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Abstract 

The paper considers likelihood ratio (LR) tests of stationarity, common trends and 
cointegration for multivariate time series. As the distribution of these tests is not known, a 
bootstrap version is proposed via a state space representation. The bootstrap samples are 
obtained from the Kalman filter innovations under the null hypothesis. Monte Carlo 
simulations for the Gaussian univariate random walk plus noise model show that the bootstrap 
LR test achieves higher power for medium-sized deviations from the null hypothesis than a 
locally optimal and one-sided LM test, that has a known asymptotic distribution. The power 
gains of the bootstrap LR test are significantly larger for testing the hypothesis of common 
trends and cointegration in multivariate time series, as the alternative asymptotic procedure -
obtained as an extension of the LM test of stationarity- does not possess properties of 
optimality. Finally, it is showed that the (pseudo) LR tests maintain good size and power 
properties also for non-Gaussian series. As an empirical illustration, we find evidence of two 
common stochastic trends in the volatility of the US dollar exchange rate against european and 
asian/pacific currencies. 
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1 Introduction

A locally optimal and one-sided LM test for the presence of a random
walk component in an otherwise white noise series has been derived by
Nyblom and Makelainen (1983) and subsequently extended to the case
weakly dependent data by Kwiatkowski et al. (1992) and Leybourne and
McCabe (1994). This is commonly known as �stationarity test�or �KPSS
test�; its limiting representation under the null hypothesis is well-known
and it is denoted as Cramer-Von Mises distribution. Nyblom and Harvey
(2000) generalize the (locally optimal) stationarity test to multivariate
time series and they derive a related statistic for testing the hypothesis
of common stochastic trends and cointegration; the asymptotic distrib-
utions and critical values are provided.
In this paper we re-consider these issues from a likelihood ratio (LR)

perspective. The testing problem is non-standard with the parameters of
interest lying on the boundary of the parameter space. As the distribu-
tion of the LR test is not known, we propose a bootstrap approximation,
based on a state space representation where the bootstrap samples are
obtained from the Kalman �lter innovations under the null hypothesis.
Our procedure is based on the parametric bootstrap proposed by Sto¤er
and Wall (1991, 2004) constructed by resampling from the Kalman �lter
innovations. Although they do not directly deal with coe¢ cients at the
boundary of the parameter space, their approach is suited for tests of
the null hypothesis of stationarity, as the underlying model can be easily
cast in state space form.
Bootstrap resampling methods are becoming part of the standard

toolkit of applied econometricians and practictioners, in all contexts
of parameter estimation, testing and forecasting; see Horowitz (1997),
Berkowitz and Kilian (2000), Li andMaddala (1996), MacKinnon (2006),
Davidson andMacKinnon (2006) for comprehensive surveys with empha-
sis on econometrics.
Bootstrap tests, similar to the approach taken in this paper, have

been proposed by Franco et al. (1999) for the univariate random walk
plus noise and the local linear trend model. In contrast, our study is
speci�cally concerned with testing for common trends and cointegra-
tion in multivariate time series, instances where the advantage of LR
approach is more relevant as the alternative asymptotic procedure does
not possess properties of optimality. On the other hand, for a univariate
trend plus cycle model, we show good size properties for the bootstrap
LR test even for the case of high persistence in the short-term compo-
nent, when it is known that the KPSS stationarity test runs into di¢ cul-
ties. A recent paper by Morley and Sinclair (2009) also deals with boot-
strap stationarity tests, but only for univariate series; their algorithm
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however is not apparently obtained within a state space framework.1

Note that, as pointed out by Andrews (2000), while the standard boot-
strap technique may not be appropriate for estimation of coe¢ cients
that lie on the boundary of the parameter space, bootstrap tests are
however expected to be consistent and to achieve the correct size.
The use of the likelihood principle seems attractive in non standard

situations, e.g. when the asymptotic equivalence among Wald, LM and
LR tests fail. In particular, for the null hypothesis of common trends and
cointegration, the bootstrap LR test is expected to achieve high power
as the competing test of Nyblom and Harvey (2000), with a known
limiting representation, is no longer a locally optimal test. Our Monte
Carlo results con�rm that this is the case; on the other hand, for a
simple univariate random walk plus noise model, the advantage of the
bootstrap LR test is signi�cant for medium-size deviations from the null
hypothesis of stationarity while, in the case of a random walk trend plus
AR(1) cycle, the performance of the bootstrap LR test is signi�cantly
superior, also in the neighborhood of the null hypothesis, than all other
options.
One important feature of the bootstrap LR test is that it requires

