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FORWARD LOOKING ROBUST PORTFOLIO SELECTION 
 

by Sara Cecchetti* and Laura Sigalotti* 
 

Abstract 

In this paper we develop a portfolio optimization strategy based on the extraction of 
option-implied distributions and the application of robust asset allocation. We compute the 
option-implied probability density functions of the constituents of the Euro Stoxx 50 Index. 
To obtain the corresponding risk-adjusted densities, we estimate the risk aversion coefficient 
through a Berkowitz likelihood test. The correlation structure among the stocks is computed 
via an ad hoc technique, which provides a correction term for the historical correlations. We 
implement a robust portfolio construction, in order to incorporate the uncertainty about the 
estimation error for the expected returns in the optimization procedure. 
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1 Introduction1

Modern portfolio theory was introduced by Markowitz (1952), who laid the foundations
of mean-variance optimization. This strategy, which is still widely used in the financial
industry despite the many criticisms that have been leveled against it, is based on the
estimation of the first two moments of the probability density function of the asset
returns. The standard way to estimate these moments is based on the use of historical
data (see, among others, De Miguel, Garlappi and Uppal (2009), for a review of various
estimators). It is well known that the estimation errors that inevitably arise when using
such a backward-looking approach affect the calculation of the optimal portfolio, since
mean-variance optimizers are very sensitive to small variations in expected returns.2 An
alternative methodology has been adopted by Kostakis, Panigirtzoglou and Skiadopoulos
(2010), who developed a forward-looking approach based on the information extracted
from option prices. They implement a strategy which uses option implied distributions
of asset returns to calculate an optimal portfolio consisting of two assets, one risk-
free and one risky. Once the risk-neutral implied distributions are extracted, they are
converted into the related risk-adjusted (or real-word) distributions, that are required
in the calculation of optimal portfolios. As the implied distributions reflect market
participants’ expectations, this approach is inherently forward-looking and may provide
more accurate estimates of the distribution, and the related moments, to be used in the
asset allocation problem.

In this paper, we aim at extending the strategy developed in Kostakis, Panigirtzoglou
and Skiadopoulos (2010) to a portfolio of many risky assets. Among the different tech-
niques developed in the finance literature to extract risk-neutral densities (see Bedoui
and Hamdi (2010) for a review of these methods), we use the mixture of lognormals
approach. Once the risk-neutral distributions are estimated, we convert them into the
related risk-adjusted ones by assuming a power utility function, in which the risk-aversion
coefficient is chosen so that it maximizes the forecasting ability of the risk-adjusted dis-
tributions (with respect to the future realizations of the underlying index), using an
approach similar to the one followed by Bliss and Panigirtzoglou (2004).

It is worth noting that the generalization of the option-implied distribution approach
to a portfolio of many risky assets is not straightforward. In fact, if we consider N
stocks and N options written on them, the option prices convey information about the
distribution of each stock price, but they do not provide any insight on the correlation
structure among the N stock prices. The correlation structure could be inferred using
historical data only, but this would give a matrix of covariances inconsistent with the
option implied variances of the N stocks. In order to tackle this issue, we focus on a
collection of stocks satisfying two conditions:

• each stock is the underlying asset of a quoted option (actually, we need a family

1We would like to thank Antonio Di Cesare, Giuseppe Grande, Marcello Pericoli and Marco Taboga
for their comments and suggestions.

2See Ceria and Stubbs (2006) for details.
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of call and put options for each stock, corresponding to different strikes);

• there exists a family of options written on an index made up of all the stocks in
our set, with publicly available index weights.

In order to meet these requirements, we consider a portfolio consisting of the 50 stocks
of the the Euro Stoxx 50 Index. Using market information about the options written
on the index and its contituents, we derive the implied probability density functions of
the index and the stocks, and hence, in particular, their variances. Through an ad-hoc
technique we integrate the historical correlation matrix of the stock returns with the
option-implied variances of the stocks and the index and derive a correlation structure
that can be considered a proper estimation of the real-world covariance matrix of the
stock returns; a similar approach, but in a different context, is used by Buss and Vilkov
(2012). We first compute the risk-adjusted standard deviations of the stock returns, the
risk-adjusted standard deviation of the index return and the historical correlation matrix
of the stock returns. We observe that if the historical correlations were a correct estimate
of the (unknown) option-implied correlations, then the option-implied variance of the
index would be equal to the variance of the portfolio made up of the constituent stocks,
calculated with the option-implied variances of the stocks and the historical correlations.
In general these two variances are not equal, since the historical correlations are not a
consistent estimate of the option-implied correlations. We then write the difference
between the two variances as a proportion β of the option-implied index variance; this
leads to an equation in which the only unknown is the correction constant β, which can
be estimated numerically.

Finally, we implement a robust portfolio construction (see Ceria and Stubbs (2006),
for a detailed description) to cope with the estimation errors in the estimates of the
expected returns and their error-magnification effect. Mean-variance portfolios tend to
exacerbate the estimation error problem by significantly overweighting assets with an
upside error for the expected returns and underweighting assets with a downside error.
Robust optimization considers the estimation errors for the mean returns directly in
the optimization problem itself, in order to perform an asset allocation that is robust
to these errors. The robust optimization approach takes a confidence region for the
estimated mean returns, and performs a portfolio optimization accounting for the worst
case scenario that could be realized in that confidence region.

