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QUANTILE AGGREGATION OF DENSITY FORECASTS 
 
 

by Fabio Busetti* 
 

Abstract 

Quantile aggregation (or 'Vincentization') is a simple and intuitive way of combining 
probability distributions, originally proposed by S. B. Vincent in 1912. In certain cases, such 
as under Gaussianity, the Vincentized distribution belongs to the same family as that of the 
individual distributions and can be obtained by averaging the individual parameters. This 
paper compares the properties of quantile aggregation with those of the forecast combination 
schemes normally adopted in the econometric forecasting literature, based on linear or 
logarithmic averages of the individual densities. In general we find that: (i) larger differences 
among the combination schemes occur when there are biases in the individual forecasts, in 
which case quantile aggregation seems preferable overall; (ii) the choice of the combination 
weights is important in determining the performance of the various methods. Monte Carlo 
simulation experiments indicate that the properties of quantile aggregation fall between those 
of the linear and the logarithmic pool, and that quantile averaging is particularly useful for 
combining forecast distributions with large differences in location. An empirical illustration 
is provided with density forecasts from time series and econometric models for Italian GDP.  
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1 Introduction

Economic forecasts are increasingly reported as point estimates supplemented
by confidence bands or selected quantiles of the predictive distributions, in
order to provide measures of uncertainty and risks around the central out-
come. Indeed a common practice for central banks is to present forecasts of
inflation and output in the form of ’fan charts’that describe in probabilistic
terms the evolution of these variables along the forecast horizon. The (sub-
jective) assessment of the likelihood of alternative macroeconomic scenarios
is accounted using skewed density forecasts, that reflect higher probability
for events in either tail of the distribution. For example, the Bank of England
publishes fan charts for inflation since 1996; see Britton et al. (1998).
The econometric literature on forecast evaluation has been progressively

extended to density forecasts in order to gauge the relative performance of
different prediction models in terms of their distributions; see, inter alia,
Diebold et al. (1998), Corradi and Swanson (2003, 2006), Mitchell and Hall
(2005), Amisano and Giacomini (2007). In parallel, the idea of forecast com-
bination, initiated by the classical paper of Bates and Granger (1969), has
been applied to predictive distributions. The basic tools have been bor-
rowed from the statistics literature on aggregation of subjective distribution
functions, where the the task is to form an ’opinion pool’; cf. Genest and
Zidek (1996) for a review. Econometric studies have focussed on linear or
logarithmic weighting of the individual densities, where the weights may be
data-driven reflecting the past performance of different models. Some exam-
ples are Wallis (2005), Hall and Mitchell (2007), Mitchell and Wallis (2010),
Geweke and Amisano (2011), Fawcett et al. (2013). Kacha and Ravazzolo
(2010) provide an empirical comparison of the linear versus the logarith-
mic opinion pool of several forecasting models of inflation. A comprehensive
review of recent developments in density forecasting is Hall and Mitchell
(2009).
This paper considers combining forecast distributions by quantile aggre-

gation (or ’Vincentization’). This simple and intuitive approach, that consists
in averaging the quantiles of the individual distributions, was originally pro-
posed in Vincent (1912). Ratcliff (1979) and Thomas and Ross (1980) show
that in certain cases, such as under Gaussianity, the Vincentized distribution
belongs to the same family as that of the individual distributions and it can
be obtained by averaging the individual parameters. A somewhat related
approach is Granger et al. (1989), where individual quantiles are modelled
separately and, for each of them, a linear combination of the forecasts is
taken.
The properties of quantile aggregation are here compared with those of
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the linear and the logarithmic opnion pool. We find that larger differences
among the combination schemes occur when there are biases in the individ-
ual forecasts, in which case quantile aggregation seems overall preferable.
The choice of the combination weights is important in determining the rel-
ative performance of the methods. Monte Carlo simulation experiments of
forecasting with partially misspecified time series models indicate that the
properties of quantile aggregation are in between those of the linear and the
logarithmic pool and that quantile averaging appears useful for combining
forecast distributions with large differences in location.
The paper proceeds as follows. Section 2 defines quantile aggregation

vis a vis the linear and the logarithmic opinion pools and it recalls the main
issues on density forecast evaluation. Results for the special case of Gaussian
distributions are contained in section 3. Section 4 sets several Monte Carlo
experiments to evaluate the properties of forecast density combinations in
the context of simple time series models. An empirical illustration with time
series and econometric models for Italian GDP is given in section 5. Section
6 provides concluding remarks.