�tting a parametric model to the data, thus by-passing the delicate is-
sue of bandwidth choice to deal with short range dependence; see e.g.
Lee (1996) and Caner and Kilian (2001). One advantage is that it au-
tomatically accomodates any speci�c characteristics of the series like
the presence of stochastic cycles and/or seasonal components with unit
roots; however this comes to the cost of satisfactory model speci�cation.
Finally, it is showed that the (pseudo) LR tests maintain good size

and power properties also for non-Gaussian series. As an empirical il-
lustration, we �nd evidence of two common stochastic trends in the
volatility of the US dollar exchange rates against the euro, the pound,
the yen and the Australian dollar.
The paper proceeds as follows. Section 2 reviews the locally optimal

test of stationarity and its extension to the hypothesis of common trends
and cointegration. Section 3 discusses the bootstrap approximation for
the LR test, based on the state space representation. In section 4 the
results of Monte Carlo simulation experiments are presented to evaluate
the size and power properties of the bootstrap LR test and compare them
with those of the locally optimal and related tests. Section 5 provides
an empirical illustration. Finally, section 6 concludes hinting at possible

1As regards the related literature on testing for unit roots, bootstrap methods
have been investigated in Nankervis and Savin (1996), Ferretti and Romo (1996) and
Burridge and Taylor (2004), among others; a common feature with our tests is that
resampling is done under the null hypothesis.
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extensions. Appendix contains all the tables and �gures.

2 The locally optimal test of stationarity and its
extension to common trends and cointegration

The basic set up of stationary tests is the following unobserved compo-
nent model consisting of a random walk plus noise:

yt=�t + �t �t � NID(0;��) (1)

�t=�t�1 + �t; �t � NID(0;��); t = 1; :::; T; (2)

where yt is a vector containingN time series, which is made up of a trend
�t and an irregular component �t. �" and �� are N�N positive de�nite
matrix. The model is sometimes known as �local level model�and it is
thorougly analysed in Harvey (1989) and Durbin and Koopman (2001),
inter alia. If �� = 0 the series is a white noise that �uctuates around a
constant level; otherwise it has a stochastic trend component. Testing
the hypothesis of stationarity is non-standard as the parameters lie on
the boundary of the parameter space. Nyblom and Harvey (2000, NH
henceforth) have provided a locally optimal invariant (LBI) and one-
sided LM test of the hypothesis H0 : �� = 0 against the �homogenous�
alternative H1 : �� = q�", where q is the signal-to-noise ratio; the
results for a univariate series, N = 1; were obtained earlier in Nyblom
and Makelainen (1983). The statistic is

�N = tr
�
S�1C

�
; (3)

where C = T�2
TP
i=1

�
iP
t=1

(yt � y)
� �

iP
t=1

(yt � y)
�0
and S = T�1

TX
t=1

(yt �

y)(yt � y)0: The test rejects the null hypothesis that q = 0 for �N > �;
where � is an appropriate critical value: The limiting null distribution
of �N is Cramèr-von-Mises with N degrees of freedom; the asymptotic
critical values are provided. Although the test is derived to maximise
the local power against a homogenous alternative, it is consistent for any
�� > 0:
When �t is a weakly dependent process the statistic can be modi�ed

along the lines of Kwiatkowski et al. (1992), the so-called �KPSS�sta-
tionarity test. This is obtained by replacing the sample variance S with a

non-parametric estimate of the long-run variance S(m) =
�=mP
�=�m

w�mb�(�);
where b�(�) = T�1 TP

t=�+1

(yt�y)(yt�� �y)
0
is the autocovariance matrix at
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lag � and w�m is a weighting function, such as w�m = 1��=(m+1); � =
1; ::::;m. The null limiting distribution and critical values of the modi�ed
statistic are unchanged. Alternatively, weak dependence in the data can
be accounted for by a parametric correction as suggested, for example,
in Leybourne and McCabe (1994).
NH have then extended the locally optimal and LM test of sta-

tionarity to the case of cointegration. The null hypotesis is that there
are k < N common stocastic trends, H0 : rank(��) = k; against the
alternative that the time series has a larger number of non-stationary
components H1 : rank(��) > k: The test statistic is simply the sum of
the N � k smallest eingenvalues of S�1C;

�k;N =
NX

j=k+1

�j; (4)

where �1 � �2 � ::: � �N � 0 are the ordered eigenvalues. Note that
�0;N = �N : The presence of common stochastic trends implies cointegra-
tion, i.e. the existence of stationary linear combinations of the series. In
fact, this test can also be viewed as taking the minimum of the station-
arity test statistic over all possible N �k � N cointegration matrices A;
that is �k;N = min

A
tr
�
(ASA0)�1ACA0

�
: Asymptotic critical values are

tabulated in NH against a set of (k;N) pairs. If k > 0; �k;N no longer
de�nes a �locally optimal� test that maximizes the slope of the power
function at the null hypothesis.

