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A LIKELIHOOD-BASED ANALYSIS FOR RELAXING THE EXCLUSION
RESTRICTION IN RANDOMIZED EXPERIMENTS WITH IMPERFECT
COMPLIANCE

by Andrea Mercatanti*

Abstract

This paper examines the problem of relaxing the exclusion restriction for the
evaluation of causal effects in randomized experiments with imperfect compliance.
Exclusion restriction is a relevant assumption for identifying causal effects by the
nonparametric instrumental variables technique, in which the template of a randomized
experiment with imperfect compliance represents a natural parametric extension. However,
the full relaxation of the exclusion restriction yields likelihood functions characterized by the
presence of mixtures of distributions. This complicates a likelihood-based analysis because it
implies partially identified models and more than one maximum likelihood point. We
consider the model identifiability when the outcome distributions of various compliance
states are in the same parametric class. A two-step estimation procedure based on detecting
the root closest to the method of moments estimate of the parameter vector is proposed and
analyzed in detail under normally distributed outcomes. An economic example with real data
on return to schooling concludes the paper.

JEL Classification: C13, C21.
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1 !Imtroduction

The exclusion restriction is crucial for identifying treatment effects in var-
ious causal inference methods. Historically, this assumption first appeared
in the literature concerning the Instrumental Variables method (IV hence-
forth), which has a long tradition in econometrics, and has been applied
in the context of causal evaluation, for example, by Heckmann and Robb
(1985), Angrist (1990), Angrist and Krueger (1991), Kane and Rouse (1993),
Card (1995), and more recently by Ichino and Winter-Ebmer (2004). In
particular, Angrist et al. (1996) showed that under a suitable set of assump-
tions including the exclusion restriction, the nonparametric IV method can
identify causal treatment effects for compliers - the individuals who would
receive the treatment only if assigned to it. Under a general approach to
causal inference, labeled the Rubin Causal Model by Holland (1986), the
exclusion restriction requires that the instrumental variable does not have a
direct causal effect on the outcome. In terms of a linear regression model,
this is equivalent to imposing the absence of a probabilistic link between the
instrumental variable and the error term.

The connection between a randomized experiment with imperfect com-
pliance and the IV model is the fact that the former is a template that can
be adopted for the identification and estimation of treatment causal effects,
and can also be used in nonexperimental situations. In the IV model, the
template is that of a randomized experiment with imperfect compliance, in
the sense that the particular instrumental variable that is adopted should
have the role of a random assignment, for which the treatment does not
necessarily comply.

Nonparametric bounds on the average treatment effects of a randomized
experiment with imperfect compliance over the whole population have been
developed by Balke and Pearl (1997) under the exclusion restriction, sup-
posing a binary treatment and a binary outcome. Their paper was based on
the general result of Manski (1990) for nonparametric bounds on treatment
effects.

Subsequently, some researchers turned from nonparametric instrumental
variables to parametric models. In particular, Imbens and Rubin (1997a)
introduced a suitable likelihood function and proposed a weak version of
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the exclusion restriction, which requires that the assignment to treatment
has to be unrelated to potential outcomes but only for noncompliers, where
noncompliers are individuals who receive or do not receive the treatment
regardless of whether it is offered.

Despite its importance, the exclusion restriction can often be unrealistic
in practice. However, relaxing the assumption is not straightforward since it
is directly related to the identifiability of the parametric models. Application
to a real data set (Imbens and Rubin, 1997a) shows that without the exclu-
sion restriction and with a binary outcome, the model does not have a unique
maximum likelihood point, but rather a region of values at which the likeli-
hood function is maximized. Given this result, other studies propose relaxing
the assumption by relying on prior distributions in a Bayesian framework and
with a binary outcome (Hirano et al., 2000), or by introducing auxiliary in-
formation from pretreatment variables under normally distributed outcomes
(Jo, 2002).

The current study explores a new option, in which through a likelihood-
based context we fully relax the exclusion restriction without introducing
extra information compared to the usual set of conditions adopted to iden-
tify causal effect in the IV framework (Angrist et al., 1996). Supposing a
binary treatment and outcome distributions of various compliance statuses
in the same class, we show that relaxing the exclusion restriction introduces
two mixtures of distributions in the parametric model. Some of the usual
difficulties in identifying and estimating mixed distribution models, such as
the switching of mixture component indicators, the presence of several local
maximum likelihood points and the singularities of the likelihood function
(McLachlan and Peel, 2000), complicate likelihood-based analysis.

This article is organized as follows. Section 2 fixes the conditions for
the identifiability of the model when the outcome distributions of various
compliance statuses are in the same class. In this context, the study of
identifiability is driven by the need to attain the right labelling of the mixture
components. Section 3 proposes a method to identify the efficient likelihood
estimate as the solution of the likelihood equations closest to a consistent,
but not efficient estimate of the parameters vector. This procedure will be
analyzed in more detail under the assumption that outcomes are normally
distributed; advantages, limitations and robustness will be investigated by
simulation studies in Section 4. Section 5 concludes the paper by proposing
an application based on a microeconomic data set as suggested by a recent
paper of Ichino and Winter-Ebmer (2004), who investigated the long-term
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educational cost of World War I1.

2 Identifiability

Imbens and Rubin (1997a) made a remarkable contribution to the paramet-
ric formalization of the IV technique in identifying and estimating the causal
effects. The authors based the resulting distribution function on the con-
cept of potential quantities, the concept of causality we want to adopt in
this paper. Consequently, the population under study can be subdivided
into four groups, which are characterized by the way the individuals react,
from a counterfactual point of view, to the assignment to treatment. These
groups are labeled compliance statuses. To clarify, assume the simplest ex-
perimental setting where there is only one outcome measure (Y;), and where
the assignment to treatment (Z;) and the treatment received (D;) are binary
(Z; = 1 =assigned, Z; = 0 =not assigned; D; = 1 =received, D; = 0 =not
received). In settings of imperfect compliance with respect to an assigned
binary treatment, and on the basis of the concept of potential quantities,
the whole population can be subdivided into four subgroups to characterize
different compliance behaviors. Units for which Z; = 1 implies D; = 1 and
Z; = 0 implies D; = 0 (compliers) are induced to take the treatment by
the assignment. Units for which Z; = 1 implies D; = 0 and Z; = 0 implies
D; = 0 are called never-takers because they never take the treatment, while
units for which Z; = 1 implies D; = 1 and Z; = 0 implies D; = 1 are called
always-takers because they always take the treatment. Finally, the units for
which Z; = 1 implies D; = 0 and Z; = 0 implies D; = 1 do exactly the
opposite of the assignment and are called defiers. Each of these four groups
define a particular compliance status.

Let Y;(Z; = z, D; = d) with z € {0,1} and d € {0,1} be the potential
outcome with respect to the assignment, z, and to the treatment, d. The
exclusion restriction implies that Y;(Z; =1, D; = d) = Y;(Z; = 0, D; = d).
In order to achieve complete relaxation of the assumption, the current study
employs a likelihood estimation approach, which is known to be more efficient
than the IV framework for the identification and estimation of causal effects
for compliers (Imbens and Rubin, 1997a; Little and Yau, 1998; Jo, 2002).
For these purposes, we introduce the following set of assumptions:

Assumption 1 : S.U.T.V.A. (Stable Unit Treatment Value Assumption)'



by which the potential quantities for each unit are unrelated to the
treatment status of other units;

Assumption 2 : 7 Random assignment to treatment” by which the proba-
bility of assignment to the treatment is the same for every unit;

Assumption 3 : Nonzero average causal effect of Z; on D;, imposing the
presence of compliers;

Assumption 4 : “Monotonicity” imposing the absence of defiers;

Assumption 5 : the outcome distributions of various compliance statuses
are in the same parametric class.