Once we have implemented the robust portfolio construction, we compare our re-
sults to the efficient frontiers obtained with different methodologies. In particular, we
compute the true frontier, the Markowitz estimated frontier and the Markowitz actual
frontier, which are, respectively: the efficient frontier computed using true expected
returns (unobservable and derived through an equilibrium argument); the efficient fron-
tier obtained with estimated expected returns and Markowitz mean-variance portfolio
selection; the frontier obtained by calculating true expected returns of the portfolios
on the Markowitz estimated frontier. The robust portfolio construction is used to get
both a robust estimated frontier and a robust actual frontier, which are compared to the
previous ones.
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In order to test the validity of our model, we compare the out-of-sample performance
of the optimal portfolio based on our option-implied risk-adjusted covariance matrix
to that of a portfolio obtained using the historical covariance matrix. In both cases
we use robust optimization, which mitigates the estimation error in the mean returns,
and we focus on the role of the two alternatives covariance matrices. The comparison
relies on two standard performance criteria: the out-of-sample Sharpe Ratio and the
Certainty-Equivalent (CEQ) return for the expected utility of a mean-variance investor.
We find that the portofolio obtained with our risk-adjusted option-implied covariance
significantly outperforms the allocation obtained with the historical covariance matrix,
according to both performance criteria. This result suggests that our technique is in-
deed capable of incorporating more information into the estimate of the covariances, in
comparison to an estimate based only on past data. The extraction of option-implied
variances and the computation of the correction term for the correlations give a forward-
looking covariance matrix, which leads to a better portfolio performance.

Finally, we compare the out-of-sample performance of our robust portfolio to those
of the index buy-and-hold strategy and two alternative allocations: the equally-weighted
portfolio of De Miguel, Garlappi and Uppal (2009) (in which we build a portfolio with
all the N stocks in the index, by assigning weight 1/N to each one) and a momentum
strategy, in which we select the G stocks with positive returns in the previous year and
allocate a portfolio with weight 1/G on these stocks. We find that the performance of the
equally weighted portfolio is comparable to that of our strategy, whereas the momentum
and the index-buy-and-hold strategies have a much poorer performance, according to
both the Sharpe Ratio and the CEQ.

The rest of the paper is structured as follows. Section 2 describes the mixture of
lognormals method that we apply to estimate the option-implied risk-neutral densities.
Section 3 outlines the methodology adopted to convert the risk-neutral densities into the
related risk-adjusted densities. In Section 4 we derive the option-implied risk-adjusted
covariance matrix and Section 5 explains the robust optimization approach. The dataset
used for the empirical application is described in Section 6 and the results are presented
in Section 7. Finally, Section 8 presents the conclusions.

2 Option-Implied Risk Neutral Densities

2.1 The mixture of lognormals method

In the financial literature many methods have been proposed for the estimation of option-
implied risk-neutral densities.3 In particular, two methods have been widely studied
and implemented. The first, know as the “smile interpolation approach”, is based on
the interpolation of the implied Black-Scholes volatility smile and requires no parametric
assumptions on the risk-neutral densities. The starting point of this method is the result
by Breeden and Litzenberger (1978), who prove that the second derivative of the price

3For a review and comparison of the different estimation methods, see Bedoui and Hamdi (2010).
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of a call option with respect to the exercise price K, computed for a given value of
the underlying price S, is equal to the risk neutral density f of the underlying asset,
evaluated in S and discounted by the risk-free rate:

∂2C(K)

∂K2
= e−r(T−t) f(S).

In order to determine f(S) from the previous formula, we need a sufficiently smooth
expression for C; Shimko (1993) showed that fitting the implied Black-Scholes volatility
smiles gives much better results than interpolating observed call prices directly.

An alternative approach is to assume a specific parametric form for the risk-neutral
density (RND) functions and adjust it to the market data. The parameters of the RNDs
are calibrated through the use of observed option prices and nonlinear least squares.
The most commonly used functional form for the RNDs is a mixture of two or more
lognormals; this choice gives a density function that is sufficiently flexible to reflect
characteristics such as excess kurtosis, asymmetry, and even bimodality.

In this paper we follow the parametric approach to estimate the option-implied prob-
ability density functions (PDFs), calibrating a mixture of lognormals4 for the PDFs of
the 50 stocks and the stock index. In what follows we briefly describe the mixture of
lognormals method.

Let St be the price of an underlying asset which pays a continuous dividend Dt,
which follows the dynamic

dDt = δStdt, (1)

δ being a positive constant. We also assume that the underlying asset follows the cum-
dividend price dynamics of a generalized Black and Scholes model (BSMG), that is a
geometric Brownian motion:

dSt = µStdt+ σStdWt, (2)

where µ = r − δ, r is the continuously compounded risk-free rate and Wt is a standard
Brownian motion.5

As is well known, the price at time t of a call option on such an underlying, with strike
K and maturity T , is given by the expected value (under the risk-neutral probability
measure) of the option at maturity, discounted at the risk-free interest rate:

C(St,K, T − t, r, δ, σ) = Ste
−δ(T−t)Φ(d1)−Ke−r(T−t)Φ(d2),

where Φ(·) is the standard normal cumulative distribution function, f is the risk-neutral
density of the price ST and

d1 =
log
(
St
K

)
+
(
r − δ − 1

2σ
2
)
(T − t)

σ
√
T − t

,

4See Bahra (1996), Melick and Thomas (1997) and Sodernlind (1997) for a detailed description.
5The ex-dividend dynamics of the underlying is dSt − dDt = rStdt+ σStdWt.
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d2 = d1 − σ
√
T − t.

The random variable ST follows a lognormal distribution with mean m = (log(St)+(r−
δ)− σ2/2)(T − t) and variance σ2(T − t), i.e. its risk neutral density f satisfies

f(ST ) = l(ST ,m, σ) =
1

ST
√

2πσ2(T − t)
e
− [log(ST )−m]2

2σ2(T−t) .

A mixture of lognormals is defined as a convex combination of M lognormal densities in
which the parameters m and σ can take different values:

q(ST ; θ) =

M∑
i=1

αil(ST ,mi, σi), (3)

where θ represents the unknown parameters αi,mi, σi, for i = 1, . . . ,M .6

If the price ST of the underlying asset follows a distribution given by equation (3),
then the corresponding option price, for a given strike K and time to maturity T − t, is

CMIX(St,K, r, T − t, θ) =
M∑
i=1

αi[Ste
−δi(T−t)Φ(d1,i)−Ke−r(T−t)Φ(d2,i)],

where

d1,i =
log
(
St
K

)
+
(
r − δ − 1

2σ
2
i

)
(T − t)

σi
√
T − t

,

d2,i = d1 − σi
√
T − t.