2 Quantile aggregation and other density fore-
cast combinations

Let fit(yt) be forecast densities for a scalar variable yt and denote by Fit(yt)
the corresponding cumulative distribution functions, for i = 1, 2, ..., n. For a

set of non-negative weights ωi such that
n∑
i=1

ωi = 1, the combined distribution

defined by quantile aggregation (or ’Vincentization’) is given by

F−1
vin,t (α) =

n∑
i=1

ωiF
−1
it (α), 0 < α ≤ 1, (1)

where F−1
i (α) = inf {y : Fi(y) ≥ α} are the quantile functions of the indi-

vidual forecast distributions. Quantile averaging was originally proposed in
Vincent (1912), hence it is sometimes called ’Vincentization’.
Ratcliff (1979) and Thomas and Ross (1980) proved the following theorem

on the properties of Vincentization for ’location scale’ families of distribu-
tions; see also Genest (1992).
Theorem. Let the individual distributions Fit(y) be of the form Fit(y) =

H ((y − λi)/γi), where λi is a centering parameter, γi is the scale and H is
some distribution function, i = 1, ..., n. Then the Vincentized distribution is
given by Fvin,t(y) = H

(
(y − λ)/γ

)
with λ =

∑n

i=1
ωiλi, γ =

∑n

i=1
ωiγi.

6



Under the conditions of this theorem (which include the Gaussian, Cauchy,
exponential and logistic random variables) the Vincentized distribution is
given simply by averaging the parameters of the individual distributions.
When not available in closed form, the Vincentized density can be ob-

tained by numerical approximation as the derivative of the inverse of the
quantile function (1). Note that quantile aggregation cannot be straightfor-
wardly generalized to the multivariate case.
As regards other density forecast combination methods, the ’linear opin-

ion pool’, proposed by Stone (1961), is defined as

flin,t(yt) =
n∑
i=1

ωifit(yt).

Here the combined distribution is a linear mixture distribution, which in gen-
eral can be multi-modal, even under Gaussianity of the individual forecasts.
The ’logarithmic opinion pool’is instead given by

flog,t(y) =

n∏
i=1

fit(yt)
ωi

∫ n∏
i=1

fit(yt)ωidy

.

Compared with the linear opinion pool, the combined distribution is typically
unimodal and less dispersed. As in the case of Vincentization, it is closed
under Gaussianity of the individual distributions.1

The advantages of forecast combinations are well understood for the case
of point forecasts, where combinations are showed to work well in several
empirical studies; cf. Timmermann (2006). Briefly, a ’portfolio diversifica-
tion’argument as well as providing insurance against misspecified models
and structural breaks are among the main reasons behind the success of
combining point forecasts.
Less studies have investigated the advantages of combining predictive dis-

tributions. Importantly, Kascha and Ravazzolo (2010) show that a density
forecast combination is at least as good as the worst model in terms of distri-
butional accuracy, where the metrics is the average probability of observing
the realized values (the ’log-score’, defined in section 2.2 below).
However, a density forecast combination is not necessarily superior to in-

dividual models when evaluated under the MSE loss function (that is typical

1One drawback of the logarithmic opinion pool is that it gives probability of zero to
events that have zero probability under any of the individual distributions.
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for point forecasts). As argued by Hall and Mitchell (2009), ’density forecast
combinations will in general increase the combined variance. However, this
increase in uncertainty need not be deleterious ...’.
For density forecasts the benefits deriving from the diversification argu-

ment are less clear, since (negative) correlations are not taken into account.
The following example clarifies this issue. Let e1 and e2 be two forecast er-
rors from competing models, with mean zero, variance equal to σ2

1 and σ
2
2

respectively, and covariance equal to ρσ1σ2; ρ ∈ [−1, 1] is their correlation.
Without loss of generality assume that σ2

2 = k2σ2
1 with 0 < k ≤ 1. The mean

square error of an equal weight point forecast combination is MSEEWPF =
1
4

(1 + 2ρk + k2)σ2
1 while, under the linear opinion pool, that of the density

combination is MSEEWDF = 1
2

(1 + k2)σ2
1. Thus MSEEWDF ≥ MSEEWPF

where the equality holds only when both ρ and k are 1. In addition, while
the MSE of the density forecast combination does not depend on ρ, the lower
ρ the lower is MSEEWPF .

