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Abstract 

We study the one-dimensional Ornstein-Uhlenbeck (OU) processes with marginal law 
given by the tempered stable and tempered infinitely divisible distributions proposed by 
Rosiński (2007) and Bianchi et al. (2010b), respectively. In general, the use of non-Gaussian 
OU processes is impeded by difficulty in calibration and simulation. Accordingly, we 
investigate the law of transition between consecutive observations of OU processes and – 
with a view to practical applications – evaluate the characteristic function of integrated 
tempered OU processes in three cases: classical tempered stable, variance gamma, and 
rapidly decreasing tempered stable. Then we analyze how one can draw a random sample 
from this class of processes using both the classical inverse transform algorithm and an 
acceptance-rejection method based on the simulation of a stable random sample. Finally, 
with a maximum likelihood estimation method based on the fast Fourier transform, we 
assess the performance of the simulation algorithm empirically. 
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1 Introduction1

Over the past decade non-Gaussian Ornstein-Uhlenbeck (OU) processes introduced
by Barndorff-Nielsen and Shephard (2001) have been widely studied from both
empirical and theoretical points of view and applied to finance, economics, engi-
neering and other applied sciences. This family of processes can capture important
distributional properties observed in real data and offer a more flexible structure
with respect to Gaussian-based models. This flexibility, the possibility to explain
certain stylized facts of financial time series for example, and a suitable degree of
computational tractability have increased the number of applications in finance. In
particular, they have been applied to stochastic volatility, interest rate and credit
risk models (see Nicolato and Venardos (2003), Kokholm and Nicolato (2010) and
Keller-Ressel et al. (to appear)).

It is within this context that we study tempered OU processes. The formal and
elegant definition of tempered stable (TS) distributions and processes has been
proposed in the work of Rosiński (2007) where a completely monotone function is
chosen to transform the Lévy measure of a stable distribution (various paramet-
ric classes have been discussed by Terdik and Woyczyński (2006)). Subsequently,
Bianchi et al. (2010b) introduced the class of tempered infinitely divisible (TID)
distributions by multiplying the Lévy measure of a stable distribution with a pos-
itive definite radial function (see Schoenberg (1938)) instead of with a completely
monotone function as in Rosiński (2007). The TID class of distributions has the
same desirable properties as the tempered stable class, but with the advantage that
it may admit exponential moments of any order. More precisely in some cases, the
characteristic function of a TID random variable is extendible to an entire function
on C, that is, it admits any exponential moment. Recently, two classes of distri-
butions broader than the TS class were proposed: Rosiński and Sinclair (2010)
introduced the generalized tempered stable class and Grabchak (2012) proposed
the p-tempered stable class.

In this paper, we study OU processes with marginal law given by TS and TID
distributions. In particular, we analyze three different parametric examples belong-
ing to these classes: the classical tempered stable (CTS) distribution, the variance
gamma (VG) distribution which can be seen as a limiting case of the previous dis-
tribution, and the rapidly decreasing tempered stable (RDTS) distribution. First,
we evaluate the characteristic function of integrated tempered OU processes for
these three cases with a view toward practical applications. Then, by taking into
consideration the two recent works of Kawai and Masuda (2011a) and Kawai and
Masuda (2012) we investigate the transition law between consecutive observations
of RDTS processes. Finally, in the CTS case we apply the acceptance-rejection
method based on the simulation of stable random numbers studied in Kawai and
Masuda (2011b) and then compare it to the classical inverse transform algorithm
(both random number generation methods will be briefly described in Section 8.1).

1 The authors are grateful to Piotr Jelonek, Massimo Sbracia, an anonymous referees, and
participants at the 6th International conference on Computational and Financial Econometrics
for their comments and suggestions. Michele Leonardo Bianchi acknowledges that the views
expressed in the article are those of the author and do not involve the responsibility of the Bank
of Italy.
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In the RDTS case, only the inverse transform algorithm is analyzed. Furthermore,
by considering a maximum likelihood estimation method based on the fast Fourier
transform, we perform an empirical analysis to assess the algorithms performance.

The remainder of this paper is organized as follows. In Section 2, we briefly
review well-known results on OU processes. In Sections 4, 5, and 6 we evaluate
the characteristic function of the integrated tempered stable processes (CTS, VG,
and RDTS) and find the transition law of consecutive discrete observations of
OU processes with the RDTS marginal law. In Section 7, we briefly describe
the maximum likelihood estimation method. We discuss two different random
sample methods in Section 8. The first is based on the inversion of the cumulative
distribution function; the second uses an acceptance-rejection method based on
the simulation of stable random numbers. While in the CTS case we compare
these two random sample methods in terms of computing time and of simulation
error, in the RDTS case we analyze only the inverse transform algorithm. Then,
we report and discuss the results. Section 9 concludes the paper. In Appendix A
we briefly review and analyze the fast Fourier transform approach for evaluating
the density function given a closed-form expression for the characteristic function.

2 Ornstein-Uhlenbeck processes

We begin this section with some useful definitions. The characteristic function
of the one-dimensional infinitely divisible distribution X is given by the Lévy-
Khinchine formula:

E[exp(iuX)] = exp

(
iγu− 1

2
σ2u2 +

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
. (2.1)

In the formula, the measure ν is referred to as the Lévy measure. The measure is a
Borel measure satisfying the conditions that ν(0) = 0 and

∫
R(1 ∧ |x2|)ν(dx) <∞.

The parameters γ and σ are real numbers. The variable γ is referred to as the
center or drift and determines the location. This triplet (σ2, ν, γ), referred to as
the Lévy triplet, is uniquely defined for each infinitely divisible distribution. If
σ = 0, then the distribution X is referred to as a purely non-Gaussian distribution,
and in the case when its mean is finite the characteristic function is computed by

E[exp(iuX)] = exp

(
iγu+

∫ ∞
−∞

(eiux − 1− iux1|x|≤1)ν(dx)

)
.

In the following, we will consider only purely non-Gaussian infinitely divisible
distributions. Given a purely non-Gaussian distribution D one can define a pure
jump process Xt with t ≥ 0 such that the distribution of the increment X1−X0 is
D.2 We say that a stochastic process is of finite variation if the sample paths are
of finite variation with probability 1, that is if∫ 1

−1

|x|ν(dx) <∞.

2 Assuming that the process Xt starts from 0, X1 represents the law of the increment with
t = 1.
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If this is not the case, we say that the process is of infinite variation.
Consider the stochastic process λt defined as

dλt = −θλtdt+ dZθt, (2.2)

where θ > 0 and Zt is a Lévy process staring from 0, or equivalently

λt = e−θtλ0 + e−θt
∫ t

0

eθsdZθs. (2.3)

We refer to processes of this family as OU processes. We refer to the process Zt
used to drive the OU process as the background driving Lévy process (BDLP). This
family of stochastic processes has been widely investigated in the literature (see
Barndorff-Nielsen and Shephard (2001), Schoutens (2003), and Cont and Tankov
(2004) for a detailed introduction on this topic).

In financial applications, one is interested in the integrated process At defined
as

At =

∫ t

0

λsds, (2.4)

that can be rewritten as

At = θ−1(1− e−θt)λ0 + θ−1

∫ t

0

(1− e−θ(t−s))dZθs,

and in defining λt such that the characteristic function of At

φAt(u) = E[exp(iuAt)] (2.5)

has a closed-form solution. OU processes have been applied to the modeling of
stochastic volatility to price equity options and the modeling of default inten-
sity to price credit default swaps by Nicolato and Venardos (2003), Cariboni and
Schoutens (2009), Kokholm and Nicolato (2010), Wy lomańska (2011), and Bianchi
(2012).

Given a one-dimensional distribution D (not necessarily restricted to the posi-
tive half-line), there exists a (stationary) OU process whose marginal law is D (i.e.
a D-OU process) if and only if D is self-decomposable (see Schoutens (2003)). The
cumulant function of Z1,3 that is

kZ(u) = logE[exp(−uZ1)] (2.6)

can be derived by the cumulant function of the law D, since the following equality
holds

kZ(u) = uk′D(u). (2.7)

Equivalently, the cumulant characteristic function of Z1, that is

ψZ(u) = logE[exp(iuZ1)], (2.8)

3 Assuming that the process Zt starts from 0, Z1 represents the law of the increment with
t = 1.
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can be derived by the cumulant characteristic function of the law D, since the
following equality holds

ψZ(u) = uψ′D(u). (2.9)

Let ν(z) be the Lévy density of the marginal law D, then the Lévy density w(z) of
Z1 can be computed by the following equality

µ(z) = −ν(z)− zν ′(z). (2.10)

An important equality useful for computing the maximum likelihood estimate
is given by

ψZ∗(∆)(u) = ψD(ueθ∆)− ψD(u), (2.11)

where the random variable Z∗(∆) is defined as

Z∗(∆) =

∫ ∆

0

eθsdZ(θs) =

∫ θ∆

0

esdZ(s) = e−θt
∫ t+∆

t

eθsdZ(θs). (2.12)

Given the logarithm of the moment-generating function of a random variable
L1

ϑ(u) = logE[exp(uL1)]

and by considering the Lemma proven in Eberlein and Raible (1999), the following
equality holds

E

[
exp

(∫ t

0

f(s)dLs

)]
= exp

(∫ t

0

ϑ(f(s))ds

)
, (2.13)

where L is a Lévy process with some finite exponential moments and f is a bounded
function R→ C, that is |<(f)| < M . It follows that

E[exp(iuAt)] = exp

(
iuλ0θ

−1(1− e−θt) +

∫ t

0

θϑZ(iuθ−1(1− e−θ(t−s)))ds
)
.

