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Abstract 

This paper explores the implications of systemic risk in Credit Structured Finance 
(CSF). Risk measurement issues loomed large during the 2007-08 financial crisis, as the 
massive, unprecedented number of downgrades of AAA senior bond tranches inflicted 
severe losses on banks, calling into question the credibility of Rating Agencies. I discuss 
the limits of the standard risk frameworks in CSF (Gaussian, Single Risk Factor Model; 
GSRFM), popular among market participants. If implemented in a ‘static’ fashion, 
GSRFM can substantially underprice risk at times of stress. I introduce a simple 
‘dynamic’ version of GSRFM that captures the impact of large systemic shocks (e.g. 
financial meltdown) for the value of CSF bonds (ABS, CDO, CLO, etc.). I argue that a 
proper 'dynamic' modeling of systemic risk is crucial for gauging the exposure to default 
contagion (‘correlation risk’). Two policy implications are drawn from a 'dynamic' 
GSRFM: (i) when rating CSF deals, Agencies should disclose additional risk information 
(e.g. the expected losses under stressed scenarios; asset correlation estimates); and (ii) a 
‘point-in-time’ approach to rating CSF bonds is more appropriate than a ‘through-the-
cycle’ approach. 
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1. Introduction  
 Credit risk measurement issues have loomed very large in the recent Structured 

Finance (SF) credit rating debacle - e.g. the massive, unprecedented number of 

downgrades in the AAA senior-tranche segment of the bond market. As discussed at 

length in Violi (2010), the financial crisis of 2007-08 has shown the importance of model 

risk and parameter uncertainty in measuring credit risk of (tranched) structured finance 

products. Unexpectedly, banks have suffered huge (mark-to-market/model) credit losses 

in the ‘safest’ segment of the SF markets. The impact of systemic risk changes and its 

implication in terms of default ‘contagion’ – including the ‘long tail’ dimension during 

times of stress – appear to be largely underestimate by standard market models of credit 

risk. Several pitfalls regarding the measures of (credit) correlation risk  were subject to 

scrutiny well before the 2007-08 credit crisis, as witnessed by the implied vs. base 

correlation indicators debate. However, no clear consensus emerged within the profession 

about the solutions that would avoid these shortcomings. Standard market practice seems 

to have overlooked the role of systemic risk changes, in that they can have vast 

implications for the pricing of securitization deals and their associated credit ratings.     

With all their imperfections and approximations, we maintain that the basic set of 

analytical techniques necessary to get reasonably behaved estimates of loan-loss 

distribution were already available to market participants before the crisis. To 

substantiate such claim I use a relatively well-known and widely used class of models  

that antedates the crisis to show that, if properly adapted, it could have indeed yielded 

sufficient insights regarding the implication of systemic risk changes in SF deals. 

Unfortunately, standard market practice has often confined this class of models to an 

essentially static framework, incapable of specifying evolution of parameters to future 
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times under various market conditions. Proper treatment of systemic risk changes over 

time turns out to be crucial for gaining such insights. One important implication of 

incorporating systemic risk changes is that it shows how unreliable (as indicators of 

credit standing) ratings can actually become under stressing conditions. As a result, I 

argue that credit rating systems based on unconditional - ‘through-the-cycle’, in the 

Credit Ratings Agencies (CRAs) jargon, as opposed to conditional (‘point-in-time’) - 

valuation are inevitably very fragile when applied to SF deals, in that (conditional) 

expected loss can vary substantially ‘through the cycle’ owing to the time-varying nature 

of systemic risk. 

The analytical structure adopted in this paper  is primarily focused on a 

conditional version of the standard Gaussian Copula Credit Risk Factor Model (GCCRF), 

perhaps the simplest tractable technique for analyzing loan-loss portfolio of assets 

backing securitization deals, such as Collateralised debt Obligation, CDOs (Li, 2000). 

The conditional version of the GCCRF model, which requires information regarding the 

expected changes in the risk factor, stands in sharp contrast with the standard market 

practice which only exploit the unconditional version. More specifically, standard market 

practice targets the unconditional  loss distribution by integrating out the Gaussian market 

risk factor. Since the resulting (unconditional) density is not Gaussian (Vasicek, 1991), 

no simple, closed form solution is available and therefore numerical methods – such as 

the popular market standard elaborated by Hull and White (2004) – have to be used by 

performing Monte Carlo simulations.  

In addition to the complexity of numerical method and the limitations due to its 

’static’ nature, it is well acknowledged that the standard, unconditional GCCRF model 
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has a number of deficiencies. First of all, there are only two credit risk parameters: the 

average default probability and a correlation parameter, which is a stylized version of 

Merton’s asset correlation. Secondly, this model is not able to capture all market quotes 

on the liability side with these two parameters. Therefore each tranche can only be priced 

with a different correlation, the so-called implied correlation. Thirdly, as the latest credit 

crises has made clear, the standard GCCRF appears to be insufficient to capture the 

dependence structure between individual obligors backing the credit portfolio of  SF 

deals.  

In this paper I argue that the main drawbacks with the unconditional GCCRF 

model are caused by its inherently, purely static nature (one-period model). In practice, 

portfolio default rates change over time, often in predictable way from period to period, 

exhibiting well-defined time series properties (for example, defaults clustering during 

recessions). In times of stress, it is very likely that the ‘static’ GCCRF standard model 

severely underestimate the actual (systemic) risk exposure of credit portfolios of 

individual tranches (Bhansali et al. 2008). As the conditional GCCRF model 

implemented in this paper shows - more details on this point would be presented later1 - 

the impact of systemic risk on the expected loss of a single tranche can vary drastically 

with its attachment/detachment points (credit seniority). However, the implied base 

correlation indicator for the unconditional, ‘static’ model can only reflect the ‘average’ 

correlation risk level of the underlying tranches. In this case, we cannot trust the 

unconditional loss distribution evaluation, if the magnitude of the response to systemic 

risk changes is bound to be potentially large and highly non-linear across the capital 

structure and risk levels.  
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In this paper I adapt the standard GCCRF model to a conditional framework, 

while preserving its tractable form, in order to  obtain a dynamic conditional portfolio 

loss distribution, propagated in time by the changes in (systemic) risk factor. In so doing, 

I extend the Vasicek (1991) model, widely employed by academic and industry 

researchers, to allow for the changes in loan loss distribution driven by the underlying 

dynamics of the systemic risk factor. Since I maintain a conditional Gaussian risk 

structure, I am able to get a closed-form implementation for the (conditional) expected 

loss of individual bond tranches, so that fast and accurate simulations for the entire 

capital structure of any securitization deal can be performed without resorting to Monte 

Carlo simulations. Preserving the conditional structure of the loan loss portfolio 

distribution permits also to highlight the strong dependence of individual tranche 

‘correlation risk’ exposure on the level of systemic risk. As it turn out from my sensitivity 

analysis, such dependence is of utmost importance for senior bond tranches value. More 

specifically, as a result of a large systemic shock, they can incur significant losses 

(provided that default correlation is not immaterial), despite the good quality of their 

collateral pool in normal times (i.e. low average unconditional default probability). The 

unconditional (‘static’) GCCRF version cannot reconcile the evidence of large losses for 

senior bond tranches  under stress conditions (e.g. large systemic risk shock) as being 

consistent with its ‘correlation risk’ exposure2.  

While keeping my modeling strategy as simple as possible by staying close 

enough to the standard GCCRF model, I draw from the approach of Lamb et al.  (2008) 

that have recently shown how an explicit dynamic stochastic process can be introduced to 

                                                                                                                                                 
1 See section 4. 
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model systemic risk changes over time (e.g. an autoregressive time series process). I 

derive a conditionally-evolving dynamic loan loss distribution on a credit portfolio, 

which I apply to the pricing of (synthetic) CDOs tranches spread in closed form. As the 

distribution of losses at different future dates is affected by conditioning information, this 

model can also shed light on the term structure of credit risk.  

Lamb et al. (2008) fit a similar model to CDX tranches  (5, 7 and 10 years tenors 

and with attachment-detachment points 0-3%, 3-7%, 7-10%, 10-15%, and 15-30%) and 

the CDX index spread for a sample that includes observations of the contracts weekly 

from June 2006 to December 2007. However, they do not derive in closed form the value 

of the bond tranches; they rely on a numerical solution method to derive the (estimated) 

loan loss distribution. On a similar vein, Sidenius et al. (2008) argue that the industry-

standard (unconditional) GCCRF model specifies a distribution of credit events directly 

and therefore imposes no (sensible) dynamics on the credit risk (spreads) of the 

underlying portfolio of names. Their model (called SPA, out of the authors’ name) is an 

attempt to provide a novel, tractable framework that extends the current portfolio loss 

models with realistic dynamic properties. The SPA loss distribution is assumed to evolve 

as a Markov process based on the path of the background process. Unfortunately, its 

operational implementation is not amenable to a closed form solution (Lamb et al., 

2008),. While numerically efficient algorithms can be constructed to value bond tranches 

linked to the dynamics of loss distributions, these algorithms involve non-linear 

regression steps to uncover conditional expectations. As the optimal tuning of these 

                                                                                                                                                 
2 Implied correlation extracted from credit spreads differ across bond tranches (higher for junior and senior, 
lower for mezzanine tranches; ‘correlation smile’). 
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regressions is strongly model specific, they seem to require further investigation before 

they can be widely used.  

The risk characteristics and general behavior of losses in a conditional and 

unconditional world are very different. These differences have important implications for 

SF securities rating systems that would need to be discussed3. Typically, the rating 

process for a standard SF deal is staged in two phases. First, the estimation of the loss 

distribution over a specified horizon and, second, the simulation of the cash flows. The 

simulations incorporated the CDO waterfall triggers, designed to provide protection to 

the senior bond tranches in case of bad events, were used to investigate extreme 

scenarios. The loan loss distribution assumptions allow the determination of the Credit 

Enhancement (CE), that is, the amount of loss on the underlying collateral that can be 

absorbed before the tranche absorbs any loss. If the credit rating is associated with a 

probability of default, the amount of CE is simply the level of loss such that the 

probability that the loss is higher than CE is equal to the probability of default. CE is thus 

equivalent to a standard Value-at-Risk type of risk measure4.  Thus, given the crucial role 

of credit risk as part of the rating assignment process, the credit risk properties of (plain-

vanilla ABS) CDOs notes are investigated using a conditional GCCRF model. For the 

sake of comparability  standard assumptions concerning expected loss of the underlying 

collateral value (default probability and loss given default) are adopted. However, unlike 

                                                 
3  I am indebted to an anonymous referee for stimulating comments regarding  the pros and cons of 
conditional vs unconditional credit risk measure in SF deals valuation.   
4 In a typical CDO, credit enhancement comes from two sources: “subordination”, that is, the par value of 
the tranches with junior claims to the tranche being rated, and “excess spread” which is the difference 
between the income and expenses of the credit structure. Over time, the CE, in percentage of the principal 
outstanding, will increase as prepayments occur and senior securities are paid out. The lower the credit 
quality of the underlying subprime mortgages in the ABS CDOs, the greater will be credit enhancement, 
for a given credit rating. Deterioration of credit quality, will lead to a downgrade of the ABS structured 
credits. 
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the static treatment of systemic risk exposures routinely used in many applications, we 

focus our modeling strategy on the fluctuations in market perception regarding the total 

loss distribution on the collateral value. Changing market perception about the loss 

distribution is captured by conditioning such distribution upon a (single) macro-risk 

factor (systemic risk). Since a single macro-risk drives the performance of the underlying 

collateral value and consequently also the associated tranches, we can trace the allocation 

of systemic risk to individual tranches. Thus, such modeling strategy sheds light on how 

systemic risk would impact on the value of (junior/senior) SF bond tranches. Also, the 

macro-risk factor dependency of individual tranches can be investigated and total 

portfolio losses decomposed in a “two-dimensional way” to states and tranche categories, 

where states are defined as the macro factor (systemic risk) taking values in certain 

ranges. In addition, this methodology enables one to analyze the impact of 

model/estimation risk, represented by differing risk properties of the underlying collateral 

value (default probability, default correlation, etc.), and to delineate its effect on the risk 

properties of the various bond tranches.  

