if K/n → 0 and σ̃, φ̃L and φ̃S are
√
n−consistent initial

estimators of σ, φL and φS, then
√
n
(
θ̂c2sls − θ

)
d→ N

(
0, σ2H

−1
)

.

Proof: We need to show that

{σ̃2
[
tr
(
PKGLM̃

)
, tr
(
PKGSM̃

)]′
− σ2 [tr (ΨK,L) , tr (ΨK,S)]′}/

√
n = op(1)

where M̃ = M(φ̃L, φ̃S). Given Proposition 8, this is quite straightforward since

{σ̃2
[
tr
(
PKGLM̃

)
, tr
(
PKGSM̃

)]′
− σ2 [tr (ΨK,L) , tr (ΨK,S)]′}/

√
n

=
√
n(σ̃2 − σ2)

[
tr
(
PKGLM̃

)
, tr
(
PKGSM̃

)]′
/n

+
√
nσ2

{
tr
[
PKGL(M̃−M)

]
, tr
[
PKGS(M̃−M)

]}′
/n

=
√
n(σ̃2 − σ2)

[
tr
(
PKGLM̃

)
, tr
(
PKGSM̃

)]′
/n

+
√
nσ2

[
(φ̃L − φL)tr

(
PKGLM̃GLM

)
, 0
]′
/n

+
√
nσ2

[
(φ̃S − φS)tr

(
PKGLM̃GSM

)
, (φ̃L − φL)tr

(
PKGSM̃GLM

)]′
/n

+
√
nσ2

[
0, (φ̃S − φS)tr

(
PKGSM̃GSM

)]′
/n

= Op(
√
K/n)

= op(1)

because M̃−M =M̃[(φ̃L − φL)GLM+(φ̃S − φS)GSM], as a special case of Lemma C.11 in

Lee and Liu (2010).

The 2SLS estimators of θ = (φL, φS, β′)′ considered in this paper are:

(i) Finite-IV : θ̂2sls1 = (Z′P1Z)−1Z′P1y, where P1 = Q1(Q′1Q1)−1
1 Q′1 and Q1 contains

the linearly independent columns of J[X∗,GX∗,GGX∗].

(ii) Many-IV : θ̂2sls2 = (Z′P2Z)−1Z′P2y, where P2 = Q2(Q′2Q2)−1
2 Q′2 and Q2 contains

the linearly independent columns of [Q1,JGLι,JGSι].

(iii) Bias-corrected : θ̂c2sls = (Z′P2Z)−1{Z′P2y−σ̃2
2sls1[tr

(
P2G

LM̃
)
, tr
(
P2G

SM̃
)
,03m×1]′},

where M̃ = (I− φ̃L2sls1GL− φ̃S2sls1GS)−1, and σ̃2
2sls1, φ̃

L
2sls1 and φ̃S2sls1 are

√
n-consistent initial

estimators of σ2, φL and φS obtained by Finite-IV.

(iv) Finite-IV lagged : θ̂2sls1L = (Z′P3Z)−1Z′P3y, where P3 = Q1L(Q′1LQ1L)−1
1LQ′1L and
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Q1L contains the linearly independent and lagged in time columns of J[X∗,GX∗,GGX∗].

(v) Many-IV lagged : θ̂2sls2L = (Z′P4Z)−1Z′P4y, where P4 = Q2L(Q′2L Q2L)−1Q′2L and

Q2L contains the linearly independent columns of [Q1L,JGLι,JGSι]

(vi) Bias-corrected lagged :

θ̂c2slsL = (Z′P4Z)−1{Z′P4y − σ̃2
2sls1[tr

(
P4G

LM̃
)
, tr
(
P4G

SM̃
)
,03m×1]′}

where M̃ = (I− φ̃L2sls1LGL− φ̃S2sls1LGS)−1, and σ̃2
2sls1L, φ̃

L
2sls1L and φ̃S2sls−1L are

√
n-consistent

initial estimators of σ2, φL and φS obtained by Finite-IV lagged.
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Appendix C: Network Structure Indicators

Let N be a set of nodes with cardinality n. Let G be the adjacency matrix, whose generic

element gij is equal to one if an edge (link) from j to i exists (here we consider indirect

networks, so gij = gji). We consider the following network structure measures (Wasserman

and Faust, 1994).

Density

Ds(g) =

n∑
i=1

n∑
j=1

gij.

n(n− 1)
.