(2.14)
A closed-form solution for equation (2.14) is known in the Gamma-OU and

IG-OU cases. In the present paper, we want to explicitly compute (2.14) in the
tempered stable (TS-OU), in the variance gamma (VG-OU), and in rapidly decreas-
ing tempered stable (RDTS-OU) case. This family of processes was introduced by
Rosiński (2007) and Terdik and Woyczyński (2006). The distributional assump-
tions considered here are of interest in practical applications. Moreover, there
exist algorithms to draw random variates from these OU processes, as described
by Zhang and Zhang (2009) and Kawai and Masuda (2011a).

3 The totally skewed stable distribution

By following the approach of Kawai and Masuda (2011b), the law X is said to have
a totally positively skewed stable distribution with parameter C and α (β is fixed
and equal to 1) if the characteristic function of X is given by

E[exp(iuX)] = exp
(
aΓ(−α) cos

(πα
2

)
|u|α

(
1− i tan

πα

2
sgn(u)

))
=

{
exp

(∫∞
0

(eiuz − 1) C
zα+1dz

)
, if α ∈ (0, 1),

exp
(∫∞

0
(eiuz − 1− iuz) C

zα+1dz
)
, if α ∈ (1, 2),
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which is defined in R+ if α ∈ (0, 1) and in R if α ∈ (1, 2), and its Lévy measure
can be written as

νS+(z) =
C

z1+α
1z>0.

We refer to the totally positively skewed stable distribution as S+(C, α). It can
be simulated through the well-known representation proposed in Chambers et al.
(1976),

S+(C, α) =
(
−CΓ(−α) cos

(πα
2

))1/α αU + θ

(cosU cos θ)1/α

(
cos((1− α)U − θ)

E

) 1
α
−1

(3.1)
where θ = arctan(tan(πα/2)), U is a uniform random variable on (−π/2, π/2),
and E is a standard exponential random variable independent of U. The totally
positively skewed stable law may be used to generate random samples from CTS
and RDTS laws by taking into consideration an acceptance-rejection method. In
this section, we have only dealt with a unilateral setting. The more general bi-
lateral setting can be treated simply by considering the difference between two
independent processes totally skewed in opposite directions.

4 The classical tempered stable case

4.1 Basic definitions

Let α, C, λ+, and λ− be positive constants, m ∈ R, and α ∈ (0, 2)\{1}.4 The law
X is said to have a CTS distribution with parameters (α, C, λ+, λ−, m) if the
characteristic function of X is given by

φX(u) = E[exp(iuX)] = exp(iu(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

+ CΓ(−α)((λ+ − iu)α − λα+ + (λ− + iu)α − λα−))
(4.1)

and its Lévy measure can be written as

ν(z) = q(z)νSα(z) =

=
Ce−λ+z

z1+α
1z>0 +

Ce−λ−|z|

|z|1+α
1z<0,

(4.2)

where q(z) is the tempering function of the CTS law and νSα is the Lévy measure
of the stable law, that is,

νSα =
C

z1+α
1z>0 +

C

|z|1+α
1z<0. (4.3)

Given a CTS law X1, one can define a Lévy process Xt which we refer to as a CTS
process. It can be proven that if α < 1, the process has finite variation. By simple

4 In both CTS and RDTS cases, we do not discuss the case α = 1.
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calculations, one can write the cumulant function of Z1 that is given by5

kZCTS(u) = uk′CTS(u) = −u(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

− uCΓ(1− α)((λ+ + u)α−1 − (λ− − u)α−1)
(4.4)

and the moment-generating function is

ϑZCTS(u) = u(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

+ uCΓ(1− α)((λ+ − u)α−1 − (λ− + u)α−1).
(4.5)

By equation (2.11) it follows that the cumulant characteristic function of Z∗CTS
is

ψZ∗CTS(∆)(u) = ψCTS(ueθ∆)− ψCTS(u)

= iu(eθ∆ − 1)(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

+ CΓ(−α)((λ+ − iueθ∆)α + (λ− + iueθ∆)α

− (λ+ − iu)α − (λ− + iu)α).

(4.6)

The law X+ is said to be a CTS subordinator with parameters (α, C, λ+) if
0 < α < 1 and the characteristic function of X+ is given by

φX+(u) = E[exp(iuX+)] = exp(−iuCΓ(1− α)λα−1
+

+ CΓ(−α)((λ+ − iu)α − λα+))
(4.7)

and similarly one can define X−. It is simple to prove that a CTS law with
0 < α < 1 is the convolution, up to a constant term m, of X+ and X−.

The law X̃+ is said to have a spectrally positive CTS law with parameters (α,

C, λ+) if α ∈ (0, 2)\{1} and the characteristic function of X̃+ is given by

φX̃+(u) = E[exp(iuX̃+)] = exp(−iuCΓ(1− α)λα−1
+

+ CΓ(−α)((λ+ − iu)α − λα+))
(4.8)

and similarly one can define a spectrally negative CTS process X̃−. It is simple to
prove that a CTS law with 1 < α < 2 is the convolution, up to a constant term m,
of a spectrally positive and a spectrally negative CTS process.

4.2 The integrated process

In this section, we provide a closed-form solution for equation (2.14) in the CTS
case.

Theorem 4.1. Let X be a CTS law with parameters (α, C, λ+, λ−, m), and λt
a OU process with marginal law X. Then, the cumulant characteristic function of

5 The relation between characteristic function, cumulant function, moment-generating func-
tion, and cumulant characteristic function applied in this study are in given in Table 2.1 at page
16 of Schoutens (2003).
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the integrated process At defined in equation (2.4) is given by

ψAt(u) = logE[exp(iuAt)] = iuθ−1

(
λ0(1− e−θt)

− (m− CΓ(1− α)(λα−1
+ − λα−1

− ))(1− e−θt − θt) + CΓ(1− α)

(
1

λα−1
+ k+(k+ − 1)

(
k+

(
1− k+(1− e−θt)

)α+1
2F1

(
1, α + 1, α + 2; 1 + k+e−θt

1−k+

)
(α + 1)(k+ − 1)

−
(1− k+

(
1− e−θt)

)α
α

−
k+2F1

(
1, α + 1, α + 2; 1

1−k+

)
(α + 1)(k+ − 1)

+
1

α

)
− 1

λα−1
− k+(k− + 1)

(
k−
(
1 + k−(1− e−θt)

)α+1
2F1

(
1, α + 1, α + 2; 1− k−e−θt

1+k−

)
(α + 1)(k− + 1)

−
(1 + k−

(
1− e−θt)

)α
α

−
k−2F1

(
1, α + 1, α + 2; 1

1+k−

)
(α + 1)(k− + 1)

+
1

α

)))
,

with k+ = iu
θλ+

and k− = iu
θλ−

.

Proof. See Section A.1 in the Appendix.

4.3 Transition law of CTS-OU processes

In this section, we remind some results proved in Kawai and Masuda (2011a) and
Kawai and Masuda (2012) on the transition law of CTS-OU processes of finite and
infinite variation. Although here we consider only the one-sided case as defined in
equations (4.7) and (4.8), using similar arguments the results can be extended to
the bilateral case.

Theorem 4.2. Let λt be a CTS-OU process. Given λt∆ and ∆ > 0, if α < 1, for
each t ∈ N it holds that

λ(t+1)∆ = e−θ∆λt∆ + η0(∆) +

N(∆)∑
k=1

ζk(∆) (4.9)

where the equality is in distribution and all the random elements are mutually
independent and specified as follows

• η0(∆) has a one-sided CTS distribution with parameters (C(1− e−αθ∆), λ+,
α);

• N(∆) is a Poisson random variable with intensity −C(1− e−αθ∆)Γ(−α)λα+;

• {ζk(∆)}k∈N is a sequence of i.i.d. random variables with common probability
density

v∆(x) =
1

(1− e−αθ∆)Γ(−α)λα+
x−1−α

(
e−λ+x − e−λ+eθ∆x

)
.
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If 1 < α < 2, then

λ(t+1)∆ = e−θ∆λt∆ + η0(∆) + η1(∆) +

N(∆)∑
k=1

ξk(∆)− γ

 , (4.10)

with
γ = Cλα−1

+

(
e−αθ∆ − e−θ∆ − (e−θ∆ − e−2θ∆)(1− α)

)
,

where the equality in (4.10) is in distribution, all the random elements are mutually
independent and specified as follows

• η0(∆) has a one-sided CTS distribution with parameters (C(1− e−αθ∆), λ+,
α);

• η1(∆) has a one-sided CTS distribution with parameters (Cλ+e
−αθ∆(eθ∆−1),

λ+e
θ∆, α− 1);

• N(∆) is a Poisson random variable with intensity

κ(∆) = Cλα+Γ(−α)(α(1− e−θ∆) + e−αθ∆ − 1);

• {ξk(∆)}k∈N is a sequence of i.i.d. random variables with common probability
density

v∆(x) = κ(∆)−1Ce−αθ∆
e−λ+x − e−λ+eθ∆x − λ+(eθ∆ − 1)xe−λ+eθ∆x

xα+1
.

Proof. See Theorem 3.1 in Kawai and Masuda (2011a) and Theorem 3.1 in Kawai
and Masuda (2012).

5 The variance gamma case

5.1 Basic definitions

In the limiting case α = 0, equation (4.1) becomes

φX(u) = E[exp(iuX)] = exp(iu(m− C(λ+ − λ−)λ−1
+ λ−1

− )

− C log(λ+λ− + (λ+ − λ−)iu+ u2) + C log(λ+λ−))

(5.1)

and the law of X is said to have a VG distribution. Its Lévy measure can be
written as

ν(z) =
Ce−λ+z

z
1z>0 +

Ce−λ−|z|

|z|
1z<0. (5.2)

As in the CTS case, one can define a Lévy process Xt which we refer to as a
VG process. By simple calculations, the cumulant function of Z1 can be shown to
be

kZV G(u) = uk′CTS(u) = −u(m− C(λ+ − λ−)λ−1
+ λ−1

− )

+
Cu

λ− − u
− Cu

λ+ + u
.