An outline of this paper is as follows. Section 1 presents a simple model of default 

risk and expected loss based on the standard mixed binomial model and a common 

method for modeling the joint incidence of defaults. Section 2 illustrates a basic (yet 

realistic) synthetic CDO structure with a focus on the mechanics of credit risk evaluation 

related to securities tranching. Section 3 introduces the GCCRF model, distinguishing 

conditional vs. unconditional approach to portfolio credit risk measurement. Credit risk 

sensitivity to model parameters and structure are investigated also with the help of some 

stylized numerical examples. Section 4 takes up the implication of the GCCRF model for 
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the tails of the loss distribution. These implications are tested by simulating the bond 

prices (senior, mezzanine and equity tranches)  of a (stylized)  CDO backed by a pool of 

assets. Several types of systemic risk shocks to the credit loss distribution are considered 

in reporting the expected losses of each bond tranche. In addition to the standard GCCRF 

framework, we also simulate the impact of  systemic shocks under the Student-t 

distribution assumption, so that we can gauge the impact of fatter tails of the loss 

distribution on the credit risk of the tranches. Section 5 summarizes the main results of 

this paper and discusses the implications of switching from ‘through-to-cycle’ to ‘point-

in-time’ ratings system, in order to take into account the exposure to systemic risk 

changes.  

 

2. The mixed binomial model: a primer on default risk and expected 

losses  

One common approach in credit-risk analysis is the mixed-binomial model, which 

is used in a wide class of models analyzing defaults. The key inputs are the default 

correlations across and within sectors, which determine both the value that is created 

from pooling assets and the tranching capacity of the pool Mixed Binomials are used in a 

wide class of models analyzing defaults5. We posit that the default probability of a 

mortgage is a Bernoulli random variable, taking the value of 1 with probability p and 0 

with probability 1 − p. Next, we posit a pool of mortgages in which the default 

probability of mortgage i is denoted by Xi and is equal to 1 if the mortgage defaults, and 0 

otherwise. Each mortgage in the pool is assumed to have a different default probability, 

                                                 
5 This section draws heavily on Lando (2004). 
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hence we need to randomize the default probability p. Randomization is achieved using a 

mixture distribution, which randomizes the default distribution of the binomial model, 

inducing dependence between different default probabilities. The dependence so 

generated mimics an environment in which a pools of different mortgages are subject to a 

common economic risk. Assume that the default parameter 

 1,0~p  is independent of the Xi’s and that conditional on p~  all the Xi’s are independent. 

Denoting the density of p~  by f(p) we have 

   dpppfpEp 
1

0

~  

(1a) 

Using the law of iterated expectations and variance decomposition, we have 

          222 ~;;  -1  ; ppEXXCOVppXpXE jiii    

(2a) 

We can now express the default correlation as 

   
  -1 

~
;

22

pp

ppE
XXCORR ii


  

(3a) 

The default correlation is 0 if p~ is constant. Moreover, the default correlation in (3a) is 

always non-negative in this model6. The total number of defaults in the pool of mortgages 

is   . and 
1

pnDEXD n

n

i
in 



 The variance of the total number of defaults in the 

mortgage pool is: 

        222 ~11 ppEnnppnDn   
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(4a) 

and 

           





 nppEppE
n

nn

n

pp
nDn  as ,~~11 2222

2
2  

(5a) 

That is to say, for large enough n, the variance of the average default rate Dn/n is 

determined by that of the distribution of p~ . Using the fact that when n is large, the 

realized frequency of defaults is almost identical to the realized value of p~ , the 

distribution of defaults becomes that of p~  and hence one can show that: 

          nFdppfnDprobpEp n  as ~ 0



 

(6a) 

That is, for a large pool of assets the probability distribution of p~ , F(), determines the 

risk distribution of the portfolio: the greater the variability in the mixture distribution of 

p~ , the greater the correlation of defaults, and hence the greater the weight on the tails of 

the distribution. Increasing the correlation between assets in the collateral pool decreases 

the value of the most senior tranches, because the likelihood of a large number of defaults 

increases and more of the junior tranches are likely to be wiped out. On the other hand, as 

the correlation increases, the value of the junior tranches increases as well, as more 

weight is being put on the other tail of the distribution – and very few defaults are more 

likely as well. Hence the mixing distribution in the binomial model is crucial not only for 

the value of diversification of the collateral pool, but also for the ability to carve out 

highly rated risk-free tranches. Thus, as noted by Fender and Kiff (2004), given the 

                                                                                                                                                 
6 See Lando (2004), p. 217. 
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diversity of correlation assumptions across rating agencies and CDO methodologies, the 

ratings that estimated ELs could map into can differ substantially. 

 

3. Collateral pool value and securities tranching 

The common method for modeling the joint incidence of defaults is known as the 

copula method (Schonbucher, 2003). This approach draws a set of n correlated random 

variables {Yi ; i=1,n} from a pre-specified distribution and then assumes that a firm 

defaults if its variable, Yi = yi, is below the -th percentile of the corresponding marginal 

distribution, Fi(yi). In this framework, by construction, a firm defaults % of the time and 

default dependence can be flexibly captured through the proposed joint distribution for 

{Yi ; i=1,n}. A popular choice for the joint distribution function is the multivariate 

Gaussian (Vasicek, 2002), in which default correlation is simply controlled by the 

pairwise correlation of (Yi, Yj). Off-the-shelf CDO rating toolkits offered by CRAs, such 

as Fitch’s Default VECTOR models, Moody’s CDOROM and Standard and Poor’s CDO 

Evaluator (Standard & Poor’s, 2005), all employ versions of this copula model. The 

numerical simulations reported in section (3)-(4) rely on a simplified version of the 

copula model that is the industry standard for characterizing portfolio losses. 

Consider the simplest types of collateralized debt obligations (CDOs), tranches of 

structured debt securities backed by pools of  bonds (say, ABS). The normal-copula/beta 

model of bond losses can be used to build up a model of CDO tranche credit losses. More 

specifically, consider a static CDO deal backed by n bonds. Investments are made at the 

“deal date” and proceeds are distributed to investors at the maturity date. The value of the 

collateral pool at the deal date is normalized to one and the value of the collateral pool at 
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the maturity date is denoted Vp. Share ke of the collateral pool is funded by equity 

investors at the deal date. The remaining 1−ke of the pool is funded by a continuum of 

arbitrarily thin debt tranches. Debt tranches are indexed by  1,ekk , where k is a 

tranche’s attachment point in the CDO capital structure. Thus, higher values of k imply 

greater seniority. The interest paid to each debt tranche is described by the non-increasing 

function r(k). At the maturity date, collateral is liquidated and tranche k investors are paid 

1+r(k), if sufficient funds are available. If Vp is not sufficient to pay all debt investors, 

tranches are paid according to seniority. If Vp exceeds that needed to pay debt investors, 

equity investors receive any residual value.  

Assuming no credit losses, the total value of all debt tranches senior to tranche k 

is 

      1 kRkkV   

(1b) 

where      dssr
1

kkR is the total interest owed to these tranches. The realized value of 

tranches senior to k is 

         pp VkVkVVkVkV  1  

(1’b) 

where 1{.} is an indicator function (dummy variable) that is equal to 1 if the inequality in 

parenthesis is fulfilled and 0 otherwise. The second right-hand term is the value of any 

realized credit losses for tranches senior to k. Note that the value for a “slice” of the CDO 

with attachment point kl and detachment point kh is V(kl) − V (kh). The value of the equity 

tranche is Vp − V (ke). 
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4. Credit model and systemic risk in a Gaussian copula framework  

Under the simplest Gaussian copula framework, obligor (say, bond) i defaults 

during a specified horizon (say, one year) if an unobservable normal latent factor Yi lies 

below the default threshold  1 , where -1 is the inverse of the standard normal 

cumulative density function. The parameter π describes the bond’s marginal probability 

of default.  

Consider n bonds (obligors), all of equal size (1/n), entering a portfolio and taking 

the limit n  . This portfolio is referred to as asymptotic or “perfectly-fine-grained”. 

All obligors (issuers) exhibit ex-ante homogeneous credit risk. This is captured by 

assuming that the value of the assets of each obligor, i, Ai,, reflects his credit condition 

and evolves in the following way: 

      ,,,   iii YALnALn    

(2b) 

The drift and the volatility of the asset value are controlled by (constant) positive 

parameters  and , which are the same for all obligors;   denotes the period between 

two observations (not greater than the specified horizon to default). The riskiness of 

obligor i is driven by the (latent) credit risk factor, Yi,. 

  1 ,,   ii ZXY   

(3b) 

where X is a standard normal random factor, X  N(0,1), shared by all obligors, and Zi, 

is a standard normal idiosyncratic factor, Zi,  N(0,1), that is unique for each obligor. In 
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addition, it is postulated that {X, Zi, ; i=1,n}, are serially uncorrelated. Cross-sectional 

correlation in defaults across pairs of simple bonds i and j arises from correlation in latent 

credit factors Yi, and Yj,, which is controlled by parameter ρ, lying between zero and one, 

ρ[0,1]. This parameter determines the correlation in credit factors between pairs of 

bonds. Higher values of ρ imply closer correlation between credit factors, and, by 

extension, between realized defaults. Obligor i defaults on the bond issue if and only if 

Ln(Ai,) is below some non-stochastic (log) debt threshold,  ln(Ai
L). Default events are 

assumed to occur only at the end, t{1,2,…,T}, of a non-overlapping and adjacent time 

period (say, one year), which may be longer than the periods between two consecutive 

observations of the obligor’s assets (i.e. 1>).    

 As is argued by Adelson (2003), default correlation is a time-varying 

phenomenon. In addition, the (standard) assumption of constant recovery rate does not 

conform with the empirical evidence of substantial cyclical variability in recoveries and 

negative correlation with default probabilities. Thus, the systemic risk located in the tails 

of pool loss distributions is not adequately accounted for by the (standard) simple 

constant copula framework. 

