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Abstract 

In this paper, we exploit the heterogeneity in the forecasts obtained by estimating 
different factor models to measure forecast uncertainty. Our approach is simple and intuitive. 
It consists first in selecting all the models that outperform some benchmark model, and then 
in constructing an empirical distribution of the forecasts produced by them. We interpret this 
distribution as a measure of uncertainty. We illustrate our methodology by means of a 
forecasting exercise using a large database of Italian data from 1982 to 2009. 
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1 Introduction1

Since the seminal papers of Stock and Watson (2002a) and Forni et al. (2005), factor models
have been increasingly used for macroeconomic forecasting by central banks, governments, and
market operators. Moreover, the good performance of the factor model2 has spurred further
research, and the literature has suggested many refinement and improvements (Bai and Ng,
2008, 2009).

Nowadays, there are a large number of ways to produce a forecast using a factor model.
There are different types of models (dynamic versus static); different estimation methods
(principal components, LARS, Boosting); and, finally, each of these models can be specified
in many different ways simply by changing the number of factors, or the number of lags.

Although theoretically equally acceptable, these different factor models could end-up by
producing very different forecasts, and this heterogeneity represents a serious problem in real-
time forecasting. The standard procedure is to select the best model, i.e. the type, the
estimation method, and the model specification that minimize some criterion, and then to
discard the remainder. We believe, however, that this practice is restrictive and that it does
not exploit all available information, such as, the ability to consider alternative scenarios.

In this paper we propose an approach to forecasting with factor models that exploits the
heterogeneity of forecasts, and interprets it as a special category of model uncertainty. This
approach is useful for policy-making, because by exploiting the forecasts of models with a
similar performance to the best model, it provides a warning of possible additional scenarios.

Our method is highly intuitive. It consists first in selecting all the models that out-perform
some benchmark model, and then in constructing approximations of the empirical distribution
of all the forecasts produced. We interpret this distribution as a measure of uncertainty. By
running a forecasting exercise on Italian data, we show that our surprisingly simple method
is both meaningful and effective.

Our approach is related two strands of the literature. On the one hand, we make use
of a large number of models, in common with the forecast combination literature (Bates
and Granger, 1969; Timmermann, 2006) and with the Model Averaging approach (Koop and
Potter, 2003). On the other hand, we share the aim of assessing uncertainty with the density
forecast literature (Diebold et al., 1998; Tay andWallis, 2000). However, unlike the first strand,
we propose exploiting a large number of models in order to measure forecast uncertainty

1We would like to thank Cecilia Frale for helpful comments. An earlier version of this paper was written
while the authors were at the Italian Ministry of the Economy and Finance, Treasury Department. Matteo
Luciani gratefully acknowledges financial support from the Belgian National Bank and the IAP P6/07 contract,
from the IAP programme (Belgian Scientific Policy), “Economic policy and finance in the global economy”. He
is a postdoctoral researcher with the F.R.S.-FNRS and gratefully acknowledges their financial support. Any
errors are the responsibility of the authors.

2See, among others, Stock and Watson (2002b), Forni et al. (2003), Boivin and Ng (2005), Artis et al.
(2005), Schumacher (2007, 2010), D’Agostino and Giannone (2012), and for a review, Eickmeier and Ziegler
(2008).
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rather than to reduce prediction error. And in contrast with the second strand, we assess the
uncertainty between models as opposed to the uncertainty within a model (i.e. the stochastic
variability of coefficients and shocks for a given model). This kind of uncertainty is particularly
important from a policy perspective as it explains how at the same point in time, and with
the same information set, different researchers (or institutions) can produce different forecasts.
This approach is new in the literature and it produces forecast distributions that are typically
not “well behaved”. Our forecast distributions are often bimodal, asymmetric and have tails
that are not necessarily increasing with the forecast horizon.

The paper is organized as follows. Section 2 describes the methodology, while Section
3 explains how we constructed a large number of models. Section 4 presents the empirical
application, first comparing all the estimated models and then explaining how the different
forecasts should be interpreted as a measure of uncertainty. Section 5 concludes.

2 Methodology

In this Section we review the methodologies used to estimate our factor models. Results are
not derived but instead simply illustrated and therefore we refer the reader to the papers by
Stock and Watson (2002a), Efron et al. (2004), Forni et al. (2005), Bai and Ng (2008) and Bai
and Ng (2009) for technical details and proofs.

Throughout this Section we refer to the variable for which we want to make a prediction
h-step ahead as yht+h, and we refer to the N potential predictors as xt.

2.1 Diffusion Indexes

Let xt be an N × 1 vector of zero mean stationary variables that admits a static factor
representation such as:

xt = ΛFt + ξt = χt + ξt, for t = 1, . . ., T, (1)

where Ft is an r×1 vector containing the static factors, Λ is an N×r matrix of factor loadings,
and χt and ξt are N × 1 vectors containing respectively the common and the idiosyncratic
component. The Diffusion Index proposed by Stock and Watson (2002a) forecasts yht+h by
augmenting an autoregressive model with the first r factors and their first pf lags:

yht+h = α(L)yt + β(L)Ft + εt (2)

where α(L) and β(L) are polynomials of order py and pf respectively. Stock and Watson
(2002a) demonstrate that if the idiosyncratic components ξt are mildly serial and cross-
sectional correlated, the static factors in (1) can be consistently estimated with the principal
components method. Having estimated the static factors, Stock and Watson (2002a) suggest
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estimating equation (2) via OLS. The consistency of this procedure is proved in Bai and Ng
(2006).

2.2 Dynamic Factor Models

Let xt be an N×1 vector of zero mean stationary variables that follows a “Dynamic Factor
Model” such as:

xt = C(L)ηt + ξt = χt + ξt, for t = 1, . . ., T (3)

where ηt is a q× 1 vector of dynamic factors with q � N , and C(L) =
∑∞

j=0CjL
j is an N × q

matrix polynomial in the lag operator with square summable entries. Let us suppose that yt is
one of the entries of a vector xt, say the i-th entry for simplicity, then a forecast of yht+h ≡ xhi,t+h
can be obtained as the sum of the forecast of the common component and the idiosyncratic
component: xhi,t+h = χhi,t+h + ξhi,t+h. Forni et al. (2005) (proposition 4) demonstrate that a
forecast of the common component that converges to the best linear forecast of χi,t+h|t can be
obtained by means of a two-step estimator, and they suggest that the idiosyncratic component
can be neglected.3

Step 1: Let Σ̃χ(θ) and Σ̃ξ(θ) be the estimated spectral density matrix of the common and
the idiosyncratic component respectively, obtained by the dynamic principal compo-
nents method: then the covariance matrices of χt, Γ̃χk , and ξt, Γ̃ξ(θ) can be consistently
estimated as the inverse Fourier transform of Σ̃χ(θ) and Σ̃ξ(θ) respectively.