Assumptions 1-4 are the necessary set of conditions for identifying the
complier average treatment effect by the IV method, apart from the exclu-
sion restriction (Angrist et al., 1996). The distribution function for a ran-
domized experiment with imperfect compliance and binary treatment, under
the previous 1-5 assumptions, and adopting the parameter set proposed by
Imbens and Rubin (1997a), is in the parametric class:

F' = {f(i, di, 2:30) = Iyp,=1, z=0) - (1 = 7) - Wa - oo + L(Di=0,2=1) - T - W - Gy +

+1i(pi=1,2,=1) " T - (Wa * Ga1 +We * Gea) + Is(pi=0, z,=0) - (1—m) - (wn- Ino + wc)
(1

where: I, is an indicator function; ¢(D; = d,Z; = z) is the group of
the units assuming treatment d and assigned to the treatment z; 7 is the
probability P(Z; = 1); w; is the mixing probability, which is the probability
of an individual being in the t group, t = a (always-takers), n (never-takers),
c (compliers); the function ¢!, = g:.(y:; m,,) is the outcome distribution for a
unit in the ¢ group and assigned to the treatment z.

Then, divide (1) factors into four terms, where any term refers to the
group ¢(D; = d,Z; = z) of the units assuming treatment d and assigned
to the treatment z. In particular, the units in group ¢(D; = 0,7; = 0)
are from a mixture of compliers and never-takers, and the units in group
¢(D; =1,7Z; = 1) are from a mixture of compliers and always-takers. Mix-
ture models can present particular difficulties with identifiability, and conse-
quently the study of identifiability for the parametric class 7 , which involves
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two mixtures and is not straightforward. In order to explain the reasons for
these difficulties, consider the general class of distribution functions from
which the two mixtures are formed:

G ={9(ysm)|m €Y, y; € R}, (2)

and the general class of distribution functions of two-component mixtures
of (2):

2
F' = {f(yi,f)) =Y wn-g(yism)| g(ms) € G, Vh; yi € R; 6 69} , (3)

h=1

O = {0 = (W1>W2>771>772)| (wl +w2) < 17 w1 > 07 Wy > Oa n ET};

where R is the field of real numbers, T is a generic parameter space, and
wy, is the probability of an individual in the A group.

In general, a parametric family of densities € = {e(y; A) : A€ A, y € R}
is identifiable if distinct members of the parameter space A always determine
distinct members of the family:

e(y; N) =e(y; A") & XN =X"

It is well known (Titterington et al., 1985; McLachlan and Peel, 2000)
that (3) is not identifiable, since f(y; @) is invariant under the two permuta-
tions of the component labels A in 6. Indeed, the presence of two densities
in the same class, g(y;n,) and ¢(y;m,), implies that f(y;0) = f(y;0%) if
the component labels 1 and 2 are interchanged in 8* compared to 6. Tit-
terington et al. (1985) propose a weak definition of identifiability for finite
mixtures of distributions in the same parametric class in which a class of
mixtures is identifiable if distinct members of the parameter vector © al-
ways determine distinct members of the family up to the permutations of
the label components. Under their definition, (3) is identifiable if and only
if G is a linearly independent set over the field of real numbers R. Relevant
findings in the literature (for example Titterington et al., 1985; Teicher 1961,
1963; Yakowitz and Spragins 1968; Li and Sedransk 1985) show that apart
from special cases with very simple density functions such as finite mixtures
of uniform distributions, or with finite sample spaces such as mixtures of
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two Bernoulli distributions, the identifiability up to the permutation of label
components of (3) is generally assured.

However, and contrary to an analysis of the mixture model f(y;,0) € F”
at cluster purposes, the component labels matter for f(y;, d;, z;;0) € F'
at causal inference purposes. The causal effects from a counterfactual point
of view are indeed defined by the three differences Ay = (py — f1y9), Where
t = a,n,c. Consequently, the correct labelling of all of the components is
now significant in order to identify A,. For example, consider a point 6,
for which the component labels of the mixture ¢(D; = 1, Z; = 1), composed
by assigned always-takers and assigned compliers, permute compared to the
true parameter vector @. In this case, the causal effects of the assignment to
treatment for always-takers and compliers are not identified because of the
permutation of component labels in 8. Indeed, the causal effect for compliers
A, in 8 would be wrongly identified as (1,; — i) instead of (1. — fieo),
and the causal effect for always-takers A, would be wrongly identified as
(He1 — Hag) nstead of (151 — fig)-

In order to study the identifiability of parametric class (1), consider that
this is a member of the more general class:

M = {m(y,x;0) = Lixeary m1(y; 0) + Lixeaz) m2(y; 0) + - - - + Lixea,) m;(y; 0) + -

. ‘I‘I(xEAk) mk(y, 9)|y - R, X EA Q Rd, A = UjAj, ﬂjAj = @} s (4)

where the k distributions m;(y; @) are not necessarily in the same para-
metric class. A first useful result is proposed in the following theorem:

Theorem 1 A necessary and sufficient condition for parametric class (4) to
be identifiable is the set 2 = N;E; = 0; where Z; is the set of pairs (6',0"),
0' + 0" € © such that m;(y;0') = m;(y;0").

Proof (Necessity): suppose that Z = N;Z; # (), then m;(y; 0') = m;(y; 0"),
Vj and V(6',8") € E. Consequently, m(y,x;0') = > I(xeajym;(y;0') =
> Iixeajymi(y; 0") = m(y,x;0"), V(6',8") € E, which implies that (4) is
not identifiable.

Proof (Sufficiency): If = = N,;Z; = 0, then 7 pairs (6',0"), & #£6" € ©
such that m;(y; @) = m;(y; 8"), Vj. Consequently, 3y such that m(y, x;8") =



> Iixeajy mi(y; 0') # 35 Lixeajymy(y; 0”) = m(y,x; 0"), which implies that
(4) is identifiablee

The intuition behind this result lies in the fact that a parametric pair
(60',0") determines two distinct functions m(y,x;0') and m(y,x;0") if it
determines at least a pair of distinct functions m;(y; 0") and m;(y; 8") over
the range of j.

Parametric class (1) is a particular case of (4), with & = 4. Theorem 2
identifies the set = for (1) under the assumption that the parametric class of
the outcome distributions is a linearly independent set over the field of real
numbers:

Theorem 2 If, in (1), the parametric class of outcome distributions G is a
linearly independent set over the field of real numbers, then one of the fol-
lowing conditions on the mixing probabilities w; holds for any pair (6',0") €

=£0,0 £6"c6:

W, = W, =W, = W,.,
2 7/ 1"
W, = W, =W, = W,,
or
A A S ) A/ B
W, = W, = W, =W, = W, = W,.

The simple but tedious proof is in Appendix A. Given Theorem 2, f(y;, d;, z;;0)
in (1) is identifiable if w, # w. and w, # w., which is a set of less restric-
tive conditions compared to simple mixture models where identifiability is
assured only up to permutations of the label components. In the simpler
situation where there is only one class of non-compliers, the identifiability
conditions simplify to (1 — w.) # w. # 0.5.

The restriction on the parametric class of the outcome distributions G
imposed in Theorem 2 rules out the case of a binary outcome. The parametric
class of binomials Bi(N,0), 0 < 6 < 1, is indeed a linearly independent set
on R if and only if N > 27— 1, where N is the number of independent trials
for each observation (Teicher 1961, 1963; Titterington et al. 1985). Given
T = 2 for the two mixtures in (1), the condition on N is not satisfied for a
binary outcome, where N =1 < (27" — 1) = 3. This implies that for a binary
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outcome = could be greater than under N > 27" — 1. This is confirmed by
an application of data from a randomized community trial of the impact of
vitamin A supplements on children’s survival (Imbens and Rubin, 1997a).
The authors made a likelihood analysis of this randomized experiment with
noncompliance, a binary outcome, in the absence of always-takers and with
the exclusion restriction removed. There was no unique solution, rather a
region of values in which the likelihood was maximized.