Assume that bond i is a bullet loan that pays 1 + ri at maturity if the obligor does 

not default, and (1 + ri)(1 − λi) if the obligor defaults.  λi is a random variable describing 

the realized loss given default; for simplicity this analysis assumes that  λi is independent 

of all other random variables. For corporate bond exposures, this loss rate is often 

assumed to be drawn from a beta distribution that may or may not depend on the systemic 

factors that drive asset correlations. The beta distribution is a two-parameter distribution 

with support on the unit interval that can be fully characterized by a mean parameter μ 
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and a standard deviation parameter  σ. Such parameterization of the beta distribution 

makes the economic interpretation of model parameters more transparent than the 

standard two-shape parameters (α, β) characterization found in the statistics literature. It 

can be shown that  

 

α = [μ (1 − μ) − σ2
](μ/σ

2
) 

β = [(1 − μ)
2 + σ2

 ](μ/σ
2
) -1. 

(4b) 

The payout from a one-dollar investment in bond i at the maturity date is 

Vi = (1 + ri) [1-1{Yi ≤-1()}λi]  

(5b) 

 The right-most term is the realized contractual loss per dollar invested. Note that when λi 

is large, this loss rate may exceed 100 percent because of accrued but unpaid interest. 

Given n homogeneous bonds, the joint distribution of [V1, V2,. . . ,Vn] is fully described by 

the risk parameter vector  = (, , , ). 

 To keep notation simple, this analysis is restricted to CDOs backed by equal-

weighted pools of n bonds – all of them of equal size, which is set to 1/n – that are 

homogeneous in the sense that all bonds in the pool share the same risk parameter vector 

 and pay the same interest rate rp. Let  

    1

1

 1 



  i

n

i

YnD  

(6b) 
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be a random variable that describes the number of bonds in the CDO collateral pool that 

default by the maturity date, and let   

 
 

 
1

1




nD

i
iD nD
  

(7b) 

be the average loss given default for those D(n) bonds. The value of the collateral pool at 

the maturity date is 

   




  Dpp n

nD
rV 1 1  

(8b) 

The random variables D(n) and   D determine Vp. D(n) is a draw from a binomial-

normal mixture distribution, and, conditional on D(n),  D is an average of D(n) 

independent beta random variables. Neither the marginal distributions of D(n) nor the 

conditional distribution of  D , given D(n), can be easily expressed in exact closed form; 

but both can be computed analytically with high precision. In the next section we will 

consider a Bernoulli mixture model in which computation can be performed explicitly. 

Given the assumption of independence, the product of these two distributions is 

the joint distribution of D(n) and  D , which provides all the information necessary to 

compute the joint distribution of Vp and V(k) for all k. The distribution of CDO tranche 

payouts is fully determined by n, rp, r(k), and the normal copula/beta model parameter 

vector  for the collateral pool. n, rp, and r(k) are known features of the CDO contract, 

but market participants cannot directly observe the risk parameter vector . Given , any 

number of relevant metrics of the credit risk associated with a CDO note can be 
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computed. The next section examines how three common metrics of credit risk depend on 

the vector of risk parameters . 

 

4.1 Credit risk sensitivity to model parameters and structure. 

This analysis considers three standard metrics of credit quality: probability of 

default, expected loss, and conditional expected loss. Define the expectation operator  

E[Z] as the expected value of the random variable Z whose distribution is determined by 

. Let Vi be the value of a one-dollar investment in debt security i at the maturity date and 

let ri be the contractual interest on that security. The security’s probability of default is 

defined as  

PDi = E [1{Vi < (1 + r i)}] 

(9b) 

PDi describes the likelihood but not the magnitude of a credit loss. The (unconditional) 

expected loss 

ELi = (1 + r i) − E[Vi ] 

(10b) 

summarizes the expected likelihood and the magnitude of a credit loss7. PDi  and ELi  

describe the first moment of a security’s loss distribution. In portfolio risk management 

applications such as economic capital allocation, analysts also require information about 

a security’s marginal contribution to portfolio-wide losses. The literature has proposed a 

number of risk metrics useful for describing the dependence between an individual 

exposure’s credit losses and those of a broader portfolio. Here, following the treatment of 

                                                 
7 Note that ELi may exceed 100 percent because both principal and accrued interest may be lost. 
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Schonbucher (2003), I consider only one such measure derived from an asymptotic single 

risk factor approximation. Gordy (2003) shows that if a portfolio is well diversified and 

its overall loss rate depends on a single systemic factor, X, then an exposure’s marginal 

contribution to risk can be determined analytically by calculating the conditional 

expected loss of the exposure given an adverse draw of the systematic risk factor.  

The conditional expected loss associated with a th percentile portfolio risk 

measure (CEL) is  

CEL = (1 + rp) − E[Vp| X = x] 

(11b) 

where x is the 1 − th percentile of the stochastic systemic risk factor, X, 

 x=(1-) 

(12b) 

Unlike PD and EL, which describe the (unconditional) center of the distribution 

of losses, CEL describes the conditional losses of this distribution.  

Under the normal copula/beta model, EL, PD, and CEL  for both simple and 

structured bonds are determined by the parameter vector . For plain vanilla bonds, the 

default probability of obligor i, with credit condition regulated by eq. (2b), is given by 

PDi  i= (Yi
L), where,
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(13b) 

where Yi
L is a critical threshold of credit quality. The expected loss associated with 

default probability (13b) can be written as  
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ELi= (1 + ri) i μ. 

(14b) 

Recalling definition (6b), we can get an expression for the conditional expected loss as a 

function of the fraction of loans that default, Ln  
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(15b) 

As the number of credits in our portfolio gets very large (n → ∞), the fraction of 

defaulted credits in the n obligors’ portfolio, Ln, converges to the individual default 

probability of each individual credit8. When ρ = 0 defaults are statistically independent, 

so  Ln = p with probability 1, while when ρ = 1 defaults are perfectly correlated, so Ln = 

0 with probability 1 − p, and Ln = 1 with probability p. 

The CEL risk measure (15b) assumes crucially that: 

1) all obligors’ PDi are identical  (e.g. i = p ), hence requiring that Yi
L = YL, with 

p= (YL) 

(16b) 

2) the exposures of all obligors (i.e. correlation)  to the (single) systemic risk factor 

(underlying the obligor’s  assets), X, are cross-sectionally identical.  
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Under these two assumptions the aggregated (total) conditional loss distribution for a 

large and homogenous (granular) portfolio can be well approximated by applying the 

central limit theorem9, 
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(17b) 

Hence, for large portfolios the total loss distribution – conditional on the value of the 

systemic risk factor, X – is approximately Gaussian, with mean Lm and variance, 2
L . 

However, it is critical to realize that we must assume that the value of the (latent) risk 

factor, X, is known. In practice this value may be unknown and has to be integrated out. 

This would generally imply a non-Gaussian distribution for the total loss with generally 

fat tails, perhaps because of the conditional heteroskedasticity created by the risk factor10. 

Since for very large n, the variance of the loss distribution declines monotonically 

towards zero, 
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(17c) 

                                                                                                                                                 
8 As Schönbucher (2002) and Vasicek (2002) explain, such convergence is warranted since defaults are 
independent when conditioned to the realization of the common risk factor, X. 
9 See Foulcher, Gouriéroux and Tiomo (2005) for details. Vasicek (1991) and Schonbucher and Schubert 
(2001) show that approximation (17b) is quite accurate for the upper tail of the loss distribution even for 
mid-sized portfolios of about 100 names. 
10 This result is proved by Vasicek (1991); see also Tarashev  (2009).  
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the fraction of defaulted obligors in the collateral pool converges to the its mean, mL, 

which coincides with the individual default probability (reported in eq. 15b),  
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(17d) 

Using this results we obtain the familiar expression  for the cumulative loss distribution 

function, G(L), on a very large portfolio (cf. Vasicek 1991), 
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(17e) 

This is a highly skewed distribution with mean, median and mode given by,  
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(17f) 

The probability distribution G(L) can be interpreted as the unconditional version of the 

conditional loss distribution (17b), which is valid as an approximation only for collateral 

pools with very low  (close to zero) dispersion of losses. This may not be very realistic in 

many practical applications. However it has the apparent advantage of factoring out the 

level of systemic risk as a determinant of the loss distribution function.  The 

unconditional (‘static’) approach in modeling the systemic risk factor within the Gaussian 

copula model  is standard in the literature and is responsible for the theoretical limitation 

stated above.  
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Berd et al. (2007) and Lamb et al. (2008) are important recent contributions that 

attempt to provide a dynamic formulation of the standard GCCRF model by allowing the 

systemic risk factor to be an auto-regressive time series process with heteroscedastic 

volatility. Their time series assumption for the systemic risk factor can be extended to the 

conditional model (17b),   

 1,0),1,0(~ ),1,0(~   ,1 01     NXNXX  

(17g) 

with the unconditional variance of the risk factor, Xτ left unchanged (equal to 1; e.g., 

identical to the variance of X). Without loss of generality, we assume that the initial 

condition X0 has the same distribution as the risk factor, X of the standard (‘static’) 

GCCRF model. Also, it is easy to show that the steady state (stable) process - X0 = 0 - has 

zero mean and unit variance. The generalized auto-correlated risk factor model (17g) 

leaves the loan-loss credit portfolio distribution (17b) virtually unchanged, in that only a 

new parameter β  - controlling for the degree of mean reversion (auto-correlation) in the 

risk factor process - enters the distribution’s moments, 
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(17h) 

If  β=1 (perfect auto-correlation), the credit loss distribution (17h) reverts to (17b), 

namely to the standard GCCRF model, as the risk process, Xτ = Xτ-1 = …= X0, turns out 

to be a random walk (actually, constant) process. In this case, the credit loss distribution 



 

 27

defined in eq. (17b) can also be made consistent with economic capital regulation, in that 

the Basel Committee on Banking Supervision (BCBS) suggested a formula for the capital 

charges that directly replaces the (unknown) risk factor value, X, with a tail 

approximation (see BCBS, 2004). Such a replacement strategy is used in deriving the 

credit risk measure adopted in equation (15b).  

It is important to note that when the risk factor value is treated as fixed 

(deterministic; with a risk level α), the implied capital risk charge does not correspond to 

the usual tail Value-at-Risk, and it likely underestimates the risk on the total loss, since it 

neglects a large part of the random risk factor realizations. However, we can still take 

advantage of the approximated loss probability distribution to measure the tail risk 

associated with the anticipated level of the risk factor, X.  As we will see in the next 

section, full knowledge of the loss probability distribution is crucial to assessing the value 

of the various bond tranches in any SF deal. 

Under the assumption of independent defaults –  = 0 – the CEL  risk measure 

coincides with the EL risk measure for the portfolio, 

CEL = ELp = (1 + rp) p μ  

(18b) 

For plain-vanilla bonds, PD is determined by the normal copula marginal default 

probability parameter i, EL depends on both i and the expected loss-given-default 

parameter μ, and CEL is a function of p, μ and , the asset value correlation 

parameter. For structured bonds, there are no simple analytic formulas for PD, EL, and 

CEL, but these risk metrics can be computed numerically for any value of . In contrast 

to the case for simple bonds, PD, EL, and CEL for structured bonds each depend on all 
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four elements of the risk parameters vector . Thus estimates of  are important 

determinants of the quality of credit risk management system.  