3 The state-space representation and the bootstrap
LR tests

The random walk plus noise data generating process (1)-(2) underlying
the tests of stationarity, common trends and cointegration is a simple
case of linear Gaussian state-space model. A more general model may in-
clude deterministic terms (like a �xed slope of the trend) and additional
unobserved components, e.g. representing business cycle or seasonal
�uctuations. The state space representation and the Kalman �lter are
the basis for the statistical treatment of linear time series models de�ned
in terms of unobserved components; see e.g. Harvey (1989), Hamilton
(1994), Durbin and Koopman (2001).
A state-space model is de�ned by the equations, t = 1; 2; :::; n;

st=Fst�1 + wt (5)

yt=Hst + vt (6)

where yt is a N -dimensional observation vector and st is a p-dimensional
state vector with a given (�xed or random) initial condition s0. The
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constant matrices F and H represent the model coe¢ cients of dimension
compatible with the matrix operations required in (5)-(6). Equation
(5) is known as the transition equation, while (6) is the measurement
equation. The (p � 1) vector wt and the (N � 1) vector vt are white
noises with

E(wtw
0
� )=Q for t = � and 0 otherwise, (7)

E(vtv
0
� )=R for t = � and 0 otherwise, (8)

where Q and R are (p � p) and (N � N) matrices, respectively. The
disturbances are assumed to be uncorrelated at all lags, E(vtw0� ) = 0
for all t and � : The model coe¢ cients and the correlation structure
are assumed to be uniquely parametrized by a K � 1 vector �; thus,
F = F (�); H = H(�); Q = Q(�); R = R(�): The � is assumed to be
an element of some compact space, 	; usually a subset of RK :
For the local level model (1)-(2) we have F = H = IN ; the identity

matrix, R = �"; Q = ��; � = (�";��) : The parameters under the
null hypothesis are �0 = (�"; 0) for the case of stationarity and �0 =�
�";��

�
for the case of common trends/cointegration where �� is a

matrix of rank k; 0 < k < N: Under the alternative hypothesis the
model is estimated leaving the rank of �� unrestricted.
The Kalman �lter is given by the following equations

�t= yt �Hstjt�1 (9)

�t=HPtjt�1H
0 +R (10)

Kt=Ptjt�1H
0��1t (11)

Ptjt�1=FPt�1jt�1F
0 +Q (12)

stjt�1=Fst�1jt�1 (13)

stjt= stjt�1 +K�t (14)

Ptjt=Ptjt�1 � Ptjt�1H 0��1t HPtjt�1 (15)

From the Kalman �lter recursions one also obtains the innovation
form representation of the model,

st+1jt=Fstjt�1 + FKt�t; (16)

yt=Hstjt�1 + �t; (17)

that will be used to construct the bootstrap data set.
For stationary st, the unconditional mean and covariance matrix of st

may be employed as the initial values, s1j0 and P1j0. When the transition
equation is not stationary, the unconditional distribution of the state
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vector is not de�ned. In this case, unless genuine prior information is
available, the initial distribution of st must be speci�ed in terms of a
di¤use or non-informative prior. If we write P1j0 = kI where k is a
positive scalar, the di¤use prior is obtained as k ! 1. Setting k equal
to a large but �nite number a good approximation can be obtained. If
some elements of state vector are stationary and some non-stationary,
the stationary part of the model is initialised in the Kalman �lter by
its unconditional mean and covariance matrix, while the non-sttaionary
part is initialised with a di¤use prior; see e.g. Harvey (1989).
Estimation of the model parameters is accomplished by maximizing

the (Gaussian) likelihood function. The log-likelihood, written in terms
of the Kalman �lter innovations �t; is -ignoring a constant term-

LY (�) = �
1

2

nX
t=1

(ln j�tj+ �0t��1t �t);

which, in general, is maximized over � by numerical and iterative meth-
ods.
The LR test requires estimating the model under both the null hy-

pothesis of stationarity (or cointegration) and the alternative one where
there are no restrictions on the variance of random walk component.
The LR statistic is

LR = �2
h
LY (b�0)� LY (b�1)i ; (18)

where b�0 and b�1 denote maximum likelihhod estimates of the parame-
ters under, respectively, the null and the alternative hypotheses. If the
model disturbances are non-Gaussian, then the statistic de�nes a Pseudo
Likelihood Ratio test (PLR).
The bootstrap algorithm for approximating the distribution of (18)

and computing the p-value of the test consists of the following steps:
(Step 1) Construct the standardized Kalman �lter innovations un-

der H0;
et = b��1=2t b�t;

where b�t; b�t are obtained by evaluating the Kalman �lter recursions (9)-
(15) at b�0. b��1=2t denotes the inverse of the square root matrix of b�t
de�ned by b�1=2t b�1=20t = b�t:
(Step 2) Obtain the bootstrap errors fe�t ; t = 1; :::; Tg by sam-

pling, with replacement, from the set of standardized innovations fet; t =
1; :::; Tg.
(Step 3)Construct the bootstrap data set underH0; fy�t ; t = 1; :::; Tg,

by plugging in the bootstrap errors in the innovation form representation
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(16)-(17):

s�t+1jt= bFs�tjt�1 + bF bKt
b�1=2t e�t ;

y�t =
bHs�tjt�1 + b�1=2t e�t ;

where bF ; bH; bKt are obtained by the Kalman �lter at b�0. The initial
condition s�1j0 is kept �xed throughout the bootstrap replications.
(Step 4) Compute the LR statistic, LRb; using the bootstrap data

fy�t ; t = 1; :::; Tg
(Step 5) Repeating steps 2 through 4 for b = 1; :::; B, gives a set of

values fLRb : b = 1; :::; Bg that mimics a random sample of draws from
the distribution of LR under H0. The bootstrap p-value of the LR test
is therefore pB =card(LRb � LR)=B, that is the fraction of LRb values
that are greater than the observed value LR.