3 Estimation issues

This Section is dedicated to the problems that arise when making a likelihood-
based inference for a randomized experiment with imperfect compliance with-
out exclusion restrictions when the identifiability conditions w, # w. and
w, # w, are satisfied. The main problem associated with a likelihood analy-
sis of @ in (1) arises from the possibility of having multiple roots for the
likelihood equations, which is due to the two mixtures of distributions in-
volved. Indeed, the likelihood function for a mixture model will generally
have multiple roots (McLachlan and Peel, 2000), and this peculiarity ex-
pands to and holds for the entire likelihood [], f(vi, d;, 2:;0), with f € F
in (1). A proof is in Appendix B. In general, when the likelihood equations
have multiple roots, the consistency of the MLE is guaranteed only for those
classes of distributions satisfying Wald’s conditions (1949). However, even
when the conditions are satisfied, the determination of the MLE may present
problems (Barnett, 1966). Moreover, in practice there is no guarantee that
all local roots are found when searching for the MLE. Given the presence
of multiple roots for the likelihood equations, an approach to identify the
consistent and efficient estimate can be based on finding the root closest to a
consistent, but not efficient, estimate of the parameter vector, which typically
results from the method of moments (Lehmann and Casella, 1998).
Recently, Hirano et al. (2000) proposed a method to relax the exclu-
sion restriction by working in a Bayesian context with a binary outcome and
adopting a relatively diffuse but proper prior distribution. This approach,
however, does not easily apply to cases where, contrary to the Hirano et
al. (2000) paper, the identifiability conditions are satisfied given the well-
recognized problems arising with the Bayesian approach in the context of
mixture models (McLachlan and Peel, 2000). In these situations, from a
computational point of view, the Gibbs sampler has difficulties in explor-
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ing all of the posterior distribution, as it tends to capture one maximum
point and stay there with rare jumps between modes, especially when they
are well separated. Another hindrance is in the fact that the sampler can
allocate the units to all of the components of the mixture model, resulting
in similar parameter estimates for any mixture component. These inconve-
niences still remain, even under constraints on the mixing probabilities, which
have usually been introduced for handling the label components switching
problem (Celeux et al., 2000). Moreover, the introduction of constraints on
the mixing probabilities yields problems with the posterior inferential nature
because there is no guarantee that a single maximum point can be isolated,
and consequently, the posterior mean could be located in a valley between
the local maximum points rather than close to one of them (Celeux et al.,
2000). Finally, the proposed adoption of a conjugate prior is a hard task,
principally because of the presence of mixing probabilities intersecting the
various likelihood factors in (1).

The Bayesian analysis in Hirano et al. (2000) is successful in the context
where the model is not identifiable because the same class outcome distrib-
utions are not a linearly independent set over the field of real numbers: the
outcome is indeed binary. In these cases, the resulting posterior distribution
is approximately flat, so that it is possible to locate an entire region maximiz-
ing the posterior distribution without the previously mentioned difficulties
due to the presence of more than one maximum point.

More recently, Jo (2002) showed alternative model specifications allowing
the identification of causal effects in a likelihood context without always-
takers, with homoscedastic and normally distributed outcomes, and in the
presence of observed pre-treatment binary variables. However, the identifi-
cation of causal effects relies on supplementary assumptions about the causal
mechanism. The author shows that identifiability is assured without the ex-
clusion restriction when assuming either additive effects of the assignment
to treatment across different values of a binary pre-treatment variable, or
constant effects of two pre-treatment binary variables on the outcome across
compliance statuses. In this paper, in order to keep the identifiability con-
ditions of the causal model as weak as possible, we do not introduce further
assumptions driving information from other sources such as pre-treatment
variables.

Although normality is not a necessary condition for identifiability, and
although the approach to identify a consistent and efficient estimate based
on finding the root closest to the method of moments estimate of the pa-
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rameter vector does not depend on the form of the outcomes distributions,
we want to study in detail the case of normally distributed outcomes be-
cause of the important role of this distribution in statistics. Thus, we pose
9t = N (Ui ez, 012) In (3).

The unboundedness of the likelihood is an additional problem to resolve
when the outcomes are normally distributed. This is due to the fact that a
likelihood function for a mixture of normal distributions is unbounded (Day,
1969). Again, this peculiarity of a part of the likelihood extends to the entire
likelihood given the particular factorial structure of distribution (1). A proof
is in Appendix C. The consequence of the unboundedness is that an efficient
estimator cannot exist as a global likelihood maximizer. However, the ex-
istence of a consistent and efficient likelihood equation root is guaranteed
by the satisfaction of the multivariate extension of the Cramer conditions.
Simple but tedious checks show the existence of the first, second and third
derivatives of the likelihood. Each of these derivatives has a factorial struc-
ture where each factor is a derivative of the type showed by Kiefer (1978)
for proving the existence of a consistent and efficient likelihood root for a
mixture of two normal distributions. This guarantees the boundedness of
the derivatives, the positive definiteness of the dispersion matrix, and the
satisfaction of the Cramer conditions.

In the case of normally distributed outcomes, the method of moments
estimate of the parameter vector, é, is obtainable by:

e cquating the first three moments of f(d;, 2;; wa, wn, ) to the first
three sample moments; we obtain @, = >, I(p,=1, z,=0)/ Y_; L(zi=0) (the
proportion of treated units in the group of unassigned units), @, =
> i Lipi=0, z,=1)/ >_; I(zi=1) (the proportion of untreated units in the
group of assigned units), @ = >, [(z,=1)/N, and @, as the difference
We=1—0s— Wy;

e equating the first two moments of I (p,—1,z-0) N (¥ ftag: Oa0), and
I (D=0, zi=1) N (¥i; ftn1, 1) to their first two sample moments, respec-
tively, we obtain: fi,, and 7,9 as the sample mean and sample variance
of y; fori € ¢(D; =1, Z; = 0), [,; and 7,1 as the sample mean and
sample variance of y; for i € ¢(D; =0, Z; = 1);

e equating the first five moments of I¢(p,=1, z,=1) N (¥s; Wef11, Ha1s He1> Tals Tct),s
and I¢(p,—0, z,=0) IV (Yi; Wel005 Hno» Heo> Tno, Oco) to their first five sample
moments; where wyq. is the conditional mixing probability P(C; =
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t|D; = d, Z; = z). We know the two mixtures are identifiable only
up to the permutation of their label components. It is possible to
check the labelling of the mixture ¢(D; = 1, Z; = 1) is by compar-
ing the resulting estimate Cuc|11 to a simple transformation of @, and
WDt We/(Wq + @c); the latter is indeed a consistent estimate of w11,
which is a good term of reference to compare w.;;. The proposal is to
check the distance between @11 and ©./(@, + @.); then to switch the
tern (Wepi1, flers 0c1) 10 (1 — @ejrns flgrs Oa1) if }wcm — @/ (@q +wc)} >
}(1 — We11) — We/ (0a + Cuc)} Analogous arguments hold for the other
mixture.

However, there is no guarantee that one can obtain a unique real solution
for the two mixtures without imposing equal variance conditions: o, = 0.
and 0,9 = 0. (Titterington et al., 1985). Under these two homoscedastic
conditions, the likelihood analysis can be performed in a first step by calcu-
lating 9 then detecting the root of the likelihood equations closest to 6. In
order to perform an in-depth analysis of the likelihood and at the same time
to make the process less time consuming, the detection can be limited to the
neighborhood of 8: Q¢ (where h is the radius).