Some stylized numerical examples are provided in Tables 1A, 1B and 1C under 

some simplifying assumptions – constant (non-stochastic) unitary LGD function (e.g. 

zero recovery rate), zero interest rate and 1-year horizon, 

 

rp = 0, μ = 1 (e.g.  D = 0)  

(19b) 

Under the assumptions (19b), the CELα defined in eq. (15b) can be directly related to the 

portfolio (conditional) loss distribution mean parameter 
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(20b) 

The factor model (3b) also allows us to derive a measure of default correlation, the true 

measure of the dependence between the default indicators of two obligors. The 

relationship between asset correlation and default correlation depends on the probability 

of default. It can be shown that the default correlation is a convex increasing function of 

the asset correlation parameter, ρ, taking value 0 at 0 and 1 at 1. In particular the default 

correlation is always smaller than the asset correlation and can be computed as 
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(21b) 

where Ψ[.] is the bivariate standard normal distribution function. 
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We can now proceed to quantify portfolio credit risk expected loss using  eq. 

(20b). Our approach is consistent with the Basel II model for capital charges in a highly 

stylized empirical framework. This standard framework, notwithstanding its simplifying 

assumptions, yields some significant insights. To the extent that it can document fairly 

large ranges of estimated credit risk measures, it offers evidence that market participants 

should have been aware of the uncertainty surrounding credit risk assessment in the 

presence of systemic (default correlation) risk (cf. Heitfield, 2008).   

A fixed range of PD, 

[0.5 ; 1.0 ; 2.5 ; 5.0] percent 

is selected along with a grid of reasonable degrees of exposure (e.g. correlation 

parameter) to the systemic default risk factor,  

[0 ; 5 ; 10 ;15 ; 20 ; 25 ; 30 ; 35 ; 40 ; 50] percent 

To establish this idea, we assume that the investor is interested in a portfolio of 

assets (collateral pool) whose value is expected to be subject to a systemic risk factor 

shock with 99.9% confidence level (e.g. CEL99.9%); also we assume, β=1 (perfect auto-

correlation). Due to the simplifying assumptions adopted here, estimation risk (and/or 

noise) is completely ignored, that is, parameter estimates of  are treated as if they are 

known with certainty and are not subject to any estimation/model error or risk 

adjustment. This is not an innocuous assumption, in light of the fairly wide range of 

outcomes that we are going to get out of the computed credit-risk measures.  

 Using equation (20b) to compute the CEL99.9% risk measure we get 14.55 cents 

on the euro, with PD = 1% and   = 20% (default correlation equal to an appreciable 2.41 

percent). Lowering the correlation parameter to 5% – default correlation now drops to 
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very modest level, 0.41 percent – would drastically reduce the computed credit loss 

measure, as CEL99.9% declines to 4.67 cents. In the absence of default correlation (e.g. 

with correlation parameter  = 0) – i.e. following an apparently almost insignificant 

reduction in  the measure of the default correlation – CEL99.9%  drops to only 1 cent on the 

euro (i.e. the average default probability of the portfolio). Raising the correlation 

parameter to somewhere in the higher range of the spectrum – e.g.  = 0.40 (default 

correlation equal to 7.73 percent) – the conditional expected credit loss jumps to 31.56 

cents on the euro. Thus, even simplistic credit risk models – such as the static one-factor 

Gaussian copula – can generate fairly large expected loss when systemic risk shocks are 

great enough and the default correlation rate is significant. 

Such fairly drastic changes persist, although marginally smaller, also at higher 

levels of default probability. For default probability below 1% (say, 0.5%) correlation 

sensitivity is slightly higher. While we acknowledge that the value of the risk factor at the 

99.9% confidence level implies a very large deviation from its average level – a very 

large systemic risk shock (increase) hitting the credit loss distribution – similar results are 

obtained if we lower the confidence level to 99% or 95% percent (as reported in Tables 

1B and 1C), albeit with lower conditional expected credit losses.  

Thus, it should not come as a surprise that parameter uncertainty can have a 

substantial impact on the credit-risk measure. In particular, it is most important in 

gauging the level of systemic risk shock to which the investor is conditioning credit risk 

assessment. While a user can probably identify a reasonable range of values for the 

relevant model parameters, it is far from obvious how to calibrate them to specific point 

value and future systemic risk shock realizations. For example, estimating the default 
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correlation even under the simple assumptions of the factor model (3b), requires mapping 

asset correlation to observable variables such as stock market prices. A great deal of 

accurate information on covariance/volatility (cross-section and over time) structure – 

including perhaps appropriate modeling assumptions – is likely to be needed in order to 

measure the dependence of a varying asset pool on the systemic risk factor.   

 

5. Calibrating a stylized SF deal: implications for bond tranche credit 

risk   

As mentioned above, knowing the entire credit loss distribution of the underlying 

collateral would be of great importance in assessing bond tranche credit risk in any SF 

deal. So far we have only tested the impact of various assumptions on average default 

probability and default correlation on the expected credit loss. We still need to check the 

implication of these assumptions for the tails of the portfolio credit loss distribution. It is 

plausible that, inasmuch as they were relevant for the first moment of the loss distribution 

(e.g. expected loss), higher moments of the credit loss distribution will not be immune 

from the uncertainty regarding the values of the model's parameters. This conjecture will 

now be taken directly into the SF credit risk evaluation domain,  testing the dependence 

of the credit loss distribution tails on the parameters and structure of the model.  

To proceed with the testing we consider a stylized SF deal (say, a simple ABS 

CDO structure) backed by a pool of assets – a portfolio of ABS – with known loss 

distribution function – as described by the factor model (3b) – with the tranches of 

subordinated bonds defined according to the following attachment/detachment points: 

1) equity tranche: 0-3 percent losses 
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2) mezzanine tranche: 3-6 percent losses 

3) senior tranche: 6-13 percent losses 

4) super-senior tranche: 13-100 percent losses. 

    We assume that the credit loss distribution of the collateral pool (ABS portfolio) is 

consistent with the moments specified in eq. (17b) - adjusted for auto-correlation in eq. 

(17h) - i.e. with the assumption of approximation to a large and homogeneous portfolio. 

For the sake of simplicity, we also assume β=1 (perfect auto-correlation). To simplify the 

notation I omit the subscript n in denoting  the loss ncurred by the underlying pool of 

assets (ABS portfolio), as the number of obligors entering the collateral pool is now 

going to be fixed in advanced. Given  the level of systemic risk, X, the conditional credit 

loss on the collateral pool has following distribution, 

    XX L
2

L ;mN~XL   

where its mean and variance expression are laid out in eq. (17h).   The derived 

conditional credit loss function for each bond tranche – with attachment/detachment 

points defined above – is given by 
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(22b) 

where L(kj,kj-1) indicates the amount lost by each tranche with attachment/detachment 

points, (kj-1 , kj), as a result of the loss, L|X, caused by defaults in the collateral  pool. The 

attachment/detachment points associated with each tranche (kj = 0%, 3%,6%,13%,100%, 

with the number of tranches, J-1, equal to 4) allocate the total loss of the collateral pool.   
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It is very convenient to rewrite the credit loss function of each tranche, L(kj,kj-1|X), 

in (22b) as the payoff of a call option spread, written on the underlying credit loss L|X of 

the collateral pool and with strike prices set according to the attachment/detachment 

points, (kj,kj-1), 
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(23b) 

Also, it is convenient to measure the credit loss of each tranche as a fraction of the total 

tranche. For this purpose we define the following ratio, 
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(24b) 

We can appraise the value of  the expected credit loss for each bond tranche – i.e. 

eqs.(23b) and (24b) – by pricing the call option spread payoff indicated in eq. (23b):   
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(25b) 

Each call option in (25b) can be priced by computing the following expression 
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(26b) 

where FL(L|X) indicates the probability distribution of the credit losses given X, L|X. The 

first term in square brackets coincides with the Expected-Shortfall (ES) risk measure, 
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evaluated at the detachment point, kj. In pricing the call option (26b) we ignore, for the 

sake of simplicity, the time–value of the option payoff (i.e. we set the risk-free interest 

rate to zero).  

To compute the ES value component in (26b), I employ two specifications of credit 

loss distribution, FL(L|X); namely, 

1) Gaussian distribution function (asymptotic approximation), as  laid out in eq. (17b),  

FL(L|X) ~ N[mL(X),σL
2(X)] 

(27b) 

2) Student-t distribution, which exhibits more fat-tailed behavior than the Gaussian 

distribution.  

FL(L) ~ t[mL(X),σL
2(X), υ]  

(28b) 

where parameter  υ indicates the degrees of freedom of the Student-t distribution. 

The second specification, (28b), acknowledges the limitations implied by the 

"fine-graining" of the portfolio composition underlying the validity of the Gaussian 

approximation, (27b). This assumption might badly underestimate the magnitude of tail-

risk of actual collateral pool losses11.   

Following McNeil, Frey, Embrechts (2005; pp.45-46), we compute the ES 

measure component (eq. 26b) for both credit loss distribution assumptions. For the 

Gaussian distribution function, (27b), we have, 

                                                 
11 "Granularity adjustments" (due to departures from the asymptotic distribution assumption) for the credit 
risk measures are well known issues in the risk-management literature (see Gordy 2003). These 
adjustments can constitute a substantial portion of the total value of the "adjusted" credit risk measure, 
particularly for portfolios of high credit quality. 
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(29b) 

and for the Student-t loss distribution, (28b), 
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(30b) 

Substituting (29b) and (30b) into eq. (26b) and subsequently into (25b) we get the value 

of the call option spread for each bond tranche, namely its conditional expected (credit) 

loss measure. 

      ,J    jX;kkLE;kkCEL j-jj-jXα 1 11   

(31b) 

It is important to notice in eq. (31b) that the conditional expected loss of each tranche 

depends on the parameter values, θ=(πp, ρ, α), of the asset pool – default probability, 

correlation parameter, systemic risk level – not only through the mean of the loss 

distribution, mL(X), but also through its variance, σL
2(X), as the tails of the distribution 

come into play in determining the call spread value. For the t-distribution assumption, the 

magnitude of the tails is also regulated by the choice of the degrees-of-freedom 

parameter, υ (smaller values are associated with fatter tails; large values imply little 

deviation from the Gaussian benchmark).  
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We obtain the value of the Gaussian call options by substituting eq. (29b) into eq. 

(26b),    
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(32b) 

Notice that the call option value (32b) is a monotonic decreasing function of the strike 

price, kj (as in the classic Black-Scholes option pricing formula), so that the call spread 

measure (25b) is always positive. Thus, the credit risk measure (31b) – e.g. the economic 

value of each bond tranche – is positive as well. This property can be checked by 

differentiating (32b) with respect to kj, 
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(33b) 

since the following condition is fulfilled by the Gaussian density function, 
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(34b) 

A similar check can be done for the value of the Student-t call option,  
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obtained by substituting (30b) into (26b). Differentiating (35b) with respect to kj yields 
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since  the following condition is fulfilled by the Student-t density function, 
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(37b) 

 

5.1 Systemic risk and  expected losses on bond tranches   

In Tables 2A and 2B we report the value of the expected losses of each bond 

tranche under the Gaussian distribution assumption. We consider the following grid of 

parameter correlation values. 