In this paper we use a mixture of two lognormals (M = 2). As we deal with market
data for American options (both on the Euro Stoxx 50 Index and on the constituent
stocks), the above formula has to be adjusted appropriately. In particular, for each option
we calculate the early exercise premium by computing the Barone-Adesi correction term
through an iterative procedure.7 Then, we subtract the correction term from the market
price of the American option to obtain the corresponding European option price, which
is now matched to the value CMIX obtained as follows:

CMIX(St,K, r, T − t, α, δi, σi) = αCBSM (St,K, T − t, r, δ1, σ1)
+(1− α)CBSM (St,K, T − t, r, δ2, σ2),

where CBSM (St,K, T − t, r, δ, σ) denotes the standard Black and Scholes (1973) for-
mula for options on a dividend-paying underlying. Finally, we estimate the parameters
α, δ1, δ2, σ1, σ2 that better replicate the observed market prices of the options.

6Of course, αi > 0, for each i, and
∑
i αi = 1.

7See Barone-Adesi and Whaley (1987) for details.
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3 Option-Implied Risk Adjusted Densities

In the previous paragraph we described the method we used to extract the option-implied
risk neutral densities from market data. In order to perform a portfolio optimization,
we need to know the real-world probability density functions. To this end, we convert
the RNDs into the corresponding risk-adjusted PDFs.

If there exists a representative agent with utility function U(·), then the link between
the risk-neutral distribution measured at time t, qt(ST ), and the real-world distribution
pt(ST ) of the asset price ST , is given by

pt(ST ) =
qt(ST )

ζ(ST )

(∫ qt(x)

ζ(x)
dx
)−1

, (4)

where

ζ(ST ) = e−r(T−t)
U ′(ST )

U ′(St)
(5)

is the so-called pricing kernel. Equation (5) follows from the first-order condition of the
intertemporal expected utility maximization problem of the representative agent (see
Ait-Sahalia and Lo (2000) for a detailed discussion). We assume that the representative
agent maximizes a power utility function,8 defined as

U(W ) =
W 1−γ − 1

1− γ
, γ 6= 1,

where γ is the coefficient of constant relative risk aversion (RRA) that must be estimated.
According to our choice of the utility function, we compute the risk-adjusted density from
the risk-neutral density as

pt(ST ) =
qt(ST )SγT∫
qt(x)xγdx

. (6)

In particular, we assume that the risk aversion coefficient is the same for the index
and for all the constituent stocks, reflecting the view of a unique representative agent
who decides how to allocate his investments among a class of assets. In the following
paragraph we will describe the method we use to estimate the risk aversion coefficient
γ, following the approach of Bliss and Panigirtzoglou (2004).

3.1 Option-Implied Risk Aversion coefficient estimates

In this paragraph we deal with the estimate of the optimal risk aversion coefficient γ.
We consider options on the Euro Stoxx 50 Index, with monthly maturities ranging from
20 November 2009 to 17 June 2011, thus getting 20 admissible expiration dates. We fix a
time-to-maturity of 78 days (0.21 years) and we consider the option prices on the dealing

8This choice guarantees the integrability of x 7→ qt(x)/U ′(x) when qt is a mixture of lognormals. If
we had adopted an exponential utility function, for instance, the corresponding function would have had
an infinite integral.
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date 78 days ahead of each maturity date. Having fixed a dealing date/maturity date
pair, we extract the corresponding risk-neutral probability density functions using the
mixture of lognormals method described in Section 2.1. For each value of the parameter
γ, chosen in the range {0.5, 0.6, 0.7, . . . , 9.8, 9.9, 10}, we convert the 20 RNDs into the
corresponding risk-adjusted probability density functions, using Equation (6). For each
γ we evaluate the forecasting ability of the corresponding risk-adjusted PDF, then we
select the value of the risk aversion coefficient which maximizes the consistency of future
realizations of the index price with the option-implied probability density functions. In
what follows we describe the method used to select γ, which is based on a Berkowitz
likelihood ratio statistic.9

Having fixed a maturity date T , the corresponding dealing date t and a value of γ,

we extract the risk-adjusted probability density function p
(γ)
t (·) for the index price ST

using the procedure explained in the previous paragraphs (see Equation 6). If we use

qt(·) to denote the option implied risk neutral density, we know that p
(γ)
t (·) is given by

p
(γ)
t (ST ) = qt(ST )SγT

(∫ +∞

0
qt(x)xγdx

)−1
.

We want to test the hypothesis that the estimated PDFs p
(γ)
t (·) are equal to the true

(unknown) PDFs ft(·). At time t we forecast the future realizations of the index price
at time T using the risk-adjusted density pγt (·). At time T we observe the realized value
of the price, which we denote here by Xt as a reminder that it has to be compared with
its expected value computed at time t. The null hypothesis states that the realizations
Xt are independent and that pγt (·) = ft(·). If this hypothesis is verified, then the inverse
probability transformations of the realizations

yt =

∫ Xt

−∞
p
(γ)
t (u)du (7)

are i.i.d. ∼ U(0, 1).

The Berkowitz likelihood ratio statistic allows to jointly testing for uniformity and
independence. To implement this methodology we consider the transformation of yt

zt = Φ−1(yt) = Φ−1
(∫ Xt

−∞
p
(γ)
t (u)du

)
, (8)

where Φ(·) is the normal cumulative density function. In order to test the independence
and standard normality of the zt, Berkowitz (2001) uses the maximum likelihood to
estimate the following autoregressive model of order 1

zt − η = θ(zt−1 − η) + εt, (9)

9See Berkowitz (2001) for details.
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and tests restrictions on the parameters of the AR(1) using a likelihood ratio test. Under
the null hypothesis, the model has the following parameters: η = 0, θ = 1, σ2 :=
V ar(εt) = 0. The log-likelihood function for this model10 is given by

L(η, σ2, θ) = −1

2
log(2π)− 1

2
log[σ2/(1− θ2)]− {z1 − [η/(1− θ)]}2

2σ2/(1− θ2)

−[(τ − 1)/2] log(2π)− [(τ − 1)/2] log(σ2)−
τ∑
t=2

[
(zt − η − θzt−1)2

2σ2
].