Alternatively, an empirical procedure can also be proposed for the unre-
stricted (heteroscedastic) case. Given the method of moments estimates of
the mixing probabilities, @ = (@,,,, @), are not affected by restrictions
on the variance components. The second step can be limited to detect the
root @ whose subvector & = (Way Wp,y W) is closest to @. Again, the detec-
tion can be limited to the neighborhood of @ and of radius h: Q%. From a
theoretical point of view, the procedure guarantees only the detection of the
efficient likelihood estimate for w = (wg, wp, w.); however, the simulation-
based analysis in the next section will show some empirical conditions under
which the method can achieve good performance in detecting the efficient
likelihood estimate for the entire parameter vector 6.

From a computational point of view, the EM algorithm can make the
inference relatively straightforward. The EM algorithm is indeed attractive
because if the compliance status C; were known for all units, the likelihood
would not involve mixtures. The compliance status of the units in any of the
two mixtures can indeed be considered as missing information whose imputa-
tion produces the so-called augmented likelihood. Moreover, in our context
the augmented log-likelihood function is linear in the missing information, so
the EM algorithm corresponds to fill-in missing data and updating parameter
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estimates. The imputation of the unobserved compliance status is handled
by the E-step; it requires the calculation of the conditional expectation of
C; given the observed data and the current fit for 8. The compliance status
C; can be represented by a three component indicator ¢ = ¢ (complier), n
(never-taker), a (always taker). At the k-iteration, the conditional proba-

bility of subject ¢ being type t given the observed data and a current value

A (k—1
of the vector 0, 'rgf )(0( )), is obtainable by a ratio of two quantities. The
numerator of the ratio is shown in the Table 3.1 entry, and the denominator

is the corresponding row total, where Qtiz(k_l) is the outcome distribution for a

unit in the ¢ group and is assigned to the treatment z, based on the estimated
A (k-1
parameter vector updated at the (k — 1) iteration, o' Y.

Table 3.1. Inputs for calculating the conditional

probabilities 'rgf)(é(k_l)).
D, Z; Subject type t
t=ua t=n t=c
0 0 0 D gy Gl g
0 1 0 1 0
1 0 1 0 0
(I W el 4 0 of Vg

The subsequent M-step then maximizes the log-likelihood function based
on the augmented data set, which is the data set created by merging the
observed and the imputed data. This is equivalent to a weighted maximiza-
tion of the log-likelihood function, where subjects are differently classified
in the different compliance groups, t, with weights equal to the conditional
probabilities of being in ¢ calculated in the E-step. The output is the update

(K
estimated vector 0( ).

In particular, for the normal distribution case, the component update

means, 1\, and t vari 5(k))2 iven by:
, [i;,’, and component variances, (d;,’)?, are given by:

ﬂg) = i {Tgf)(é(k_l)) i I(Z; = z)} /i {'rgf)(é(k_l)) I(Z; = z)} ,
i=1

i=1

n n

P =S {0@" ) - iz 1z =) Y {0 1z

i=1 i=1
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The proposed procedure is not directly applicable to the case of relax-
ing Assumption 4, monotonicity. Here f(y;, d;, 2z;;0) is again in (4), it
has one more mixing probability (wg: the probability of an individual be-
ing in the group of defiers) and two more mixtures since the units in group
¢(D; = 1,Z; = 0) will be from a mixture of defiers and always-takers, and
the units in group ¢(D; = 0,Z; = 1) from a mixture of defiers and never-
takers. It is easy to demonstrate, following the same arguments in Appendix
A, the identifiability condition: w, # w. and w, # w. and w, # wg and
W, # wg. However, the method of moments equations for estimating mix-
ing probabilities, wg, wy, we, and wg, do not have a unique solution (the
matrix of coefficients is formed by linearly dependent vectors), and the prob-
lem is not solvable by the introduction of inequality constraints on these
probabilities. Due to the presence of additional local maximum points, an
alternative Bayesian approach would suffer from the previously presented
hindrances: label component switching, possible allocation of the units to all
the components of the mixture model, difficulties in exploring all posterior
distributions and in defining appropriate conjugate priors. A special case
is relaxing monotonicity with a binary outcome and an uninformative prior
distribution. Here, the model is not identified and the introduction of wy in
0 contributes to enlarge the dimensionality of the mixing probabilities space.
Without specific constraints, we can expect a wide flat area of high posterior
probability for (ws, wp, we, wg) and consequently high variability for their
estimates.

4 Examples based on artificial data sets

This Section proposes some simulation analyses based on artificial samples
from hypothetical distributions that satisfy assumptions 1-5 presented in Sec-
tion 2. Therefore, the exclusion restriction is fully relaxed in this case. The
aim is to empirically study the relative advantages of the two-step procedure
proposed in Section 3. The main result will be the crucial role played by
the Allocation Rate (AR), a measure for quantifying the disentaglement of
the two mixtures in the likelihood L(0) = [, f(v:, d;, 2:;0), with f € F
in (1). We indeed show the AR can be adopted as a useful indicator to
assess the results from the procedure for a given sample. To maintain the
model as flexible as possible, the simulation-based analysis is dedicated to
the heteroscedastic case. We assume normality for the same class outcome
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distribution throughout the Section. Even if normality is not a necessary
condition both for model identification and for the estimation procedure, we
also show sensitivity analysis based on slight deviations from it.

4.1 The role of the allocation rate

Consider three different sets, each composed of seven hypothetical popula-
tions. These populations share the same intra-set distribution apart from the
parameter ji,, for which we choose a set of values ranging between 1 and 5.
The mean for the compliers not assigned is posed as u,, = 1,1.2,1.5, 2, 3, 4, 5,
while the mean for the compliers assigned to the treatment is fixed at p,; = 1.
We then consider a set of differences in means for the mixture ¢(D; = 0, Z; =
0): |pheo — Hnol, along with the null case when p., = 1. The parameter values
for the 3 x 6 hypothetical distributions are shown in Table 4.1 apart from

Heo-

Given that no restrictions have been imposed on the variances, there is
no guarantee that a unique real solution can be obtained for the method of
moments estimate of 8. Therefore, we restrict the two-step procedure to a
neighborhood of the method of moments estimate of the mixing probabil-
ities: Q%. To evaluate the convergence of the procedure to the consistent
maximizer?, we drew 100 samples each with a size of 10000 from any of the
proposed hypothetical distributions. For each sample, the EM algorithm
was started 30 times with random values of 8, and the root closest to @
was detected in Q¥ posing h = 0.05. Table 4.2 shows that for the current
artificial samples, the two-step procedure does not always converge to the so-
lution corresponding to the consistent maximizer. The local maximum points
that do not correspond to the consistent maximizer are usually indicated as
”spurious” maximum points in the mixture model literature. In particular,
for normally distributed mixture components, the spurious maximum points
corresponding to parameter points having at least one variance component
very close to zero are generated by groups of a few outliers (Day, 1969), and
they are the most commonly detected spurious maximum points in a mixture
model analysis. However, there is no evidence of these kinds of points for the
current artificial samples. All of the detected spurious solutions, apart from

?Like in Hataway (1986), the local maximum point that corresponds to the consistent
maximizer is taken to be the limit of the EM algorithm using the true parameter values
as a starting point.
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the cases of null distance |p. — finol = |0 — 1| = 0, share the peculiarity
of having both inverted orders of means and variances for at least one of
the two mixtures, compared to the consistent solution. Indeed, p,,q >t
and/or p,, > p. are observed for the spurious solutions instead of the true
inequalities p,,o < .o and p,; < p.1, and the analogous inequalities for the
variances. When p,, = 1, the spurious solutions predominantly show only
inverted orders of the variances in ¢(D; = 0, Z; = 0). We note also that for
any of the proposed HP sets, the frequencies of convergence to the consistent
solution increase with the value of y,, which is with the distance |p.q — fnol-

Table 4.1. Hypothetical population (HP) sets:
parameters values .