Step 2: Let Ẑ be the N×r matrix containing the first normalized r eigenvectors of Γ̃χ0 (Γ̃ξ0)−1:
then the static factors can be estimated as the first r generalized principal compo-
nents of xt, F̂t = Ẑ ′xt. The factor loadings Λ can then be recovered as the linear
projection of the static factors on xt, Λ = Γ̃χ0 Ẑ(Ẑ ′Γ̃χ0 Ẑ)−1. Having estimated both
the factors and the loadings the forecast of the common components is obtained as:
χ̂t+h|t = Γ̃χhẐ(Ẑ ′Γ̃χ0 Ẑ)−1Ẑ ′xt.

2.3 Least Angle Regressions (LARS)

The purpose of least angle regression is to build recursively an estimate of y by xβ̂ where a
regressor is added at each stage. At the first stage the variable most closely correlated with y,
say xj , is selected, and an OLS regression of y on xj is run. Define the residual of the first step
as v = y − γβ̂jx, where γ is the step length; the algorithm then takes the largest step in the
direction of this predictor until it finds another regressor, say xl, that is as closely correlated
with v. The LARS algorithm then searches for the third variable equiangularly between xj
and xl. At the k-th step, β̂ has k non zero elements and N − k zero elements. In this way

3A refinement of the Forni et al. (2005) procedure is proposed in D’Agostino and Giannone (2012) who
suggest forecasting the idiosyncratic component as the linear projection of ξi,t+h|t on [xi,t xi,t−1 . . . xi,t−p].
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the variables most closely correlated with y are included one at a time, although LARS also
avoids selecting variables that are too “similar”. One of the main features of LARS is that the
direction of the search, and the updating rule are computed endogenously by the algorithm;
the researcher simply needs to set the number of iterations.

2.4 Boosting

Boosting (Freund and Schapire, 1997) is a method originating from the machine learning
literature that has proved useful in regressions with a large number of predictors (Bühlmann
and Yu, 2003; Bühlmann, 2006; Lutz and Bühlmann, 2006). Let zt = {x1,t, . . . , x1,t−px ,
. . . , xN,t, . . . , xN,t−px}′, be the N̄ × 1 matrix containing all the N variables and their px lags;
the idea of Boosting is to build an estimate of yt+h by recursively estimating regressions of
yt+h on zjt, where zjt is the most powerful variable in predicting yt+h.

Formally, suppose that the algorithm was run k times; let µ̂k be the prediction obtained
after k steps, and define the residual uk = yt+h − µ̂k, then:

1. for each i = 1 . . . N̄ , regress uk on zi, thus obtaining b̂i, and define êi = uk − zib̂i, and
ssri = ê′iêi;

2. select the variable j such that ssrj = mini=1,...,N̄{ssri};
3. update the prediction as µ̂k+1 = µ̂k + γzj b̂j , where 0 < γ ≤ 1 is the step length.
At the (k+ 1)-th iteration, the estimator β̂k+1 is obtained as β̂k+1 = β̂k + γb̂†k+1, where b̂

†
k

is an N̄ × 1 vector in which all entries are zero except element j, which is equal to b̂j , and the
forecast of yt+h is obtained as ŷk+1

t+1 = β̂k+1zt.4

3 Constructing a large number of factor models

In this Section we explain how we construct a large number of forecasts. Forecasts are produced
by means of eight different methods that can be grouped into two main types: Diffusion Indexes
and Dynamic Factor models. Table 1 contains the complete list of the methods used in this
paper.

Method DI is the classic diffusion index proposed by Stock and Watson (2002a), while
methods DI2, LDI, DIB and DIB2 are all variants of DI. Originally proposed by Bai and
Ng (2008), DI2 consists in extracting the factors from a panel that includes both the normal
variables and their squared values and then estimating a diffusion index. Similarly, LDI (Bai
and Ng, 2008) consists in extracting the factors from a panel with only a few predictors selected
using the LARS algorithm and then estimating a diffusion index. Finally, DIB and DIB2 (Bai
and Ng, 2009) consists in estimating equation (2) by Boosting rather than by OLS.

4This is the component-wise algorithm proposed by Bühlmann and Yu (2003). Bai and Ng (2009) suggest
another algorithm labelled block-wise Boosting, which works exactly like the component-wise one but treats
lags of the same variable in Zt jointly rather than as a distinct variable.
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Table 1: Estimated models

Benchmark Model

N◦ Model Forecast equation

0 AR yht+h = a(L)yt + vt

Diffusion Indexes

N◦ Method Forecast equation Factors Estimation
extracted from: method

1 DI yht+h = α(L)yt + β(L)Ft + εt xt OLS
2 DI2 - - [xt x

2
t ] OLS

3 LDI - - x̃t OLS
4 DIB - - xt Boosting
5 DI2B - - [xt x

2
t ] Boosting

Dynamic Factor Models:

N◦ Method Forecast equation Estimation of
idiosyncratic component

6 FHLRa xht+h = χh
t+h none

7 FHLRb xht+h = χh
t+h + ξht+h AR OLS

Method DFa simply implements the proposal of Forni et al. (2003, 2005), while DFb
implements the refinement suggested by D’Agostino and Giannone (2012).

As explained in the introduction, with each of these methods we can produce different
forecasts simply by choosing different model specifications, i.e. by varying the number of
static/dynamic factors, or the number of lags. Above all, a priori all these methods and
specifications are (theoretically) equally acceptable. In this paper we produce 267 different
factor forecasts plus 4 different benchmark AR forecasts. Table 2 contains the complete list
of specifications used in this paper.

The factors are extracted from a panel of 118 quarterly series, 100 describing the Italian
economy and 18 representing the rest of the world. The variables cover different categories:
GDP and Components, Value Added by Sector, Unit labor cost, Employee Compensation,
Employment, Interests Rates, Monetary Aggregates, Prices, Industrial Production, Exchange
Rates, Business, and Confidence and Survey indicators. Moreover, to account for world busi-
ness cycle fluctuations we also include GDP, CPI, and the Unemployment Rate for France,
Germany, UK, US and Japan, and the Interest Rate of UK, US and Japan. All variables are
first transformed to reach stationarity and then demeaned and standardized. As in Stock and
Watson (2002b) we take the second difference of the logarithm of both prices and monetary
indicators, and the first difference of interest rates. After transformation all variables are
stationary according to the Augmented Dickey Fuller test. For any further information on the
database the complete list of variables and transformations is reported in the Appendix.

We use the method of direct forecast (Stock and Watson, 2002b): let Yt be the raw variable
assumed to be integrated of order one; then yht+h is defined as yht+h = log(Yt+h)− log(Yt), that
is the growth rate between period t and period t+ h. On the other hand, the autoregressive
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Table 2: List of model specifications
AR: we performed forecasts for p = 1, . . . , 4, where p is the order of the autoregression (4 speci-

fications);
DI: we allow py = 1, . . . , 4, pf = 1, . . . , 4, r = 1, . . . , 5, where py and pf are the number of lags

of the endogenous variable and the static factors respectively, and r is the number of static
factors (80 specifications);

DI2: same as DI (80 specifications);
LDI: same as DI but the matrix x̃t from which the factors are extracted contains half of the

variables in xt, meaning the first 59 variables selected by the LARS algorithm (80 specifica-
tions);

DIB: we include all possible regressors in the forecast equation (py = 4, pf = 4, and r = 5,
24 regressors); we set the step length γ equal to 0.5; we estimate the model by both the
component-wise and the block-wise algorithm; and we save the forecast obtained after 5, 10
and 20 iterations (6 specifications);

DIB2: same as DIB (6 specifications);
DFa: we select 3 dynamic factors as indicated by the Hallin and Lĩska (2007) criteria and by the

Onatski (2009) test, and we allow for a number of static factors ranging from 3 to 5, which is
consistent with the indication obtained from information criteria (Bai and Ng, 2002; Alessi
et al., 2010) (3 specifications);∗

DFb: for the common component, the same as DFa, while for the idiosyncratic component we
produced forecasts by setting pξ = 1, . . . , 4 (12 specifications).