Under the null hypothesis, the likelihood ratio statistic

LR3 = −2[L(0, 1, 0)− L(η̂, σ̂2, θ̂)]

follows a chi-squared distribution with 3 degrees of freedom, χ2
3. The risk aversion

parameter γ is chosen as the value which maximizes the p-value of the Berkowitz LR3

statistic, which is a measure of the forecast ability of the correponding risk-adjusted
PDFs.

As the presence of overlapping data may induce autocorrelation11 and lead to the
rejection of any value of γ, we selected a subsample of the time series, such that the
maturity date of the n-th option is prior to the dealing date of the (n+1)-th option. We
found that the p-value of the Berkowitz test is maximized for γ̂ = 1.5. This value is not
far from the option-implied risk aversion estimates obtained by Bliss and Panigirtzoglou
(2004), who compute the representative agent’s risk aversion at different horizons, getting
values between 1.97 and 7.91. They consider forecast horizons ranging from 1 to 6 weeks
and suggest that the risk-aversion coefficient tends to decrease as the time lapse increases.
Since our forecast horizon is 11 weeks, the optimal value of γ̂ = 1.5 seems reasonable.

3.2 Risk-Adjusted Expected Returns and Variances

Having estimated the risk aversion parameter γ, we assume that it reflects the represen-
tative agent’s view for all the constituents of the Euro Stoxx 50 Index. Then, we use
Equation (6) to compute the risk-adjusted densities ft

i(·) = pγ̂t,i(·) for the underlying

prices SiT , where i ∈ {1, . . . , 50}, t = 31 March 2011 and T = 17 June 2011.

To perform the asset allocation, we need to know the estimated expected returns
and the estimated return variances, given by

µi = E[log(SiT )− log(Sit)] =

∫ +∞

0
log(x)f it (x)dx− log(Sit) (10)

and

(σRAi)
2 = V ar(log(SiT )− log(Sit))

=

∫ ∞
0

(log(x))2f it (x)dx−
(∫ +∞

0
log(x)f it (x)dx

)2

.
(11)

10See Hamilton (1994), Equation (5.2.9).
11See Bliss and Panigirtzoglou (2004).
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The risk-adjusted density of the index price is denoted by f Indt ; its return variance equals

(σRAInd)
2 = V ar(log(ST

Ind)− log(St
Ind))

=

∫ +∞

0
(log(x))2ft

Ind(x)dx−
(∫ +∞

0
log(x)ft

Ind(x)dx

)2

.
(12)

4 Option-Implied Risk Adjusted Covariance

We compute the risk-adjusted variance-covariance matrix for the individual stock re-
turns in our portfolio, using the (risk-adjusted) standard deviations of the stock returns,
the (risk-adjusted) standard deviation of the index returns and the historical correlation
matrix of the stock returns. The historical correlations are estimated using six years of
daily returns Ri,t and the exponential weighted moving average method.12 We develop
an ad hoc method to combine the implied volatilities with the historical correlations,
through the computation of a correction coefficient β. This technique leads to a correla-
tion matrix that is inherently forward-looking and is based on a method introduced by
Buss and Vilkov (2012) for the evaluation of equity risk.13

4.1 Historical correlation matrix

An exponentially weighted moving average applies weighting factors which decrease ex-
ponentially as the observations become more and more distant in time. As in RiskMet-
rics,14 we consider a smoothing constant λ = 0.94 and compute the m-period15 historical
covariances between stocks i and j, measured at time t+ 1, as

σhij,t+1 =

∑m
τ=1(Ri,t+1−τ −Ri)(Rj,t+1−τ −Rj)λτ−1

1 + λ+ λ2 + . . .+ λm−1
, (13)

where for each stock Ri = 1
m

∑m
t=1Ri,t. Hence, the m-period historical variance of stock

i, measured at time t+ 1, is given by

(σhi,t+1)
2 =

∑m
τ=1(Ri,t+1−τ −Ri)2λτ−1

1 + λ+ λ2 + . . .+ λm−1
.

The related correlations are given by

ρhij,t+1 =
σhij,t+1

σhi,t+1σhj,t+1
, (14)

where σhi,t+1 is the historical standard deviation for stock i.

12See, among others, Mills and Markellos (2008).
13See also the paper by Chang, Christoffersen, Jacobs, Vainberg (2012), who use option implied

variances to evaluate equity risk premia in a factor model setting.
14See RiskMetrics (1996).
15We consider daily data from 8 July 2005 to 1 April 2011, so that m=1495.
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4.2 Implied Risk-Adjusted Correlation Matrix

Once we have calculated the historical correlations, we compute a perturbed correlation
matrix which takes into account the option-implied estimates. We implement an ad hoc
technique based on the estimate of a correction term for the historical correlations; a
similar approach, but in a different context, is used by Buss and Vilkov (2012).

In general, option-implied pairwise correlations cannot be inferred from market data
directly, since this would require market quotes for options on each pair of stocks. In
order to reduce the dimensionality of the problem, we introduce a parametric form for
the pairwise correlations and use the following identifying restriction:

(σRAInd,t)
2 =

∑
i

∑
j

wiwjσ
RA

i,tσ
RA

j,tρ
RA

ij,t

=
∑
i

wi
2(σRAi,t)

2 +
∑
i

∑
j 6=i

wiwjσ
RA

i,tσ
RA

j,tρ
RA

ij,t,
(15)

where wi are the index portfolio weights, σRAInd,t is the risk-adjusted implied standard
deviation of the index, σRAi,t is the risk-adjusted implied standard deviation of stock i
and ρRAij,t is the implied correlation between i and j (which we are going to estimate
in this paragraph). Equation (15) states the equivalence between the option-implied
variance of the index and the variance of the portfolio made of the constituent stocks,
calculated with the option-implied stock variances and covariances.