2.1 The aggregation weights

The properties of forecast combinations to some extent depend on the weight-
ing scheme adopted. Ideally, the weights should reflect the past performance
of the different models and be time-varying, i.e. computed recursively at
each point in time using all observations available. In practice equal weights
forecasts are often adopted; empirically these are found diffi cult to beat.
Timmermann (2006) extensively discusses the issue of setting the combina-
tion weights, mainly in the context of point forecasts. He argues that there
is some weak empirical evidence that time-varying weights work better. In
the context of density forecasts, Kascha and Ravazzolo (2010) do not find
significant improvements of using time-varying over equal weights.
A simple metrics for setting weights is to use the prediction mean square

error of different models (PMSEi),

ωi =
1/PMSEi∑n
i=1 1/PMSEi

.

These inverse MSE weights are widely used for point forecasts; they would
be optimal if the forecasts were independent2; see Bates and Granger (1969).
In the context of density forecasts, models are usually compared in terms

of their average (log) predictive density, the so-called log-score, Si = 1
T

log
∑

t∈Υ fit (yt) ,

2In empirical works cross correlation among forecasts is rarely taken into account for
setting combination weights. One reason may be that estimates of the correlation structure
tend to be very imprecise.
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where the average is over some sample Υ. In particular, the forecast density
fi is seen as a better approximation of the true distribution than fj if the
(out-of sample) log score is higher, Si > Sj, i.e. if it gives higher probability
to the events that really occurred; see e.g. Mitchell and Hall (2005). Amisano
and Giacomini (2007) gives a formal test of equal forecast performance based
on the difference in the log score of the two models.
The log-score weights are defined as

ωi =
exp(Si)∑n
i=1 exp(Si)

.

In a Bayesian framework these weights are related to the models’posterior
probabilities3.

3 Properties under Gaussianity of the indi-
vidual distributions

Simple formulas apply under Gaussianity. Let the mean and variance of
the individual distributions be µi and σ

2
i , respectively. Then: (i) the Vin-

centized distribution is Gaussian with mean µvin =
∑

i ωiµi and variance
σ2
vin =

∑
i ωiσ

2
i ; (ii) the linear pool is in general non-Gaussian with mean

µlin =
∑

i ωiµi and variance σ
2
lin =

∑
i ωiσ

2
i +
∑

i ωi (µi − µlin)
2 ; (iii) the log-

arithmic pool is Gaussian with mean µlog = (
∑

i ωi/σ
2
i )
−1∑

i µiωi/σ
2
i and

variance σ2
log = (

∑
i ωi/σ

2
i )
−1
.

Note that the linear opinion pool has the same mean but higher variance
than quantile aggregation. The logarithmic opinion pool on the other hand
rescales the weights such that it is relatively ’closer’to the individual distrib-
ution with smaller variance. Finally if the individual Gaussian distributions
have the same mean, then µvin = µlin = µlog and σ

2
vin = σ2

lin ≤ σ2
log; here the

linear opinion pool is Gaussian and it coincides with quantile aggregation.
As an example, figure 1 shows the result of the three combination meth-

ods where the individual density functions are a N(0,1) and N(2,0.5). The
linear pool gives rise to a bimodal distribution. Compared with quantile ag-
gregation (that has the same mean as the linear pool), the logarithmic pool
tends more towards the individual distribution with lower variance.