Betweenness centrality

Let δjk be the number of shortest paths between node j and node k and δijk be the

number of shortest paths between node j and node k through i. For each node, betweenness

centrality is:

Bi =
1

(n− 1)(n− 2)

n∑
j=1

n∑
k=1

δijk
δjk

.

It assumes values in [0, 1]. At the network level:

B(g) =

n∑
i=1

|B∗i −Bi|

n− 1

where B∗i is the maximum value of betweeness centrality among the nodes. This index is

equal to one when a node has centrality equal to 1 and all others have zero centrality.

Closeness centrality

Let d(i, j) be the shortest path between two nodes. For each node, closeness centrality

is:

C2i =
1

n− 1

∑
j 6=i

1

d(i, j)
.

At the network level:

C2(g) =

n∑
i=1

C2i

n
.
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Assortativity

Assortativity measures the correlation pattern in the degree distribution. If highly degree

connected nodes are often linked with similar ones, it shows a positive sign. Let di be i’s

number of links and m =
∑
i

di
n

the average number of links among nodes. Assortativity is

defined as:

A(g) =

n∑
i=1

n∑
j=1

(di −m)(dj −m)gij

n∑
i=1

(di −m)2

.

Clustering coefficient

For all i such that i ∈ N ′ := {i ∈ N |ni(g) ≥ 2}, where ni(g) is the cardinality of Ni(g)

and Ni(g) is the set of direct links of node i, the clustering coefficient is:

Cli =

∑
l∈Ni(g)

∑
k∈Ni(g)

glk

ni(g)[ni(g)− 1]
.

For the other nodes (singleton and with only one link), the value is imposed to be equal to

zero. At the network level:

C(g) =
∑
i∈N ′

ni(g)[ni(g)− 1]∑
j∈N ′

nj(g)[nj(g)− 1]
Cli.

This is a simple weighted mean of the clustering coefficients in which each node has a weight

proportional to the number of possible connections among its direct links.

44



Appendix D: The DeGroot model

The network Consider a society consisting of a finite set of individualsN = {1, 2, ..., n}
who would like to gather information about an unknown parameter θ of interest or form an

opinion concerning an issue they need to make a decision on. Agents only concern is to

estimate the true value of the unknown parameter θ by following an updating process; they

do not seek to maximize their social influence, nor can they gain something by trying to

propagate a particular belief.

The pattern of communication among the agents is captured by a directed network G.

In other words, the adjacency matrix G captures the pattern of communication of opinions

across the network. A link from agent i to agent j, gij = 1, has the interpretation that agent

i can observe agent j’s belief, i.e. j is a neighbor (or more precisely an out-neighbor) of i.

All out-neighbors of i form his/her out-neighborhood D(i) ⊆ N . The network is directed

because gij = 1 means that agent i observes, pays attention to or listens to agent j but not

necessarily the reverse, i.e. attention may not be reciprocal. It is also reasonable to assume

that every agent can observe (or pay attention to) him/herself. The diagonal of G will thus

consist of ones, that is gii = 1, for all i ∈ N .

A network G is strongly connected if there exists a directed path from any node to any

other node in G.

The belief updating process In the DeGroot model, agents start with some initial

beliefs, which they update through communication with their neighbors. The initial belief

of agent i is denoted by b
(0)
i . Here b

(0)
i is a probability and lies in the interval [0, 1]. Hence

the n−dimensional vector b(0) denotes the agents’ initial beliefs. In our context, b
(0)
i can

be thought of as the probability that the statement {It is worth continuing studying} or

the statement {It is not worth continuing studying} is true. In each round, agents ask

their neighbors for their beliefs, as well as an assessment of how precise or accurate these

beliefs are. Then they update their belief by weighing the reports they get based on the

precision assessment reported. The belief of agent i after t rounds of communication, where

t ∈ {0, 1, 2, ...}, will be denoted with b
(t)
i ∈ R. The beliefs of all agents in G after t rounds

of communication can be stacked into a vector b(t) ∈ Rn.

DeGroot (1974) assumes that agents update their beliefs by repeatedly taking weighted

averages of their neighbors’ beliefs with pij being the weight that agent i places on the

current belief of agent j in forming his or her belief for the next period. To be more precise,
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in the beginning, each agent i ∈ N assigns a (relative) weight pij on each of his/her neighbors

j such that
∑j=n

j=1 pij = 1. Observe that pij is the direct influence of agent j on i so that

pij = 0 for j 6∈ D(i).