4 Monte Carlo evaluation of the properties of the
tests

This section evaluates the properties of the bootstrap LR test of sta-
tionarity, common trends and cointegration and compares them with
those of the locally optimal and related tests through a series of Monte
Carlo experiments. The basic set-up is the data generating process (1)-
(2). A simple trend plus cycle model where the short run component
an AR(1) is also considered. Finally, we analyze the behavior of the
tests for non-Gaussian series with thick tails and skewed distributions.
The results are obtained with 1000 bootstrap replications over 10000
Monte Carlo simulations. All the procedures for estimating the models
described in this section were written in GAUSS programming language
and maximization was carried out by BFGS algorithm.

4.1 Univariate models
We �rst consider the univariate local level models for a range of values
of signal-to-noise ratio q2 = c2

T 2
, with c = 0; 2:5; 5; 10; 25; the case c = 0

corresponds to the null hypothesis, while c > 0 allows to evaluate the
power under the (local) alternative. The variance of the noise is set to
�2" = 1:
Table 1 contains the percentage rejection frequencies of the locally

optimal (LBI) test, the bootstrap LR test and a bootstrap version of
the LBI test (obtained from the bootstrap distribution of the �1 statistic
(3)) for a sample of T = 25; 50; 100 observations and for a nominal size of
� = 0:05; 0:10: Consider �rst the results for T = 25. Notwithstanding we
are using the asymptotic critical values, the size of the LBI test is very
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near the nominal one while the power closely corresponds to the limiting
power function as computed by Tanaka (1996). Overall the performance
of the bootstrap LR test seems superior: though slightly oversized, it
displays non-negligible power gains for medium sized deviations from
the null (c � 10), while the rejection frequencies are comparable with
those of the LBI test for lower c.2 It is also interesting to see that
the bootstrap distribution of the LBI test closely replicates the limiting
true distribution, which can be seen as an indirect con�rmation of the
correctness of the bootstrap procedure. The results for bigger sample
sizes T = 50 and T = 100 are very similar to those for T = 25; this is
clearly seen as we are presenting simulated rejection frequencies under
the local alternative hypothesis, with the signal-to-noise ratio being a
function of the sample size. Note however that if we keep the signal-
to-noise ratio �xed the power increases with the sample size, which is a
re�ection of the consistency of the tests; for example if �2� = 0:01 the
power of the bootstrap LR test is 20:4; 38:4; 72:4 for T = 25; 50; 100
respectively.
Tables 2-4 present results for a simple stochastic trend plus cy-

cle model, where the data generating process is obtained by replac-
ing the white noise disturbance "t in (1)-(2) with the AR(1) process,
ut = �ut�1+!t; !t � NID(0; �2!): The data are simulated for a range of
values of signal-to-noise ratio

�2�
�2!
= c2

T 2
, with c = 0; 2:5; 5; 10; 25; 50; and

for autoregressive parameter � 2 (0:5; 0:8;�0:5): Percentage rejection
frequencies of tests run at nominal signi�cance level � = 10% are com-
puted for: (a) the KPSS(m) stationarity test where m is the number
of autocovariances used to compute the non-parametric correction for
serial correction, (b) a parametric variant of the LBI test constructed
from the Kalman �lter innovations of a �tted trend plus cycle model
(as suggested in Busetti and Harvey, 2003, in the context of testing
for seasonal stability), (c) the bootstrap LR test, (d) a bootstrap ver-
sion of the LBI test, obtained from the bootstrap distribution of the
statistic �1 (3). The KPSS(m) statistics are computed across four
values of the lag truncation parameter m(0); m(4); m(8) and m(12),
where, following Kwiatowski et al. (1992), m(x) is given by the formula
m(x) = integer(x(T=100)1=4); note that KPSS(m(0)) corresponds to
the LBI statistic �1. The choice of lag truncation parameter re�ects a
trade-o¤ between size and power; in general, higher m corresponds to
better size properties but lower power for the test.
Consider �rst Table 2 where � = 0:5: The KPSS test is strongly

2As the LBI test maximizes the slope of the power function at the null hypothesis,
no gains were expected for the bootstrap LR test when c is small.
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over-sized for m(x) � m(4) while the parametric LBI test appears un-
dersized in the small samples of T = 25 and T = 50 observations, i.e.
the limiting null distribution does not appear to provide an adequate
approximation in these cases. On the other hand, the bootstrap tests
appear to control size rather well, except for some undersizing in the
small sample of T = 25 observations. More interesting are the power
properties of the tests. Near the null hypothesis, e.g. when c � 5, the
KPSS(m(12)); the bootstrap LBI and the parametric LBI tests be-
have rather similarly, even though the latter is somehow penalized by
being undersized. Large gains in terms of power can be achieved with the
bootstrap LR test: e.g. for c = 2:5 and T = 25, the power of LR is 32%
against around 13% for the KPSS(m(12)) and 8% for the parametric
LBI test. Farther away form the null hypothesis the bootstrap LR test
con�rms its neat advantage over the others, with the parametric LBI
test ranking second. It is also interesting to notice that, in contrast with
the local level model, the simulated small sample power of LR does not
provide a good approximation to the limiting power function: for c > 10
the power �gures are quite di¤erent for the three cases of T = 25; 50; 100:
As the degree of serial correlation gets higher (� = 0:8; cf. table 3)