HP set =« t  wy N(Nt070t0) N(py1,041)

#1 025 a 040 (0, 1) (1, 1.2)
n 025 (1, 1.15) 2, 1)
¢ 035 (.,085) (7,07)
#2 045 a 070 (0, 1) (1, 1.2)
n 025 (1, 1.15) 2, 1)
¢ 005 (.,085) (7,0.7)
#3 045 a 070 (0, 1) (1, 1.2)
n 025 (1, 1.15) 2, 1)

¢ 005 (.,0.85) (2,07

*. no-costant values across HP sets in boldface.
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Table 4.2. Performance” of the two-step procedure restricted to
( h =0.05) for the proposed values of .-

Hypothetical Convergence Convergence
populations set i,  to the consistent to a spurious
solution solution
#1 5.0 100 0
4.0 100 0
3.0 67 33
2.0 54 46
1.5 52 48
1.2 48 52
1.0 50 50
#2 5.0 81 19
4.0 80 20
3.0 81 19
2.0 65 35
1.5 50 50
1.2 51 49
1.0 49 51
#3 5.0 73 27
4.0 71 29
3.0 55 45
2.0 42 58
1.5 34 66
1.2 33 67
1.0 35 65

*: 100 replications for any value of fi,4; size: 10000 for each sample.

Table 4.3 presents the average allocation rates, AR (McLachlan and Bas-
ford, 1988), calculated for both the consistent and the spurious solutions
detected over the 100 replications from the proposed hypothetical distrib-
utions. The AR is a useful indicator for quantifying mixture disentangle-
ment. For the units in the mixture ¢(D; = d, Z; = z) the AR is cal-
culated by averaging the higher conditional probabilities of units i with
compliance status t, observed at convergence of the EM algorithm: AR =
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Zi&(Di:d, 7,—r) MAX; ng)clz(é(k_l))} /> i I(D;=d, z:==)- The AR takes the up-

per value of 1 only if the related mixture is perfectly disentangled, otherwise
AR is less than 1 but positive. The lower bound for AR is 1/p, where p is
the number of mixture components (AR > 0.5 in our cases). Low AR values
correspond to bad mixture disentanglements, and vice versa.

Table 4.3 shows for HP set #1 that the average ARs are substantially sta-
ble over the seven populations concerning the mixture ¢(D; =1,7; = 1) for
both the consistent and the spurious solutions. The great distance |p,; — ]
guarantees an optimal disentanglement of this mixture, and average ARs are
very high as a result. For the other mixture, ¢(D; = 0, Z; = 0), we observe
that the average AR increases with the difference |u,,o — f10|- HP set #2
presents the same parametric values of HP set #1 apart from the probability
of being assigned to the treatment and the two mixing probabilities, which
are now posed as m = 0.45, w, = 0.7, and w. = 0.05. These values con-
tribute to changing the balance of the mixture components. Thus, we move
from a quite well balanced pair of mixtures for HP set #1, where the condi-
tional mixing probabilities are w,/(w, + w.) = 0.416, w./(w, + w.) = 0.583
for ¢(D; = 0,7Z; = 0) and w,/(ws + we) = 0.533, we/(wq + we) = 0.466
for ¢(D; = 1,Z; = 1), to definitely unbalanced mixtures for HP set #2,
where w,/(w, + w.) = 0.833, w./(w, + w.) = 0.166 and w,/(w, + w.) =
0.933, w./(w, + w.) = 0.066. Unbalanced mixtures tend to be more eas-
ily disentangled; greater average ARs are observed for both the consistent
and spurious solutions, in particular for ¢(D; = 0,Z; = 0), for HP set #2
compared to HP set #1. The unbalancing also allows for the reduction of
the distance |, — p.| for the mixture ¢(D; = 1,Z; = 1). This is the case
for HP set #3, where we continue to observe high ARs for the units in
¢(D; = 1,Z; = 1), even if the posing of p,; equal to 2 greatly reduces the
distance between the two means.

We also observe that for the mixture ¢(D; = 0, Z; = 0), the difference in
the average ARs between the consistent and the spurious solutions increases
with the distance between means, and this is more pronounced for the unbal-
anced HP sets #2 and #3. Therefore, with better mixture disentanglements
the difference between the average ARs of the consistent and spurious solu-
tions is higher. This is clear when the average AR for the consistent solution
is greater than 0.85, as highlighted in boldface in Table 4.3.

The simulation-based analysis suggests that the identification of a con-
sistent solution with the proposed two-step procedure is feasible when good
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disentanglement of both the mixtures is present as indicated by the aver-
age AR values. This depends both on the distances in means and on the
balancing of the mixture components. A practical suggestion in this case is
to check the ARs (other than the distances to @) for the solutions detected
in Q. Low AR values for both mixtures can be considered as a signal to
introduce further restrictions. Given that the detected spurious solutions are
characterized by inverted orders for the means and for the variances of the
mixture components (only for the variances in the cases of null differences in
means), a reasonable choice could be to impose appropriate restrictions on
some of these differences:| .o — tnols| e — Ha1ls |00 — Tnol, |01 — Tarl-

These findings do not change in the simpler situation where there is only
one class of non-compliers, that is, only one mixture ¢(D; = d, Z; = z). This
is because the value of the ARs for one mixture do not depend on the presence
of the other. Results from simulations on some of the previously proposed
populations show that the values of the ARs for ¢(D; = 0,Z; = 0) do not
appreciably change supposing the absence of always-takers while maintaining
the same balance of mixture components (by accordingly changing the values
of w, and w,).
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Table 4.3. Average allocation rates (AR) for the consistent
solutions for some values of 1.

Average AR
HP set #1 HP set #2 HP set #3
Mo ~mixture consist. spurious consist. spurious consist. spurious
§(D;, Z;)  solut. solut. solut. solut. solut. solut.

1.0 §(1,1) 0.9993 09992  0.9992 09994  0.9307  0.9307

5(0,0) 0.6199  0.6189  0.8223  0.8247  0.8219  0.8285
1.2 ¢(1,1) 0.9990 0.9993  0.9996  0.9992  0.9309  0.9308
5(0,0) 0.6269  0.6396  0.8220  0.8277  0.8222  0.8200
1.5 ¢(1,1) 0.9990  0.9991 0.9994 09993  0.9301  0.9309
5(0,0) 0.6573  0.6539  0.8651*  0.8307 0.8612*  0.8344
20 ¢(1,1) 0.9991 0.9996  0.9995 09994  0.9308  0.9321
$(0,0) 0.7249  0.7236  0.8858*  0.8357  0.9029*  0.8344
30 <(1,1) 0.9991 0.9994  0.9994 0.9996  0.9305  0.9320
¢(0,0)  0.8550*  0.8093  0.9199* 0.8313  0.9195*  0.8490
4.0  ¢(1,1) 0.9993 no 0.9994 09994  0.9310  0.9281
¢(0,0)  0.9391* evidence 0.9437*  0.8158  0.9492*  0.8688
50  ¢(1,1) 0.9993 no 0.9994 09992  0.9306  0.9310

¢(0,0)  0.9782* evidence 0.9811* 0.7763  0.9841*  0.8691

100 replications for each fi,4; size: 10000 for each sample;

* AR> 0.85 for §(DZ = 0, Z; = 0)

4.2 Comparative analysis and deviations from normal-
ity

In order to evaluate the relative merits of the proposed two-step procedure,

the analysis continues by drawing 100 samples of size 10000 from two hypo-

thetical populations having the same parameter values of HP sets #1 (posing

o = 6) and #3 (posing u, = 1.5).