If we replace the unknown correlations ρRAij,t with the available historical estimates

ρhij,t in (15), the equality does not hold in general. We then write the difference between
the left- and the right-hand sides as a proportion βt of the option-implied index variance
(σRAInd,t)

2:

(σRAInd,t)
2 −

∑
i

∑
j

wiwjσ
RA

i,tσ
RA

j,tρ
h
ij,t = βt × (σRAInd,t)

2.

Since
∑

iwi = 1, this is equivalent to

(σRAInd,t)
2 =

∑
i

∑
j

wiwjσ
RA

i,tσ
RA

j,t

[
ρhij,t + βt

(σRAInd,t)
2

σRAi,tσRAj,t

]
. (16)

We denote the term in brackets as ρ̂RAij,t := ρhij,t + βt
(σRAInd,t)

2

σRAi,tσRAj,t
. In Equation (16) it

can be interpreted as the implied correlation between i and j, because it plays the role
of ρRAij,t in Equation (15). However, to obtain a positive definite correlation matrix

taking values in the range [−1,+1], we normalize ρ̂RAij,t in the spirit of the Dynamic
Conditional Correlation model (Engle, 2002) and we define

ρRAij,t :=
ρ̂RAij,t√

ρ̂RAii,t

√
ρ̂RAjj,t

. (17)
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Plugging Equation (17) in (15), we get

(σRAInd,t)
2 =

∑
i

∑
j

wiwjσ
RA

i,tσ
RA

j,t

×
ρhij,t + βt ×

(σRAInd,t)
2

σRAi,tσRAj,t√
ρhii,t + βt ×

(σRAInd,t)2

(σRAi,t)2

√
ρhjj,t + βt ×

(σRAInd,t)2

(σRAj,t)2

.

Since βt is the only unknown variable in the previous expression, we can calculate it
by implementing a numerical method in Matlab. Once we have obtained βt, we can
compute the implied risk-adjusted correlations ρRAij,t as in (17) and consequently the
implied covariances

σRAij,t = ρRAij,tσ
RA

i,tσ
RA

j,t.

By Buss and Vilkov (2012),16 the implied correlation matrix
(
ρRAij,t

)
1≤i,j≤N we

constructed is positive definite if and only if βt ≥ 0. We will see that in the numerical
implementation of this strategy we get a positive value for βt, so the implied correlation
matrix is positive definite, as required.

We proposed this ad hoc method to use all the available information, arising from the
options on both the index and the 50 stocks. The option-implied risk-neutral densities
do not provide any information about the correlation structure among the stocks, hence
we decided to start from the historical correlation matrix given by an exponentially
weighted moving average model. This historical correlation matrix is then modified by
the introduction of a correction coefficient βt, chosen so that it guarantees the matching
between the option-implied volatility of the index and the volatility of the corresponding
portfolio of stocks.

As an output of the numerical computations, we obtained that the optimal correction
term is βt = 0.97 per cent, for t = 31 March 2011.

5 Robust optimization

In this paragraph we show how we applied the robust portfolio construction to our set-
ting. The robust optimization methodology has been developed to cope with estimation
errors in the estimates of the expected returns and their error-magnification effects. It
is well known that mean-variance portfolios tend to exacerbate the estimation error
problem by significantly overweighting assets with an upside error and underweighting
assets with a downside error. Robust optimization considers the estimation errors for
the mean returns directly in the optimization problem itself, and aims at performing an
asset allocation that is robust to these errors. The robust optimization approach fixes a
confidence region for the estimated mean returns, and performs a portfolio optimization
accounting for the worst case scenario that could be realized in that confidence region.

16see Buss and Vilkov (2012), Theorem 1.
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We want to select the minimum-variance portfolio over all asset allocations which
guarantee an expected return bigger than or equal to a fixed target r̄. Let R be the
N -dimensional random variable describing the random returns of the N available stocks.
Let µ and Σ = (Σij)1≤i,j≤N be the mean vector and the variance-covariance matrix of
the stock returns. Having fixed r̄ > 0, we aim at solving the following problem:

min
w

w′Σw

s.t. µ′w ≥ r̄
1′w = 1.

(18)

It is well known that the estimation of expected returns is a particularly challenging
problem, since errors in estimated mean returns are the main determinants of optimal
portfolio estimation risk (they account for most of the estimation error, to a much
greater extent than errors in estimated variances). A possible way to address this issue
is to consider uncertainty in unknown parameters explicitly in the optimization problem.
This approach, which is part of the robust optimization field, was introduced by Ben-Tal
and Nemirovski (1997) for robust truss topology design. In what follows, we describe
how robust optimization can be applied to our asset allocation problem, following the
approach of Ceria and Stubbs (2006).

Since the true value of µ cannot be known with certainty, we model it as a random
variable whose dispersion represents the possible estimation error. In particular, we
assume that µ is normally distributed around its best guess π:

µ ∼ N(π,Q), (19)

where the N -dimensional matrix Q represents the uncertainty of the guess. Actually it
is not necessary to assume normality: the same arguments hold with minor changes if
we assume that the distribution of µ is elliptical.

Since we do not have any a priori information on the covariance matrix Q of the
dispersion error, we can simply assume that Q is the n-dimensional identity matrix.
Given the best guess vector π, with probability η ∈ [0, 1] the vector of actual expected
returns lies inside the confidence region

E = {µ ∈ Rn : (µ− π)′Q−1(µ− π) ≤ κ2}, (20)

where κ2 = F−1n (1 − η) and F−1n is the inverse cumulative distribution function of a
chi-squared distribution with N degrees of freedom. In the definition of E the variables
Q and κ represent respectively the shape and the size of the ellipsoid. In particular we
set κ2 = Var(π01, . . . , π

0
n), i.e. κ2 is the cross-sectional variance of the mean returns.

Our goal is to perform a portfolio optimization which accounts for the worst-case
scenario, hence we want to solve the following minimum-variance problem:

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1.