the KPSS test becomes less reliable; see Caner and Kilian (2001) among
else. On the other hand, the bootstrap LR test still works well and it is
overall preferable to the parametric LBI test, although both are somehow
undersized. Finally, table 4 contains the results for � =�0:5. The size of
the LR test is very close to the nominal 10% also for a sample of T = 25
observations, while the KPSS test now su¤ers from undersizing. As
concerns power, the relative ranking of LR, parametric LBI and KPSS
is mantained as in the previous experiments.
Finally, we evaluate the properties of the bootstrap PLR test for non-

Gaussian series. For the case of thick tails, table 5 reports the results
for a random walk plus noise models where the errors are generated by a
t-distributions with 5 degrees of freedom. The �gures can be compared
directly with the basic case of table 1, as the t(5) errors are rescaled such
that the signal-to-noise ratio is q2 = c2

T 2
; with c = 0; 2:5; 5; 10; 25: The

advantage of the bootstrap PLR test over the LBI test is greater than
in the Gaussian case; for example for � = 5%; c = 25 and T = 100 the
simulated rejection probabilities are 94% for the PLR test (very close to
the �gure in table 1) and 70% for the LBI test (against 88% obtained
under Gaussianity). Table 6 considers instead the case of skewness in the
noise component, which is generated from a skewed-Normal distribution
with two di¤erent values of the shape parameter, � = 2 and � = 5 where
higher � implies more asimmetry (� = 0 is the Gaussian case); see
Azzalini (1985). The results, reported for a nominal size of 5%, indicate
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again a clear advantage for the bootstrap PLR test; as expected, higher
skewness corresponds to lower power of the tests.

4.2 Multivariate models: null hypothesis of sta-
tionarity

Here we consider testing the null hypothesis of stationarity with the
LBI and the bootstrap LR tests in the multivariate local level model
(1)-(2) with

P
� = q

P
" for a range of values of signal-to-noise ratio

q2 = c2

T 2
, c = 0; 1; 2:5; 5; 10; 25; given the invariance properties of the

tests with respect to non-singular transformations, we set
P

" as the
identity matrix. In table 7 we present results for N = 1; 2; 3; 4 and for a
sample size of T = 100 observations; the signi�cance level is 5%.
Both tests are able to control size well for each N when T = 100;

unreported simulations show a slight oversizing of the bootstrap LR test
for smaller samples. The �ndings of the univariate model are con�rmed
also as regards to power: the tests behave broadly the same for small
values of c while the bootstrap LR test has a non-negligible advantage
for medium-sized deviations from the null hypothesis (e.g. when c = 10).
Note that -as in the univariate case- the LBI test is locally optimal for
this data generating process. As expected, the power of the test increases
when N is higher; for example if c = 5 the rejection frequencies of the
tests are equal to about 30% for N = 1 and to 70% for N = 4:

4.3 Multivariate models: null hypothesis of com-
mon trends and cointegration

We compare the properties of the test (4), denoted as NH; and the
bootstrap LR test for the null hypothesis of k common trends in the
context of "balanced growth" cointegration for the multivariate local
level model. More speci�cally, under the null hypothesis we assume
r = N � k cointegration relations with unit coe¢ cients between the 1st
and the 2nd, the �rst and the 3rd, ... , the �rst and the r-th series;
for example for k = 2 and N = 3 we assume two cointegrating vectors
equal to (1;�1; 0)0 and (1; 0;�1)0; which we collect in a r�N matrix A:
Allowing for a scale variance parameter q; under the null hypothesis the
variance matrix of the disturbance driving the random walk component
is therefore

P
� = q110; where 1 is a N � r matrix of 1�s; note that

A
P

� = 0; the elements on the main diagonal of the variance matrix
of the noise

P
" are set equal to 1, while the o¤-diagonal elements are

drawn from a beta distribution.
Table 8 reports the results for the size of the tests run at 5% sig-

ni�cance level, where the data generating process is simulated under
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the null hypothesis of balanced growth, with k = 1; q = c2=T 2; c =
0; 2:5; 5; 10; 25; and T = 100: The size properties of the NH and boot-
strap LR tests are very similar. In particular, the rejection frequencies
of the tests do not exceed the nominal level of 5% even for relatively
large values of the signal-to-noise ratio.
More interesting are the results in terms of power, that are contained

in table 9 for N = 2; 3; 4 and 1 � k � N � 1: Here the data generat-
ing process is the same as in the previous sub-section, i.e. a full rank
variance matrix of the disturbance driving the random walk componentP

� = q
P

" with q
2 = c2

T 2
: First note that the power of the tests of a

given number k of common trends (or a given number r = N �k cointe-
grating relations) increases with N ; similarly, for a given N; the power is
lower for higher k: The important result is that the bootstrap LR test is
now signi�cantly more powerful than its competitor even near the null
hypothesis; for example if c = 5; k = 1 and N = 4 the rejection frequen-
cies are equal to about 40% for the bootstrap LR and 24% for the NH
test, which is no longer locally optimal for testing common trends and
cointegration.