∗ To save space the results of these tests are not reported here.

variable on the right-hand side yt is defined as yt = log(Yt)− log(Yt−1).5

4 Empirical analysis

4.1 Comparing factor based forecasts

In this Section we evaluate the performance of different factor models. Forecasts are produced
by a recursive scheme and are computed with a forecast horizon from one to eight-steps ahead.
The first estimation is carried out on a sample from 1982:3 to 2002:2 (T = 80), while the last
estimation is on a sample from 1982:3 to 2009:2. Overall we produced 29 forecasts for the
one-step ahead, 28 for the two-steps ahead, and 22 for the eight-steps ahead.

From Table 3 to Table 7 we present relative mean squared errors for a large number of
macroeconomic variables. The benchmark is an AR forecast. An entry lower than 1 means
that the m-th model beats the benchmark AR forecast, while an entry greater than 1 means
that model m performs worse than an AR. For each method (benchmark model, diffusion
indexes and dynamic factor models) we select the best specification, i.e. the one, within the
range of different parameter configurations presented in Section 3, that produces the smallest

5Given that the outcome of models 6-7 is different from the one obtained with models 1-5, some manipu-
lations are needed for correct comparison. Let Xit be the non standardized growth rate of the i-th variable,
then xit = (Xit − µXi)/σXi , and therefore xhi,t+h = (Xh

i,t+h − µXi)/σXi . Hence, when forecasting with DFa

and DFb we have that Y h
t+h can be obtained as Y h

t+h =
∑h

j=1(x
j
i,t+jσXi + µXi).
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mean squared error.
In this Section, we provide a simple bird’s eye view of the results by variable. The aim is

to identify the variable for which the factor models can improve on a simple AR model, not
to compare the forecasting ability of the different factor models considered.6

GDP: Factor models outperform the AR model when forecasting GDP in both the short
run and the long run (Table 3). It is worth noting that the gain from factor-based forecasts
is increasing at longer time horizons.

Labour market: Factor models do quite well in predicting the number of persons employed,
but they are outperformed by the AR model in predicting the unemployment rate (Table 4).
Regarding employment but the advantage of a large information set is negligible for forecasting
other sectors.

Gross Value Added: Factor models perform particularly well in predicting VA in the
services sector (Table 5). They also perform well in predicting education, health, and other
private and public services.

Consumption: Factor models consistently improve on the ARmodel in predicting aggregate
consumption (Table 6). In particular, they perform well in predicting consumption of non-
durable goods and services.

Investments: Factor models do better than the AR benchmark at the one-step ahead hori-
zon, while their performance is similar at longer forecast horizons (Table 7).

To conclude this Section, in Table 8 we report the number of specifications within each
type of factor models that does worse than the benchmark AR in predicting GDP. Results
show that most specifications (i.e. regardless of the number of factors, the number of lags,
etc.) perform better than the AR, as found in Bulligan et al. (2012). Moreover, none of
the estimated factor models perform worse than the AR after the 4th forecast horizon. These
results justify our approach: as most of the 267 estimated models have at least some predictive
power, why select only one of them?

6There exists a wide applied literature that has compared the forecasting performances of DI versus FHLR
type forecasts without, however, reaching a conclusion. den Reijer (2005), Cheung and Demers (2007) and
Schumacher (2007) compare DI versus FHLR when forecasting GDP for the Netherlands, Canada and Germany.
den Reijer (2005) and Schumacher (2007) find that FHLR outperforms DI, while Cheung and Demers (2007)
find no noticeable difference between the two methods. Boivin and Ng (2005), analysing US monthly data on
a large number of series, conclude that DI performs better because it does not impose a factor structure and
therefore the forecast can more easily adapt to the data. D’Agostino and Giannone (2012), analysing a similar
dataset, criticize this conclusion and find that FHLR performs similarly to DI. For a complete review of factor
model forecasting performance see Eickmeier and Ziegler (2008).
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4.2 Two examples of model uncertainty

As we have just shown, there are many ways to produce a macroeconomic forecast using a
factor model. There are different types of models and different estimation methods; each of
the models can be specified in many different ways. However, although (i) theoretically all
these models are equally acceptable, and (ii) most of them outperform a standard AR model
(Table 8), they can end-up by producing very different forecasts. The question then becomes:
can we somehow exploit these different forecasts?

The literature has already addressed this issue, and it is now well known that the prediction
error can be reduced by combining different forecasts (Timmermann, 2006). However, our
claim is that the different forecasts can be used to measure forecast uncertainty in the context
of factor modelling.

In what follows, we explain the workings of our method. It has the desirable feature
of being extremely intuitive as it consists first in selecting all the models that outperform
some benchmark model, and then in approximating the empirical distribution of the forecasts
produced by them. We interpret this distribution as a measure of uncertainty. As our approach
is aimed mainly at policy-makers, we present it here by means of a practical example.

Suppose that in the middle of the global crisis, say the beginning of 2009, the policy-maker
asked us to provide forecasts for the next two years. To mimic this situation we produce
forecasts of GDP with our 267 factor models. The question is then: what is the relevant
information that we want to report to the policy-maker?

The first option is to use the standard approach: we identify the best model for each
forecast horizon and then we report the implied path of forecasts. Table 9 presents forecasts
of GDP for 2009 and 2010, that is the forecast from one to eight-steps ahead obtained using
data from the beginning of the sample up to 2008Q4. Each entry reports the predicted average
percentage quarter-on-quarter growth rate between t and t + h: 100 × 1

h(ĜDP t+h −GDPt).
If we reported only the path of forecast suggested by the best models (bold entries), we would
have shown the policy-maker a critical situation (i.e. negative growth rates for the following
two years). However, we would have not been able to say much more beyond this statement.
We could have said what the best forecast is, but we could not have considered alternative
scenarios delivered by equally acceptable models. Our method aims to do so.

In Figure 1 we show the forecasts of the 20 best models in terms of mean squared error,
i.e. the 20 factor models (irrespective of type/estimation method/specification) that produce
the smallest MSE. Clearly, although we are considering models with similar predicting ability,
the forecast that they produce is very different, thus showing a high degree of uncertainty.
However, despite this additional piece of information, the main conclusion of our report would
not have changed as 18 of the 20 models predicted negative growth.