One way to interpret this model is as follows. Each agent i assigns an initial precision

of πi ∈ R+ to his/her signal. This precision can be based on some arbitrary assessment of

the agent, or it could be an objectively defined statistics (DeMarzo et al., 2003; Golub and

Jackson, 2010, 2012). If, for example, the initial beliefs b(0) are some noisy signals for the

true value of the parameter θ, then πi can be a sufficient statistic for the variance of i’s

signal-generating distribution. Indeed, assume that each agent i receives a noisy signal si

on the state of the world θ, which is given by: si = θ + εi, with εi ∼ N (0, σ2
i ) and εi ⊥ εj,

∀ (i, j) ∈ N2. In that case, the initial belief is: b
(0)
i = si and the precision is πi = 1/σ2

i . The

initial precisions of all agents can be stacked into a vector π ∈ R+. It will be assumed that

πi > 0 for at least some agent i ∈ N in order for the communication process described below

to be meaningful. In this framework, we can assume that:

pij =
gijπj∑k=n
k=1 gikπk

(16)

In this interpretation, the DeGroot model can be thought as a boundedly rational version

of this Bayesian process, where the agents do not adjust their weightings over time.

The corresponding matrix P = (pij) is the interaction matrix of relative weights. It is

a row stochastic matrix, so that its entries across each row sum to 1. Observe that the

adjacency matrix G = (gij) of the network is a (0− 1) matrix while the interaction matrix

P = (pij), corresponding to G, is such that each element pij is between 0 and 1. In other

words, P is the row-normalized version of G. As a result, a network can be defined by either

G or P. At each period t ∈ {0, 1, 2, ...}, agents revise their beliefs to a weighted average of

the previous-period beliefs of their neighbors so that

b
(t)
i =

j=n∑
j=1

pijb
(t−1)
j (17)

or, in matrix form

b(t) = P b(t−1) (18)

The limiting beliefs can be calculated as a function of the initial beliefs and weights. They

are given by:

b∞ = lim
t→∞

Pt b(0) (19)
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where Pt is the matrix of cumulative influences in period t.

A matrix P is convergent if limt→∞Pt b exists for all vectors b ∈ [0, 1]n.

This definition of convergence requires that beliefs converge for all initial vectors of beliefs.

Indeed, if convergence fails for some initial vector, then there will be oscillations or cycles in

the updating of beliefs and convergence will fail.

Agents in network G reach a consensus if for any b(0) ∈ Rn, we have:

lim
t→+∞

[bi(t)− bj(t)] = 0 for all (i, j) ∈ N2

We have the following main result, which states under which condition the updating

process described below converge to a well-defined limit:

[DeGroot (1974)] Assume that network G is strongly connected and agents follow the

average-based updating process described by expression (18). Then all agents in G reach a

consensus, which, for each agent i ∈ N , is given in the limit by:(
lim
t→+∞

Pt b

)
i

= e b for every b ∈ [0, 1]n

where e is the unique left eigenvector of matrix P.

The convergence result comes from standard Markov chain theory. Indeed, the matrix

P is irreducible because the associated network G is assumed to be strongly connected.

Moreover, the matrix P is aperiodic because every agent listens to him or herself, i.e. gii > 0,

∀i. This guarantees that the process converges to a unique steady state because P is ergodic.

Finally, since the matrix P is row stochastic, its largest eigenvalue is 1, and therefore, there

is a unique left eigenvector e with positive components such that e = e P. The eigenvector

property is just saying that ei =
∑

j∈N pjiej for all i, so that the opinions of agents with

greater influence have a greater weight in the final convergence belief.

Assume that the network G is undirected so that gij = 1 means that i and j pay attention

to each other and define pij = gij/di(G), where di(G) =
∑

j∈N gij is the degree of i. Then,

under the same assumptions as in Proposition 8, the same convergence result holds where ei

is now given by:

ei =
di(G)∑
j∈N dj(G)

This is a particular case of Proposition 8 where we assume that each agent equally split

attention among his or her neighbors in an undirected network. In that case, Corollary
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8 shows that social influence is proportional to the agent’s degree. An interesting feature

of Corollary 8 is that social influence is only determined by the degree distribution of the

network and not by any structural properties of the network such as the average path length

or the centrality of the network. However, Golub and Jackson (2010) shows that the speed

of convergence is affected by a structural property of the network, namely homophily. They

show that homophily does not alter agents’ social influence and therefore has no effect on

the long-term learning but significantly reduces the speed of convergence.