5 Empirical illustration

As an illustration, we consider testing for common stochastic trends in
the volatility of the daily exchange rates of the US dollar against the
euro, the British pound, the yen and the Australian dollar over the pe-
riod 2007-2009. Let xit; i = 1; 2; 3; 4; be the exchange rate of the dollar
against those four currencies. Figure 1 plots the logarithm of squared
returns of the series, log(y2it) where yit = log(xit)� log(xi;t�1); that is the
data transform3 for estimating stochastic variance models; see e.g. Har-
vey et al. (1994). There are clear comovements in the series, as seen in
the graphed trends obtained by Quasi Maximum Likelihood estimation
of the unrestricted multivariate local level model (1)-(2): in fact, the
o¤-diagonal entries in the correlation matrix of the level disturbances
take values ranging from 0.83 to 0.97.
As described in section 3, the PLR test is obtained comparing the

Gaussian log-likelihood of the unrestricted model with the one imposing
k common stochastic trends, k = 0; 1; 2; 3. Using our bootstrap pro-
cedure we strongly reject the null hypotheses k = 0 and k = 1 while
we obtain a p-value of 0.563 for k = 2: The evidence thus suggests the
presence of two common trends, perhaps associated with movements
against european vs. asian/paci�c currencies. Consistently with the

3To be precise we adopt the slightly di¤erent transform log(y2it + :02s2i ) �
:02s2i =

�
y2it + :02s

2
i

�
; where s2i is the unconditional variance of y

2
it; i = 1; 2; 3; 4; see

Fuller (1996, p. 494-497).
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Monte Carlo simulations, less evidence against the null hypothesis is
found using the NH test: the test statistic �1;4 (4) does not reject the
null hypothesis k = 1 even at the 10% level of signi�cance.

6 Concluding remarks

In this paper a bootstrap version of the LR test of stationarity, common
trends and cointegration is proposed, based on �tting a state space model
to the data. Monte Carlo simulations show that substantial power gains
can be achieved with our test, in particular in the context of multivariate
models and for data generating processes that are more elaborate than a
Gaussian random walk plus noise model. The bootstrap LR test requires
some model building e¤ort compared with the KPSS-type tests where
the dynamic properties of the series are handled non-parametrically; this
e¤ort is however compensated by good size properties and higher power.
It is straightforward to extend the bootstrap LR approach to test-

ing stability at the seasonal frequencies. It just requires to estimate a
model with a stochastic seasonal component and to obtain the bootstrap
samples from the Kalman �lter innovations under the null hypothesis of
seasonal stability or seasonal cointegration; compare with Canova and
Hansen (1995) and Busetti (2006), inter alia. Testing for stability of
regression coe¢ cients can also be framed in a state space framework,
where time varying parameters may follow a random walk or an AR(1)
model. A bootstrap LR test could therefore be devised and its prop-
erties evaluated against the standard tests of parameter stability, such
as Nyblom (1989) and Andrews (1993). We leave these issues to future
research.
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Tables and figures 
 

 

LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT
α=10% c=0 10.46 10.75 10.99 9.92 10.37 10.53 10.91 10.99 10.70

c=2.5 20.03 20.61 20.47 19.60 20.14 20.09 20.32 20.61 20.47
c=5 37.79 38.58 39.23 38.21 38.42 39.89 38.60 38.88 40.31
c=10 61.21 61.65 68.44 65.68 65.78 71.42 66.91 67.24 72.37
c=25 83.40 83.80 92.35 89.47 89.54 95.66 91.99 91.98 96.72

α=5% c=0 5.07 5.62 5.73 4.98 5.28 5.39 5.46 5.73 5.53
c=2.5 12.03 13.15 12.51 12.01 12.69 12.47 12.62 13.08 13.08
c=5 27.40 28.87 29.32 28.93 29.43 30.49 29.62 30.17 31.40
c=10 51.57 52.80 60.14 56.44 57.20 63.95 58.71 59.00 65.20

c=25 75.61 76.93 89.74 83.72 84.25 94.12 87.93 88.17 95.59

Tab.1. Monte Carlo rejection frequencies for the LBI, bootstrap LBI and the bootstrap LR tests of stationarity. 