(21)
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In the following paragraph we will describe the cutting plane algorithm we implemented
to find a numerical solution of problem (21).

A key issue in the implementation of robust asset allocation is the determination of
the best guess vector π, which is the starting point of the robust optimization method.
In this paper the vector π is set through an equilibrium argument.17 If there were no
estimation error, i.e. Qij = 0 for all i, j ∈ {1, . . . , n}, then µ = π a.s. and the stock
returns would follow the distribution

R ∼ N(π,Σ).

In this scenario we could assume that all investors maximize a mean-variance trade-off
and that the maximization is unconstrained; the investors’ optimization problem would
read as

w̃ = arg max
w

{w′π − λw′Σw},

where λ is the coefficient of risk aversion. By imposing the first order conditions, we
find the following link between the equilibrium returns π and the optimal weights w̃:

π = 2λΣw̃. (22)

In our portfolio optimization we will take λ equal to the value of the risk aversion
coefficient γ we obtained in Section 3.1, i.e. the value which maximizes the forecasting
ability of the densities implied in the index options. The weights w̃ will be equal to the
weights of the stock index.

In the empirical part of this work, we computed the robust efficient frontier in two
different ways: first of all we calculated the actual robust efficient frontier, in which the
starting point of the robust optimization was the equilibrium vector π defined in (22).
Then we computed the estimated robust efficient frontier, in which the starting point
was the vector π̂, obtained as follows: we randomly generated a time-series of normally
distributed returns (with mean π and variance Σ) and computed the average π̂ to use
as an estimate of the expected returns.

5.1 The Cutting Plane approach

The solution to problem (21) is not straightforward, due to the presence of the first
constraint: the admissible weights w must satisfy the nonlinear condition µ′w ≥ r̄ for
all µ belonging to the uncountable set E. In order to find a numerical solution to this
problem, we implement a cutting-plane algorithm.

1. First of all, we set µ0 = π and define S0 = {µ0}. We then solve the constrained
problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ S0, 1′w = 1.
(23)

17See Idzorek (2004) and Meucci (2010).
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Let w0 be the solution of (23).

2. We want to determine the vector of expected returns that corresponds to the
worst case scenario given the weights vector w0. Accordingly, we determine µ1 =
arg minµ{µ′w0 : µ ∈ E}. There can be two outcomes:

• either µ′1w0 ≥ r̄, which implies that w0 is a feasible solution for problem (21).
In this case the algorithm ends and w̃ = w0 is the optimal weights vector;

• or µ′1w0 < r̄, which implies that w0 is not an admissible solution for problem
(21), since it violates the first constraint. In this case the procedure continues
with the updated constraints set S1 = {µ0, µ1}. We find the solution w1 of
the optimization problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ S1, 1′w = 1.

Note that the vector µ1 can be computed analytically. In fact, µ1 is the solution
of the minimization problem

min
µ∈E

µ′w0. (24)

For a fixed µ ∈ E, we set v = Q−1/2(µ − µ0), so that µ = µ0 + Q1/2v. Note that
µ belongs to E if and only if (µ − µ0)′Q−1(µ − µ0) ≤ κ2; it follows that µ ∈ E is
equivalent to ‖v‖2 = v′v ≤ κ2. Hence the minimum problem in (24) is equivalent
to

min
‖v‖2≤κ2

(µ0 +Q−1/2v)′w0. (25)

Problem (25) can be solved analytically and its unique solution is

v1 = −κ Q1/2w0

‖Q1/2w0‖
.

The corresponding vector µ1 is the solution of problem (24):

µ1 = µ0 +Q1/2v1 = µ0 − κ
Qw0√
w′0Qw0

. (26)

3. When we reach the j-th iteration, we start with a constraints set Sj−1 = {µ0, . . . , µj−1}
and a vector of weights wj−1 which solves the minimum-variance problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ Sj−1, 1′w = 1.

We then determine the worst-case expected returns µj = arg minµ{µ′wj−1 : µ ∈
E}. We can find an explicit formula for µj arguing as above:

µj = µ0 − κ
Qwj−1√
w′j−1Qwj−1

.
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We then look at the scalar product µ′jwj−1 and get one of the following outcomes:

• if µ′jwj−1 ≥ r̄, then we have found the solution w̃ = wj−1 to problem (21)
and the algorithm ends;

• otherwise, if µ′jwj−1 < r̄, then we iterate the procedure.

For a general discussion of cutting-set methods for robust convex optimization and their
convergence see Mutapcic and Boyd (2009).

5.2 Constraints on the portfolio weights

In general, mean-variance efficient portfolios constructed using sample moments often
assign extremely negative and positive weights to a number of assets. Since negative
portfolio weights (short positions) are difficult to implement in practice, many investors
impose no-short-sale constraints (i.e., portfolio weights must be nonnegative). This
choice finds empirical support in the paper of Jagannathan and Ma (2003), which shows
how imposing appropriate constraints improves the efficiency of the constructed optimal
portfolios. In particular, the authors show that constraining portfolio weights to be
nonnegative is equivalent to shrinking the sample covariance matrix (i.e., reducing its
large elements) and then forming the optimal portfolio without any restriction on its
weights. They show that each of the no-short-sale constraints is equivalent to reducing
the sample covariances of the corresponding asset with other assets by a certain amount.
The intuition behind this result is that assets having high covariances with other stocks
tend to get extreme negative portfolio weights. The paper also shows that imposing
upper bounds on portfolio weights does not lead to a significant improvement in the
out-of-sample performance of minimum risk portfolios when no-short-sale restrictions
are already in place, but a constraint from above can help in the practical construction
of the portfolio. Summarizing the authors’ findings, we can say that constructing a
minimum risk portfolio subject to the constraint that portfolio weights are positive
(negative) is equivalent to constructing it without any constraint on portfolio weights
after modifying the covariance matrix by shrinking the larger elements of the covariance
matrix towards zero (towards one). The striking feature of minimum-variance portfolios
with no-short-sale constraints is that in such portfolios investment is spread over only a
few stocks, while imposing upper bounds on portfolio weights can ensure that optimal
portfolios will contain a large enough collection of stocks.