An example of convergence with the DeGroot model To illustrate the notations

and the results in Proposition 8, let us consider the following network:

dtbpFU3.6729in3.6357in0ptFigure A1: Directed networkFigure

where the adjacency matrix is given by:

G =

 1 1 1

1 1 0

1 1 1


This means, for example, that agent 2 pays attention to agent 3 but agent 3 does not pay

attention to agent 2. It is easily verified that this directed network is strongly connected.

The weights are arbitrarily determined and given by

P =

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2


This means, for example, that all agents put equal weight of all their neighbors. Assuming

that the initial beliefs are given by: b(0) =
(

1 0 0
)T

, it is easily verified that:

b(1) = P b(0) =

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2


 1

0

0

 =

 1/3

1/2

0



b(2) = P b(1) =

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2


 1/3

1/2

0

 =

 0.278

0.417

0.25
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By continuing iterating, there is convergence to the following consensus:

b∞ = lim
t→∞

Pt b(0) =

 1/3 = 0.333

4/9 = 0.444

2/9 = 0.222

 (20)

This means that

Pt =

 1/3 4/9 2/9

1/3 4/9 2/9

1/3 4/9 2/9


which implies that a consensus is reached. In other words, no matter what are the intitial

beliefs b(0), all agents end up with limiting beliefs corresponding to the entries of b∞ =

limt→∞Pt b(0) where

b∞1 = b∞2 = b∞3 =
1

3
b

(0)
1 +

4

9
b

(0)
2 +

2

9
b

(0)
3 (21)

This example shows that the beliefs converge over time and that agents reach a consensus

but it also shows that agent 2 is the most influential individual in the network over the

limiting beliefs. Since b
(0)
1 = 1, b

(0)
2 = 0 and b

(0)
3 = 0, we have:

b∞1 = b∞2 = b∞3 =
1

3
= 0.333

If there are two states of the world and if the consensus is on the state {It is worth continuing

to study}, then this means that all students in this network agree that with 33.3 percent

that it is worth continuing to study.
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Appendix E: Bayesian Estimation

Prior and Posteriors Distributions In order to draw random values from the marginal

posterior distributions of parameters we need to set prior distributions of those parameters.

Once priors and likelihoods are specified, we can derive marginal posterior distributions

of parameters and draw values from them. Given the link formation, the probability of

observing the short- and long-lasting networks, GL
r and GS

r is

P (GL
r |xi,r, xj,r, zi,r, zj,r) =

∏
i6=j

P (gLij,r,t−1|xi,r, xj,r, zi,r, zj,r),

P (GS
r |xi,r, xj,r, zi,r, zj,r) =

∏
i6=j

P (gSij,r,t|xij,r, zi,r, zj,r).

Following HL11 our prior distributions are

zi,r ∼ N(0, 1)

ω ∼ N2K+3(ω0,Ω0)

φL ∼ U [−κL, κL]

φS ∼ U [−κS, κS]

β∗ ∼ N3K+1(β0, B0)

(σ2
ε , σεz) ∼ TN2(σ0,Σ0)

ηr|ση ∼ N(0, ση)

ση ∼ IG(
ς0
2
,
ζ0

2
)

where ω = (δL, θL, δS, θS), κL = 1
κ
− |φL|, κS = 1

κ
− |φS| and κ = 1/max(min(maxi(

∑
j g

S
ij),

maxj(
∑

i g
S
ij)),min(maxi(

∑
j g

L
ij),maxj(

∑
i g

L
ij))) from Gershgorin Theorem, U [·] , TN2(·)

and IG(·) are respectively the uniform, bivariate truncated normal, and inverse gamma

distributions. Those distributions depend on hyper-parameters (like β0) that are set by the
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econometrician. It follows that the marginal posteriors are

P (Zr|Yr,G
S
r ,G

L
r , ρ) ∝

r∏
r=1

nr∏
i

φ(zi,r)P (Yr,G
S
r ,G

L
r |Zr, ρ)

P (ω|Yr,G
S
r ,G

L
r ) ∝ φ2K+3(ω, ω0,Ω0)

r∏
r=1

P (GS
r ,G

L
r |Zr, ω)

P (φS, φS|Yr,G
S
r ,G

L
r ,Zr, β, σ

2
ε , σεz) ∝

r∏
r=1

P (Yr|GS
r ,G

L
r ,Zr, β

∗, σ2
ε , σεz)