[0 ; 5 ; 10 ;15 ; 20 ; 25 ; 30 ; 35 ; 40 ; 50] percent. 

We limit the results reported here to two possible values for the average default 

probability of the asset pool: 1% (Table 2A) and 2.5% (Table 2B). Also, we focus 

primarily on the implications of a very large (extreme) systemic risk shock to the credit 

loss distribution – that is, we assume that the value of the systemic risk factor, X, is 

associated with a 99.9% significance level, α (i.e. 0.1% probability of shock).  Similarly, 

we report the expected losses of each bond tranche computed under the Student-t 

distribution assumption, in order to gauge the impact of fatter tails on the credit risk of 

the deal (Tables 3A and 3B). To avoid a proliferation of tables, the results are reported 
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for a concentrated portfolio only. For a given risk budget, considering more diversified 

portfolios would further magnify the impact of systemic shocks on correlation risk12.      

 Predictably, the sheer size of the systemic risk shock has great impact on the 

junior tranches. Under the Gaussian distribution assumption, even at relatively low 

correlation levels the destruction of value is significant. At correlation parameters equal 

to .05 and .10), respectively, 56 percent and 60 percent of the equity tranche is expected 

to be wiped out (Table 2A, last column, denominated “call-spread ratio”). Perhaps more 

interestingly, mezzanine and senior tranches do not perform much better, as they are 

expected to lose roughly half of their value (55 and 47 percent, respectively). Due to the 

very large magnitude of the systemic shock under consideration, defaults peak in the 

assets pool at very high levels – over 14% of the pool (with parameter correlation set at 

0.2) is expected to be wiped out – spilling over to more senior tranches. Only the super-

senior tranche appears to be relatively sheltered from the systemic shock, as it is expected 

to lose less than 10 percent of its value.  

By increasing the default correlation rate of the asset pool, the expected losses of 

each bond tranche always rise monotonically. Thus, all tranches are always short 

(default) correlation risk – that is, as default correlation increases a bond tranche becomes 

less valuable (the expected loss is now larger). For example, setting the correlation 

parameter at 0.40, the junior and mezzanine tranches would be expected to lose over 70 

percent of their value and the senior tranche 68 percent. As a result of the sheer size of 

                                                 
12 The number of securities included in the collateral pool (portfolio concentration) affects the 
(approximated)  credit loss distribution only by changing its dispersion parameter (increasing portfolio 
diversification reduces the credit loss variance of the collateral pool; see eq. 17b).  Our reported simulation 
results are based on the assumption of a perfectly homogeneous collateral pool (n=1). Similar results are 
obtained  by considering more diversified portfolios (n>1; these are available upon request from the 
author).     



 

 39

the systemic shock, even the super-senior would be hard hit and lose about a third of its 

value (Table 2A). Defaults are expected to wipe out almost a third of the collateral pool.  

Degrading the credit quality of the asset pool – i.e. increasing its expected 

(unconditional) default frequency to 2.5 percent – worsens monotonically, albeit not 

uniformly, the expected credit losses of all bond tranches (Table 2B). 

Moving on to the Student-t distribution assumption results (Tables 3A and 3B) – 

i.e. incorporating fatter-tail behavior – there are not many changes in the  pattern of 

expected credit losses for the bond tranches under scrutiny. To gauge the deviation from 

the Gaussian case, we have set the degrees of freedom parameter, υ, to low levels (e.g., 

5), so that we can clearly appreciate the impact of fatter tails on the credit risk of the 

tranches. This calibration of the Student-t distribution implies that the tail risk of the asset 

pool as measured by the ES risk measure increases, with respect to the Gaussian 

distribution case, by more than 60 percent for low correlation levels and more than 50 

percent for high levels (Table 4)13. Thus, under the Student–t distribution assumption  

unexpected losses for the assets pool are significantly greater than in the Gaussian case. 

As a result, senior tranches are now more likely to be hit by defaults. 

Simulating the call spread values under the Student-t credit loss distribution – i.e. 

using eq. (32b) to compute the option value – the results for the expected losses are as 

follows. All bond tranches are short correlation risk as in the Gaussian case. The equity 

tranche is slightly less risky than the Gaussian case (Table 3A vs. Table 2A). Considering 

bond tranches of increasing seniority, credit losses decrease but at a lower pace than with 

the Gaussian distribution. Fatter tails of the loss distribution tend to magnify losses on the 

senior tranches (and symmetrically reduce them for the junior tranches) vis-à-vis the 
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Gaussian distribution. As a result, while the mezzanine tranche is still marginally less 

risky than with the Gaussian distribution, the senior tranche becomes uniformly 

(marginally) riskier. The super-senior tranche would also now become more risky. 

However, credit loss differences remain modest –between 1 and 2 percentage points – 

despite the much fatter tail of the Student-t loss distribution. Similar results are obtained 

if we lower the credit quality of the asset pool, from 1% default probability to 2.5% (see 

Tables 3B and 3B).  

All in all, fattening the tails of the loss distribution does not bring about drastic 

changes in the credit risk of structured finance deals. Thus, the Gaussian approximation 

provides a reasonable benchmark for assessing bond tranche credit risk. To test the 

robustness of this conclusion, we also check the implications of far smaller systemic risk 

shocks. Table 5 reports the expected credit loss of each bond tranche for various 

realizations of systemic risk shock. Inspecting the benchmark of macroeconomic risk 

factor set at its mean level –parameter α equal to 0.50 – we notice that the shape of the 

correlation risk is reversed with respect to the case of large systemic shock. That is, all 

bond tranches are now long correlation risk (as default correlation rises, bond value 

increases as expected credit losses decline). The same pattern is displayed by the 

Gaussian and the Student-t loss distributions alike. As the size of the systemic shock 

increases (say, α is raised to 0.75), correlation risk becomes inverse U-shaped; that is, 

each bond tranche is long correlation risk for low levels of default correlation and short 

correlation risk for relatively higher levels. The same correlation risk pattern (inverse U-

shape) persists for greater deviation (shock) of the risk factor from its mean level 

(parameter α equal to 0.90), namely for shocks with frequency of between every five and 

                                                                                                                                                 
13 The ES risk measure of the loss distribution is measured  at the 99% confidence level. 
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every ten years. For larger (less frequent) shocks, bond tranches tend gradually to revert 

to be short correlation risk (α equal to 0.95 and above). All in all, the size of the 

(anticipated) systemic shock is crucial in shaping correlation risk. However, for a given 

size of anticipated systemic shock, the qualitative shape of correlation risk is constant 

across tranches and does not change with respect to the fattening of the credit loss tail. In 

addition, a fatter tail makes relatively senior tranches always more risky, irrespective of 

the size of  shock, whereas the equity tranche would be marginally less risky only for 

some (positive) deviation from the mean of the risk factor (for α equal to or greater than 

0.75). All in all, a fatter tail would augment individual bond tranche credit risk only 

modestly; in relative terms, credit risk changes would be of some importance only for the 

super senior tranche, whose losses are expected to be quite contained for systemic shocks 

that are not too large. Moreover, in absolute terms credit risk increases across tranches 

are just barely sensitive to systemic risk shocks. Again, in relative terms, credit risk 

worsening is really material only for the super senior tranche.     

A final observation regards the order of magnitude of the (simulated) expected 

loss of the bond tranches. Such expected loss from defaults would need to be offset, 

under the assumption of a well functioning capital market, by the yield spread in excess 

of some risk-free interest rate (say, government bond yield to maturity) promised to the 

bondholder. Comparing bond tranches’ expected losses with this spread implies that the 

credit loss distribution should be adjusted for risk, i.e. that the actual (“historical”) loss 

distribution should be properly risk-neutralized by a suitable stochastic discount factor to 

get an equivalent martingale (risk-neutral) measure. A non-zero risk premium on default 

risk is equivalent to a risk-neutral credit loss probability being higher than that of its 
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actual counterpart. This is consistent with the evidence reported in Brigo et al. (2007) that 

the risk-neutral loss distribution privileges large realizations of the loss with respect to 

the objective distribution, thus confirming the presence of a risk premium on 

standardized CDO tranches  based on the ITRAXX  indices obligors’ pool.  

Focusing on the super-senior tranche, for relatively moderate systemic risk shock 

– say, α of at most 0.75 – the magnitude of the expected loss would appear to be broadly 

compatible with the actual bond spreads for such tranches as priced by the capital market 

before the outbreak of the SF crisis (below 100bps14; see D’Amato and Remolona, 2005). 

For greater systemic risk shock – assuming a non-negligible default correlation rate – 

simulated expected credit losses for the most senior tranche appear to be far greater than 

would be implied by their observed market spreads. This conclusion implies that if our 

(admittedly very stylized) credit risk model is broadly correct, the pre-crisis bond market 

prices of the most senior tranches may well have been “underpricing” the possibility of a 

significant rise in systemic risk. 

 

6. Conclusions   

This paper explores the implications of systemic risk in credit SF deals using a 

generalized version of the standard credit risk model widely used by market participants 

(Gaussian Copula Credit Risk Factor Model; GCCRF). Despite its widely known 

limitations, we provide a framework for supporting the conclusion that such model - that 

                                                 
14 Notice that our expected credit loss simulations assume zero recovery (given default) and ignore the 
liquidity risk of issued bond tranches. Taken together these assumptions tend  (at least in part) to offset 
each other.  Upgrading the quality of the asset pool (say, reducing  its average default probability from 1% 
to 0.5%) would lower our simulated expected losses somewhat but would not affect our main qualitative 
conclusions. The lower default probability estimate would broadly correspond to the examples reported in 
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antedates the crisis in its broad structure - could have indeed yielded sufficient insights 

regarding the risk underlying Structured Finance (SF) deals, if due attention and care 

were paid to modeling systemic risk. Simulations show that our generalized standard 

model, which stresses the advantages of maintaining a conditional structure in modeling 

risk factors, can capture the implications of a large systemic shock on bond senior 

tranches. Unlike the ‘static’ treatment of systemic risk exposures routinely used in many 

standard applications, our modeling strategy emphasizes the fluctuations in market 

perception regarding the total loss distribution on the collateral value. This methodology 

allows to analyze also the impact of model risk, represented by differing risk properties 

of the underlying collateral value, and to delineate its effect on the risk properties of the 

various bond tranches in SF deals. 

A set of (stylized)  CDO (backed by a pool of assets) valuations were performed 

taking into consideration several types of systemic risk shocks to the credit loss 

distribution. It is shown that AAA super-senior bond tranches can incur significant losses 

(provided that default correlation across the assets of the backing pool is not immaterial), 

despite the good quality of their collateral pool in normal times (i.e. low average 

unconditional default probability) in times of stress. In addition to the simulations carried 

out in a standard Gaussian framework, systemic shocks under the Student-t distribution 

assumption are evaluated. It is shown that fatter tails of the loss distribution, albeit of 

sizeable magnitude, do not bring about so drastic changes on the credit risk of CDO 

tranches. Fatter tails of the loss distribution tend to magnify losses on the senior tranches 

                                                                                                                                                 
D’Amato and Remolona (2005), Table 2, suggesting  an actual default intensity of 0.7% per year and a 
recovery rate of 41% (in this case, the expected loss will amount to 40 basis points in annual terms). 
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(and symmetrically reduce them for the junior tranches) vis-à-vis the Gaussian 

distribution.  