The question is then: why restrict the analysis to twenty models? What happens if we
consider a larger number of models? In Figure 2 we answers this question.

12



Figure 2 shows the distribution of the 50 best forecasts together with the kernel approx-
imation of the empirical function.7 The forecasts produced by the 50 best models are not
normally distributed, instead they exhibit fat tails, asymmetry and multimodality. Moreover,
this measure of uncertainty is not necessarily, by construction, increasing with the forecast
horizon. These characteristics differentiate these functions from the standard predictive den-
sities. In our example, the baseline projection would have not changed by looking at the 50
best forecasts, as most of the models predicted a recession for the next two years. However, we
would have been able to warn the policy-maker about the high degree of uncertainty affecting
our forecast.8

To conclude our example, Figure 3 shows the box plot of all the forecasts produced by
those models with an MSE smaller than the benchmark AR (179 models for 2009Q1, 183 for
2009Q2, 256 for 2009Q3, 265 for 2009Q4, and all the 267 models for the whole of 2010).9 If
we had also considered Figure 3, we would have refined our report to the policy-maker by
concluding that we predict negative average growth for the first three quarters of 2009, but
positive growth for 2010 as suggested by the median forecast.10

With this example we showed how it is possible to exploit the information delivered by
a large number of factor models, and how this information can be used to measure forecast
uncertainty. However, in order to validate our method we need to show that, if we repeat the
same exercise on a period of low volatility, the forecasts produced by different factor models
exhibit a smaller degree of heterogeneity.

In Figures 4 to 6 we show forecasts produced at the end of 2006, well before the global
recession. Figure 4 shows that the range of the forecasts for 2007 and 2008 is much smaller
than for 2009-10, especially at the first (0.37 against 0.69) and the second (0.16 against 0.42)
forecasting horizon. Similarly, Figure 5 shows that although the forecasts are not normally
distributed, their range is consistently smaller than the one obtained in the previous example
(one-step ahead 0.62 against 0.96, two-step ahead 0.34 against 0.53). Moreover, Figure 6 shows
that the interquartile range is quite small at all forecast horizons. Finally, Table 10, which
reports the standard deviation and the range of the forecasts, shows that forecast uncertainty
increased considerably during the global recession.

7The distribution approximation is produced using a smoothing density with normal kernel function.
8It is also worth noting that, in contrast with the results in Table 9, among the 50 best available models

some predicted a recovery for 2010, as actually happened.
9It is worth emphasizing that although the decision to consider only the models that do better than the

benchmark model is arbitrary, it is reasonable and in line with the literature. Indeed, the benchmark model
is always a simple model and in the forecasting literature it is always considered a lower bound: a model that
on average does worse than the benchmark model is therefore considered a “bad” model.

10It is also worth noting that in some circumstances economic uncertainty can be greater in the short run
then in the long run. This may be the case with an economy hit by large temporary demand shocks. In
our view, our measure of uncertainty, which is not always increasing with the horizon, is more general than
standard measures.
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5 Conclusions

In this paper, we propose exploiting the heterogeneity of the forecasts obtained by estimating
different factor models to measure (a special category of) forecast uncertainty. We present
our approach by means of a forecasting exercise on a large database of Italian data from 1982
to 2008. We estimate as many as 267 factor models using all the main techniques available in
the literature and we show that most of these estimated factor models beat a standard time
series benchmark.

Our approach is simple and intuitive. It consists in selecting all the models that outperform
some benchmark model, and then in approximating the empirical distribution of the forecasts
produced by these models. The moments higher than the first characterize this measure of
uncertainty.