P (β∗|Yr,G
S
r ,G

L
r ,Zr, σ

2
ε , σεz, φ

S, φL) ∝ φ3K+2(β̃, B̃)

P (σ2
ε , σεz|Yr,G

S
r ,G

L
r ,Zr, φ

S, φL) ∝ φ2
T ((σ2

ε , σεz), σ0,Σ0)
r∏
r=1

P (Yr|GL
r ,G

S
r ,Zr, β

∗, σ2
ε , σεz, ση)

P (ηr|Yr,G
L
r ,G

S
r ,Zr, φ

S, φL, σ2
ε , σεz, ση) ∝ φ(ηr, η̃r, M̃r)

P (ση|Yr,G
L
r ,G

S
r ,Zr, φ

S, φL, σ2
ε , σεz) ∝ ιγ(

ς0 + r

2
,
ζ0 +

∑r
r=1 η

2
r

2
)

where ρ = (ω, φS, φL, β∗, σ2
ε , σεz, ση, η), φl(·) is the multivariate l− dimensional normal

density function, φl
T (·) is the truncated counterpart, ιγ(·) is the inverse gamma density

function. β̃ = B̃(B−1
0 β0 +

∑r
r=1 X′rVr(SrYr − σεzZr)), B̃ = (B−1

0 +
∑r

r=1 X′rVrXr)
−1,

η̃r = (σ2
ε − σ2

εz)
−1M̃rl

′
nr

(SrYr − σεzZr − X∗rβ
∗), and M̃r = (σ−2

η + (σ2
ε − σ2

εz)
−1l′nr

lnr)
−1,

where Vr = (σ2
ε − σ2

εz)Inr + σ2
ηlnr

l′nr
, where X∗r = (Xr,G

∗S
r Xr,G

∗L
r Xr). The posteriors

of β∗,{ηr} and ση are available in closed forms and a usual Gibbs Sampler is used to draw

from them. The other parameters are drawn using the Metropolis-Hastings (M-H) algorithm

(Metropolis-within-Gibbs).

Sampling Algorithm We start our algorithm by picking (ω(1), φL(1), φS(1), β∗(1), σ
2(1)
ε , σ

(1)
εz , σ

(1)
η , η(1))

as starting values. For β∗(1), η(1), φL(1), φS(1) we use OLS estimates, while we set the variances-

covariances σ
2(1)
ε , σ

(1)
εz , σ

(1)
η at 0.35 We ought to draw samples of zti,r from P (zi,r|Yr, GL

r , G
S
r , ρ), i =

1, · · · , n. To do this, we first draw a candidate z̃ti,r from a normal distribution with mean

z
(t−1)
i,r , then we rely on a M-H decision rule: if z̃ti,r is accepted we set zti,r = z̃ti,r, otherwise

zti,r = zt−1
i,r . Once all zi,r are sampled, we move to the sampling of β∗. By specifying a

normal prior and a normal likelihood we can now easily sample βt from a multivariate nor-

mal distribution. A diffuse prior for σ2
ε allows us to sample it from an inverse chi-squared

distribution. We follow the Bayesian spatial econometric literature by sampling φS, φW from

35The algorithm is robust to different starting values. However, speed of convergence may increase signif-
icantly.
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uniform distributions with support [−κL, κL] and [−κS, κS], as defined above. A M-H step

is then performed over a normal likelihood: if accepted, then φS
t

= φ̃S
t

and φL
t

= φ̃L
t
. For

network fixed effects we deal again with normal prior and normal likelihood, so η is easily

sampled from a multivariate normal. We sample σ2
ε , σεz from a truncated bivariate normal

over an admissible region Ξ such that the variance-covariance matrix is positive definite.