In this paper we implement the asset allocation strategy in two different ways:18

first, we impose no-short-sale restrictions and then we constrain the portfolio weights to

18In addition, we implemented the portfolio optimization without any constraint on the portfolio
weights, but the results were highly unsatisfactory due to the presence of extremely positive and ex-
tremely negative weights, as expected.
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be in the interval [−1, 1]. In the first case our minimum-variance problem (21) becomes

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1

wi ≥ 0 i =1, . . . n,

(27)

while in the second case we have

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1

− 1 ≤ wi ≤ 1 i = 1, . . . n.

(28)

The two sets of results are discussed in Section 7.

6 The Dataset

The dataset consists of the stocks which compose the Euro Stoxx 50 Index. The index
covers 50 stocks from 12 eurozone countries.19 The 50 stocks in the index are generally
very liquid. For each of them there are call and put options, with various strikes, quoted
in the market (with the only exception of the stocks of the company CRH, for which
there were no quoted options at the time we built our dataset). Since we were interested
in a static asset allocation, we fixed a specific date (31 March 2011) as the initial time
of our analysis, and for each stock we focused on the collection of options which expired
in June 2011 (for most of the options the maturity date was 17 June, while for the
options on stocks corresponding to Italian companies – Generali, Enel, Eni, Intesa San
Paolo, Telecom Italia, Unicredit – the expiration date was 16 June). For each option the
time-to-maturity was thus equal to 0.21 years.

Having fixed the expiration date, for each stock we gathered the data regarding call
and put options written on that stock (strike price, underlying price and market value
of the option)20 as well as the information about the options written on the Euro Stoxx
50 Index. In the case of the index, we built a time series made up of 20 periods: we
started from the family of options expiring on 17 June 2011 and quoted on 31 March
2011 and went backwards for 20 months, taking market prices of options on Euro Stoxx
50 having time to maturity equal to 0.21 years. This time series was used to determine
the risk aversion coefficient γ (see Section 3). The market prices of the option expiring

19Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands,
Portugal and Spain.

20All the data are from Thomson Reuters Datastream.
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on 17 June 2011 were also used in the construction of the variance/covariance matrix
(see Section 4).

For the estimate of the historical correlation matrix, we used the daily prices of the
50 stocks making up the index from 8 July 2005 to 1 April 2011.

7 Empirical results

In order to measure the effect of the robust optimization methodology, we construct five
efficient frontiers:

• estimated Markovitz efficient frontier: the efficient frontier obtained by using the
estimated expected-return vector π̂ to compute the optimal portfolio according to
the standard Markovitz mean-variance approach;

• estimated robust efficient frontier: the efficient frontier obtained by using the esti-
mated expected-return vector π̂ to compute the optimal portfolio according to the
robust optimization approach;

• true efficient frontier: the efficient frontier computed by using the true expected
returns (unobservable, and represented by the equilibrium returns π) to compute
the optimal portfolio;

• actual Markovitz efficient frontier: the efficient frontier obtained taking the portfo-
lios on the estimated Markowitz efficient frontier and then calulating their expected
returns using the true expected returns;

• actual robust efficient frontier: the efficient frontier obtained by using the true
expected returns π to compute the optimal portfolio according to the Robust
Optimization approach.

Figure 1 and Figure 2 illustrate these five efficient frontiers obtained when consid-
ering no-short-sale restrictions and lower and upper bound restrictions on the portfolio
weights, respectively. As expected, in both cases it can be seen that when we use robust
optimization the actual and the estimated frontiers lie closer to each other with respect
to the related frontiers obtained with the standard Markovitz mean-variance optimiza-
tion. This is because, by construction, the objective function in the robust optimization
problem is based on reducing the distance between the predicted and the actual fron-
tier.21 In addition, by incorporating the estimation errors in the portfolio construction
process, we significantly reduce their effects on the optimal portfolio. Moreover, what is
remarkable is that the robust estimated and actual efficient frontiers are not only closer
together, but also closer to the true efficient frontier.

Table 1 shows the number of stocks selected in the robust and Markovitz optimiza-
tion problems, without and with a no-short-sale constraint, respectively (i.e., the number

21See Ceria and Stubbs (2006) for technical details.
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Figure 1 – Efficient frontiers obtained with no-short-sale constraint.
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Table 1 – Number of stocks and weights for the different portfolios (1).
(1) LU refers to lower and upper bounds ±1, while NSS refers to no-short-sale constraints.

Number of stocks Minimum weight Maximum weight

Robust LU 50 -0.0029 0.0416
Markovitz LU 50 -0.0196 0.1516
Robust NSS 48 0 0.0441

Markovitz NSS 36 0 0.2150

of stocks which are assigned a non-zero weight). This table also displays the minimum
and maximum values for the asset weights. The results are obtained when setting the
minimum expected annual return of the portfolio equal to 12.6 per cent, that is the his-
torical mean return of the Euro Area Market General Index (computed by Datastream)
over the last 30 years.

From Table 1 we can see that when we require the portfolio weights to be in the
range [−1,+1] in our optimization problems (both robust and Markovitz), we select all
the available stocks in the index. In this case the weights reflect more extreme short and
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Figure 2 – Efficient frontiers obtained without no-short-sale constraint.
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long positions in the Markovitz portfolio rather than in the robust portfolio, as can be
seen from the higher absolute value of both the minimum and the maximum weights.
When we impose a no-short-sale constraint, on the other hand, the robust portfolio
selects a larger number of stocks than the Markovitz portfolio. Moreover, the robust
portfolio assigns more homogeneous weights to the selected stocks.