We present two historical examples, before and during the crisis. We show that the forecast
distributions obtained by many models are asymmetric, multimodal, and with fat tails. As
expected, our measure of uncertainty increased considerably during the recent global recession.
A structural and general analysis of these empirical forecast distributions is left for future work.
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Appendix - Data Description and Data Treatment
N C. DSmnemonic Name Source Unit SA F. T.
1 ITGDP...D GDP ISTAT 2000Mile 1 Q 3
2 ITFNLUSED Final Uses ISTAT 2000Mile 1 Q 3
3 Gross ITGVACLCD GVA - com., lodging, catering& rep ISTAT 2000Mile 1 Q 3
4 Domestic ITGVACOND GVA - construction ISTAT 2000Mile 1 Q 3
5 Product ITGVAEDUD GVA - ed.,health,oth.priv.& pub.svs. ISTAT 2000Mile 1 Q 3
6 ITGVAFMID GVA - fuel & mining industries ISTAT 2000Mile 1 Q 3
7 ITGVAIXCD GVA - industry excl. construction ISTAT 2000Mile 1 Q 3
8 ITGVASVSD GVA - services ISTAT 2000Mile 1 Q 3
9 ITINVCHYD CHANGE IN STOCKS ISTAT pt−1 1 Q 0
10 ITCNPCDGD PC - durable goods ISTAT 2000Mile 1 Q 3
11 ITCNPCFTD PC - food alcohol & tobacco ISTAT 2000Mile 1 Q 3
12 ITCNPCFGD PC - foreigners in italy ISTAT 2000Mile 1 Q 3
13 ITCNPCRAD PC - italian residents abroad ISTAT 2000Mile 1 Q 3
14 Consumption ITCNPCNDD PC - non-durable goods ISTAT 2000Mile 1 Q 3
15 ITCNPCNFD PC - non-food ISTAT 2000Mile 1 Q 3
16 ITCNPCSDD PC - semi-durable goods ISTAT 2000Mile 1 Q 3
17 ITCNPCSVD PC - services ISTAT 2000Mile 1 Q 3
18 ITCNPER.D FDC - households ISTAT 2000Mile 1 Q 3
19 ITCNGOV.D FDC - public ISTAT 2000Mile 1 Q 3
20 ITRVSTAXA STATE BUDGET: TAX REVENUE BdI 2000Bile 2 M 3
21 Government ITEXSCURA STATE BUDGET: CURRENT EXPENDITURE BdI 2000Bile 2 M 3
22 ITEXSCAPA STATE BUDGET: CAPITAL EXPENDITURE BdI 2000Bile 2 M 1
23 ITGOVBAAA STATE BUDGET: BALANCE BdI 2000Bile 0 M 2
24 ITGFCF..D gross fixed capital formation ISTAT 2000Mile 1 Q 3
25 Investment ITFCPCOND GFCF - construction ISTAT 2000Mile 1 Q 3
26 ITFCPMCHD GFCF - machinery & equipment ISTAT 2000Mile 1 Q 3
27 ITFCPTRND GFCF - means of transport ISTAT 2000Mile 1 Q 3
28 ITEXPGD.D exports of goods ISTAT 2000Mile 1 Q 3
29 Net ITEXPSV.D exports of services ISTAT 2000Mile 1 Q 3
30 Export ITIMPGD.D imports of goods ISTAT 2000Mile 1 Q 3
31 ITIMPSV.D imports of services ISTAT 2000Mile 1 Q 3
32 ITULCAFFE ULC - agriculture forestry & fishing ISTAT 2000=100 1 Q 3
33 ITULCCNSE ULC - construction ISTAT 2000=100 1 Q 3
34 Unit ITULCOTHE ULC - education, welfare, oth.public & private svs ISTAT 2000=100 1 Q 3
35 Labor ITULCCATE ULC - hotels, trade, repair, public establishments ISTAT 2000=100 1 Q 3
36 Cost ITLCOST.E ULC - industry excluding construction ISTAT 2000=100 1 Q 3
37 ITULCCAPE ULC - credit & insurance ISTAT 2000=100 1 Q 3
38 ITCNCTOTB employee compensation ISTAT Mile 1 Q 3
39 ITCNCAFFB EC - agriculture, forestry & fishing ISTAT Mile 1 Q 3
40 ITCNCCONB EC - construction ISTAT Mile 1 Q 3
41 ITCNCEDCB EC - education, health, oth. priv. & pub. svs. ISTAT Mile 1 Q 3
42 Employee ITCNCFMIB EC - fuel & mining industries ISTAT Mile 1 Q 3
43 Compensation ITCNCHLTB EC - health care ISTAT Mile 1 Q 3
44 ITCNCHTCB EC - hotels & pub. trnsp. & comm. repairs ISTAT Mile 1 Q 3
45 ITCNCIXCB EC - industry excluding construction ISTAT Mile 1 Q 3
46 ITCNCSVRB EC - services ISTAT Mile 1 Q 3
47 ITUN%TOTQ unemployment rate ISTAT % 1 Q 2
48 ITCNETOTO Employment ISTAT Thous. 1 Q 3
49 ITCNEAFFO E - agriculture forestry & fishing ISTAT Thous. 1 Q 3
50 ITCNECONO E - construction ISTAT Thous. 1 Q 3
51 ITCNEEDUO E - education health & other private & public svs. ISTAT Thous. 1 Q 3
52 Employment ITCNEFMIO E - fuel & mining industries ISTAT Thous. 1 Q 3
53 ITCNEHLTO E - health care ISTAT Thous. 1 Q 3
54 ITCNEHTCO E - hotels & public trnsp. & communication repairs ISTAT Thous. 1 Q 3
55 ITCNEINDO E - industry ISTAT Thous. 1 Q 3
56 ITCNEIDCO E - industry excluding construction ISTAT Thous. 1 Q 3
57 ITCNESVSO E - services ISTAT Thous. 1 Q 3
NOTE: Variables 47 is backdated by using OECD Economic Outlook Data (DSMNEMONIC: ITOCFUNRQ). Variables 20-23
are deflated by using variable 77.
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N C. DSmnemonic Name Source Unit SA F. T.
58 ITPRATE. Discount Rate - Short Term euro repo rate ECB % 0 M 2
59 ECITLST ITALY EURO-LIRE T/N (FT/ICAP/TR) TR % 0 M 2
60 ECITL1M ITALY EURO-LIRE 1M (FT/ICAP/TR) TR % 0 M 2
61 ECITL3M ITALY EURO-LIRE 3M (FT/ICAP/TR) TR % 0 M 2
62 Interest ECITL6M ITALY EURO-LIRE 6M (FT/ICAP/TR) TR % 0 M 2
63 Rates ECITL1Y ITALY EURO-LIRE 1 YR (FT/ICAP/TR) TR % 0 M 2
64 ITBI0257 EXPECTED GROSS MEAN YIELD (CCT) BdI % 0 M 2
65 ITQ61... GOVT BOND YIELD - LONGTERM IFS % 0 M 2
66 ITQ60B.. MONEY MARKET RATE ( FEDERAL FUNDS ) IFS % 0 M 2
67 ITQ60C.. TREASURY BILL RATE IFS % 0 M 2
68 ITQ61B.. - ITQ60B.. ML % 0 M 2
69 Monetary ITM1....A M1 - IT contribution to the euro area BdI Mile 2 M 4
70 Aggregates ITM3....A M3 - IT contribution to the euro area BdI Mile 2 M 4
71 ITOCP009F Consumer Price Index MEI 2005=100 2 M 4
72 ITOCP041F CPI - energy MEI 2005=100 2 M 4
73 ITOCP042F CPI - excluding food & energy MEI 2005=100 2 M 4
74 Prices ITOCP019F CPI - food MEI 2005=100 2 M 4
75 ITOCP057F CPI - housing MEI 2005=100 2 M 4
76 ITOCP064F CPI - services less housing MEI 2005=100 2 M 4
77 ITGDPIPDE Implicit Price Deflator - GDP ISTAT 2000=100 1 Q 4
78 ITIPDGOVE Implicit Price Deflator - Gov. ISTAT 2000=100 1 Q 4
79 ITOPRI35G production of total industry (excluding construction) MEI 2005=100 1 M 3
80 Industrial ITOPRI49G production of total manufactured consumer goods MEI 2005=100 1 M 3
81 Production ITOPRI61G production of total manufactured intermediate goods MEI 2005=100 1 M 3
82 ITOPRI70G production of total manufactured investment goods MEI 2005=100 1 M 3
83 Exchange ITOCC011 real effective exchange rate - cpi based MEI 2005=100 2 M 3
84 Rates ITOCC016 us cents to euro (ep) MEI $/e 0 M 3
85 ITOSLI05E total car registrations MEI 2005=100 1 M 1
86 ITESP35GF PPI: MANUFACTURE OF GAS EUR 2005=100 2 M 4
87 Business UKOILBREN AVERAGE BRENT OIL PRICE DEUK. $ 0 M 4
88 ITOSP001F share prices - ise mib storico MEI 2005=100 0 M 3
89 ITOL1117Q CLI - reference series MEI * 1 M 1
90 Confidence ITOL0637Q CLI - orderbooks or demand (fut. tend.) MEI % 1 M 1
91 Leading ITOL0376Q CLI - production - future tendency MEI % 1 M 1
92 Indicators ITOL0577Q CLI - volume net new orders (mfg.) MEI * 1 M 1
93 ITBIPCI.F BdI Price Competitiveness Indicator - italy BdI 1999=100 2 M 1
94 ITOBS083Q BTS manufacturing - exports order books MEI % 1 M 1
95 ITOBS082Q BTS manufacturing - future selling prices MEI % 1 M 1
96 ITOBS077Q BTS manufacturing - finished goods stocks MEI % 1 M 1
97 Survey ITOBS084Q BTS manufacturing - future production MEI % 1 M 1
98 ITOBS078Q BTS manufacturing - order books MEI % 1 M 1
99 ITCSECFTQ ISAE CS economic climate index - future ISAE 1980=100 1 M 1
100 ITCSECPRQ ISAE CS economic climate index - present ISAE 1980=100 1 M 1
101 BDGDP...D Ger - GDP SBW 2000BileC 1 Q 3
102 FRGDP..FD Fra - GDP INSEE 2000Mile 1 Q 3
103 USGDP...D Us - GDP BEA 2005Bil$ 1 Q 3
104 JPGDP...D Jpn - GDP COJ 2005Bile 1 Q 3
105 UKGDPMKTD Uk - GDP ONS 2005Mil£C 1 Q 3
106 BDCP7500F Ger - CPI SBW 1975=100 1 M 4
107 FRCONPRCF Fra - CPI INSEE 1998=100 1 M 4
108 Foreign USCONPRCF Us - CPI BLS ** 1 M 4
109 Countries JPCPIEIAF Jpn - CPI MIAC 2005=100 1 M 4
110 UKD7BTQ.F Uk - CPI ONS 2005=100 1 Q 4
111 BDUN%TOTR Ger - Unemployment Rate DB % 2 M 2
112 FRUN%TOTQ Fra - Unemployment Rate INSEE % 1 Q 2
113 USUN%TOTQ Us - Unemployment Rate BLS % 1 M 2
114 JPUN%TOTQ Jpn - Unemployment Rate MIAC % 1 M 2
115 UKUN%TOTQ Uk - Unemployment Rate ONS % 1 M 2
116 USFEDFUN FED Funds Rate FED % 0 M 2
117 UKPRATE. BoE Base Rate BoE % 0 M 2
118 JPBANKR. PRIME RATE - LONG TERM BoJ % 0 M 2
NOTE: Variable 101 is backdated by using OECD Economic Outlook Data (DSMNEMONIC: WGOCFGDPD), while variable
110 is backdated by OECD Main Economic Indicators Data (DSMNEMONIC: UKOCP009F):
* Actual number - RATIO TO TREND;
** 1982.1984=100.