(5.3)
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Then,

ϑZV G(u) = u(m− C(λ+ − λ−)λ−1
+ λ−1

− )

+
Cu

λ+ − u
− Cu

λ− + u
.

(5.4)

By equation (2.11) it follows that the cumulant characteristic function of Z∗V G
is

ψZ∗V G(∆)(u) = ψV G(ueθ∆)− ψV G(u)

= iu(eθ∆ − 1)(m− C(λ+ − λ−)λ−1
+ λ−1

− )

− C log(λ+λ− + (λ+ − λ−)iueθ∆ + u2e2θ∆)

+ C log(λ+λ− + (λ+ − λ−)iu+ u2).

(5.5)

5.2 The integrated process

In this section we provide a closed-form solution for equation (2.14) in the VG
case.

Theorem 5.1. Let X be a VG law with parameters (C, λ+, λ−, m), and λt a OU
process with marginal law X. Then, the cumulant characteristic function of the
integrated process At defined in equation (2.4) is given by

ψAt(u) = logE[exp(iuAt)] = iuθ−1λ0(1− e−θt)
− iuθ−1(m− C(λ+ − λ−)λ−1

+ λ−1
− )(1− e−θt − θt)

+
θC

iu− θλ+

(
λ+ log

( λ+

|λ+ − iuθ−1(1− e−θt)|

)
− iut

)
− θC

iu+ θλ−

(
λ− log

( λ−
|λ− + iuθ−1(1− e−θt)|

)
+ iut

)
.

Proof. See Section A.2 in the Appendix.

5.3 Transition law of VG-OU processes

The transition law of VG-OU processes can be easily derived by its BDLP which
is a compound Poisson process, as shown in Schoutens (2003). It is not difficult to
prove that

λ(t+1)∆ = e−θ∆λt∆ +

N(∆)∑
k=1

ζ+
k (∆)−

N(∆)∑
k=1

ζ−k (∆) (5.6)

where N(∆) is a Poisson random variable with intensity C and ζ+
k and ζ−k follow a

Γ(1, λ+) and Γ(1, λ−) law, respectively. However, this processes can be simulated
by considering the series representation via the inverse mass function as described
in Barndorff-Nielsen and Shephard (2001) and Schoutens (2003). This last method
is useful when the simulation is inserted into an optimization algorithm because it
allows one to keep fixed the simulated draws, as the parameters are varied during
the optimization algorithm.
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6 The rapidly decreasing tempered stable case

6.1 Basic definitions

Let α, C, λ+, λ− positive constants, m ∈ R and α ∈ (0, 2)\{1}. The law X is said
to have a RDTS distribution if the characteristic function of X is given by

φX(u) = E[exp(iuX)] = exp(ium+ CG(iu;α, λ+) + CG(−iu;α, λ−) (6.1)

with

G(x;α, λ) = 2−α/2−1λα

(
Γ

(
− α

2

)
M

(
− α

2
,
1

2
;
(√2x

2λ

)2
)

+

√
2x

λ
Γ

(
1− α

2

)
M

(
1

2
− α

2
,
3

2
;
(√2x

2λ

)2
)

−
√

2x

λ
Γ

(
1

2
− α

2

)
− Γ

(
− α

2

))
,

(6.2)

where M(a, c; z) is the Kummer’s or confluent hypergeometric function of the first
kind as defined in equation (13.1.2) in Abramowitz and Stegun (1974) (see also
Tricomi (1954)). An efficient algorithm to compute the characteristic function in
equation (6.1) can be constructed (see Gil et al. (2007), and Bianchi et al. (2010a)).
For a more simple derivatives computation, by the definition of the function M ,
the function G can be written as

G(x;α, λ) =
1

2

∞∑
n=2

xn

n!

(
λ√
2

)α−n
Γ

(
n− α

2

)
. (6.3)

Its Lévy measure can be written as

ν(z) = q(z)νSα(z)

=
Ce−λ

2
+z

2/2

z1+α
1z>0 +

Ce−λ
2
−z

2/2

|z|1+α
1z<0,

(6.4)

where q(z) is the tempering function of the RDTS law and νSα(z) is the Lévy
measure of the stable law described in equation (4.3). Given a RDTS law X1, one
can define a Lévy process Xt which we refer to as a RDTS process. If α < 1, it
can be demonstrated that the process has finite variation. By simple calculations,
one can write the cumulant function of Z1 as

kZRDTS(u) = uk′RDTS(u) = −um+ uCG′(−u;α, λ+)− uCG′(u;α, λ−) (6.5)

where

G′(x;α, λ) =
1

2

∞∑
n=2

xn−1

n!n

(
λ√
2

)α−n
Γ

(
n− α

2

)
, (6.6)

and the moment-generating function is

ϑZRDTS(u) = um− uCG′(u;α, λ+) + uCG′(−u;α, λ−). (6.7)
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The series xG′(x;α, λ) converges since the following inequalities holds

xG′(x;α, λ) < G(x;α, λ).

By equation (2.11) it follows that the cumulant characteristic function of Z∗RDTS
is

ψZ∗RDTS(∆)(u) = ψRDTS(ueθ∆)− ψRDTS(u)

= ium(eθ∆ − 1) + CG(iueθ∆;α, λ+) + CG(−iueθ∆;α, λ−)

− CG(iu;α, λ+)− CG(−iu;α, λ−).

(6.8)

The law X+ is said to be a one-sided RDTS with parameters (α, C, λ+) if
α ∈ (0, 2)\{1} and the characteristic function of X+ is given by

φX+(u) = E[exp(iuX+)] = CG(iu;α, λ+), (6.9)

and similarly one can define X−. It is simple to prove that a RDTS law is the
convolution, up to a constant term m, of X+ and X−.

6.2 The integrated process

In this section we provide a closed-form solution (up to an infinite summation) for
equation (2.14) in the RDTS case.

Theorem 6.1. Let X be a RDTS law with parameters (α, C, λ+, λ−, m), and λt
a OU process with marginal law X. Then, the cumulant characteristic function of
the integrated process At defined in equation (2.4) is given by

ψAt(u) = logE[exp(iuAt)] = iuθ−1λ0(1− e−θt)− iuθ−1m(1− e−θt − θt)

− C
∞∑
n=2

(iu)n

θnn!2n

(
λ+√

2

)α−n
Γ

(
n− α

2

)
B1−e−θt(n+ 1, 0)

+ C
∞∑
n=2

(−iu)n

θnn!2n

(
λ−√

2

)α−n
Γ

(
n− α

2

)
B1−e−θt(n+ 1, 0).

Proof. See Section A.3 in the Appendix.

6.3 Transition law of RDTS-OU processes

In this section we will only deal with the one-sided setting. The bilateral setting can
be treated simply by considering the difference between two independent processes.
Recall that the Lévy measure of a RDTS distribution is given by equation (6.4)

ν(z) = C
e−λ

2
+z

2/2

zα+1

therefore by considering equation (2.10) one can write

µ(z) = Cα
e−λ

2
+z

2/2

zα+1
+ Cλ2

+

e−λ
2
+z

2/2

zα−1
. (6.10)
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where by definition α ∈ (0, 2). As shown in Theorem 4.2, in the CTS case the
transition law depends on the value of α. In the RDTS case we have a unique
transition law for each value of α ∈ (0, 2).

Theorem 6.2. Let λt be a RDTS-OU process. Given λt∆ and ∆ > 0, for each
t ∈ N it holds that

λ(t+1)∆ = e−θ∆λt∆ + η0(∆) +

N(∆)∑
k=1

ζk(∆) (6.11)

where the equality is in distribution and all the random elements are mutually
independent and specified as follows

• η0(∆) has a one-sided RDTS distribution with parameters (C(1−e−αθ∆), λ+,
α);

• N(∆) is a Poisson random variable with intensity C
λα+

2
α
2 +1 (e−αθ∆− 1)Γ

(
−α

2

)
;

• {ζk(∆)}k∈N is a sequence of i.i.d. random variables with common probability
density

v∆(x) =
1
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α

(eαθ∆ − 1)Γ
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1− α

2

)x−α−1
(
e−λ

2
+x

2/2 − e−λ2
+e

2θ∆x2/2
)
.

Proof. By following Theorem 3.1 of Kawai and Masuda (2012), the Lévy measure

of the random variable
∫ θ∆

0
e−θ∆+sdZs is given by
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.

= µ1,∆(z) + µ2,∆(z).

(6.12)

Both µ1,∆(z) and µ2,∆(z) are positive functions on R+. The term µ1,∆(z) cor-
responds to the Lévy measure of a RDTS random variable with parameters α,
C(1− e−αθ∆) and λ+. Then, for each α < 2 the term µ2,∆(z) satisfies the following
equality ∫ ∞

0

µ2,∆(z) = C
λα+

2
α
2

+1
(e−αθ∆ − 1)Γ

(
−α

2

)
<∞.

The integral has been computed by considering the equality (3.343) in Gradshtĕın
and Ryzhik (2007) ∫ ∞

0

e−ax − e−bx

zρ+1
dx =

bρ − aρ

ρ
Γ(1− ρ)
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with a > 0, b > 0, and ρ < 1, and by considering the change of variable z2 = x,
a = λ2

+/2, b = λ2
+e

2θ∆/2, and ρ = α/2. This proves that µ2,∆(z) is the Lévy
measure of a compound Poisson process.