Unlike the implications of the standard ‘static’ (unconditional) GCCRF model, 

the generalized version adopted in this paper shows that changes in systemic risk level 

are crucial in shaping the profile of ‘correlation risk’. Bond value exposure to default 

correlation changes can be positive or negative, depending upon the level of systemic 

risk. More specifically, the shape of the correlation risk is reversed as we move from 

small to large systemic shock. That is, all bond tranches are long correlation risk  - as 

default correlation rises, bond value increases because expected credit losses decline - for 

low level of systemic risk. The same pattern is displayed by the Gaussian and the 

Student-t loss distributions alike. As the size of the systemic shock increases, correlation 

risk becomes inverse U-shaped; that is, each bond tranche is long correlation risk for low 

levels of default correlation and short correlation risk for relatively higher levels. For 

large systemic risk shocks correlation risk turns negative (‘short’; as default correlation 

rises, bond value declines because expected credit losses increase).  

Under the generalized GCCRF model simulated in this paper, correlation risk 

becomes a non linear function of systemic risk shocks. This is a challenge to traditional 

credit risk modeling, in that it does not allow for a proper conditional loan-loss 

distribution framework that would permit to incorporate systemic risk dynamics. Unlike 

the standard model, the order of magnitude of expected loss implied by the generalized 

GCCRF model can be sufficiently high to match the credit spread data of senior bond 

tranches observed during the 2007-08 credit crisis. As a result, the standard 

(unconditional) GCCRF model may cause, especially in times of stress, very serious 
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under-pricing of risk as well as credit hedging strategy failures (‘correlation risk’ changes 

not  tracked closely enough by credit hedges).   

As conditional expected losses can be computed for different values of the 

exposure to systemic risk, each structured security has a set of conditional expected 

losses associated to it. Each expected loss is a realization over time of a systemic risk 

factor. Standard credit ratings systems, taking a traditional ‘through-the-cycle’ 

(unconditional) view of  default probability, average out large fluctuations in the tails of 

the loss distributions. This is a recipe for massive underpricing of credit risk in SF deals, 

especially damaging for lower risk (e.g. higher rating grades) bond tranches, as changes 

in systemic risk can have a huge impact on their expected losses. Switching to a ‘point-

in-time’ (conditional) concept of rating grade is probably the only sensible way to 

remedy the shortcomings of traditional ‘through-the-cycle’ (unconditional) credit risk 

measures15.  

However, a conditional measure of rating grade would make individual security 

rating relatively more (sometimes extremely) volatile compared to a traditional 

(unconditional) measure, if the association of individual rating grade (say, AAA) to a 

given range of expected losses is kept unchanged over time. In addition, we need to be 

aware that measurement errors in modeling/assessing  systemic risk dynamics, as implied 

by a conditional approach to ratings, may inject new noise – e.g. undesirable additional  

volatility - in credit-risk valuation. Ratings ‘instability’, at least for investors’ categories 

relying on mandated investment, should be avoided, as dictated by the need to limit 

agency (delegation) problems between fund managers (agent) and investors (principal).  

                                                 
15 I owe to an anonymous referee the interesting question regarding the practical implications of 
introducing conditional risk measure within the current format adopted by credit rating systems.   
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To limit instability of ratings in SF deals, a reasonable case for adjusting over 

time the rating scale can be made. Namely, the implied credit risk content of each grade 

would be open to fine-tuning  adjustment over time by changing the grid of (conditional) 

expected losses (taking into account the exposure to systemic risk) associated to a (fixed) 

rating scale. Reviews of the credit risk content of the rating scale should take place only 

at fixed dates (well publicized in advance; say, on a quarterly basis) and any change 

would need to be widely disseminated and thoroughly explained by the CRAs. It is likely 

that a broadly correct timing of (systemic) risk – as mirrored in the credit risk content 

adjustment on the ratings scale - would also limit ‘ratings pro-cyclicality’, as in recession 

times downgrading (upgrading) prospects would be contained (enhanced), while exactly 

the opposite would be true in expansionary times. To avoid (wasteful) allegations of 

ratings manipulation, along with  rating grades the CRAs should start publishing on a 

regular basis the (estimated) expected loss for all individual security tranche of any 

(rated) SF deal. At a minimum, information on expected loss should match the rating 

scale review frequency (e.g. quarterly frequency; monthly would probably be better).  

Changes in the credit risk content of ratings scale could have the undesirable 

implication of  reducing the value of information that can be inferred from intertemporal 

analysis of ratings transition. However, such negative implication would be largely 

mitigated by the availability of expected loss estimates. That is, current rating grade of 

individual security – with its expected loss estimate associated - could always be 

converted into its ‘equivalent rating’ under a new classification system. Such ‘equivalent’ 

rating would be imputed by finding the class of credit risk in the new classification 

system matching the security expected loss estimate. In practice, such rating imputation 
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mechanism has strong similarities with the so called ‘market implied’ rating measures, a 

service already well marketed by CRAs. That is, a ‘notional’ rating is assigned to 

individual security based on market price information (for example, bond credit spread) 

using the current CRAs ratings scale. Expected loss indicator could play the same role as 

market price information for imputing rating grades under a time-varying ratings system.                  

 

   



 

 48

TABLES 

Table 
1A 

PD 
Correlation 
Parameter 

Default 
Correlation 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  

 0.50% 0.00 0.00% 0.1% 0.50% 
 0.50% 0.05 0.25% 0.1% 2.66% 
 0.50% 0.10 0.58% 0.1% 4.60% 
 0.50% 0.15 1.03% 0.1% 6.74% 
 0.50% 0.20 1.60% 0.1% 9.10% 
 0.50% 0.30 3.24% 0.1% 14.56% 
 0.50% 0.35 4.37% 0.1% 17.69% 
 0.50% 0.40 5.76% 0.1% 21.12% 
 0.50% 0.50 9.45% 0.1% 29.03% 
      
 1.00% 0.00 0.00% 0.1% 1.00% 
 1.00% 0.05 0.41% 0.1% 4.67% 
 1.00% 0.10 0.94% 0.1% 7.75% 
 1.00% 0.15 1.60% 0.1% 11.03% 
 1.00% 0.20 2.41% 0.1% 14.55% 
 1.00% 0.30 4.61% 0.1% 22.44% 
 1.00% 0.35 6.04% 0.1% 26.83% 
 1.00% 0.40 7.73% 0.1% 31.56% 
 1.00% 0.50 12.05% 0.1% 42.08% 
      
 2.50% 0.00 0.00% 0.1% 2.50% 
 2.50% 0.05 0.77% 0.1% 9.65% 
 2.50% 0.10 1.69% 0.1% 15.01% 
 2.50% 0.15 2.77% 0.1% 20.39% 
 2.50% 0.20 4.03% 0.1% 25.91% 
 2.50% 0.30 7.16% 0.1% 37.46% 
 2.50% 0.35 9.06% 0.1% 43.51% 
 2.50% 0.40 11.21% 0.1% 49.72% 
 2.50% 0.50 16.39% 0.1% 62.49% 
      
 5.00% 0.00 0.00% 0.1% 5.00% 
 5.00% 0.05 1.20% 0.1% 16.39% 
 5.00% 0.10 2.55% 0.1% 24.08% 
 5.00% 0.15 4.08% 0.1% 31.35% 
 5.00% 0.20 5.78% 0.1% 38.44% 
 5.00% 0.30 9.75% 0.1% 52.27% 
 5.00% 0.35 12.05% 0.1% 59.00% 
 5.00% 0.40 14.58% 0.1% 65.53% 
 5.00% 0.50 20.39% 0.1% 77.76% 
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Table 
1B 

PD 
Correlation 
parameter 

Default 
Correlation 

Quantile 
(Risk-

Factor) 

Conditional 
Expected Loss  

 0.50% 0.00 0.00% 1.0% 0.50% 
 0.50% 0.05 0.25% 1.0% 1.75% 
 0.50% 0.10 0.58% 1.0% 2.62% 
 0.50% 0.15 1.03% 1.0% 3.46% 
 0.50% 0.20 1.60% 1.0% 4.30% 
 0.50% 0.30 3.24% 1.0% 5.99% 
 0.50% 0.35 4.37% 1.0% 6.84% 
 0.50% 0.40 5.76% 1.0% 7.69% 
 0.50% 0.50 9.45% 1.0% 9.40% 
      
 1.00% 0.00 0.00% 1.0% 1.00% 
 1.00% 0.05 0.41% 1.0% 3.19% 
 1.00% 0.10 0.94% 1.0% 4.68% 
 1.00% 0.15 1.60% 1.0% 6.11% 
 1.00% 0.20 2.41% 1.0% 7.53% 
 1.00% 0.30 4.61% 1.0% 10.43% 
 1.00% 0.35 6.04% 1.0% 11.93% 
 1.00% 0.40 7.73% 1.0% 13.48% 
 1.00% 0.50 12.05% 1.0% 16.76% 
      
 2.50% 0.00 0.00% 1.0% 2.50% 
 2.50% 0.05 0.77% 1.0% 6.98% 
 2.50% 0.10 1.69% 1.0% 9.84% 
 2.50% 0.15 2.77% 1.0% 12.54% 
 2.50% 0.20 4.03% 1.0% 15.19% 
 2.50% 0.30 7.16% 1.0% 20.62% 
 2.50% 0.35 9.06% 1.0% 23.45% 
 2.50% 0.40 11.21% 1.0% 26.41% 
 2.50% 0.50 16.39% 1.0% 32.80% 
      
 5.00% 0.00 0.00% 1.0% 5.00% 
 5.00% 0.05 1.20% 1.0% 12.43% 
 5.00% 0.10 2.55% 1.0% 16.89% 
 5.00% 0.15 4.08% 1.0% 20.99% 
 5.00% 0.20 5.78% 1.0% 24.96% 
 5.00% 0.30 9.75% 1.0% 32.89% 
 5.00% 0.35 12.05% 1.0% 36.95% 
 5.00% 0.40 14.58% 1.0% 41.14% 
 5.00% 0.50 20.39% 1.0% 50.01% 
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Table 
1C 

PD 
Correlation 
parameter 

Default 
Correlation 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  

 0.50% 0.00 0.00% 5.0% 0.50% 
 0.50% 0.05 0.25% 5.0% 1.17% 
 0.50% 0.10 0.58% 5.0% 1.51% 
 0.50% 0.15 1.03% 5.0% 1.77% 
 0.50% 0.20 1.60% 5.0% 1.98% 
 0.50% 0.30 3.24% 5.0% 2.26% 
 0.50% 0.35 4.37% 5.0% 2.34% 
 0.50% 0.40 5.76% 5.0% 2.37% 
 0.50% 0.50 9.45% 5.0% 2.29% 
      