3Hall-Mitchell (2007) suggest using ’optimal log-score weights’, defined as those that
maximize the log-score of the combined distribution under the linear opinion pool; see also
Conflitti, de Mol and Giannone (2013).
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Figure 1: Aggregation of Gaussian densities

3.1 The bias-variance tradeoff

The main message of Figure 1 is that large differences may arise among the
three combination methods if the individual distributions are not centered
around the same mean. However for the MSE loss function, typical of point
forecasts, a prediction bias may be compensated by lower variance, leaving
the mean square error unchanged.
Here we investigate the combination of Gaussian density forecasts that

are equally good in terms of the PMSE metrics, but have different biases.
We find that under such a bias-variance tradeoff the aggregation method may
matter.
Let y0 follow a standard normal distribution f0. We have two competing

forecast densities: a mean unbiased y1 drawn from f1 ∼ N(0, σ2
1) and a mean

biased with smaller variance y2 drawn from f2 ∼ N(µ2, σ
2
1−µ2

2), independent
from f1. As the PMSE of the two forecasts is the same, the equal weight
combination is the same as the combination with inverse MSE weights.
Figure 2 compares the three different density forecast combinations against

the true N(0, 1) as the bias of the second forecast increases (the x-axis con-
tains values of µ2

2/MSE between 0.1 and 0.9). The metrics for comparison
is the Kullback-Leibler information criterion, or KLIC; thus the lower the
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Figure 2: Combined density forecasts under a bias-variance tradeoff

better. Both inverse MSE weights and log-score weights are used.
For small biases (µ2

2/σ
2
1 < 0.4) all combined distributions behave very

similarly. The Vincent average seems overall the better option as it maintains
similar properties irrespectively of the bias. The logarithmic opinion pool
provides a bad approximation to the correct distribution unless log-score
weights are used.

4 Monte Carlo comparison of the combina-
tion methods for simple time series models

This section compares the density forecasts obtained with the different com-
bination methods for simple time serie models and data generating processes.
The first experiment is the same one considered in Mitchell andWallis (2010),
where the data are generated by an AR(2) process and the forecasting models
to be combined contain only one lag of the dependent variable. In a second
experiment the data process is an AR(1) process with GARCH disturbances,
while the forecasts are generated ignoring either the autoregressing compo-
nent or the time-varying conditional volatility.
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The main metric over which forecast densities are compared is the KLIC
distance from the true distribution, defined asKLICi = E[logf0(y) - logf(y)], wheref0
is the true density and f its forecast. Results are also reported for a Wald-
type test of the null hypothesis of equal forecast distributions (as in Amisano
and Giacomini, 2007), based on the statistic

tij =
1
T

∑
t (log fit(yt)− log fjt(yt))

σ̂ij/
√
T

, (2)

where fit(.), fjt(.) are the competing forecasts densities, σ̂
2
ij is an appropriate

estimate of the asymptotic variance of log fit(yt) − log fjt(yt), and T is the
forecast sample size. Under the null hypothesis, tij converge in distribution
to a N(0, 1).
We report results based on 2000 Monte Carlo simulations and a sample

size T = 150, as in Mitchell and Wallis (2010).

4.1 An AR(2) data generating process

We assume that the data are generated by the AR(2) process

yt = a1yt−1 + a2yt−2 + εt, εt ∼ NIID(0, σ2
ε).

The ’ideal forecast’of yt, distributed as F0t = N (a1yt−1 + a2yt−2, σ
2
ε), is first

compared with two individual forecasts obtained from misspecified models
where yt is regressed on either yt−1 or yt−2 only. These are distributed
as F1t = N

(
ρ1yt−1, σ

2
y(1− ρ2

1

)
) and F2t = N

(
ρ2yt−2, σ

2
y(1− ρ2

1

)
), where

σ2
y = σ2

ε/(1 − a1ρ1 − a2ρ2), ρ1 = a1/(1 − a2), ρ2 = a1ρ1 + a2.The individual
forecasts are then aggregated with equal weights according to three schemes
considered in this paper, yielding the combined distributions Flin,t, Flog,t and
Fvin,t respectively.
The resulting density forecasts are compared against the ideal forecast in

the table 1, where AR_1 and AR_2 denote the individual forecasts f1t and
f2t, respectively. For each distribution we report the KLIC distance against
the true density f0t (the lower the better) and the percentage rejections of
the test (2) of equality with f0t at the 5% significance level.
We consider three configurations of the autoregressive parameters of the