List of Abbreviations
Source Transformations Seasonally Adjustement

IFS Internationl Financial Statistics, IMF 1 none 0 Not Seasonally Adjusted
EUR Eurostat 2 ∆ 1 Seasonally Adjusted
MEI OECD Main Economic Indicators 3 ∆log 2 SA with dummy variables regression
ONS OFFICE FOR NATIONAL STATISTICS 4 ∆∆log
BdI Bank of Italy
FED Federal Reserve Bank
BLS Bureau of Labor Statistics
SBW STATISTISCHES BUNDESAMT, WIESBADEN
MIAC Ministry of Intarnal Affairs & Communications
BEA Bureau of Economic Analysis
DB DEUTSCHE BUNDESBANK
BoE Bank of England
BoJ Bank of Japan
COJ Cabinet Office, Japan
DEUK Department of Energy, U.K
TR Thomson Reuters
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Tables

Table 3: Relative Mean Squared Error
GDP

h 1 2 3 4 5 6 7 8
DI 0.68 0.74 0.65 0.63 0.64 0.61 0.58 0.56
DI2 0.77 0.80 0.68 0.64 0.63 0.57 0.50 0.46
LDI 0.69 0.71 0.61 0.53 0.61 0.63 0.55 0.51
DIB 0.73 0.80 0.70 0.68 0.66 0.66 0.63 0.64
DI2B 0.89 0.93 0.76 0.69 0.65 0.63 0.60 0.60
DFa 0.81 0.76 0.80 0.80 0.81 0.82 0.79 0.80
DFb 0.80 0.76 0.80 0.80 0.81 0.82 0.79 0.80
Each cell reports relative mean squared errors, which are computed relative to
an AR model.
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Table 4: Relative Mean Squared Error
Labor Market

h 1 2 3 4 5 6 7 8

ur
DI 0.99 1.11 1.04 1.18 1.33 1.36 1.35 1.40
DI2 1.20 1.57 1.22 1.34 1.46 1.45 1.40 1.35
LDI 0.97 1.15 1.06 1.33 1.71 1.71 1.59 1.29
DIB 1.32 1.43 1.21 1.40 1.48 1.37 1.33 1.33
DIB2 1.24 2.06 1.42 1.46 1.71 1.65 1.43 1.44
DFa 1.44 1.74 1.67 1.60 1.62 1.50 1.40 1.34
DFb 1.38 1.74 1.66 1.59 1.62 1.49 1.39 1.34

L

DI 0.85 0.74 0.68 0.68 0.81 0.95 0.96 0.95
DI2 0.86 0.84 0.60 0.67 0.82 0.87 0.83 0.71
LDI 0.79 0.76 0.66 0.60 0.91 1.03 1.01 0.93
DIB 0.91 0.79 0.71 0.77 0.88 0.95 0.93 0.83
DIB2 0.90 0.75 0.66 0.73 0.81 0.89 0.86 0.81
DFa 0.85 0.71 0.65 0.69 0.75 0.82 0.78 0.70
DFb 0.83 0.69 0.63 0.69 0.74 0.80 0.75 0.67

L
.a
ff

DI 1.01 1.01 1.00 0.91 0.90 0.91 0.85 0.76
DI2 1.01 1.02 0.98 0.81 0.66 0.71 0.53 0.40
LDI 1.03 1.02 1.04 0.89 1.00 1.00 0.89 0.77
DIB 1.06 1.12 1.07 0.99 1.12 1.06 0.94 0.87
DIB2 1.04 1.09 1.05 1.04 0.96 0.88 0.62 0.45
DFa 1.12 1.29 1.14 1.04 1.16 1.10 0.98 0.98
DFb 1.07 1.20 1.06 1.02 1.11 1.02 0.94 0.93

L
.c
on

s

DI 0.91 0.82 0.83 0.89 0.95 1.03 1.06 1.10
DI2 0.76 0.76 0.77 0.90 1.01 1.11 1.12 0.98
LDI 0.91 0.82 0.85 0.96 1.05 1.22 1.33 1.23
DIB 0.92 1.00 0.97 1.01 1.07 1.15 1.04 1.13
DIB2 0.78 0.76 0.92 1.08 1.12 1.14 1.11 1.02
DFa 0.91 0.90 0.98 1.08 1.04 1.04 1.06 1.08
DFb 0.90 0.89 0.97 1.08 1.03 1.04 1.05 1.08

L
.in

d

DI 0.54 0.47 0.63 0.82 0.97 1.07 1.03 1.06
DI2 0.58 0.51 0.54 0.89 1.08 1.17 1.03 0.98
LDI 0.56 0.52 0.64 0.75 1.06 1.21 1.20 1.10
DIB 0.68 0.59 0.66 0.84 1.01 1.08 1.03 0.97
DIB2 0.56 0.47 0.57 0.84 0.99 1.06 0.97 0.91
DFa 0.68 0.63 0.75 0.87 1.03 1.17 1.09 1.06
DFb 0.67 0.63 0.75 0.87 1.03 1.16 1.07 1.05

L
.s
er
v

DI 0.88 0.84 0.74 0.61 0.57 0.68 0.65 0.68
DI2 0.95 0.97 0.68 0.62 0.59 0.64 0.59 0.60
LDI 0.87 0.90 0.73 0.63 0.70 0.68 0.56 0.63
DIB 1.09 1.06 0.71 0.59 0.61 0.65 0.53 0.52
DIB2 1.10 1.05 0.72 0.61 0.56 0.63 0.65 0.61
DFa 0.88 0.79 0.62 0.59 0.51 0.58 0.53 0.52
DFb 0.86 0.78 0.61 0.59 0.51 0.57 0.53 0.51