In order to simulate ζk we consider the inequality proved in Lemma 1 of Zhang
and Zhang (2008), that is, for every w > 0
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where the factor in the parentheses is the density of a generalized gamma law

fΓ(x) =
c

βcα′Γ(α′)
xcα

′−1e−( xβ )
c

as defined in Johnson et al. (1994) and with α′ = 1− α/2, β =
√

2/λ+, and c = 2
positive constants. Then the following inequality holds

h(∆, α, θ) =
α

2
α
2

e2θ∆ − 1

eαθ∆ − 1
≥ 1,

and this means that the acceptance rate6 depends on ∆, α, and θ. Then, it holds
that

g∆(x) :=
v∆(x)

h(∆, α, θ)fΓ(x)
=

2
α
2
−1

λ2
+x

2(e2θ∆ − 1)

(
1− e−

λ2
+
2
x2(e2θ∆−1)

)
,

and as proposed by Kawai and Masuda (2011a), the following acceptance-rejection
algorithm can be used to simulate ζk(∆). A generalized gamma law Z with pa-
rameters (α′, β, c) can be simulated by considering the following equality that

Z = βX
1
c

where X is a standard gamma law with parameter α′ as also proposed by Gentle
(2003). Thus, in order to simulate ζk(∆), we consider the following acceptance-
rejection algorithm. In the first step, we generate a uniform law U on (0, 1) and
a generalized gamma law V with parameters (1 − α/2,

√
2/λ+, 2). In the second

step, if U ≤ g∆(V ), then we set ζk(∆) := V ; otherwise, we return to the first step.

6 See Section 8.1 for a brief description of the acceptance-rejection method.
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7 Maximum likelihood estimation

In this section, we show how to estimate parameters using the maximum likelihood
estimation (MLE) method. Given a sample from a D-OU process with observations
{λi}0≤i≤N , the MLE estimate is a solution Θ̂ of the optimization problem

Θ̂ = max
θ

logL(θ; {λi}0≤i≤N)

where the likelihood function is given by

L(Θ) = fD(λ0)eθN∆

N∏
i=1

fZ∗(∆)(e
θ∆λi − λi−1),

the law D depends on the model analyzed and the law Z∗(∆) is derived by the
law D, as shown in Section 2. When the density functions fD and fZ∗(∆) can be
computed in closed-form, the problem is less computational demanding compared
to when the density function has to be computed via the discrete fast Fourier
transform (FFT). In Appendix A.4, the FFT approach is described.

8 The empirical study

In this section, we conduct an empirical investigation to assess the performance of
the simulation algorithms. In particular, we generate random numbers from the
three OU processes analyzed in this paper. Thus, in order to assess the simulation
algorithm, we perform on each simulated sample a MLE. First, we consider the
VG-OU process. Then the CTS-OU driven by a CTS subordinator (i.e. α < 1) and
the RDTS-OU process driven by a one-sided RDTS law. As shown in Sections 4.3
and 6.3, while in the CTS-OU case the transition law has a different representation
depending if α is less than or greater than 1, in the RDTS-OU case the transition
law has the same representation for each value of α. In practice this means that
the simulation of a RDTS-OU process is simpler compared to the CTS-OU process,
since when α > 1 the CTS-OU is represented by a convolution of three random
components. In fact, as shown in Theorem 6.2, a RDTS-OU process is represented
by a convolution of two random components (the same is true in the CTS-OU
case when α < 1). Before studying these processes, we empirically investigate the
algorithms used to simulate a CTS subordinator and a one-sided RDTS law.

8.1 Simulate CTS random numbers

The simulation of a TS random draw is not a simple task. A series representa-
tion algorithm has been proposed in Rosiński (2007) and empirically studied in
Bianchi et al. (2010a) and Imai and Kawai (2011). Since there exists an efficient
algorithm to draw random samples from stable distributions (see Chambers et al.
(1976)), the problem of generating random numbers from a TS law X can be solved
by using a stable law Y possessing a probability density g similar to the proba-
bility density f of X. One can generate a value for Y and accept (reject) this
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value if a given condition is satisfied (not satisfied).7 We refer to the probability
of the acceptance event as the acceptance rate. This acceptance-rejection simu-
lation method has been widely studied in the literature (see Kawai and Masuda
(2011a), Kawai and Masuda (2011b), Kawai and Masuda (2012), Jelonek (2012),
and references therein). By applying this algorithm, one can sample TS random
numbers in an exact (or approximate) way if the tail index α is less (or greater)
than 1. The computational cost strictly depends on the parameters. In the case
when α < 1, a double rejection sampling algorithm that does not depend upon the
model parameters has been proposed by Devroye (2009).

Furthermore, one can use the method proposed by Rosiński (2001) where the
ratio between the Lévy measures of a TS and a stable law is used to construct an
acceptance-rejection algorithm. Also in this case the probability of the acceptance
event depends on the parameters of the TS distribution to simulate. However, this
method does not seem to work efficiently and further investigation is needed to use
it in practice.

Alternatively, one can consider the inverse transform algorithm. That is, given
the cumulative distribution function F , one can use the following three-step pro-
cedure:

1. generate a sequence U1, . . . , Un of i.i.d. uniform variables;

2. find a root Xi of the equation F (Xi)− Ui = 0 for each i = 1, . . . , n;

3. return the sequence X1, . . . , Xn.

In the TS case, it is easy to see that the function F is not available in closed form.
To find values of F , first we have to invert the characteristic function,8 to find
both the density (f) and the cumulative distribution function (F ), and then find
the value Xi satisfying the equality F (Xi) − Ui = 0. Even if this method may
seem computational demanding, an efficient procedure can be written in order
to increase the speed and make the time necessary for the simulation of large
matrices of minor concern. This approach can be efficiently applied for all values
of the parameters and can compete with the acceptance-rejection method when a
huge matrix of TS random numbers has to be drawn. See also the recent work of
Ballotta and Kyriakou (2011) and Bianchi et al. (2013).

However, it sometimes happens that for certain values of the parameters the
Fourier inversion does not work properly due to numerical errors. In these cases,
to obtain the right simulation algorithm, one has to increase the integration limits
or decrease the discretization step into the FFT algorithm in order to reduce the
error in evaluating the density function and the cumulative distribution function.
However, the error in evaluating these two functions decreases at the expense of
computational time (see Appendix A.4). Similarly, for other values of the parame-
ters it may happen that, if using the acceptance-rejection algorithm, the acceptance
rate is so low that it cannot be used in real applications (as observed above, it is
only for α < 1 that a double rejection sampling algorithm that does not depend

7 More details on this method can be found in Gentle (2003) or Rachev et al. (2011).
8 Here the term inversion means Fourier inversion. More details on this method can be found

in Appendix A.4.
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upon the model parameters has been developed). This in practice means that the
optimal choice of the algorithm may depend on the parameters. We test both the
acceptance-rejection and the inverse transform algorithm by drawing stdCTS9 ran-
dom numbers considering three parameter sets (α, λ+, λ−): (0.75, 0.5, 0.5), (1.5, 1,
0.5), and (1.75, 0.1, 0.05). The computational time needed for generating a matrix
with dimension 20,000 × 1,000 is 15 (56, and 11) seconds with the acceptance-
rejection algorithm,10 slightly more than 5 seconds with the inverse algorithm in
all the cases considered. According to the notation introduced in Appendix A.4,
we consider log10 h = −3 and q = 17, representing the grid spacing and the grid
steps in the FFT inversion. We point out that, if using the acceptance-rejection
algorithm, the computational time can be much greater if one selects other param-
eters. Conversely, the computational time of the inverse algorithm depends only
on h and q.

8.2 The simulation study

In addition to simulating and estimating OU processes with VG, CTS, and RDTS
marginal laws, we empirically study the algorithms to simulate the CTS subordi-
nator and the one-sided RDTS law. As already observed in Section 8.1 for the
bilateral stdCTS law, if one considers the simulation of a CTS subordinator for
certain values of the parameters, the acceptance-rejection algorithm is better than
the inverse transform one. This is principally due to the fact that the evalua-
tion of the cumulative distribution function (F ) needed in the inverse transform
algorithm may become computationally demanding for some parameter set (i.e.,
α ≤ 0.4).11 The converse is true for other parameter sets, as the acceptance rate
becomes small. We note that the inverse transform algorithm also works properly
when α > 1 (i.e., in the spectrally positive case) while the acceptance-rejection
algorithm has to be slightly modified as proposed by Kawai and Masuda (2011b),
and Kawai and Masuda (2012).

In order to test both the acceptance-rejection and the inverse transform algo-
rithm we simulate samples from various CTS one-sided laws by considering three
different parameter sets (C, λ+, α): (1, 1, 0.4), (1, 1, 0.8), and (1, 1, 1.2) with
∆ = 0.1. Under this distributional assumption, as well as for all other considered
distributions, after generating random numbers we perform a MLE to assess the
simulation algorithm performance. The likelihood function is computed by invert-
ing the characteristic function (see Appendix A.4). We repeat the exercise 1,000
times by considering samples with 500, 1,000, 2,000, 5,000, and 10,000 (also, 50,000
in the OU cases) observations.

In Table 1 we report the relative error of the estimators Ĉ, λ̂+, and α̂ and in
Figure 4 we show the boxplots of their empirical distribution. On each box, the
central mark is the median, the edges of the box are the 25-th and 75-th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and

9 A stdCTS law has a distribution with zero mean and unit variance (see Scherer et al. (2012)).
In the following we will refer to it as a stdCTS with parameters (λ−, λ+, α).