Acceptance or rejection is determined by the usual M-H decision rule. At each of the M-H

steps, the algorithm accepts the new values if the likelihood is higher than the current one.
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Figure 1. Misspecification of long-lived ties and short-lived ties
Numerical simulation

Bias corrected 2SLS lagged estimates of long-lived tie effect (φL)

Bias corrected 2SLS lagged estimates of short-lived tie effect (φS)

Notes: For each combination of replacement rates, we plot the average estimate of peer effects. Standard errors are derived assuming drawing
independence and accounting for both within and between sample variation.
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Figure 2. Simulation experiment
Single replacement effect

Bias corrected 2SLS lagged estimates of long-lived tie effect (φL)

Bias corrected 2SLS lagged estimates of short-lived tie effect (φS)

Notes:For each replacement rate, we plot the average estimate of peer effects. Standard errors are derived assuming drawing independence and
accounting for both within and between sample variation.
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Figure 3. Rejection rates of null hypothesis
Comparing estimators

Notes: the rejection rate of null hypothesis for long-lived and short-lived tie effects.
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Table 1: Long-run peer effects

Dep.Var. Years of Education 2SLS 2SLS Lagged
Finite IV Many IV Bias Corrected Finite IV Many IV Bias Corrected

Peer effects (φ) 0.0057 *** 0.0052 *** 0.0052 *** 0.0064 *** 0.0058 *** 0.0059 ***
(0.0020) (0.0019) (0.0019) (0.0026) (0.0020) (0.0020)

Female 0.9702 *** 0.9718 *** 0.9718 *** 0.7383 1.0433 *** 1.0434 ***
(0.2004) (0.2004) (0.2004) (0.6123) (0.2408) (0.2408)

Black or African American -0.1346 -0.1341 -0.1341 -0.2933 -0.1833 -0.1830
(0.4088) (0.4088) (0.4088) (0.7722) (0.4464) (0.4464)

Other races -0.3445 -0.3447 -0.3447 -0.3873 -0.2930 -0.2927
(0.2912) (0.2911) (0.2911) (0.4561) (0.3111) (0.3111)

Religion Practice 0.2515 *** 0.2521 *** 0.2521 *** 0.2515 *** 0.2521 *** 0.2521 ***
(0.0540) (0.0540) (0.0540) (0.1373) (0.0599) (0.0599)

Household Size 0.0325 0.0327 0.0327 0.0247 0.0355 0.0355
(0.0574) (0.0574) (0.0574) (0.0900) (0.0605) (0.0605)

Parent education 0.2890 *** 0.2895 *** 0.2895 *** 0.2275 * 0.2262 *** 0.2262 ***
(0.0969) (0.0969) (0.0969) (0.1528) (0.1051) (0.1051)

Mathematics score A 1.3550 *** 1.3578 *** 1.3578 *** 0.8917 * 1.2388 *** 1.2385 ***
(0.2551) (0.2551) (0.2551) (0.5065) (0.2816) (0.2816)

Mathematics score B 0.9691 *** 0.9683 *** 0.9683 *** 0.6889 * 0.8941 *** 0.8941 ***
(0.2399) (0.2399) (0.2399) (0.3966) (0.2532) (0.2532)

Mathematics score C 0.5254 *** 0.5272 *** 0.5272 *** 0.3422 0.5110 ** 0.5107 **
(0.2583) (0.2583) (0.2583) (0.4019) (0.2709) (0.2709)

Mathematics score missing 0.6214 0.6210 0.6210 1.1487 0.6678 0.6677 *
(0.4286) (0.4286) (0.4286) (0.8355) (0.4471) (0.4471)

Resid. building qual. 0.1771 ** 0.1798 ** 0.1797 ** 0.0950 ** 0.1264 ** 0.1262 **
(0.0966) (0.0966) (0.0966) (0.1669) (0.1053) (0.1053)

Student grade 0.4781 *** 0.4766 *** 0.4766 *** 0.4051 *** 0.5042 *** 0.5043 ***
(0.0851) (0.0850) (0.0850) (0.1654) (0.0914) (0.0914)

Children -0.4171 *** -0.4157 *** -0.4157 *** -1.5107 -1.2429 ** -1.2438**
(0.1668) (0.1668) (0.1668) (1.7631) (0.6263) (0.6263)

Religion Practice (Wave 4) 0.1511 *** 0.1514 *** 0.1514 *** 1.0470 0.3429 ** 0.3427 **
(0.0514) (0.0514) (0.0514) (1.1264) (0.1873) (0.1873)

Married -0.1168 -0.1166 -0.1166 -0.8750 -0.6020 -0.6024
(0.1655) (0.1655) (0.1655) (2.113) (0.6381) (0.6381)

Parental occupation dummies Yes Yes Yes Yes Yes Yes
Contextual effects Yes Yes Yes Yes Yes Yes
Network fixed effects Yes Yes Yes Yes Yes Yes
First stage F statistic 1210.64 700.35 1240.51 708.83
OIR test p-value 0.503 0.461 0.554 0.503
Observations 1819 1819 1819 1819 1819 1819
Networks 116 116 116 116 116 116