Each cell reports relative mean squared errors, which are computed relative to an AR
model. ur = Unemployment Rate; L = Employment; L.aff = Employment in agri-
culture and forestry; L.cons = Employment in Constructions; L.ind = Employment
in Industry; L.serv = Employment in services.
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Table 5: Relative Mean Squared Error
Gross Value Added

h 1 2 3 4 5 6 7 8

G
V
A
.c
lc
r

DI 0.81 0.82 0.77 0.74 0.67 0.61 0.55 0.54
DI2 0.81 0.80 0.77 0.71 0.63 0.52 0.43 0.40
LDI 0.89 0.82 0.77 0.62 0.54 0.57 0.55 0.46
DIB 0.97 0.98 0.86 0.83 0.73 0.73 0.63 0.64
DIB2 0.95 0.90 0.85 0.82 0.73 0.68 0.57 0.58
DFa 1.00 0.97 0.93 0.88 0.82 0.79 0.73 0.75
DFb 0.99 0.96 0.93 0.88 0.82 0.79 0.73 0.75

G
V
A
.c
on

s

DI 0.96 0.98 0.85 0.93 1.12 1.34 1.49 1.58
DI2 1.03 1.25 1.02 1.10 1.31 1.50 1.63 1.46
LDI 0.96 1.04 0.82 1.15 1.59 1.81 1.90 1.34
DIB 0.97 0.90 0.90 1.06 1.13 1.30 1.36 1.37
DIB2 1.16 1.45 0.99 1.16 1.27 1.44 1.38 1.46
DFa 0.92 0.88 0.89 1.04 1.13 1.24 1.28 1.29
DFb 0.92 0.88 0.87 1.02 1.12 1.23 1.27 1.28

G
V
A
.in

dL
c

DI 0.77 0.79 0.80 0.72 0.68 0.66 0.65 0.63
DI2 0.80 0.92 0.81 0.74 0.70 0.66 0.63 0.58
LDI 0.71 0.75 0.68 0.57 0.57 0.61 0.59 0.56
DIB 0.86 0.85 0.84 0.77 0.75 0.72 0.69 0.71
DIB2 0.82 0.93 0.86 0.76 0.70 0.66 0.64 0.63
DFa 0.92 0.85 0.88 0.85 0.83 0.84 0.81 0.82
DFb 0.87 0.84 0.88 0.85 0.83 0.84 0.81 0.81

G
V
A
.s
er
v

DI 0.60 0.64 0.52 0.55 0.52 0.47 0.41 0.40
DI2 0.50 0.64 0.58 0.62 0.56 0.49 0.42 0.41
LDI 0.59 0.56 0.50 0.49 0.56 0.53 0.39 0.43
DIB 0.58 0.66 0.55 0.63 0.59 0.58 0.56 0.59
DIB2 0.51 0.60 0.67 0.66 0.62 0.59 0.56 0.54
DFa 0.55 0.61 0.65 0.77 0.77 0.78 0.73 0.76
DFb 0.55 0.60 0.64 0.76 0.76 0.77 0.73 0.76

Each cell reports relative mean squared errors, which are computed relative to an AR
model. GVA.clcr = Gross Value Added in com., lodging, catering& rep; GVA.cons
= Gross Value Added in Construction; GVA.indLc = Gross Value Added in Industry
less Construction; GVA.serv = Gross Value Added in Services.
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Table 6: Relative Mean Squared Error
Consumption

h 1 2 3 4 5 6 7 8

C
.

DI 0.72 0.91 0.52 0.36 0.23 0.22 0.23 0.28
DI2 0.87 0.97 0.51 0.50 0.37 0.36 0.30 0.28
LDI 0.74 0.74 0.68 0.45 0.36 0.30 0.22 0.30
DIB 0.69 0.70 0.50 0.45 0.42 0.43 0.44 0.48
DIB2 0.69 0.70 0.48 0.52 0.56 0.60 0.62 0.67
DFa 0.77 0.80 0.72 0.69 0.66 0.67 0.67 0.72
DFb 0.76 0.79 0.71 0.68 0.65 0.66 0.66 0.71

C
.D

DI 1.03 1.23 1.01 0.70 0.64 0.65 0.63 0.75
DI2 1.12 1.24 1.04 0.63 0.57 0.54 0.53 0.69
LDI 1.19 1.14 0.95 0.50 0.60 0.67 0.57 0.71
DIB 1.05 1.15 0.76 0.64 0.64 0.68 0.72 0.83
DIB2 1.23 1.35 0.75 0.62 0.66 0.75 0.83 1.02
DFa 1.09 1.11 0.83 0.74 0.74 0.77 0.78 0.84
DFb 1.08 1.10 0.83 0.73 0.74 0.77 0.77 0.84

C
.n
on

D

DI 0.73 0.66 0.75 0.73 0.66 0.65 0.67 0.72
DI2 0.76 0.69 0.76 0.69 0.69 0.71 0.72 0.71
LDI 0.77 0.67 0.78 0.85 0.76 0.79 0.73 0.81
DIB 0.80 0.71 0.79 0.78 0.78 0.77 0.83 0.83
DIB2 0.84 0.69 0.70 0.74 0.79 0.79 0.89 0.87
DFa 0.79 0.65 0.75 0.86 0.85 0.85 0.84 0.81
DFb 0.80 0.64 0.75 0.85 0.85 0.85 0.83 0.81

C
.s
em

iD

DI 0.53 0.54 0.39 0.43 0.40 0.39 0.36 0.35
DI2 0.48 0.59 0.38 0.43 0.43 0.44 0.41 0.40
LDI 0.61 0.78 0.44 0.36 0.34 0.44 0.38 0.35
DIB 0.82 0.83 0.50 0.58 0.54 0.59 0.49 0.56
DIB2 0.80 0.86 0.54 0.56 0.56 0.57 0.51 0.59
DFa 0.93 0.91 0.74 0.73 0.70 0.68 0.63 0.69
DFb 0.87 0.88 0.74 0.73 0.70 0.68 0.63 0.68

C
.s
er
v

DI 0.79 0.78 0.60 0.45 0.39 0.30 0.27 0.27
DI2 0.77 0.59 0.54 0.48 0.46 0.33 0.31 0.29
LDI 0.83 0.81 0.61 0.48 0.39 0.46 0.34 0.34
DIB 0.81 0.74 0.61 0.50 0.45 0.41 0.45 0.49
DIB2 0.83 0.74 0.58 0.50 0.49 0.41 0.42 0.44
DFa 0.90 0.82 0.78 0.74 0.74 0.70 0.64 0.65
DFb 0.88 0.79 0.76 0.71 0.71 0.67 0.63 0.63