The efficient likelihood estimate (ELE), interior to 2%, has been identified
by running the EM algorithm and posing h = 0.05 for each sample from the
two hypothetical populations; samples for which the resulting maximum AR
is less than 0.85, in Q% have been discarded. Table 4.4 reports mean biases,
root mean square errors, coverage rates of 95% confidence intervals, and mean
widths of the intervals, for the repeated estimates of some parameters. The
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results are also compared to other standard procedures that do not involve
extra information from pre-treatment variables: (i) the maximum likelihood
method under the weak exclusion restriction, which imposes: j,; = [0,
Hni = Hnos Oal = Oa0s On1 = Opo; (i) the CACE (Compliers Average Causal
Effect), p.; — jt, obtained by the instrumental variables method (IVE). The
aim is to highlight the bias and inaccuracy introduced by adopting (i) and
(ii) to evaluate causal effects under the violation of the exclusion restriction.

Table 4.4 shows that the estimations of the complier parameters based
only on imposing the weak version of the exclusion restriction systematically
present absolute mean biases and root MSEs higher than those calculated by
the two-step procedure. The performance of the latter is clearly also superior
also in terms of the frequency coverage rate associated at the 95% interval.
The CACE estimations obtained by the instrumental variables method (IVE)
are even worse, since this method can have very high coverage rates but at
the cost of dramatically higher mean widths of associated 95% intervals.

The first hypothetical population is characterized by large distances be-
tween means (relative to the variances) for both mixtures: |y — fyol =
|6 — 1| =5 and | — p,q]| = |7 — 1| = 6. This contributes to the very good
performance despite the balancing of mixture components. The two-step
procedure maintains relatively good performances for the other hypotheti-
cal population where the relative distances have been significantly reduced,
|tteo — ol = [1.5 =1 = 0.5, | — pa1| = |2 — 1] = 1, at the cost of un-
balancing the mixture components. The large distances between means in
the first hypothetical population are necessary to compensate for the bal-
ance of mixture components. In practice, however, it is more realistic to
meet with datasets with unbalanced mixture components (compliers prevail-
ing over non-compliers or vice versa) and relatively small distances.
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Table 4.4. Operating characteristics of various procedures for
replications from two hypothetical distributions.

95% Interval

Mean Root Coverage Mean

Parameter Estimator bias MSE Rate Width
oo =6 ELE interior to Q‘,i’ -0.001 0.025 0.94 0.098
MLE under exc. res. 0.211 0.213 0.00 0.096

Peg =T ELE interior to Q¥  -0.004 0.030 0.97 0.118
MLE under exc. res. 0.253  0.255 0.00 0.118

os = 0.85 ELE interior to Q¥ -0.001 0.011 0.98 0.050
MLE under exc. res. 0.034 0.036 0.26 0.049

o = 0.7 ELE interior to Q¥  -0.001 0.016 0.94 0.068
MLE under exc. res. -0.009 0.021 0.86 0.066

CACE = ELE interior to Q¥  -0.003  0.030 0.97 0.115
Mo — Moo = 1 MLE under exc. res. 0.041 0.050 0.70 0.115
IVE -1.844 1.857 1.00 15.99

Moo = 1.5 ELE interior to Q¥ -0.102  0.259 0.96 1.366
MLE under exc. res. 0.793 0.874 0.06 0.112

e =2 ELE interior to Q¥ -0.155 0.259 0.86 0.985
MLE under exc. res. 0.996 1.038 0.04 0.151

o = 0.85 ELE interior to Q% 0.046 0.154 0.95 0.506
MLE under exc. res. 0.534 0.672 0.33 0.094

oq = 0.7 ELE interior to Q% 0.032 0.180 0.96 0.537
MLE under exc. res. -0.162 0.973 0.05 0.096

CACE = ELE interior to Q¥ -0.052 0.325 0.89 1.751
e — Mo = 0.5  MLE under exc. res. 0.187  0.521 0.06 0.422
IVE 19.01 19.59 0 6.581

Although normality is not a condition for model identifiability, further
considerations are needed to evaluate the robustness of the proposed estima-
tors when the outcomes are supposed to be normally distributed. In general,
many types of deviations from normality are conceivable, and here we focus
on heavier tails and asymmetric distributions.

To assess the effects of increasingly heavier tails, we consider a set of
hypothetical populations whose outcomes are ¢ distributed. We set the values
of the means for the different compliance statuses as those of the previous
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HP set #2: p,0 =0, ptiy =1, pto = 1, ft; = 2, g = 7. The mean for the
compliers not assigned is now posed at three different levels p ., = 1.5, 3, 4.
For each of these three distributions we consider three increasing levels of
kurtosis different from the null case: a mild level (3.3), a moderate level (5),
and a stronger level (9). These are obtained posing 20, 7, and 5 degrees of
freedom of the t distributions, respectively..

To identify the effects of asymmetric distributions, another set of hypo-
thetical populations where the outcomes are non-central ¢ distributed is con-
sidered. We maintain the values for the means of various compliance-statuses
like those proposed in the previous case. For each of the three distributions
we consider three increasing levels of skewness other than the null case: 0.4,
0.6 and 0.8. These are obtained posing the parameter of non-centrality equal
to 3, 5 and 10, respectively, while maintaining the degrees of freedom at 20.
Examples Figures 1 and 2 show the g-q plots (against normal distributions)
for two random samples of size 5000; the first is from a t distribution with
a kurtosis of 9, and the second is from a non-central ¢ distribution with a
skewness of 0.8.

Again, 100 samples with a size of 10000 have been drawn from each
hypothetical population. Tables 4.5 and 4.6 report coverage rates of 95%
confidence intervals, mean widths of the intervals, mean biases, and root
mean squared errors for the repeated estimates of the CACE. The ELE was
identified by running the EM algorithm, and posing h = 0.05 in . Samples
for which the resulting maximum AR is less than 0.85, in Q% were discarded.

As expected, the performance of the method approximately increases with
the value of i, that is, with the distance |y — finol = |fteo — 1|, for any
given level of departure from normality. A slightly better comparative per-
formance is observed under increasingly heavier tails. A high coverage rate
was observed under a mild level of kurtosis, 3.3, for any of the proposed val-
ues for ., while the robustness of the methods against increasing levels of
skewness is unsatisfactory when p,, = 1.5. High to moderately high levels of
coverage are observed at all of the proposed levels of kurtosis and skewness
when g, = 4.
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Table 4.5. Performance of the CACE two-step estimator, interior to Q%
against departures from normality: increasing heavier tails.

Kurtosis
o Moo CACE 0 3.3 5 9
7 1.5 9.9 Coverage rate 0.95 0.93 0.39 0.28
Mean width 0.702 0.647 0.831 0.410
Mean bias 0.140 0.231 0.250 0.386
Root MSE 0.231 0.270 0.445 0.398
7 3 4 Coverage rate 0.97 0.96 0.90 0.09
Mean width 0.429 0.577 0.378 0.472
Mean bias -0.044 -0.027 0.375 0.423
Root MSE 0.125 0.154 0.388 0.404
7 4 3 Coverage rate 0.97 0.96 0.92 0.84
Mean width 0.359 0.555 0.491 1.981
Mean bias -0.002 0.011 -0.003 0.337
Root MSE 0.095 0.146 0.130 0.647

Table 4.6. Performance of the CACE two-step estimator, interior to Q%
against departures from normality: increasing asymmetric distributions.