 1.00% 0.00 0.00% 5.0% 1.00% 
 1.00% 0.05 0.41% 5.0% 2.22% 
 1.00% 0.10 0.94% 5.0% 2.85% 
 1.00% 0.15 1.60% 5.0% 3.35% 
 1.00% 0.20 2.41% 5.0% 3.77% 
 1.00% 0.30 4.61% 5.0% 4.42% 
 1.00% 0.35 6.04% 5.0% 4.66% 
 1.00% 0.40 7.73% 5.0% 4.84% 
 1.00% 0.50 12.05% 5.0% 5.00% 
      
 2.50% 0.00 0.00% 5.0% 2.50% 
 2.50% 0.05 0.77% 5.0% 5.12% 
 2.50% 0.10 1.69% 5.0% 6.45% 
 2.50% 0.15 2.77% 5.0% 7.57% 
 2.50% 0.20 4.03% 5.0% 8.55% 
 2.50% 0.30 7.16% 5.0% 10.28% 
 2.50% 0.35 9.06% 5.0% 11.05% 
 2.50% 0.40 11.21% 5.0% 11.76% 
 2.50% 0.50 16.39% 5.0% 12.99% 
      
 5.00% 0.00 0.00% 5.0% 5.00% 
 5.00% 0.05 1.20% 5.0% 9.51% 
 5.00% 0.10 2.55% 5.0% 11.79% 
 5.00% 0.15 4.08% 5.0% 13.72% 
 5.00% 0.20 5.78% 5.0% 15.47% 
 5.00% 0.30 9.75% 5.0% 18.70% 
 5.00% 0.35 12.05% 5.0% 20.24% 
 5.00% 0.40 14.58% 5.0% 21.76% 
 5.00% 0.50 20.39% 5.0% 24.78% 
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Table 2.A PD 
Correlation 
parameter 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  
Call-spread 

Call-
spread 
ratio 

       

EQUITY 
TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.44% 48.0% 
 1.00% 0.05 0.10% 4.67% 1.68% 56.0% 
 1.00% 0.10 0.10% 7.75% 1.78% 59.2% 
 1.00% 0.15 0.10% 11.03% 1.86% 61.9% 
 1.00% 0.20 0.10% 14.55% 1.93% 64.4% 
 1.00% 0.30 0.10% 22.44% 2.08% 69.2% 
 1.00% 0.35 0.10% 26.83% 2.15% 71.6% 
 1.00% 0.40 0.10% 31.56% 2.22% 74.1% 
 1.00% 0.50 0.10% 42.09% 2.38% 79.4% 

MEZZANINE 
TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.09% 36.3% 
 1.00% 0.05 0.10% 4.67% 1.51% 50.3% 
 1.00% 0.10 0.10% 7.75% 1.65% 54.8% 
 1.00% 0.15 0.10% 11.03% 1.75% 58.2% 
 1.00% 0.20 0.10% 14.55% 1.84% 61.2% 
 1.00% 0.30 0.10% 22.44% 2.00% 66.6% 
 1.00% 0.35 0.10% 26.83% 2.08% 69.3% 
 1.00% 0.40 0.10% 31.56% 2.16% 72.0% 
 1.00% 0.50 0.10% 42.08% 2.33% 77.7% 

SENIOR 
TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.41% 20.1% 
 1.00% 0.05 0.10% 4.67% 2.87% 41.0% 
 1.00% 0.10 0.10% 7.75% 3.32% 47.4% 
 1.00% 0.15 0.10% 11.03% 3.64% 51.9% 
 1.00% 0.20 0.10% 14.55% 3.90% 55.7% 
 1.00% 0.30 0.10% 22.44% 4.35% 62.2% 
 1.00% 0.35 0.10% 26.83% 4.56% 65.2% 
 1.00% 0.40 0.10% 31.56% 4.78% 68.2% 
 1.00% 0.50 0.10% 42.08% 5.22% 74.5% 
SUPER-SENIOR 

TRANCHE       
 1.00% 0.00 0.10% 1.00% 0.55% 0.6% 
 1.00% 0.05 0.10% 4.67% 4.90% 5.6% 
 1.00% 0.10 0.10% 7.75% 8.24% 9.5% 
 1.00% 0.15 0.10% 11.03% 11.51% 13.2% 
 1.00% 0.20 0.10% 14.55% 14.77% 17.0% 
 1.00% 0.30 0.10% 22.44% 21.27% 24.5% 
 1.00% 0.35 0.10% 26.83% 24.54% 28.2% 
 1.00% 0.40 0.10% 31.56% 27.83% 32.0% 
 1.00% 0.50 0.10% 42.08% 34.63% 39.8% 



 

Table 2.B PD 
Correlation 
parameter 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  
Call-spread 

Call-
spread 

ratio 

       

EQUITY 
TRANCHE       

 2.50% 0.00 0.10% 2.50% 1.58% 52.5% 
 2.50% 0.05 0.10% 9.65% 1.83% 60.9% 
 2.50% 0.10 0.10% 15.01% 1.94% 64.7% 
 2.50% 0.15 0.10% 20.39% 2.04% 68.0% 
 2.50% 0.20 0.10% 25.91% 2.13% 71.1% 
 2.50% 0.30 0.10% 37.47% 2.31% 77.1% 
 2.50% 0.35 0.10% 43.51% 2.40% 80.2% 
 2.50% 0.40 0.10% 49.72% 2.50% 83.3% 
 2.50% 0.50 0.10% 62.49% 2.69% 89.6% 

MEZZANINE 
TRANCHE       

 2.50% 0.00 0.10% 2.50% 1.35% 44.9% 
 2.50% 0.05 0.10% 9.65% 1.71% 56.9% 
 2.50% 0.10 0.10% 15.01% 1.85% 61.6% 
 2.50% 0.15 0.10% 20.39% 1.96% 65.3% 
 2.50% 0.20 0.10% 25.91% 2.06% 68.7% 
 2.50% 0.30 0.10% 37.46% 2.26% 75.2% 
 2.50% 0.35 0.10% 43.51% 2.35% 78.4% 
 2.50% 0.40 0.10% 49.72% 2.45% 81.7% 
 2.50% 0.50 0.10% 62.49% 2.65% 88.4% 

SENIOR 
TRANCHE       

 2.50% 0.00 0.10% 2.50% 2.30% 32.8% 
 2.50% 0.05 0.10% 9.65% 3.51% 50.2% 
 2.50% 0.10 0.10% 15.01% 3.93% 56.1% 
 2.50% 0.15 0.10% 20.39% 4.24% 60.6% 
 2.50% 0.20 0.10% 25.91% 4.52% 64.6% 
 2.50% 0.30 0.10% 37.46% 5.03% 71.8% 
 2.50% 0.35 0.10% 43.51% 5.27% 75.3% 
 2.50% 0.40 0.10% 49.72% 5.52% 78.9% 
 2.50% 0.50 0.10% 62.49% 6.04% 86.3% 
SUPER-SENIOR 

TRANCHE       
 2.50% 0.00 0.10% 2.50% 2.34% 2.7% 
 2.50% 0.05 0.10% 9.65% 10.17% 11.7% 
 2.50% 0.10 0.10% 15.01% 15.18% 17.4% 
 2.50% 0.15 0.10% 20.39% 19.67% 22.6% 
 2.50% 0.20 0.10% 25.91% 23.87% 27.4% 
 2.50% 0.30 0.10% 37.46% 31.72% 36.5% 
 2.50% 0.35 0.10% 43.51% 35.52% 40.8% 
 2.50% 0.40 0.10% 49.72% 39.33% 45.2% 
 2.50% 0.50 0.10% 62.49% 47.27% 54.3% 
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Table 3.A (DF 
Student-T=5) 

PD 
Correlation 
parameter 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  
Call-spread 

Call-
spread 

ratio 

       

EQUITY TRANCHE       
 1.00% 0.00 0.10% 1.00% 1.44% 48.1% 
 1.00% 0.05 0.10% 4.67% 1.67% 55.7% 
 1.00% 0.10 0.10% 7.75% 1.76% 58.8% 
 1.00% 0.15 0.10% 11.03% 1.84% 61.3% 
 1.00% 0.20 0.10% 14.55% 1.91% 63.7% 
 1.00% 0.30 0.10% 22.44% 2.04% 68.1% 
 1.00% 0.35 0.10% 26.83% 2.11% 70.4% 
 1.00% 0.40 0.10% 31.56% 2.18% 72.7% 
 1.00% 0.50 0.10% 42.09% 2.33% 77.6% 

MEZZANINE 
TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.11% 37.0% 
 1.00% 0.05 0.10% 4.67% 1.51% 50.3% 
 1.00% 0.10 0.10% 7.75% 1.64% 54.6% 
 1.00% 0.15 0.10% 11.03% 1.74% 57.8% 
 1.00% 0.20 0.10% 14.55% 1.82% 60.6% 
 1.00% 0.30 0.10% 22.44% 1.97% 65.7% 
 1.00% 0.35 0.10% 26.83% 2.05% 68.2% 
 1.00% 0.40 0.10% 31.56% 2.12% 70.7% 
 1.00% 0.50 0.10% 42.08% 2.28% 76.0% 
SENIOR TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.54% 22.1% 
 1.00% 0.05 0.10% 4.67% 2.90% 41.4% 
 1.00% 0.10 0.10% 7.75% 3.33% 47.5% 
 1.00% 0.15 0.10% 11.03% 3.63% 51.8% 
 1.00% 0.20 0.10% 14.55% 3.88% 55.4% 
 1.00% 0.30 0.10% 22.44% 4.31% 61.5% 
 1.00% 0.35 0.10% 26.83% 4.51% 64.4% 
 1.00% 0.40 0.10% 31.56% 4.71% 67.2% 
 1.00% 0.50 0.10% 42.08% 5.11% 73.1% 

SUPER-SENIOR 
TRANCHE       

 1.00% 0.00 0.10% 1.00% 1.14% 1.3% 
 1.00% 0.05 0.10% 4.67% 6.37% 7.3% 
 1.00% 0.10 0.10% 7.75% 9.99% 11.5% 
 1.00% 0.15 0.10% 11.03% 13.34% 15.3% 
 1.00% 0.20 0.10% 14.55% 16.54% 19.0% 
 1.00% 0.30 0.10% 22.44% 22.73% 26.1% 
 1.00% 0.35 0.10% 26.83% 25.79% 29.6% 
 1.00% 0.40 0.10% 31.56% 28.86% 33.2% 
 1.00% 0.50 0.10% 42.08% 35.21% 40.5% 
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Table 3.B (DF 
Student-T=5) 

PD 
Correlation 
parameter 

Quantile 
(Risk-

Factor) 

Conditional 
Expected 

Loss  
Call-spread 

Call-
spread 

ratio 

       

EQUITY TRANCHE       
 2.50% 0.00 0.10% 2.50% 1.57% 52.4% 
 2.50% 0.05 0.10% 9.65% 1.81% 60.3% 
 2.50% 0.10 0.10% 15.01% 1.92% 64.0% 
 2.50% 0.15 0.10% 20.39% 2.01% 67.1% 
 2.50% 0.20 0.10% 25.91% 2.10% 69.9% 
 2.50% 0.30 0.10% 37.47% 2.26% 75.5% 
 2.50% 0.35 0.10% 43.51% 2.35% 78.2% 
 2.50% 0.40 0.10% 49.72% 2.43% 81.0% 
 2.50% 0.50 0.10% 62.49% 2.60% 86.8% 