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

56



Table 2: 2SLS Lagged First Stage Results

Dependent Variable: GY

X GX G2X G3X G4X

Variables: X Own Peers Peers of peers
(Exclusion Restrictions)

Female 0,4516 0,7482** -0,2222 -0,0209 0,0084
(0,4456) (0,3483) (0,1738) (0,0422) (0,0110)

Black or African American -1,1913* -0,3352 0,1265 0,0248 -0,0061
(0,6487) (0,4546) (0,1264) (0,0570) (0,0071)

Other races 0,1140 0,7957* 0,0356 -0,1779*** 0,0176
(0,6163) (0,4818) (0,2197) (0,0611) (0,0162)

Religion Practice -0,1296 -0,0112 -0,0007 -0,0065 0,0012
(0,1202) (0,0891) (0,0431) (0,0101) (0,0024)

Household Size -0,2091 0,1924** 0,0392 -0,0117 0,0013
(0,1355) (0,0948) (0,0458) (0,0124) (0,0029)

Parent education -0,3902* 0,6201*** 0,1962*** 0,0218 -0,0062
(0,1966) (0,1520) (0,0625) (0,0200) (0,0043)

Mathematics score A -1,5474* 2,7857*** 1,2068*** 0,0480 -0,0344***
(0,5663) (0,4119) (0,1749) (0,0463) (0,0093)

Mathematics score B -1,0044* 2,4891*** 0,9199*** -0,0298 -0,0219***
(0,5545) (0,3843) (0,1756) (0,0461) (0,0090)

Mathematics score C -1,0947* 1,8637*** 0,9009*** 0,0658 -0,0282***
(0,5913) (0,4270) (0,2005) (0,0479) (0,0114)

Mathematics score missing -0,0857 1,8655*** 0,4239 -0,1896** 0,0076
(0,9780) (0,7666) (0,3482) (0,0891) (0,0198)

Resid. building qual. -0,0623 -0,2335 -0,0974 -0,0019 0,0058
(0,1958) (0,1545) (0,0659) (0,0204) (0,0042)

Student grade -0,5640*** 1,0504*** -0,1511*** 0,0241** -0,0028*
(0,1559) (0,0838) (0,0263) (0,0103) (0,0016)

Network Fixed Effects Yes
Number of Observations 1819
Number of Networks 116

Notes: OLS estimation results, standard errors in parentheses.*** p<0.01,** p<0.05,*
p<0.1. The instrumental set also includes the individual number of connections. See
Appendix B for further details on IV estimation of spatial models.

Table 3: Long and short-lived ties: Long-run effects

Dep.Var. Years of Education
2SLS 2SLS Lagged

Long-lived ties (φL) 0.0317*** 0.0345***
(0.0137) (0.0155)

Short-lived ties (φS) 0.0062 0.0080
(0.0055) (0.0063)

Individual socio-demographic yes yes
Family Background yes yes
Protective Factors yes yes
Residential neighborhood yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 1819 1819
Networks 116 116
Notes: We report bias-corrected 2SLS estimates.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Short-lived ties in different grades (10 - 12)

Dep.Var. Years of Education
2SLS 2SLS Lagged

Long-lived ties (φL) 0.0419*** 0.0485**
(0.0187) (0.0212)

Short-lived in lower grades (φS1 ) 0.0015 0.0027
(0.0237) (0.0331)

Short-lived in higher grades (φS2 ) 0.0011 0.0049
(0.0207) (0.0257)

Individual socio-demographic yes yes
Family Background yes yes
Protective Factors yes yes
Residential neighborhood yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 628 628
Networks 41 41
Notes: We report bias-corrected 2SLS estimates.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 5: Peer characteristics

Wave I Wave II Wave I and Wave II
mean std min max mean std min max mean std min max