Skewness
e Moo CACE 0 0.4 0.6 0.8
7 1.5 5.5 Coverage rate  0.94 0.28 0.09 0.04
Mean width 0.631 0.712 0.603 0.932
Mean bias 0.152 -0.684 -0.856 -1.400
Root MSE 0.270 0.714 0.871 1.421
7 3 4 Coverage rate  0.97 0.89 0.81 0.27
Mean width 0.442 0.331 0.753 0.388
Mean bias -0.044 0.201 0.339 0.415
Root MSE 0.125 0.221 0.392 0.427
7 4 3 Coverage rate  0.97 0.96 0.91 0.81
Mean width 0.362 0.611 0.631 0.576
Mean bias -0.002 0.005 0.007 -0.136
Root MSE 0.095 0.159 0.164 0.202
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Fig. 4.1: g-q plot for a random sample of 5000 units from a ¢ distribution
with kurtosis equal to 9 against a same mean and variance normal
distribution.
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Fig. 4.2: q-q plot for a random sample of 5000 units from a non-central ¢
distribution with skewness equal to 0.8 against a same mean and variance
normal distribution.
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5 Anillustrative application: return to school-
ing in Germany and Austria

In microeconomic literature, the IV method has been widely used to evalu-
ate return to schooling. The method provided a good strategy to solve the
selection bias problem that arises when an individual’s choice of educational
attainment is related to potential earnings (Card, 1999). Some previous
studies provide examples of various choices of the instrumental variable such
as quarter of birth (Angrist and Krueger, 1991), college proximity (Card,
1995; Kling, 2001), education policy reform (Denny and Harmon, 2000),
presence of any sisters (Deschenes, 2002), and location of childhood (Becker
and Siebern-Thomas, 2004).

In particular, two remarkable studies were recently proposed by Ichino
and Winter-Ebmer (IW henceforth) in 1999 and 2004. In both papers, the
authors investigated the causal effect of education on earnings: the first paper
(1999) estimated lower and upper bounds of returns to schooling in Germany,
the second (2004) quantified the long run educational cost of World War Two
in Germany and Austria. In particular, the IW (2004) paper relies on the fact
that individuals who were about ten years old during or immediately after the
war were damaged in their educational choices compared to individuals in the
immediately previous or subsequent cohorts. Physical disruptions due to war
and related consequences indeed made it harder to achieve the desired level
of education for most of the schooling age population in these two countries.
Moreover, as the authors showed using the IV method, individuals whose
education was affected by the war (compliers) suffered a significant earning
loss about forty years after the end of the war. For this purpose, the IW
causal analysis was supported by several instruments. In particular, the date
of birth can be reasonably supposed to be a random event, and cohort of birth
was adopted as an instrumental variable for both countries®. The authors had
to assume the exclusion restriction, other than assumptions 1-4 of Section 2,
for identifying and evaluating the average causal effect for compliers by the
IV method.

In order to show an example of fully relaxing the exclusion restriction and
consequently estimating causal effects for noncompliers, the proposed two-

3Two other significant instrumental variables were adopted for Germany: an indicator
of the father?s educational background and an indicator of the father’s military service
during the war.
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step procedure is applied here to the same economic context of the IW (2004)
paper. The data are from Mikrozensus 1981 for Austria (a 1% sample of the
Austrian population), and from wave 1986 of the Socio-Economic Panel for
Germany. This study considers males born between 1925 and 1949 for both
countries.

Log hourly earnings for employed workers are observed about 40 years
after the end of the war. We follow IW, and in order to consider the increasing
trend of individual earnings with respect to age, the outcome Y; is defined as
the residual of a regression of log hourly earnings on a cubic polynomial in
age. Candidate treatment also had an increasing trend with respect to age,
which is the individual years of education. For this reason, the residuals of a
regression of years of education on a cubic polynomial in age are calculated?.
In order to apply the previously proposed procedure, the treatment has to
be a binary variable. Then we define the treatment D; to be equal to one
if the individual residual is smaller than the residuals sample average and
equal to zero if the individual residual is greater than the residuals sample
average. In this way, we consider individuals with D; = 1 as poorly educated,
and individuals with D; = 0 as highly educated. The cohort of birth is used
as an instrumental variable, Z;, having the role of a random assignment to
treatment. For this purpose, Z; has to be necessarily equal to one for people
assigned to be poorly educated, and equal to zero for people assigned to be
highly educated. Table 5.1 shows both the estimated mean years of education
and the estimated mean residuals of the years of education® are smaller for
individuals in the cohort 1930-39° than for people in the cohort obtained
by merging the 1925-29 and 1940-49 cohorts. These results suggest defining
Z; =1 for individuals born during 1930-39, and Z; = 0 for individuals born
during 1925-29 or 1940-49.

4Like in IW, these residuals are calculated by considering individuals born between 1910
and 1960, and by including two dummies (1949, 1952) in order to consider the increases
in the minimal school leaving age in Austria.

SFor Germany, the units with missing values in the years of education were dropped,
and the resulting sample size was 1526. There are no missing years of education for the
29148 units in the Austrian sample.

6The individuals in the 1930-39 cohort were of school age during World War Two.
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Table 5.1. Estimated mean years of education and estimated mean
residual of years of education per country and cohort of birth.

Country Cohort of birth Num. Years Residuals of
observ. of education years of educ.

Germany 1930-39 633 11.36 (0.091) -0.243 (0.091)
1925-29 U 1940-49 893 11.86 (0.084) 0.099 (0.083)

Austria ~ 1930-39 11765  9.18 (0.017) -0.134 (0.017)

1925-29 U 1940-49 17383  9.49 (0.015)  0.073 (0.015)

Standard errors in parenthesis.

We continue by dropping units with missing values in the hourly earnings,
and subsequently by applying the Hadi robust procedure (1992) for outlier
detection on each outcome empirical distribution ¢(D; = d,Z; = z). The
result is 5 outliers detected for Austria and 42 for Germany; the correspond-
ing units have been dropped. The final sample size is 1118 for Germany
and 15429 for Austria. We assume that outcomes are normally distributed
and apply the likelihood analysis presented in Section 3 with no restrictions
on variance components. For this purpose, the first step will be limited to
estimating the mixing probabilities by the method of moments, @; and the
second step is to detect the root of the likelihood equations closest to @
in Q. Table 5.2 presents the method of moments estimates of the mixing
probabilities for the two countries @ = (0q, Wp, D).

Table 5.2. Estimated mizing prob. Oy
per country; t = a,n,c.

Country Da Wn We
Germany 0.7311 0.2187 0.0502
Austria 0.7797 0.1519 0.0684

The value w. in Table 5.2, estimating the probability of an individual
being in the group of compliers, can also be obtained as the difference between
the average treatment under Z; = 1 and Z; = 0. A simple ¢-test on @, yields
information about the causal effect of the supposed randomized instrument
on the treatment; we obtain a very high significant result for the ¢-test on @,
for Austria (¢: 10.59, s.e.: 0.0064, p-value: 0.000); for Germany the ¢-test on
@. assumes a value of 1.92 corresponding to a p-value of 0.055 (s.e.: 0.0261).
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Table 5.37 presents the results of the two-step procedure posing h = 0.05
in QY. As shown in Section 2, parameter vector 0 is identified if w, # w,
and w, # w,; these conditions on the mixing probabilities have been largely
refused: w, — @, = 0.656 (s.e.: 0.029, p-value: 0.000), W, — w. = 0.143 (s.e.:
0.033, p-value: 0.000) for Ocer; o — e = 0.701 (s.e.: 0.011, p-value: 0.000),
Wn — we = 0.073 (s.e.: 0.009, p-value: 0.000) for 9AHS71; W, — we = 0.699
(s.e.: 0.011, p-value: 0.000), @, —w. = 0.071 (s.e.: 0.009, p-value: 0.000) for

0Aus,2°

For Germany, the proposed method produces a unique nonspurious solu-
tion interior to Q‘,f, 9(;01., whose elements are all significantly different from
zero at a level of 95%, apart from the mean outcome for unassigned compli-
ers, fi,o. For Austria, the procedure does not identify a unique nonspurious
interior solution, and we obtain two roots interior to Q%: 9Aus71 and 6 Aus.2)
for which all of the parameters are significantly different from zero at a level
of 95%; apart from the outcome means for assigned compliers, fi,; which are
significantly different from zero but at a level of 90%.