10 The procedure was run on an 8 cores AMD FX processor with 16GB of Ram with a Linux
based 64-bit operating system.

11 See Appendix A.4 for a detail discussion on this point.
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outliers are plotted individually. The relative error of the parameter p is defined
by

e1−δ
rel (p) = max

{∣∣∣∣qδ/2(p̂)− p
p

∣∣∣∣ , ∣∣∣∣q1−δ/2(p̂)− p
p

∣∣∣∣} . (8.1)

and it means the the relative error of the estimator is smaller than e1−δ
rel with

probability 1 − δ measured by the empirical distribution of the estimator (qβ(p̂)
represents the β-th quantile of the estimator of p).

In the RDTS case, we test only the classical inverse transform algorithm, be-
cause an acceptance-rejection method has not been studied yet.12 In order to test
the inverse transform algorithm, we simulate samples from various RDTS one-sided
laws by considering three parameter sets (C, λ+, α): (1,

√
2, 0.8), (1,

√
2, 1.2),

and (1,
√

2, 1.6) with ∆ = 0.1.13 After generating random numbers we perform
a parameter estimation (MLE) as in the CTS subordinator case. In Table 2 we
report the relative error of the estimators Ĉ, λ̂+, and α̂ and in Figure 5 we show
the boxplots of their empirical distribution.

In Figure 4 we observe that medians (the central mark in the box) are close to
the corresponding true values (except when we simulate by the inverse transform
algorithm the CTS subordinator with parameters (1, 1, 0.4)). The empirical distri-
butions of Ĉ, λ̂+, and α̂ are slightly skewed for small sample sizes and become more
symmetric for large sample sizes per estimate. These properties of the estimators
may be due to the constraints set in the optimization algorithm.14 The accuracy
of the estimator α̂ is higher than the one for Ĉ and λ̂+, and the one for Ĉ is higher
than the one for λ̂+ (compare the relative errors in Table 1). In particular, the
accuracy of Ĉ and λ̂+ is very poor for small sample sizes per estimate (i.e., sample
size less than 5, 000). For reliable estimates, we need at least a sample size of
5, 000 because of the relative error e0.9

rel reported in Table 1. The accuracy depends
on the parameters selected and on both the simulation and estimation algorithms.
Because these algorithms are based on the FFT inversion, they also depend on the
choice of the grid spacing and of the grid steps determined by the parameters h
and q, as discussed in Appendix A.4. The acceptance-rejection method performs
better when α = 0.4. Conversely, the inverse transform method is slightly better
when α = 0.8 and α = 1.2. As shown in Figure 5 and Table 2, similar conclusions
are also true in the RDTS case.

We conduct a similar study for OU processes. By equation (5.6) and Theorems
4.2 and 6.2, we can generate OU processes driven by a VG law, a CTS subordinator,
and a one-sided RDTS law. More specifically, we empirically investigate the VG-
OU process and consider three parameter sets (C, λ+, λ−, θ): (10, 50, 100, 0.5),
(20, 100, 200, 0.5), and (40, 200, 400, 0.5) with ∆ = 1/250. The boxplots of their
empirical distribution are shown Figure 1. Then, we study an OU process driven
by a CTS subordinator and consider three parameter sets (C, λ+, α, θ): (1, 1, 0.4,

12 The acceptance-rejection algorithm proposed by Rosiński (2001) does not work properly,
even if α > 1.

13 We choose
√

2 instead of 1 in order to take into consideration the difference in the definition
of the Lévy measure of a CTS law (see equation (4.2)) and of a RDTS law (see equation (6.4)).

14 We use the Matlab r2012a function fmincon for the optimization routine.
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0.5), (1, 1, 0.6, 0.5), and (1, 1, 0.8, 0.5) with ∆ = 0.1. In Tables 1 we report the
relative error of the estimators Ĉ, λ̂+, α̂, θ̂ and in Figure 2 we show the boxplots
of their empirical distribution.

Finally, we study an OU process driven by a one-sided RDTS subordinator
and consider three parameter sets (C, λ+, α, θ): (1,

√
2, 0.8, 0.5), (1,

√
2, 1.2,

0.5), and (1,
√

2, 1.6, 0.5) with ∆ = 0.1. In the RDTS-OU case, we estimate the
parameter θ by performing a linear regression on the time-series of observations
and, if the estimated θ̂ is less than 0.45 or greater than 0.55, we set it to 0.5. This
choice affects not only the estimation of θ but also the estimation of all the other
parameters. As reported in Table 2, due to this particular constraint the error does
not always decrease as of the number of observations increases.

In Figures 1, 2, and 3 we observe that medians (the central mark in the box) are
close to the corresponding true values. The VG-OU model is the best performing
model in terms of accuracy in the estimation of the parameter θ. In both the
CTS-OU and RDTS-OU cases, the accuracy of the estimator α̂ is higher than the
ones for Ĉ and λ̂+, and the accuracy of Ĉ is higher than that for λ̂+ (compare
the relative errors in Tables 1 and 2). In the CTS-OU case, the accuracy of the
estimator α̂ is higher than the one for θ̂ only when α = 0.8. In contrast, in the
RDTS-OU case, the accuracy of the estimator α̂ is higher than the accuracy for
θ̂. This occurs also because the parameter θ is estimated by linear regression and
not by MLE. As observed in both the CTS and RDTS cases, for reliable estimates
we need at least a sample size of 5, 000 (10,000 in the VG-OU case) because of
the relative error e0.9

rel shown in Tables 1 and 2. As already observed above, the
accuracy depends on the parameters selected. This is principally due to the fact
that the accuracy in the computation of the density function via FFT depends on
the parameter choice (see Appendix A.4).

Using the notation introduced in Appendix A.4, in the FFT inversion we con-
sider log10 h = −3 and q = 17 in the CTS and RDTS cases, log10 h = −4 and
q = 18 in the CTS-OU and RDTS-OU cases, and log10 h = −5 and q = 18 in the
VG-OU case. This choice partially motivates the larger error observed in the CTS
random number generation via inverse transformation with α = 0.4, as reported
in Table 1. However, these choices show a satisfactory balance between efficiency
and accuracy. We note that, if one selects different parameters or a different value
for ∆, these conclusion may no longer hold or may be inefficient.

9 Conclusions

In this paper, we review the literature on tempered stable Ornstein-Uhlenbeck
processes and then set forth a framework for their application to real-world prob-
lems. For example, the theoretical results derived in this paper can be applied in
finance to model the term structure of interest rates, credit default swaps prices,
and stochastic volatilities. Moreover, the simulation algorithms that we describe
can be useful in model calibration in finance such as calibrating dynamic pricing
models given observed market prices. With increased frequency, the calibration
of the models used to price financial assets and derivative products is obtained
through methods that simultaneously utilize simulation and optimization. These
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methods are usually used to estimate models expressed in state-space form.
More in detail, the objective of this paper is threefold. First, we compute the

characteristic function of integrated OU processes driven by three different pro-
cesses: CTS, VG, and RDTS processes. Second, after having reviewed the tran-
sition law of CTS-OU processes, we derive the transition law between consecutive
observations of RDTS-OU processes as a convolution of two random components:
a RDTS distribution and a compound Poisson distribution. The RDTS component
can be simulated by the inverse transform technique and the compound Poisson
component can be simulated by an acceptance-rejection sampling techniques based
on generalized gamma random numbers. In the CTS-OU case, the transition law
between consecutive observations differ if α is less than or greater than 1: if α < 1
(α > 1) the transition law between consecutive observations of CTS-OU processes
is a convolution of two random components (three random components). In con-
trast, in the RDTS-OU case the transition law between consecutive observations
has the same distributional form for all values of α. Finally, we derive some use-
ful formulas and we empirically investigated how one can efficiently simulate and
estimate OU processes of this kind.
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A Appendix

A.1 Proof of Theorem 4.1

Proof. In order to evaluate equation (2.14) in the CTS case, we compute the inte-
gral ∫ t

0

θϑZCTS(iuθ−1(1− e−θ(t−s)))ds. (A.1)

By changing variable x = 1− e−θ(t−s) in the integral above, we write∫ 1−e−θt

0

ϑZCTS(iuθ−1x)

(1− x)
dx

therefore we have the equality∫ 1−e−θt

0

(iuθ−1x(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

(1− x)

+
iuθ−1xCΓ(1− α)((λ+ − iuθ−1x)α−1 − (λ− + iuθ−1x)α−1)

(1− x)

)
dx.

(A.2)

The first part of the integral (A.2) can be easily evaluated∫ 1−e−θt

0

iuθ−1x(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

(1− x)
dx

= iuθ−1(m− CΓ(1− α)(λα−1
+ − λα−1

− ))

∫ 1−e−θt

0

(
− 1 +

1

1− x

)
dx

= − iuθ−1(m− CΓ(1− α)(λα−1
+ − λα−1

− ))(1− e−θt − θt).

(A.3)

The second part of the integral (A.2) is more challenging and can be rewritten
as the difference between two similar integrals∫ 1−e−θt

0

iuθ−1CΓ(1− α)
(x(λ+ − iuθ−1x)α−1

1− x
− x(λ− + iuθ−1x)α−1

1− x

)
dx

= iuθ−1CΓ(1− α)

(∫ 1−e−θt

0

x(λ+ − iuθ−1x)α−1

1− x
dx−

∫ 1−e−θt

0

x(λ− + iuθ−1x)α−1

1− x
dx

)
.

(A.4)

Therefore, equation (A.4) becomes

iuθ−1CΓ(1− α)

(∫ 1−e−θt

0

x(λ+ − iuθ−1x)α−1

1− x
dx−

∫ 1−e−θt

0

x(λ− + iuθ−1x)α−1

1− x
dx

)
.