data generating process: (1) a1 = 1.5, a2 = −0.6, (2) a1 = 0.15, a2 =
0.2, (3) a1 = −0.5, a2 = 0.3. The corresponding first and second order
autocorrelation coeffi cients are: (1) ρ1 = 0.94, ρ2 = 0.80, (2) ρ1 = 0.19,
ρ2 = 0.23, (3) ρ1 = −0.71, ρ2 = 0.66.
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The first three rows of the table contain nearly the same numbers as those
reported by Mitchell and Wallis (2010), to which we add the results for the
logarithm opinion pool and the vincentization aggregation methods. In case
(1) where data are very persistent (ρ1 = 0.94), the AR_1 model achieves
the lowest KLIC distance from the true distribution. Among the combined
forecasts, the logarithmic opinion pool is the preferable aggregation scheme
although it remains significantly worse than the AR_1. In case (2) and (3)
the three aggregation methods delivers similar results (with a slightly inferior
performance of the linear opinion pool), yielding a better outcome than the
individual forecasts.

Table 1. Comparison of density forecasts for an AR(2) data generating
process with unbiased forecasts.

Forecast Case (1) Case (2) Case (3)
KLIC Test KLIC Test KLIC Test

AR_1 22.5 99 2.1 24 4.8 47
AR_2 75.6 100 1.2 16 12.1 95
Lin. Pool 42.9 100 0.7 10 3.5 53
Log. Pool 36.3 100 0.7 8 1.9 26
Vincentization 49.5 100 0.6 8 2.2 28
In table 1 all forecasts are unbiased, while we have seen in section 3 that

greater differences may occur when we allow for a bias. To this extent we
also consider a forecast obtained from the true data generating process but
evaluated under an asymmetric loss function of the ’linex’type, which delivers
a (constant) forecast bias; see e.g. Christoffersen and Diebold (1997). The
performance of the three aggregation schemes is evaluated when this biased
forecast is combined with the AR_1 model. Table 2 reports the results for
the parametrization labelled ’case (1)’of the AR(2) data generating process
with σ2

ε = 1, for a forecast bias equal to 0.5, 1 and 2. We report the KLIC
distances from the true distribution for both equal weight and inverse MSE
weights combinations, denoted KLIC0 e KLIC1 respectively.
When the bias is relatively small, less or equal to 1, the performance of

the unbiased AR_1 forecasting model is worse than that of any of the three
combination schemes. Overall Vincentization appears to be the preferable
aggregation scheme: it is significantly better when the bias is larger, while
being not much different from the log opinion pool otherwise. In particular,
for the case of equal weight aggregation, the test of equal forecast distrib-
utions between Vincentization and the logarithmic pool (not shown in the
table) has rejection rates of the null hypothesis of 25, 79 and 97% when the
bias is equal to 0.5, 1.0 and 2.0 respectively. Using inverse MSE weights
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(columns KLIC1) may improve significantly the accuracy of the combined
distributions, but in this case it does not change the relative rankings of the
three methods.

Table 2. Comparison of density forecasts for an AR(2) data generating
process, for case (1) with biased forecasts.

Forecast bias = 0.5 bias = 1.0 bias = 2.0
KLIC 0 KLIC 1 KLIC 0 KLIC 1 KLIC 0 KLIC 1

AR_1 22.5 22.5 22.5 22.5 22.5 22.5
Asymmetric loss 13.0 13.0 51.1 51.1 202.0 202.0
Lin. Pool 10.9 10.5 22.1 21.1 51.9 31.9
Log. Pool 8.6 8.4 20.3 18.4 66.6 28.1
Vincentization 9.6 9.1 17.1 16.3 46.8 22.9

4.2 Time-varying volatility

Here we assume that the data are generated by the AR(1)-GARCH(1,1)

process

yt = ρyt−1 + σtεt, εt ∼ NIID(0, 1),

σ2
t = γ + αy2

t−1 + βσ2
t−1.