T=25 T=50 T=100

 
 
 
 

KPSS(0) KPSS(m(4)) KPSS(m(8)) KPSS(m(12)) LBI/PARAM LBI/BOOT LR/BOOT
c=0 41.54 16.46 11.10 10.56 3.82 9.50 6.20
c=2.5 46.12 20.74 14.76 13.88 7.50 12.38 32.04
c=5 54.84 27.98 21.04 19.24 12.82 17.30 39.52
c=10 69.14 42.56 33.16 28.78 23.04 26.76 52.18
c=25 85.06 58.80 46.50 40.14 40.24 31.06 60.26
c=50 89.56 62.90 49.82 41.96 54.12 29.22 55.06
c=0 45.38 18.44 13.18 11.94 5.20 10.32 9.16
c=2.5 49.14 20.80 14.16 13.10 8.64 10.96 26.68
c=5 57.72 30.08 23.14 20.58 16.52 17.62 37.90
c=10 72.56 47.06 37.40 33.20 31.12 31.76 55.84
c=25 91.06 69.00 56.60 50.96 47.70 48.88 74.80
c=50 96.46 76.32 62.68 55.88 52.48 49.36 73.36
c=0 48.74 16.72 13.08 11.92 6.02 10.02 9.72
c=2.5 51.14 19.34 15.68 14.56 11.86 11.78 20.98
c=5 60.44 29.04 24.14 21.80 19.56 19.84 31.04
c=10 74.70 45.82 39.14 35.90 36.28 34.72 50.20
c=25 92.82 72.82 63.26 57.68 66.12 60.18 80.84
c=50 98.42 83.56 71.72 64.84 70.20 63.92 89.44

Tab. 2. Monte Carlo rejection frequencies for the KPSS, the parametric LBI, the bootstrap LBI and the bootstrap LR tests 
of stationarity, ρ=0.5; the significance level is 10%.

T=25

T=50

T=100

 
 
 
 



KPSS(0) KPSS(m(4)) KPSS(m(8)) KPSS(m(12)) LBI/PARAM LBI/BOOT LR/BOOT
c=0 72.24 31.52 18.26 14.12 5.98 15.46 4.36
c=2.5 73.96 34.42 20.16 16.02 8.00 17.38 26.76
c=5 75.62 36.68 22.84 17.78 10.86 17.90 28.90
c=10 78.18 43.16 28.84 23.16 17.96 20.86 33.78
c=25 86.80 56.44 43.44 36.36 38.96 24.44 42.90
c=50 89.64 62.14 48.84 40.92 54.12 24.60 46.22
c=0 83.90 38.86 23.10 18.26 5.18 15.04 5.70
c=2.5 83.62 38.72 22.76 17.42 3.58 13.08 24.96
c=5 84.60 42.04 25.90 20.26 6.10 15.76 29.10
c=10 87.40 47.72 32.60 26.32 10.90 20.08 36.46
c=25 93.48 64.12 49.92 42.84 27.00 33.12 52.00
c=50 96.58 74.14 58.84 52.14 42.94 39.28 57.64
c=0 88.16 37.56 23.12 17.94 5.48 12.14 8.18
c=2.5 89.06 35.98 23.52 18.82 3.86 11.92 23.50
c=5 89.26 39.76 26.52 21.10 7.42 13.98 28.96
c=10 91.58 47.30 32.74 26.76 12.34 17.96 36.40
c=25 95.78 64.90 51.36 44.46 28.08 33.24 55.84
c=50 98.36 78.04 65.02 57.92 42.10 46.82 67.66

KPSS(0) KPSS(m(4)) KPSS(m(8)) KPSS(m(12)) LBI/PARAM LBI/BOOT LR/BOOT
c=0 0.62 3.94 5.02 6.40 5.06 5.64 10.98
c=2.5 6.00 16.20 15.20 15.04 26.74 20.06 44.24
c=5 24.90 35.84 29.88 26.18 49.14 41.90 67.16
c=10 52.84 52.32 42.80 37.32 67.84 59.84 84.00
c=25 80.28 62.52 50.42 43.14 67.48 58.24 90.96
c=50 87.84 64.08 50.48 43.16 63.22 42.56 81.16
c=0 0.56 4.98 6.28 6.86 7.78 8.20 10.80
c=2.5 5.28 17.70 17.82 17.64 28.22 24.16 35.20
c=5 25.48 43.36 40.00 36.90 55.66 51.08 63.94
c=10 55.80 62.14 54.36 49.46 80.34 71.92 86.02
c=25 86.02 75.74 62.62 56.24 89.66 82.02 98.04
c=50 95.50 78.74 64.90 57.92 76.86 71.00 98.78
c=0 0.24 5.26 6.58 7.28 12.26 9.00 10.08
c=2.5 5.06 20.64 22.30 22.10 31.60 28.00 31.46
c=5 24.06 44.32 43.30 41.44 58.42 53.46 59.24
c=10 55.34 67.56 62.66 57.90 84.18 77.40 85.46
c=25 88.60 84.06 73.38 66.62 97.70 94.10 99.00
c=50 97.40 88.04 75.60 68.32 96.06 93.16 99.90

T=100

Tab. 3. Monte Carlo rejection frequencies for the KPSS, the parametric LBI, the bootstrap LBI and the 
bootstrap LR tests of stationarity, ρ=0.8; the significance level is 10%.                                                  

T=50

T=25

Tab. 4. Monte Carlo Rejection frequencies for the KPSS, the parametric LBI, the bootstrap LBI and the 
bootstrap LR tests of stationarity, ρ=-0.5; the significance level is 10%.