Finally, in order to evaluate the performance of our model, we consider two criteria:

• the out-of-sample Sharpe Ratio, defined as the sample mean of out-of-sample excess
returns (over the risk-free rate), divided by their sample standard deviation:

SRout =
(µreal − rf )Tw√

wTΣrealw
(29)

where µreal are the realized returns of the stocks in the portfolio, rf is the risk-free
rate, w is the weights vector, and Σreal is the variance of the realized portfolio
returns;

• the Certainty-equivalent (CEQ) return, defined as the risk-free rate that an investor
is willing to accept rather than adopting a particular risky portfolio strategy; its
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approximate value, commonly used by practitioners, is

CEQ = (µreal − rf )Tw − γ

2
(wTΣrealw). (30)

Table 2 – The Sharpe ratio and CEQ for the robust portfolios obtained with the option-
implied covariance matrix (portfolios 1 and 2) and the historical covariance matrix (port-
folios 3 and 4).

Option-implied cov
LU (1)

Option implied cov
NSS (2)

Historical cov
LU (3)

Historical cov
NSS (4)

Sharpe ratio 1.8 1.7 1.2 1.2
CEQ 0.3 0.2 0.2 0.2

Table 2 shows the values of the performance indicators for 4 different portfolios:

1. portfolio obtained with our trading strategy (option-implied risk-adjusted covari-
ance matrix and robust optimization) and the constraint that the weights lie in
[−1, 1] (LU);

2. portfolio obtained with our trading strategy (option-implied risk-adjusted covari-
ance matrix and robust optimization) and a no-short-sale constraint on the weights
(NSS);

3. portfolio obtained using the historical covariance matrix, robust optimization and
the constraint that the weights lie in [−1, 1];

4. portfolio obtained using the historical covariance matrix, robust optimization and
a no-short-sale constraint on the weights.

In Table 3 we show the values of the performance criteria obtained by implementing
three simple trading strategies:

• Index Buy-and-Hold : this strategy considers the returns that would have been
achieved by investing directly in the Euro Stoxx 50 Index on 31 March 2011 and
selling it on 17 June 2011;22

• the 1/N Portfolio Strategy : this strategy, proposed by De Miguel, Garlappi and
Uppal (2009), consists in selecting a portfolio with all the N stocks in the index,
by assigning weight 1/N to each one;

• a momentum strategy : this strategy consists in selecting only the G stocks with
positive returns in the previous year and allocating a portfolio with weights 1/G
on those stocks.
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Table 3 – The Sharpe ratio and CEQ for commonly used trading strategies (out-of-
sample, annualized)

Index
Buy-and-Hold

Equally weighted
portfolio

Momentum
portfolio

Sharpe ratio -1.4 1.8 0.8
CEQ -0.3 0.3 0.1

From Table 2 we can see that our trading strategy (both with upper and lower bounds
and with a no-short-sale constraint on the weights) shows a good performance according
to both the Sharpe ratio and the CEQ. In particular, portfolios 1 and 2 significantly
ourtperform the corresponding allocations obtained with the historical covariance matrix
(portfolios 3 and 4).

Moreover, Table 3 indicates that the performance of the 1/N -portfolio is comparable
to that of our strategy, whereas the momentum portfolio and the index buy-and-hold
have a much poorer performance, according to both the Sharpe ratio and the CEQ.

8 Conclusions

In this paper we propose a methodology which extends the forward-looking approach of
Kostakis, Panigirtzoglou and Skiadopoulos (2010) to the case of a portfolio consisting
of a variety of risky assets. We deal with the empirical implementation of a static
asset allocation problem, using information extracted from the market prices of options
written on the Euro Stoxx 50 Index and its constituents.

To estimate a correlation structure among the assets which is consistent with the re-
lated option-implied variances, we develop an ad hoc procedure to integrate the historical
stock returns with the option implied distributions of the stocks and the index.

The asset allocation is performed using the robust optimization technique. This
methodology has been developed to cope with estimation errors present in the estimates
of expected returns and their error-magnification effect. Robust optimization, in fact,
incorporates the estimation errors directly in the optimization problem, and performs
an asset allocation that is robust to these errors.

In order to evaluate the results of our asset allocation, we use a comparison among
five efficient frontiers constructed using different methodologies (estimated Markovitz ef-
ficient frontier, estimated robust efficient frontier, true efficient frontier, actual Markovitz
efficient frontier and actual robust efficient frontier), in the spirit of Ceria and Stubbs
(2006).

22Note that the Euro Stoxx 50 weights remained unvaried between these dates.
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Finally, we compare the out-of-sample performance of our robust portfolios to the
performance obtained with some alternative strategies. The performance is meaured us-
ing two standard criteria: the out-of-sample Sharpe ratio and the Certainty-Equivalent
(CEQ) return for the expected utility of a mean-variance investor. Firstly, we imple-
ment the robust allocation using the estimated historical covariance matrix instead of
the risk-adjusted matrix extracted from option data (as in the standard mean-variance
optimization approach). We then compare the performance of our portofolio to the one
obtained with three standard trading strategies: the Index Buy-and-Hold strategy, the
1/N portfolio of De Miguel, Garlappi and Uppal (2009) and a momentum strategy. In
both cases we see that our asset allocation gives satisfactory results; in particular, it
significantly outperforms the portfolio based on historical covariances.

Starting from the results of this paper, we plan to extend them in further research.
In particular, the robustness of our results could be checked by using different data sets,
such as options with different start dates and different time horizons, or different stock
indices; moreover it would be interesting to compare the performance of our portfolio in
high and low volatility periods or in stressed and calm phases for the financial markets.

A major issue of this paper is the fact that the methodology developed to extract
the covariance matrix from options data relies on little information on forward-looking
correlations. In fact, the covariance matrix is built using only information on the option-
implied volatilities of the stocks and the option-implied volatility of the index: options
data do not convey any information about pairwise correlations. Nevertheless, the en-
couraging results of the paper suggest that applying our methodology to a family of
stocks which are the constituents of a quoted index can give a portoflio that performs
well, since we can use the information extracted from market data on the index to in-
fer a consistent correlation structure among the stocks. Further analysis will focus on
the development of a procedure which can integrate option-implied variances with the
related covariances without requiring the existence of an overall quoted index, possibly
through a multifactor model.
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