MEZZANINE 
TRANCHE       

 2.50% 0.00 0.10% 2.50% 1.35% 45.2% 
 2.50% 0.05 0.10% 9.65% 1.70% 56.6% 
 2.50% 0.10 0.10% 15.01% 1.83% 61.0% 
 2.50% 0.15 0.10% 20.39% 1.94% 64.5% 
 2.50% 0.20 0.10% 25.91% 2.03% 67.7% 
 2.50% 0.30 0.10% 37.47% 2.21% 73.7% 
 2.50% 0.35 0.10% 43.51% 2.30% 76.6% 
 2.50% 0.40 0.10% 49.72% 2.39% 79.6% 
 2.50% 0.50 0.10% 62.49% 2.57% 85.8% 

SENIOR TRANCHE       
 2.50% 0.00 0.10% 2.50% 2.36% 33.8% 
 2.50% 0.05 0.10% 9.65% 3.51% 50.2% 
 2.50% 0.10 0.10% 15.01% 3.91% 55.8% 
 2.50% 0.15 0.10% 20.39% 4.21% 60.1% 
 2.50% 0.20 0.10% 25.91% 4.47% 63.8% 
 2.50% 0.30 0.10% 37.47% 4.94% 70.6% 
 2.50% 0.35 0.10% 43.51% 5.17% 73.8% 
 2.50% 0.40 0.10% 49.72% 5.40% 77.1% 
 2.50% 0.50 0.10% 62.49% 5.87% 83.8% 

SUPER-SENIOR 
TRANCHE       

 2.50% 0.00 0.10% 2.50% 3.42% 3.9% 
 2.50% 0.05 0.10% 9.65% 11.98% 13.8% 
 2.50% 0.10 0.10% 15.01% 16.94% 19.5% 
 2.50% 0.15 0.10% 20.39% 21.23% 24.4% 
 2.50% 0.20 0.10% 25.91% 25.16% 28.9% 
 2.50% 0.30 0.10% 37.47% 32.49% 37.3% 
 2.50% 0.35 0.10% 43.51% 36.04% 41.4% 
 2.50% 0.40 0.10% 49.72% 39.60% 45.5% 
 2.50% 0.50 0.10% 62.49% 47.03% 54.1% 

 

 



 

Table 4 (DF = 5) 

PD 
Correlation 
parameter 

Quantile 
(Risk-

Factor) 

CONDITIONAL 
EXPECTED 

LOSS 

Significance 
Level (Tail-

Risk) 

EXPECTED 
SHORTFALL 

(Gauss) 

VALUE-AT-RISK 
(Gauss) 

EXPECTED-
SHORTFALL 
(Student-T) 

VALUE-AT-RISK 
(Student-T) 

CONDITIONAL 
STANDARD 
DEVIATION 

VaR Ratio 
(Student-
t/Gauss) 

1.00% 0.00 0.10% 1.00% 99.0% 27.5% 24.1% 45.3% 41.1% 9.95% 1.65 
1.00% 0.05 0.10% 4.67% 99.0% 60.9% 53.7% 98.6% 89.7% 21.10% 1.62 
1.00% 0.10 0.10% 7.75% 99.0% 79.0% 70.0% 126.8% 115.6% 26.74% 1.60 
1.00% 0.15 0.10% 11.03% 99.0% 94.5% 83.9% 150.5% 137.3% 31.32% 1.59 
1.00% 0.20 0.10% 14.55% 99.0% 108.5% 96.6% 171.6% 156.7% 35.26% 1.58 
1.00% 0.30 0.10% 22.44% 99.0% 133.6% 119.5% 208.2% 190.6% 41.72% 1.56 
1.00% 0.35 0.10% 26.83% 99.0% 144.9% 129.9% 224.1% 205.5% 44.31% 1.55 
1.00% 0.40 0.10% 31.56% 99.0% 155.4% 139.7% 238.5% 218.9% 46.47% 1.53 
1.00% 0.50 0.10% 42.09% 99.0% 173.7% 156.9% 261.9% 241.2% 49.37% 1.51 

           
2.50% 0.00 0.10% 2.50% 99.0% 44.1% 38.8% 72.0% 65.5% 15.61% 1.63 
2.50% 0.05 0.10% 9.65% 99.0% 88.3% 78.3% 141.1% 128.7% 29.52% 1.60 
2.50% 0.10 0.10% 15.01% 99.0% 110.2% 98.1% 174.0% 159.0% 35.72% 1.58 
2.50% 0.15 0.10% 20.39% 99.0% 127.8% 114.1% 199.8% 182.8% 40.29% 1.56 
2.50% 0.20 0.10% 25.91% 99.0% 142.7% 127.8% 221.0% 202.6% 43.81% 1.55 
2.50% 0.30 0.10% 37.47% 99.0% 166.5% 150.1% 253.0% 232.6% 48.40% 1.52 
2.50% 0.35 0.10% 43.51% 99.0% 175.6% 158.8% 264.2% 243.4% 49.58% 1.50 
2.50% 0.40 0.10% 49.72% 99.0% 183.0% 166.0% 272.3% 251.3% 50.00% 1.49 
2.50% 0.50 0.10% 62.49% 99.0% 191.5% 175.1% 278.1% 257.7% 48.41% 1.45 

           
5.00% 0.00 0.10% 5.00% 99.0% 63.1% 55.7% 102.0% 92.9% 21.8% 1.62 
5.00% 0.05 0.10% 16.39% 99.0% 115.0% 102.5% 181.2% 165.6% 37.0% 1.58 
5.00% 0.10 0.10% 24.08% 99.0% 138.0% 123.5% 214.4% 196.5% 42.8% 1.55 
5.00% 0.15 0.10% 31.35% 99.0% 155.0% 139.3% 237.9% 218.4% 46.4% 1.53 
5.00% 0.20 0.10% 38.44% 99.0% 168.1% 151.6% 255.0% 234.6% 48.6% 1.52 
5.00% 0.30 0.10% 52.28% 99.0% 185.4% 168.5% 274.7% 253.7% 49.9% 1.48 
5.00% 0.35 0.10% 59.00% 99.0% 190.1% 173.4% 278.0% 257.3% 49.2% 1.46 
5.00% 0.40 0.10% 65.53% 99.0% 192.2% 176.1% 277.1% 257.2% 47.5% 1.44 
5.00% 0.50 0.10% 77.76% 99.0% 188.6% 174.5% 262.9% 245.4% 41.6% 1.39 



 

Table 5          
Call-Spread Ratio:       Gauss Distribution: alpha=0.95                 Student-t Distribution: alpha=0.95 
Correlation 
parameter 

Equity Mezzanine Senior Super-Senior Equity Mezzanine Senior 
Super-
Senior 

0.00 48.00% 36.30% 20.13% 0.63%  48.10% 37.02% 22.06% 1.31% 
0.05 51.96% 43.88% 31.25% 2.30%  51.86% 44.18% 32.31% 3.47% 
0.10 53.22% 46.04% 34.56% 3.17%  53.06% 46.24% 35.40% 4.51% 
0.15 54.08% 47.44% 36.69% 3.86%  53.88% 47.57% 37.39% 5.31% 
0.20 54.73% 48.46% 38.23% 4.43%  54.50% 48.54% 38.84% 5.97% 
0.30 55.65% 49.85% 40.29% 5.31%  55.37% 49.86% 40.79% 6.96% 
0.35 55.96% 50.31% 40.97% 5.62%  55.66% 50.29% 41.43% 7.32% 
0.40 56.18% 50.64% 41.45% 5.86%  55.88% 50.61% 41.88% 7.58% 
0.50 56.37% 50.91% 41.85% 6.06%  56.06% 50.87% 42.26% 7.80% 

          
                                           Gauss Distribution: alpha=0.90                 Student-t Distribution: alpha=0.90 

0.00 48.00% 36.30% 20.13% 0.63%  48.10% 37.02% 22.06% 1.31% 
0.05 50.95% 42.06% 28.49% 1.73%  50.90% 42.46% 29.74% 2.76% 
0.10 51.77% 43.55% 30.75% 2.18%  51.68% 43.87% 31.84% 3.33% 
0.15 52.25% 44.39% 32.04% 2.49%  52.14% 44.67% 33.04% 3.69% 
0.20 52.55% 44.91% 32.82% 2.68%  52.42% 45.16% 33.77% 3.93% 
0.30 52.77% 45.29% 33.40% 2.84%  52.63% 45.52% 34.31% 4.12% 
0.35 52.73% 45.22% 33.29% 2.81%  52.59% 45.45% 34.21% 4.08% 
0.40 52.59% 44.97% 32.92% 2.71%  52.46% 45.22% 33.87% 3.96% 
0.50 51.97% 43.90% 31.29% 2.31%  51.87% 44.20% 32.34% 3.48% 

          
                                           Gauss Distribution: alpha=0.75                 Student-t Distribution: alpha=0.75 

0.00 48.00% 36.30% 20.13% 0.63%  48.10% 37.02% 22.06% 1.31% 
0.05 49.22% 38.76% 23.59% 0.99%  49.26% 39.34% 25.23% 1.81% 
0.10 49.28% 38.88% 23.76% 1.01%  49.32% 39.45% 25.39% 1.84% 
0.15 49.12% 38.57% 23.31% 0.96%  49.17% 39.15% 24.97% 1.76% 
0.20 48.82% 37.96% 22.44% 0.86%  48.88% 38.58% 24.17% 1.63% 
0.30 47.84% 35.96% 19.66% 0.59%  47.94% 36.70% 21.63% 1.25% 
0.35 47.14% 34.50% 17.74% 0.45%  47.28% 35.33% 19.87% 1.03% 
0.40 46.27% 32.66% 15.43% 0.31%  46.45% 33.61% 17.76% 0.81% 
0.50 43.76% 27.30% 9.67% 0.09%  44.08% 28.64% 12.41% 0.39% 

          
                                           Gauss Distribution: alpha=0.50                 Student-t Distribution: alpha=0.50 

0.00 48.00% 36.30% 20.13% 0.63%  48.10% 37.02% 22.06% 1.31% 
0.05 47.19% 34.61% 17.88% 0.46%  47.33% 35.44% 20.00% 1.05% 
0.10 46.27% 32.67% 15.44% 0.31%  46.46% 33.62% 17.77% 0.81% 
0.15 45.22% 30.43% 12.85% 0.19%  45.46% 31.53% 15.38% 0.60% 
0.20 44.00% 27.81% 10.16% 0.10%  44.30% 29.11% 12.87% 0.42% 
0.30 40.79% 21.13% 4.91% 0.01%  41.27% 22.97% 7.69% 0.16% 
0.35 38.60% 16.94% 2.75% 0.00%  39.21% 19.14% 5.27% 0.09% 
0.40 35.80% 12.24% 1.19% 0.00%  36.59% 14.83% 3.19% 0.04% 
0.50 27.33% 3.18% 0.04% 0.00%  28.77% 5.85% 0.64% 0.00% 
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