(A.5)

By defining k+ = iu
θλ+

and by changing variable y = 1 − k+x, we rewrite the first

integral of equation (A.4) as∫ 1−e−θt

0

x(λ+ − iuθ−1x)α−1

1− x
dx = λα−1

+

∫ 1−e−θt

0

x(1− k+x)α−1

1− x
dx

=
1

λα−1
+ k+(k+ − 1)

∫ 1−k+(1−e−θt)

1

(y − 1)yα−1

1 + y
k+−1

dy.

(A.6)
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The last integral can be computed as follows∫
(y − 1)yα−1

1 + y
k+−1

dy =

∫
yα

1 + y
k+−1

dy −
∫

yα−1

1 + y
k+−1

dy, (A.7)

thus, by considering the equality

2F1(1, α + 1, α + 2;w) =
+∞∑
n=0

α + 1

α + n+ 1
wn,

one can write the first integral of equation (A.7)∫
yα

1 + y
k+−1

dy =

∫
yα

+∞∑
n=0

(−1)nyn

(k+ − 1)n
=

+∞∑
n=0

(−1)nyα+n+1

(α + n+ 1)(k+ − 1)n

= yα+1

+∞∑
n=0

(−1)nyn

(α + n+ 1)(k+ − 1)n
=
yα+1

2F1(1, α + 1, α + 2;− y
k+−1

)

α + 1

where the interchange of sum and integral can be justified by analytical continua-
tion in C. Similarly, one can compute the second integral of equation (A.7)∫

yα−1

1 + y
k+−1

dy = −
αyα+1

2F1(1, α + 1, α + 2;− y
k+−1

)

(α + 1)(k+ − 1)
+
yα

α
.

Finally, we obtain∫
(y − 1)yα−1

1 + y
k+−1

dy =
k+y

α+1
2F1(1, α + 1, α + 2;− y

k+−1
)

(α + 1)(k+ − 1)
− yα

α
.

By defining k− = iu
θλ−

and by changing variable y = 1 +k−x, we rewrite the second

integral of equation (A.4) as∫ 1−e−θt

0

x(λ− + iuθ−1x)α−1

1− x
dx =

1

λα−1
− k−(k− + 1)

∫ 1+k−(1−e−θt)

1

(y − 1)yα−1

1− y
k−+1

dy,

(A.8)
and by considering a similar argument to the previous calculation, we obtain∫

(y − 1)yα−1

1− y
k−+1

dy =
k−y

α+1
2F1(1, α + 1, α + 2; y

k−+1
)

(α + 1)(k− + 1)
− yα

α
.

Thus, equation (A.5) becomes

iuθ−1CΓ(1− α)

(∫ 1−e−θt

0

x(λ+ + iuθ−1x)α−1

1− x
dx−

∫ 1−e−θt

0

x(λ− − iuθ−1x)α−1

1− x
dx

)
= iuθ−1CΓ(1− α)

(
1

λα−1
+ k+(k+ − 1)

[
k+y

α+1
2F1(1, α + 1, α + 2;− y

k+−1
)

(α + 1)(k+ − 1)
− yα

α

]1−k+(1−e−θt)

1

− 1

λα−1
− k−(k− + 1)

[
k−y

α+1
2F1(1, α + 1, α + 2; y

k−+1
)

(α + 1)(k− + 1)
− yα

α

]1+k−(1−e−θt)

1

)
.

(A.9)
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The integral (A.1) can be computed as follows∫ t

0

θϑZCTS(iuθ−1(1− e−θ(t−s)))ds

= −iuθ−1

(
(m− CΓ(1− α)(λα−1

+ − λα−1
− ))(1− e−θt − θt) + CΓ(1− α)

(
1

λα−1
+ k+(k+ − 1)

(
k+

(
1− k+(1− e−θt)

)α+1
2F1

(
1, α + 1, α + 2; 1 + k+e−θt

1−k+

)
(α + 1)(k+ − 1)

−
(1− k+

(
1− e−θt)

)α
α

−
k+2F1

(
1, α + 1, α + 2; 1

1−k+

)
(α + 1)(k+ − 1)

+
1

α

)
− 1

λα−1
− k+(k− + 1)

(
k−
(
1 + k−(1− e−θt)

)α+1
2F1

(
1, α + 1, α + 2; 1− k−e−θt

1+k−

)
(α + 1)(k− + 1)

−
(1 + k−

(
1− e−θt)

)α
α

−
k−2F1

(
1, α + 1, α + 2; 1

1+k−

)
(α + 1)(k− + 1)

+
1

α

)))
,

with k+ = iu
θλ+

and k− = iu
θλ−

.

A.2 Proof of Theorem 5.1

Proof. In order to evaluate equation (2.14) in the VG case, we compute the integral∫ 1−e−θt

0

ϑZV G(iuθ−1x)

(1− x)
dx. (A.10)

Therefore, we have the equality∫ 1−e−θt

0

(iuθ−1x(m− C(λ+ − λ−)λ−1
+ λ−1

− )

(1− x)

+
Ciuθ−1x

(λ+ − iuθ−1x)(1− x)
− Ciuθ−1x

(λ− + iuθ−1x)(1− x)
−
)
dx.

(A.11)

The first part of the integral (A.11), similar to the integral (A.3), can be easily
evaluated ∫ 1−e−θt

0

iuθ−1x(m− C(λ+ − λ−)λ−1
+ λ−1

− )

(1− x)
dx

= − iuθ−1(m− C(λ+ − λ−)λ−1
+ λ−1

− )(1− e−θt − θt).
(A.12)
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By setting k = iuθ−1, the second part of the integral (A.11) can be rewritten as∫ 1−e−θt

0

( Ckx

(λ+ − kx)(1− x)
− Ckx

(λ− + kx)(1− x)

)
dx

= Ck

∫ 1−e−θt

0

(
− λ+

(λ+ − k)(λ+ − kx)
+

1

(λ+ − k)(1− x)

+
λ−

(λ− + k)(λ− + kx)
− 1

(λ− + k)(1− x)

)
dx

= Ck
[ λ+

k(λ+ − k)
log(|λ+ − kx|) +

λ−
k(λ− + k)

log(|λ− + kx|)

−
( 1

λ+ − k
− 1

λ− + k

)
log(|1− x|)

]1−e−θt

0

= C
[ λ+

λ+ − k
log(|λ+ − k(1− e−θt)|) +

λ−
λ− + k

log(|λ− + k(1− e−θt)|)

+
( 1

λ+ − k
− 1

λ− + k

)
kθt− λ+ log λ+

λ+ − k
− λ− log λ−

λ− + k

]
.

(A.13)

Thus, the integral has the following solution∫ 1−e−θt

0

( Ckx

(λ+ − kx)(1− x)
− Ckx

(λ− + kx)(1− x)

)
dx

=
C

λ+ − iuθ−1

(
λ+ log

( |λ+ − iuθ−1(1− e−θt)|
λ+

)
+ iut

)
+

C

λ− + iuθ−1

(
λ− log

( |λ− + iuθ−1(1− e−θt)|
λ−

)
− iut

)
=

θC

iu− θλ+

(
λ+ log

( λ+

|λ+ − iuθ−1(1− e−θt)|

)
− iut

)
− θC

iu+ θλ−

(
λ− log

( λ−
|λ− + iuθ−1(1− e−θt)|

)
+ iut

)
.

The integral (A.10) can be computed as follows∫ 1−e−θt

0

ϑZV G(iuθ−1x)

(1− x)
dx = −iuθ−1(m− C(λ+ − λ−)λ−1

+ λ−1
− )(1− e−θt − θt)

+
θC

iu− θλ+

(
λ+ log

( λ+

|λ+ − iuθ−1(1− e−θt)|

)
− iut

)
− θC

iu+ θλ−

(
λ− log

( λ−
|λ− + iuθ−1(1− e−θt)|

)
+ iut

)
.

A.3 Proof of Theorem 6.1

Proof. In order to evaluate equation (2.14) in the RDTS case, we compute the
integral ∫ 1−e−θt

0

ϑZRDTS(iuθ−1x)

(1− x)
dx. (A.14)
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Therefore, we have∫ 1−e−θt

0

(iuθ−1xm

(1− x)
− Ciuθ−1xG′(iuθ−1x;α, λ+)

(1− x)

+
Ciuθ−1xG′(−iuθ−1x;α, λ−)

(1− x)

)
dx.

(A.15)

In order to evaluate the integral in equation (A.15), we compute the following
integral∫ 1−e−θt

0

xG′(x;α, λ)

1− x
dx =

∫ 1−e−θt

0

∞∑
n=2

1

n!2n

xn

1− x

(
λ√
2

)α−n
Γ

(
n− α

2

)
dx

=
∞∑
n=2

1

n!2n

(
λ√
2

)α−n
Γ

(
n− α

2

)∫ 1−e−θt

0

xn

1− x
dx

=
∞∑
n=2

1

n!2n

(
λ√
2

)α−n
Γ

(
n− α

2

)
B1−e−θt(n+ 1, 0)

where Bz(a, b) is the incomplete beta function.
The integral (A.14) can be computed as follows∫ 1−e−θt

0

ϑZRDTS(iuθ−1x)

(1− x)
dx = −iuθ−1m(1− e−θt − θt)

− C
∞∑
n=2

(iu)n

θnn!2n

(
λ+√

2

)α−n
Γ

(
n− α

2

)
B1−e−θt(n+ 1, 0)

+ C
∞∑
n=2

(−iu)n

θnn!2n

(
λ−√

2

)α−n
Γ

(
n− α

2

)
B1−e−θt(n+ 1, 0).