T=100

T=25

T=50

 
 



LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT
c=0 10.50 10.78 11.01 10.22 10.41 10.61 10.95 11.04 10.92
c=2.5 15.18 15.52 18.36 15.23 15.88 18.77 15.86 16.04 19.22
c=5 29.72 30.61 37.15 30.10 30.86 37.56 30.42 31.29 38.13
c=10 54.10 54.56 66.21 58.24 58.65 69.36 59.11 60.25 70.19
c=25 69.31 69.59 89.25 75.16 75.55 93.61 77.18 77.78 94.89
c=0 5.21 5.77 5.89 5.10 5.41 5.55 5.62 5.84 5.67
c=2.5 8.45 9.12 11.23 8.23 8.72 11.80 8.59 9.05 12.01
c=5 20.32 21.67 27.69 21.54 22.12 28.11 22.03 23.15 29.33
c=10 43.17 44.32 57.92 48.14 49.21 60.66 50.12 51.10 63.26
c=25 60.78 61.41 86.12 67.44 68.51 92.10 70.28 71.19 93.50

LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT LBI LBI/BOOT LR/BOOT
c=0 5.46 5.82 5.97 5.32 5.54 5.77 5.72 5.89 5.81
c=2.5 7.58 7.69 9.04 7.62 8.11 9.22 8.36 8.49 10.08
c=5 17.47 18.15 23.24 18.19 19.27 25.19 19.00 21.33 26.00
c=10 38.30 39.20 50.07 41.00 45.32 54.81 44.77 46.15 58.50
c=25 54.66 56.41 80.00 57.93 59.29 85.04 61.01 63.35 88.24
c=0 5.53 5.88 6.03 5.48 5.62 5.82 5.76 5.93 6.13
c=2.5 7.03 7.13 8.25 6.38 7.39 8.18 7.70 7.93 8.66
c=5 10.29 12.00 15.19 11.12 13.26 17.36 12.09 14.00 18.46
c=10 25.78 27.85 35.61 29.58 31.77 39.72 32.11 34.00 45.63
c=25 43.30 44.00 63.40 48.71 50.85 67.00 51.76 52.59 70.81

T=25 T=50 T=100

α=10%

α=5%

T=25 T=50

Tab. 6. Monte Carlo rejection frequencies for the LBI, bootstrap LBI and the bootstrap LR tests of stationarity, skewed normal 
distributions; the significance level is 5%.

β=2

β=5

Tab. 5. Monte Carlo rejection frequencies for the LBI, bootstrap LBI and the bootstrap LR 
tests of stationarity, t-distributions with 5 degrees of freedom.

T=100

 
 



c=0 c=1 c=2.5 c=5 c=10 c=25
LBI 5.46 8.04 12.62 29.62 58.71 87.93
LR/boot 5.53 8.72 13.08 31.40 65.20 95.59
LBI 5.49 10.13 17.72 42.24 86.21 92.13
LR/boot 5.57 10.62 18.32 44.15 94.44 99.18
LBI 5.51 13.20 29.40 57.20 90.00 96.40
LR/boot 5.60 13.96 30.55 59.38 97.20 1.00
LBI 5.53 17.18 37.23 68.10 93.30 99.81
LR/boot 5.62 17.77 38.04 70.02 99.04 1.00

c=0 c=2.5 c=5 c=10 c=25
NH 0.41 0.81 1.69 2.99 5.32
LR/boot 0.45 0.93 1.84 3.21 5.43
NH 0.69 1.08 1.94 3.25 5.39
LR/boot 0.74 1.19 2.03 3.42 5.48
NH 0.84 1.22 2.11 3.44 5.45
LR/boot 0.93 1.34 2.25 3.56 5.53

c=5 c=10 c=20 c=25

NH 5.05 25.22 70.82 90.74
LR/boot 7.74 36.97 84.29 96.44
NH 15.40 41.30 82.60 93.50
LR/boot 28.90 59.34 93.11 99.30
NH 24.45 57.70 90.48 98.66
LR/boot 39.70 73.29 98.70 1.00

NH 10.05 32.50 75.43 92.41
LR/boot 21.33 50.60 89.42 97.98
NH 20.60 45.97 81.10 96.60
LR/boot 34.30 64.41 92.55 98.93

NH 18.88 40.71 78.36 94.50
LR/boot 29.57 59.33 91.12 99.54

N=1

N=2

N=2

N=3

N=4

Tab. 7. Monte Carlo rejection frequencies for the LBI and the bootstrap LR 
tests of stationarity; the significance level is 5%.

N=3

k=3

N=4

Tab. 8. Monte Carlo size for the NH and the bootstrap LR tests of 
cointegration, k=1; the significance level is 5%.

N=4

k=1

N=2

N=3

N=4

Tab. 9. Monte Carlo power for the NH and the bootstrap LR 
tests of cointegration; the significance level is 5%.

k=2

N=3

N=4

 
 
 



Fig. 1. Stochastic volatility transform of daily exchange rates of the US dollar against the Japanese 
yen, the Australian dollar, the euro, the British pound over the three years period 2007-2009. 
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