Years of education 14.96 3.48 9.00 23.00 14.62 3.35 9.00 23.00 14.91 3.39 9.00 23 .00
GPA 2.89 0.87 0.00 4.85 2.91 0.94 0.00 4.81 2.88 0.97 0.00 4.82
Female 0.48 0.50 0.00 1.00 0.43 0.50 0.00 1.00 0.47 0.50 0.00 1.00
Black or African American 0.06 0.24 0.00 1.00 0.01 0.12 0.00 1.00 0.04 0.20 0.00 1.00
Other races 0.09 0.29 0.00 1.00 0.06 0.23 0.00 1.00 0.05 0.23 0.00 1.00
Religion Practice 3.98 1.82 1.00 7.00 3.88 1.89 1.00 7.00 3.84 1.86 1.00 7.00
Household Size 3.34 1.37 1.00 10.00 3.32 1.34 1.00 10.00 3.47 1.38 1.00 10.00
Two married parents family 0.75 0.44 0.00 1.00 0.77 0.42 0.00 1.00 0.80 0.40 0.00 1.00
Parent education 3.33 0.90 1.00 5.00 3.22 0.83 1.00 5.00 3.19 0.83 1.00 5.00
Mathematics score A 0.24 0.42 0.00 1.00 0.21 0.41 0.00 1.00 0.25 0.43 0.00 1.00
Mathematics score B 0.28 0.45 0.00 1.00 0.32 0.47 0.00 1.00 0.31 0.46 0.00 1.00
Mathematics score C 0.25 0.43 0.00 1.00 0.24 0.43 0.00 1.00 0.24 0.43 0.00 1.00
Mathematics score missing 0.08 0.27 0.00 1.00 0.08 0.28 0.00 1.00 0.07 0.26 0.00 1.00
Residential building quality 1.56 0.78 1.00 4.00 1.59 0.79 1.00 4.00 1.52 0.79 1.00 4.00
Student grade 10.44 0.50 10.00 11.00 10.43 0.50 10.00 11.00 10.40 0.49 10.00 11.00
Children 0.48 0.50 0.00 1.00 0.48 0.50 0.00 1.00 0.45 0.50 0.00 1.00
Religion Practice (Wave 4) 1.44 1.62 0.00 5.00 1.32 1.56 0.00 5.00 1.46 1.66 0.00 5.00
Married 0.50 0.50 0.00 1.00 0.50 0.50 0.00 1.00 0.49 0.50 0.00 1.00
Notes: Differences between means are never statistical significant at conventional levels of significance
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Table 6: Network formation in Wave I and Wave II
Model (8) OLS estimation results

VARIABLE γ Coefficient Std. error

Female 0.0025 (0.019)
Black or African American -0.0107 (0.044)
Other races -0.0265 (0.036)
Student grade -0.0226 (0.016)
Religion Practice 0.0032 (0.008)
Mathematics score A -0.0063 (0.017)
Mathematics score B 0.0178 (0.018)
Mathematics score C 0.0122 (0.019)
Mathematics score missing -0.0030 (0.022)
Parent education -0.0073 (0.013)
Household Size 0.0125 (0.008)
Parent occupation professional/technical 0.0103 (0.024)
Parent occupation manual 0.0028 (0.023)
Parent occupation office or sales worker 0.0162 (0.027)
Parent occupation other 0.0460** (0.022)
Two married parents family -0.0026 (0.020)
Residential building quality 0.0085 (0.012)
Network fixed effects yes
Chow test p value 0.6083
Observations 6,932
Notes: Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Wave I and Wave II network structure

Wave I Wave II

Network structure indicators
Density 0.0010 0.0007
Betweeness 0.0040 0.0055
Closeness 0.0131 0.0090
Assortativity 2.4105 2.9041
Clustering coefficient 0.0784 0.1516
Notes: Network structure indicators are described in Appendix D.
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Table 9: Directed networks

Dep.Var. Years of Education
2SLS 2SLS Lagged

Long-lived ties (φL) 0.0393*** 0.0474***
(0.0160) (0.0183)

Short-lived ties (φS) 0.0049 0.0052
(0.0063) (0.0070)

Individual socio-demographic yes yes
Family Background yes yes
Protective Factors yes yes
Residential neighborhood yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 1819 1819
Networks 116 116
Notes: We report bias-corrected 2SLS estimates.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 10: Long and short-lived ties: Short-run effects

Dep.Var. GPA
2SLS Bayesian

estimation

Long-lived ties (φL) 0.0238*** 0.0253***
(0.0097) (0.0093)

Short-lived ties (φS) 0.0079* 0.0121**
(0.0046) (0.0051)

Unobservables (σεz) 0.0053
(0.1036)

Individual socio-demographic yes yes
Family Background yes yes
Protective Factors yes yes
Residential neighborhood yes yes
Contextual Effects yes yes
Network Fixed Effects yes yes
Observations 1819 932
Networks 116 33
Notes: We report bias-corrected 2SLS estimates.
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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