A.4 The FFT approach

In theory, given the characteristic function Φ(u) of a law X, density and cumulative
distribution functions can be derived via the Fourier inversion formula, that is

f(x) =
1

2π

∫ ∞
−∞

e−iuxΦ(u)du (A.16)

or

F (x+
h

2
)− F (x− h

2
) =

1

2π

∫ ∞
−∞

e−iuxΦ(u)
2

u
sin

hu

2
du, (A.17)

where h > 0. Unfortunately, it is not always possible to find a closed-form solution
for equations (A.16) and (A.17) and one has to then employ numerical integration
of the inversion formulas. The algorithm described here draws from Rachev and
Mittnik (2000) and Stoyanov and Racheva-Iotova (2004) (see Scherer et al. (2012)
for further details on this topic).
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To compute the density function for a large number of x values, the FFT
algorithm can be efficiently employed, particularly when the likelihood function
has to be computed and inserted into an optimization routine to perform a MLE.
It is well known that the FFT approach is computationally efficient with only the
disadvantage that the density function has to be evaluated on an equally spaced
grid. As a consequence, one has to interpolate for intermediate values and when
the arguments are outside the grid (this occurs rarely in practical applications).

The main idea is to calculate the integral in (A.16) for the following grid of
equally spaced x values

xk = (k − 1− N

2
)h,

where k = 1, ..., N . Then equation (A.16) can be rewritten as

f(xk) =

∫ ∞
−∞

e−i2πω(k−1−N
2

)hϕ(2πω)dω. (A.18)

Since the integral in (A.18) is convergent, we can choose a large enough upper
and a small enough lower bound to approximately compute (A.18) through the
Riemann sum, that is

f(xk) ≈ s
N∑
n=1

ϕ
(

2πs
(
n− 1− N

2

))
e−i2π(k−1−N

2
)(n−1−N

2
)sh. (A.19)

In this particular example, the upper and the lower bounds equal sN
2

and − sN
2

,
respectively. The integrand is evaluated for the equally spaced grid n − 1 − N

2
,

n = 1, ..., N with distance s between them. The choice of the integral bounds is
not arbitrary. If s = (hN)−1, we have the following expression for the density

f(xk) ≈
1

hN

N∑
n=1

ϕ
(

2π
1

hN

(
n− 1− N

2

))
e−i2π(k−1−N

2
)(n−1−N

2
) 1
N .

Having rearranged the terms in the exponent, the following approximation holds

f(xk) ≈
(−1)k−1+N

2

hN

N∑
n=1

(−1)n−1ϕ
( 2π

hN

(
n− 1− N

2

))
e
−i2π(n−1)(k−1)

N . (A.20)

The discrete FFT is a numerical method developed for calculation of sequences
such as f(xk) in (A.20) given the sequence

(−1)n−1ϕ
( 2π

hN

(
n− 1− N

2

))
. (A.21)

So by applying the discrete Fourier transform for the sequence (A.21) we ap-
proximately compute the density values f(xk). The benefit of this approach is that
the FFT algorithm needs N log2N arithmetical operations. In comparison, the di-
rect computation of the integral needs N2. Obviously, the FFT approach reduces
the computational burden enormously when N is a large number. It should be
noted that the approximation error has three different sources: (1) the interchange

31



of the infinite integral bounds in (A.18) with finite ones; (2) the approximation of
(A.18) with the Riemann sum (A.19), and; (3) the interpolation for intermediate
values if the function argument is not a grid node.

The parameters of the FFT method N (the number of summands in the Rie-
mann sum) and h (the grid spacing) should be carefully chosen since there is a
trade-off between accuracy and computational burden. From the construction of
(A.19), it follows that, to reduce the approximation error, N should be as large
as possible. A peculiarity of the numerical method is that efficiency is gained if
N is expressed as 2q. In addition the length of the integration region in terms of
the original variable u is 2π/h. Hence h should be as small as possible to increase
accuracy.

Additionally, by following the approach of Scherer et al. (2012), in both the
CTS and RDTS cases, one can always approximate the density function in the
standardized case (with zero mean and unit variance) with parameter (α, λ+, λ−)
and then estimate the more general case with parameter (C, λ+, λ−, α, m) by
properly scaling and shifting.

Because of the symmetry of the grid nodes, further efficiency can be achieved
in the computations of (A.21) if we use the following relationship valid for any
characteristic function

Φ(−u) = Φ(u) (A.22)

where z means the complex conjugate of z. Due to (A.22), it is possible to compute
the Φ(u) only for positive grid nodes, then change the sign of their imaginary
parts and achieve the characteristic function values for negative grid nodes. This
approach, is particularly useful in the approximation of the RDTS and the RDTS-
OU density, since in these cases a special function has to be evaluated.

Concerning the cumulative distribution function, there are two potential ap-
proaches, that is

1. it is possible to use (A.17) and derive an expression similar to (A.20);

2. one can work directly with the evaluated density according to (A.20) and:

F (x) =

∫ x

−∞
f(u)du = h

∑
{k:uk≤x}

f(uk)

In our numerical experiment we consider the second approach.
In Table 3 we report the error and the computational burden of evaluating

the density of one-sided CTS, RDTS, CTS-OU, and RDTS-OU15 according to
the FFT method with different choices of q and h and various parameter sets.
The procedure was run on an 8 cores AMD FX processor with 16GB of RAM
with a Linux based 64-bit operating system. The computational time necessary
to interpolate intermediate values is negligible with respect to the computational
time for the discrete FFT. The error is defined by

eFFT (h, q;X(Θ)) = max
x∈[xmin,xmax]

|fFFT (x, h, q;X(Θ))− f exact(x)| (A.23)

15 In the OU case we evaluate the density of the random variable Z∗(∆).
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where N = 2q is the number of summands in the Riemann sum, h is the grid
spacing, X is a one-dimensional law with parameters Θ (that includes ∆), and
f exact represents the exact valuation of the density function of the law X. Since in
all cases of interest, the density f cannot be computed exactly, we approximate it
as follows

f exact(x) ≈ fFFT (x, h∗, q∗;X(Θ)

where log10 h
∗ = −5 and q∗ = 25 (in the algorithm considered in this study the

greatest possible number of integration steps depends on the maximum available
RAM). As expected, the optimal balance between accuracy and efficiency (i.e., the
choice of the parameters h and q) depends on the model and the parameter choice.
Specifically, one has to be careful about the choice of h and q for small values of α.
Finally, we note that in the case of standardized laws, it is possible to improve the
efficiency and the quality of the approximation by following the approach proposed
in Section IV in Scherer et al. (2012).
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Relative error

CTS – inverse transfrom

observations C = 1 λ+ = 1 α = 0.4 C = 1 λ+ = 1 α = 0.8 C = 1 λ+ = 1 α = 1.2
500 44.83 70.38 20.49 16.93 44.22 2.70 88.44 86.85 17.30
1,000 36.45 52.66 17.48 12.19 31.70 1.91 77.57 66.31 16.67
2,000 29.94 43.78 15.40 8.93 20.55 1.34 57.68 51.37 13.09
5,000 25.95 36.93 13.59 5.78 12.96 0.91 31.48 31.08 7.80
10,000 23.51 32.37 12.82 3.56 8.44 0.58 20.70 20.50 5.26

CTS – acceptance-rejection

observations C = 1 λ+ = 1 α = 0.4 C = 1 λ+ = 1 α = 0.8 C = 1 λ+ = 1 α = 1.2
500 21.08 39.65 8.87 18.52 45.48 2.75 89.75 90.14 17.98
1,000 14.58 27.60 6.75 12.53 28.61 1.86 77.91 70.80 16.67
2,000 9.85 17.49 4.82 8.33 19.30 1.32 60.45 51.80 13.16
5,000 6.14 10.80 2.99 5.14 12.32 0.81 33.78 31.22 8.16
10,000 4.34 7.82 2.10 3.86 8.52 0.61 21.20 21.70 5.57

observations CTS-OU – acceptance-rejection

C = 1 λ+ = 1 α = 0.4 θ = 0.5 C = 1 λ+ = 1 α = 0.6 θ = 0.5 C = 1 λ+ = 1 α = 0.8 θ = 0.5
500 23.41 90.53 6.23 0.04 26.06 62.22 5.95 0.92 33.87 69.05 5.49 8.17
1,000 16.78 51.15 5.07 0.03 17.56 41.31 4.07 0.61 22.99 48.91 3.87 5.93
2,000 12.90 31.10 3.66 0.02 11.87 27.64 2.91 0.43 17.04 33.30 2.86 4.49
5,000 9.84 16.55 2.97 0.02 7.95 16.43 1.90 0.27 12.06 19.98 2.11 3.32
10,000 8.32 11.19 2.56 0.01 5.47 11.34 1.29 0.21 10.00 15.03 1.74 2.85
50,000 5.84 6.75 1.92 0.01 2.69 5.25 0.70 0.11 7.28 8.63 1.32 2.24

Table 1: Relative errors e1−δrel with δ = 0.1 for different sample sizes per estimate (percentage values). We analyze CTS subordinators and CTS-OU
processes driven by a CTS subordinator. Two simulation methods are considered: the inverse transform method and the acceptance-rejection method. In
the CTS-OU case, the acceptance-rejection method is used to generate the CTS component.
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Relative error