Each cell reports relative mean squared errors, which are computed relative to an
AR model. C. = Consumption; C.D = Consumption of Durable Goods; C.nonD
= Consumption of Non Durable Goods; C.semiD = Consumption of Semi-Durable
Goods; C.serv = Consumption of services.
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Table 7: Relative Mean Squared Error
Investments

h 1 2 3 4 5 6 7 8
G
F
C
F

DI 0.74 0.75 0.51 0.57 0.67 0.73 0.74 0.80
DI2 0.92 1.06 0.74 0.66 0.76 0.76 0.74 0.78
LDI 0.81 0.74 0.50 0.51 0.70 0.78 0.76 0.60
DIB 0.79 0.73 0.63 0.67 0.73 0.74 0.76 0.82
DIB2 0.88 0.90 0.77 0.73 0.78 0.80 0.79 0.84
DFa 0.80 0.71 0.69 0.74 0.83 0.87 0.88 0.93
DFb 0.80 0.71 0.69 0.74 0.82 0.87 0.88 0.93

G
F
C
Fc

on
s

DI 0.90 0.81 0.72 0.81 1.02 1.20 1.28 1.21
DI2 0.98 0.98 0.83 0.91 1.08 1.25 1.38 1.39
LDI 0.88 0.88 0.72 1.00 1.31 1.42 1.51 1.06
DIB 0.92 0.82 0.79 0.94 1.05 1.09 1.29 1.32
DIB2 0.94 0.89 0.85 0.92 1.15 1.26 1.48 1.53
DFa 0.91 0.84 0.81 0.92 1.02 1.10 1.13 1.18
DFb 0.90 0.83 0.80 0.91 1.01 1.10 1.13 1.17

G
F
C
Fm

ac
h

DI 0.73 0.78 0.55 0.55 0.57 0.61 0.62 0.67
DI2 0.76 0.94 0.71 0.60 0.62 0.60 0.59 0.60
LDI 0.75 0.75 0.46 0.38 0.49 0.57 0.57 0.50
DIB 0.77 0.76 0.61 0.62 0.64 0.62 0.67 0.73
DIB2 0.89 0.89 0.68 0.61 0.63 0.64 0.66 0.72
DFa 0.73 0.70 0.67 0.68 0.71 0.73 0.76 0.83
DFb 0.74 0.70 0.66 0.68 0.71 0.73 0.76 0.83

G
F
C
F
tr
an

s

DI 0.66 0.60 0.34 0.49 0.49 0.46 0.47 0.54
DI2 0.77 1.00 0.55 0.65 0.63 0.57 0.53 0.56
LDI 0.67 0.67 0.47 0.53 0.54 0.57 0.59 0.53
DIB 0.73 0.68 0.50 0.66 0.64 0.60 0.59 0.57
DIB2 0.79 0.81 0.64 0.72 0.70 0.72 0.68 0.75
DFa 0.77 0.76 0.68 0.81 0.87 0.91 0.87 0.89
DFb 0.76 0.76 0.68 0.81 0.87 0.91 0.86 0.89

Each cell reports relative mean squared errors, which are computed relative to an AR
model. GFCF = Gross Fixed Capital Formation; GFCFcons = Gross Fixed Capital
Formation in Construction; GFCFmach = Gross Fixed Capital Formation in Machin-
ery and Equipment; GFCFtrans = Gross Fixed Capital Formation in Transport.

Table 8: Number of Specifications with RMSE > 1
GDP

h DI DI2 LDI DIB DI2B DFa DFb
1 4 67 14 0 3 0 0
2 6 67 8 0 3 0 0
3 2 2 7 0 0 0 0
4 0 1 1 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
Each cell reports the number of specifications that does worse than the
benchmark AR model. The total number of estimated specifications
within each class of model are: DI = 80, DI2 = 80, LDI = 80, DIB = 6,
DI2B= 6, DFa = 3, DFb = 12.
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Table 9: GDP Growth Forecasts
Quarter AR DI DI2 LDI DIB DI2B DFa DFb
2009Q1 -0.0125 -0.6368 -0.0674 -0.8648 -0.3724 -0.2250 -0.3668 -0.3745
2009Q2 0.0709 -0.4166 -0.0341 -0.5515 -0.1118 0.1021 -0.1756 -0.1829
2009Q3 0.1775 -0.3156 -0.2440 -0.3821 -0.1513 -0.0378 -0.0056 -0.0067
2009Q4 0.2297 -0.2393 -0.2183 -0.3848 -0.2316 -0.0352 0.0303 0.0274
2010Q1 0.3051 -0.2127 -0.1504 -0.2482 -0.1431 -0.0068 0.0683 0.0692
2010Q2 0.3369 -0.1982 -0.1275 -0.3574 -0.0671 -0.0031 0.1284 0.1288
2010Q3 0.3385 -0.1726 -0.1417 -0.2482 -0.0434 -0.0196 0.1398 0.1387
2010Q4 0.3351 -0.1352 -0.1092 -0.1842 -0.0031 0.0303 0.1748 0.1739
For each of the eight methods, we select the specification that produces the minimum MSE. Bold entries are the best forecast
for each forecasting horizons.

Table 10: Variability of the Forecasts
t0 h 1 2 3 4 5 6 7 8

St
an

da
rd

D
ev
ia
ti
on

20
06
Q
4 20best 0.14 0.04 0.10 0.07 0.09 0.08 0.06 0.12

50best 0.17 0.06 0.11 0.07 0.09 0.09 0.07 0.11
all 0.18 0.09 0.11 0.12 0.12 0.11 0.10 0.10

20
08
Q
4 20best 0.20 0.15 0.06 0.09 0.08 0.07 0.09 0.06

50best 0.20 0.15 0.08 0.10 0.09 0.12 0.10 0.08
all 0.28 0.18 0.16 0.18 0.17 0.18 0.17 0.15

R
an

ge 20
06
Q
4 20best 0.37 0.16 0.32 0.27 0.30 0.31 0.20 0.36

50best 0.62 0.34 0.43 0.27 0.41 0.34 0.27 0.38
all 0.23 0.13 0.14 0.17 0.13 0.14 0.14 0.09

20
08
Q
4 20best 0.69 0.42 0.23 0.28 0.34 0.35 0.34 0.25

50best 0.96 0.53 0.31 0.41 0.36 0.46 0.41 0.38
all 0.42 0.30 0.27 0.28 0.29 0.27 0.25 0.24

The rows 20best show standard deviation and range of the 20 models with minimum Mean Squared Error.
The rows 50best show standard deviation and range of the 50 models with minimum MSE. Rows all show
standard deviation and range of all the models that have an MSE smaller than the benchmark AR. Define
Ŷ m
t+h the h step ahead forecast obtained with the m-th model, than for 20best and 50best “range” means

Ŷ max
t+h − Ŷ min

t+h , while for all is the interquartile range.
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Graphs

Figure 1: 20 Best Forecast
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Forecast are plotted from the lowest to the highest. They are not ranked in terms of MSE. The Black Bar is the Best Forecast
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Figure 2: Distribution of the 50 Best Forecasts
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These plots show Histograms of the forecasts produced with the 50 best models together with the kernel approximation
(black line) of the distribution

Figure 3: Box Plot
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Figure 4: 20 Best Forecast
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Forecast are plotted from the lowest to the highest. They are not ranked in terms of MSE. The Black Bar is the Best Forecast

Figure 5: Distribution of the 50 Best Forecasts
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(black line) of the distribution
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Figure 6: Box Plot
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