We compare the properties of combining, with equal weights, the forecast
densities of two misspecified models: an AR(1) with constant conditional
variance and a GARCH(1,1) with constant conditional mean, denoted as f1t

and f2t respectively. For each individual distribution and forecast combi-
nation Table 3 reports the KLIC distance from the true density f0t and the
percentage rejections of the test (2) of equality with f0t, at the 5% significance
level. We report results only for a typical parametrization of the GARCH
(α = 0.04, β = 0.95) and for two cases of high and low persistence, ρ = 0.75
and ρ = 0.25 respectively.
For the case of highly persistent data (ρ = 0.75) the AR(1) model with

constant variance provides the most accurate approximation of the density
forecast to the true distribution, rejecting the null hypothesis of equality
only 20% of the times. Among the combined distributions, the logarithmic
pool has comparably better properties than the linear pool and the Vincent
average, the latter two behaving similarly. On the other hand, when the
data persistence is lower all combined distributions behave comparably better
than each individual forecasts, with the Vincent average being only slightly
superior.
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Table 3. Comparison of density forecasts for an AR(1)-GARCH(1,1) data
generating process

Forecast ρ = 0.75 ρ = 0.25
KLIC Test KLIC Test

AR 2.6 20 2.6 20
GARCH 31.4 98 2.9 30
Lin. Pool 11.2 86 1.1 15
Log. Pool 5.8 51 1.2 13
Vincentization 12.9 85 0.9 13

5 An empirical illustration

As an example we consider combining forecasts of Italian GDP from two
simple models: (1) an autoregression of order 4; (2) a three variables VARX
model for GDP, inflation and long-term interest rate, with two lags of the
endogenous variables and additional exogenous regressors for foreign demand,
oil prices and the short term interest rate.
The VARX model can be viewed as a rough approximation of the macro-

econometric models typically used for producing conditional forecasts, with
specific assumptions on the future paths of foreign variables and of the mon-
etary policy rate. If the assumptions turn out to be more or less correct, then
the conditional forecasts can be much more accurate than the unconditional
ones. For example, in our case the (in-sample) variance of the 4-step ahead
prediction errors of percentage GDP growth is 1.9 for the AR model and 0.8
for the VARX.
The models are estimated on quarterly data for the period 1986-2006,

i.e. before the ’Great Recession’of 2008-09 and the sovereign debt crisis.
Figure 3 provides in-sample and out-of-sample point predictions of the two
models for the four-step ahead percentage growth rate of GDP, yt+4|t =
100(logGDPt+4 − logGDPt), together with the top and lower percentiles of
the equal-weights combinations of the forecast densities.

The two (out-of-sample) crises are clear outliers with respect to the re-
ported confidence bands, calculated on the basis of the in-sample fit.
Further insights regarding the properties of the forecast distributions are

contained in figure 4. The larger difference between the various combination
methods occur in the tail of the distributions. The outer percentiles of the
linear (logarithmic) opinion pool are closer to those of the less (more) precise
model, with the Vincent average being somewhat in between. The figure
also reports for each point in time the forecast of the probability that GDP
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Figure 3: Individual point forecasts and confidence bands of the combined
distributions
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Figure 4: Selected percentiles and probabilities for the various density fore-
casts
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Figure 5: Density forecasts of 4-th step ahead predictions for GDP growth
in 2009q1

growth is between 0 and 1 percent in the corrisponding quarter of next year.
The individual models can imply quite different probability statements of
future GDP growth, whereas the three combined distributions provide very
similar answers in most cases.
Figure 5 contains the various densities for the 4-th step ahead GDP pre-

diction for the first quarter of 2009, in the middle of the great recession. Here
the individual models provide quite diverging predictions (partly because of
the assumption that the VARX uses the realized values of the exogenous
regressors), resulting in marked differences in the combined densities. The
result is qualitatively similar to the example provided figure 1, where the
logarithmic opinion pool is relatively closer to the less dispersed individual
distribution.
The test of equal forecast distributions, run over the estimation sample,

rejects the null hypothesis in all cases except for the comparison of the linear
combination pool with the Vincent average. Outside the estimation sample
the combined distribution obtained by Vincentization is overall preferable
in the sense that it achieves the highest log-score; the test of equal forecast
distributions however does not reject the null hypothesis. The apparent low
power of the test may be related to the small number of observations out-of-
sample.
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6 Concluding remarks

This paper has compared quantile aggregation against the linear and the
logarithimic opinion pool as methods for combining density forecasts. The
three methods imply larger differences in the combined distribution if there
are non-negligible biases in the individual forecasts. Overall the properties of
quantile aggregation are in between those of the linear and the logarithmic
pool. Quantile averaging appears particularly useful for combining forecast
distributions with large differences in location. Finally, the choice of weights
is important in determining the properties of the combined distributions and
calls for further research.
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