RDTS – inverse transfrom

observations C = 1 λ+ =
√

2 α = 0.8 C = 1 λ+ =
√

2 α = 1.2 C = 1 λ+ =
√

2 α = 1.6
500 14.21 34.24 2.36 7.54 38.94 2.19 15.32 49.05 5.08
1,000 9.98 25.74 1.72 5.98 32.22 1.72 11.29 37.25 4.23
2,000 7.91 19.85 1.32 4.35 25.67 1.31 9.01 30.11 3.13
5,000 5.64 15.10 0.93 3.17 19.02 0.99 6.88 22.24 2.45
10,000 4.52 12.52 0.71 2.46 16.71 0.82 5.59 19.59 2.03

observations RDTS-OU – inverse transform

C = 1 λ+ =
√

2 α = 0.8 θ = 0.5 C = 1 λ+ =
√

2 α = 1.2 θ = 0.5 C = 1 λ+ =
√

2 α = 1.6 θ = 0.5
500 21.23 30.71 3.54 5.76 5.02 32.12 1.75 5.63 18.65 42.55 4.45 7.23
1,000 19.15 20.60 3.59 7.64 4.75 20.80 1.33 7.54 13.50 27.92 3.08 7.22
2,000 22.71 12.84 4.50 8.20 4.65 14.02 1.02 7.81 9.25 18.58 2.02 8.23
5,000 27.03 9.48 5.11 8.34 5.09 9.28 0.92 8.56 7.48 11.57 1.52 8.17
10,000 22.12 6.71 4.21 8.24 5.03 7.20 0.88 8.39 5.29 9.02 1.23 7.92
50,000 13.32 3.71 2.61 5.30 3.14 3.96 0.51 4.99 3.12 5.21 0.69 4.97

observations VG-OU – direct simulation

C = 10 λ+ = 50 λ− = 100 θ = 0.5 C = 20 λ+ = 100 λ− = 200 θ = 0.5 C = 40 λ+ = 200 λ− = 400 θ = 0.5
500 39.13 94.70 101.66 0.00 27.99 53.93 52.20 0.00 19.01 30.65 35.50 0.01
1,000 28.36 49.72 57.05 0.00 19.44 32.20 33.79 0.00 13.97 21.80 20.91 0.01
2,000 19.64 31.93 34.01 0.00 15.26 20.94 20.81 0.00 9.90 15.03 14.87 0.01
5,000 12.51 18.61 20.37 0.00 8.50 13.97 11.72 0.00 6.06 8.89 9.65 0.01
10,000 8.59 12.61 14.28 0.00 5.90 8.54 9.36 0.00 4.64 5.81 6.13 0.01
50,000 3.71 4.83 4.98 0.00 2.62 3.78 3.56 0.00 1.98 2.88 2.90 0.00

Table 2: Relative errors e1−δrel with δ = 0.1 for different sample sizes per estimate (percentage values). We analyze RDTS subordinators, RDTS-OU
processes driven by a RDTS subordinator, and VG-OU processes. In both the RDTS and RDTS-OU cases, the inverse transform method is used to generate
RDTS random numbers.
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FFT density error

log10(h) -2 -2 -2 -2 -3 -3 -3 -3 -4 -4 -4 -4
q 15 16 17 18 15 16 17 18 15 16 17 18

CTS time∗

α = 0.4 7.4059 7.4059 7.4059 7.4059 0.8309 0.8309 0.8309 0.8309 1.1826 0.0061 0.0017 0.0017 28.09
α = 0.6 0.1550 0.1550 0.1550 0.1550 0.0003 0.0003 0.0003 0.0003 1.6849 0.0059 0.0000 0.0000 29.17
α = 0.8 0.0045 0.0045 0.0045 0.0045 0.0000 0.0000 0.0000 0.0000 4.4982 0.0090 0.0000 0.0000 28.71
α = 1.2 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 1.4963 0.0034 0.0000 0.0000 29.91
α = 1.4 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 2.0824 0.0034 0.0000 0.0000 41.38
α = 1.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.2677 0.0040 0.0000 0.0000 44.46

average time 0.14 0.16 0.24 0.32 0.13 0.16 0.24 0.33 0.14 0.18 0.25 0.36

RDTS time∗

α = 0.4 6.8260 6.8260 6.8260 6.8260 0.7669 0.7669 0.7669 0.7669 0.1031 0.0280 0.0072 0.0018 49.24
α = 0.6 0.1358 0.1358 0.1358 0.1358 0.0017 0.0005 0.0004 0.0004 0.1587 0.0419 0.0106 0.0027 46.41
α = 0.8 0.0022 0.0021 0.0021 0.0021 0.0062 0.0015 0.0003 0.0001 0.5939 0.1537 0.0387 0.0097 46.31
α = 1.2 0.0003 0.0003 0.0003 0.0003 0.0163 0.0040 0.0009 0.0001 1.3570 0.3929 0.1018 0.0256 47.31
α = 1.4 0.0001 0.0001 0.0001 0.0001 0.0069 0.0017 0.0004 0.0000 0.6123 0.1687 0.0432 0.0108 49.18
α = 1.6 0.0000 0.0000 0.0000 0.0001 0.0053 0.0013 0.0003 0.0000 0.4521 0.1274 0.0328 0.0082 49.26

average time 0.20 0.26 0.39 0.59 0.18 0.23 0.32 0.46 0.19 0.24 0.32 0.47

CTS-OU time∗

α = 0.4 7.16e+2 7.16e+2 7.16e+2 7.16e+2 5.17e+2 5.17e+2 5.17e+2 5.17e+2 2.75e+7 1.64e+5 1.57e+2 1.57e+2 30.49
α = 0.6 9.5240 9.5240 9.5240 9.5240 0.3044 0.3044 0.3044 0.3044 0.7084 0.0038 0.0009 0.0009 35.19
α = 0.8 0.1247 0.1247 0.1247 0.1247 0.0007 0.0007 0.0007 0.0007 1.3043 0.0048 0.0000 0.0000 34.96
α = 1.2 0.0009 0.0009 0.0009 0.0009 0.0000 0.0000 0.0000 0.0000 0.4638 0.0017 0.0000 0.0000 34.98
α = 1.4 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.8477 0.0021 0.0000 0.0000 37.76
α = 1.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.4823 0.0024 0.0000 0.0000 39.41

average time 0.17 0.21 0.28 0.39 0.17 0.21 0.27 0.39 0.18 0.22 0.30 0.43

RDTS-OU time∗

α = 0.4 7.16e+2 7.16e+2 7.16e+2 7.16e+2 5.17e+2 5.17e+2 5.17e+2 5.17e+2 1.57e+2 1.57e+2 1.57e+2 1.57e+2 74.53
α = 0.6 9.5240 9.5240 9.5240 9.5240 0.3033 0.3033 0.3033 0.3033 0.0720 0.0224 0.0060 0.0015 76.29
α = 0.8 0.1234 0.1234 0.1234 0.1234 0.0024 0.0014 0.0012 0.0011 0.1703 0.0428 0.0107 0.0027 76.93
α = 1.2 0.0010 0.0010 0.0009 0.0009 0.0094 0.0023 0.0005 0.0001 0.8703 0.2322 0.0589 0.0147 76.35
α = 1.4 0.0001 0.0001 0.0001 0.0001 0.0047 0.0012 0.0003 0.0000 0.4416 0.1174 0.0298 0.0074 79.09
α = 1.6 0.0000 0.0000 0.0000 0.0000 0.0041 0.0010 0.0002 0.0000 0.3644 0.1001 0.0256 0.0064 79.00

average time 0.22 0.32 0.50 0.86 0.20 0.27 0.39 0.64 0.21 0.27 0.39 0.62

Table 3: Maximum absolute difference eFFT (h, q;X(Θ)) between the density evaluated via the FFT method and the exact density (with log10 h
∗ = −5

and q∗ = 25). We consider the interval [xmin, xmax] = [-5,5] with ∆x = 10−5 for a total of 1 million values. In all cases ∆ = 0.1, the parameter C = 1, and
the parameter λ+ = 1 in the CTS and CTS-OU cases, and λ+ =

√
2 in the RDTS and RDTS-OU cases. The time is expressed in seconds.
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Figure 1: Boxplots of the estimates of Ĉ, λ̂+, λ̂−, θ̂ for VG-OU processes. Each boxplot consists of 1, 000 estimates. Three parameters sets (C, λ+,λ+, θ)
are considered: 1 – (10, 50, 100. 0.5), 2 – (20, 100, 200. 0.5), and 2 – (40, 200, 400. 0.5), with ∆ = 1/250.
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Figure 2: Boxplots of the estimates of Ĉ, λ̂+, α̂, θ̂ for CTS-OU processes driven by a CTS subordinator. Each boxplot consists of 1, 000 estimates. Three
parameters sets (C, λ+,α) are considered: 1 – (1, 1, 0.4), 2 – (1, 1, 0.6), and 3 – (1, 1, 0.8), with ∆ = 0.1. The acceptance-rejection method is used to
generate the CTS component.
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Figure 3: Boxplots of the estimates of Ĉ, λ̂+, α̂, θ̂ for the RDTS-OU processes driven by a one-side RDTS process. Each boxplot consists of 1, 000
estimates. Three parameters sets (C, λ+,α) are considered: 1 – (1,

√
2, 0.8), 2 – (1,

√
2, 1.2), and 3 – (1,

√
2, 1.6), with ∆ = 0.1. The inverse transform

method is used to generate the RDTS component.
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Figure 4: Boxplots of the estimates of Ĉ, λ̂+, and α̂ for the one-side CTS law. Each boxplot
consists of 1, 000 estimates. Three parameters sets (C, λ+,α) are considered: 1 – (1, 1, 0.4), 2 –
(1, 1, 0.8), and 3 – (1, 1, 1.2), with ∆ = 0.1. Two simulation methods are used: (a) the inverse
transform method and (b) the acceptance-rejection method.
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Figure 5: Boxplots of the estimates of Ĉ, λ̂+, and α̂ for the one-side RDTS law. Each boxplot
consists of 1, 000 estimates. Three parameters sets (C, λ+,α) are considered: 1 – (1,

√
2, 0.8),

2 – (1,
√

2, 1.2), and 3 – (1,
√

2, 1.6), with ∆ = 0.1. The inverse transform method is used to
generate the random samples.
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