"Standard errors for Tables 10, 11 and 12 are obtained by the estimated asymp-
totic covariance matrices of point estimators. Fach matrix is calculated simply by
inverting the opposite second derivatives matrix of the log-likelihood function at :

—(82 log L(B) /06 96 ).
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Table 5.3. Results from the two-step procedure restricted to QF per

country; h = 0.05.

chr eAus,l : 0Aus,2 :
He1 > Ha1 He1 > Ha1
Hno < Heo Hno > Heo

Wa 0.7230 (0.0275) 0.7762 (0.0075)  0.7757 (0.0075)
Wn 0.2099 (0.0186) 0.1484 (0.0045)  0.1476 (0.0045)
@, 0.0669 (0.0233) 0.0753 (0.0061)  0.0766 (0.0060)
[0 -0.1545 (0.0162)  -0.0744 (0.0032) -0.0744 (0.0032)
[ -0.1697 (0.0170)  -0.0800 (0.0042) -0.0800 (0.0042)
fino 0.2694 (0.0394) 0.2803 (0.0133)  0.3215 (0.0151)
[y 0.3177 (0.0316) 0.3501 (0.0123)  0.3501 (0.0123)
[ -0.0109 (0.1361)  0.3392 (0.0279)  0.2592 (0.0212)
fio -0.3275 (0.1450)  -0.0524 (0.0317) -0.0521 (0.0323)
040 0.3378 (0.0085) 0.2764 (0.0020)  0.2764 (0.0020)
Oa1 0.2632 (0.0128) 0.2467 (0.0032)  0.2465 (0.0032)
6no 0.2543 (0.0235) 0.2877 (0.0097)  0.4069 (0.0088)
Gni 0.3213 (0.0186) 0.3779 (0.0080)  0.3779 (0.0080)
lo 0.4312 (0.0893) 0.4657 (0.0168)  0.2358 (0.0162)
Oe1 0.5693 (0.1394) 0.4874 (0.269)  0.4859 (0.0264)

# Obs. 1118 15429

(0, @) =

= /3, (0 — &,)2 0.0204 0.0086 0.0101

AR for

<(D;=1,7;=1) 0.930 0.919 0.918

AR for

¢(D; =0,Z; =0) 0.893 0.708 0.657

Standard errors in parenthesis.

The adequacy of a normal assumption for the outcome distributions was
evaluated by g-q plots of the empirical against fitted distributions for each
group ¢(D; = d, Z; = z). Figures 3 to 6 illustrate the g-q plots for the groups
¢(D; =0, Z; =1) and ¢(D; = 1, Z; = 0), that is, for assigned never-takers
and unassigned always-takers. These graphs present the typical shapes of
distributions with slightly heavier tails. The estimated kurtoses are: 3.84
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and 3.81 for Germany, 3.64 and 3.35 for Austria®; these are mild levels for
which the two-step procedure should be robust as illustrated at the end of
the previous Section. Figures 7 to 10 illustrate the g-q plots for the two
mixtures ¢(D; = 1, Z; = 1) and ¢(D; = 0, Z; = 0). The fits appear to be
satisfactory even if heavier tails are observed for ¢(D; = 1, Z; = 1) for both
the countries; however, the contribution of each mixture component to the
overall mixture kurtosis and skewness is not observable.

754781

Empirical distribution

-1.22693 4 ° ° -

| I [
-1.03392 Fitted distribution 754781

Fig. 5.1: g-q plot of the outcome empirical against fitted distribution for
not-assigned alway-takers, Germany; estimated kurtosis = 3.84.

8The estimated skewness results are low: -0.187 and 0.050 for Germany, 0.124 and
-0.107 for Austria
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Empirical distribution
I

-516448
| T |
-438299 Fitted distribution 1.0737

Fig. 5.2: q-q plot of the outcome empirical against fitted distribution for
assigned never-takers, Germany; estimated kurtosis = 3.81.

1.06222 o

Empirical distribution

o

-1.20722 — ° -

I I I
-1.07937 Fitted distribution 930541

Fig. 5.3: q-q plot of the outcome empirical against fitted distribution for
not-assigned alway-takers, Austria; estimated kurtosis = 3.64.
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-81205

Fig. 5.4: q-q plot of the outcome empirical against fitted distribution for
assigned never-takers, Austria; estimated kurtosis = 3.35.

1.0877 °

Empirical distribution
|

-966312 -
-918333

T
Fitted distribution

]
.978148

Fig. 5.5: q-q plot of the outcome empirical distribution against fitted
distribution for the mixture ¢(D; = 0, Z; = 0); Germany.
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916349

Fig. 5.6: g-q plot of the outcome empirical distribution against fitted
distribution for the mixture ¢(D; = 1, Z; = 1); Germany.

1.69232
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°
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-1.4858 — °

1 1 |
-1.07672 1.67604

Fitted distribution

Fig. 5.7: q-q plot of the outcome empirical distribution against fitted
distribution for the mixture ¢(D; = 0, Z; = 0); Austria.
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Fig. 5.8: q-q plot of the outcome empirical distribution against fitted
distribution for the mixture ¢(D; = 1, Z; = 1); Austria.

The last two rows of Table 5.3 show the values of the allocation rates
(AR) for each solution. We observe that the unique solution for Germany
obtains higher AR values compared to those for Austria. This result can
be explained by the unequivocal identification of the consistent solution as
being feasible when good mixture disentanglements for both mixtures occur,
as indicated by the AR values.

Table 5.4 shows that the difference in variances for the two mixtures are
significantly different from zero for any of the considered roots. These results
do not support the continuation of the likelihood analysis by assuming the
homoscedastic conditions and detecting the likelihood root closest to € in
b,

Table 5.4. Estimated difference in variances for the two mixtures from
the two-step procedure restricted to Q.

Germany Austria

éGcr éAus,l Ny > Ha1 éAus,2 Ny > Ha1

Hno < Heo Hno > Heo
160 — 60| 0.1768 (0.0900)  0.1780 (0.0173) _ 0.1711 (0.0168)
6ar — G| 0.3060 (0.1407)  0.2407 (0.0267)  0.2394 (0.0262)

Standard errors in parenthesis.
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Table 5.5 presents the estimated causal effect for each compliance status
compared to the estimated causal effect for compliers obtained by apply-
ing the IV method under the exclusion restriction (LATE: Local Average
Treatment Effect).

Table 5.5. Estimated causal effects for each compliance status from the
two-step procedure restricted to Q% , and estimated LATE per country.

Germany Austria
Ocer Onus t Her > far Oaus2 t fa > Har
Hno < Heo Hno > Heo
ftar — oo -0.0152 (0.0234) -0.0056 (0.0053)  -0.0056 (0.0053)
fpr = B +0.0482 (0.0235) +0.0698 (0.0181) +0.0286 (0.0195)
Loy — floo -0.3166 (0.1801) -0.3917 (0.0428)  -0.3114 (0.0387)
LATE 0.1281 (0.4805) -0.3018 (0.0716)

Standard errors in parenthesis.

For Germany, the estimated LATE assumes a value not significantly dif-
ferent from zero. Relaxing the exclusion restriction produces a significant
and positive effect for never-takers at a level of 95% (+0.0482, s.e.: 0.0235,
p-value: 0.040), and a significant negative CACE at a level of 90% (-0.3166,
s.e.: 0.1801, p-value: 0.0784).

This result can be explained by general equilibrium considerations. In a
recent paper by Card and Lemieux (2001), they use a model with imperfect
substitution between similarly educated workers in different cohorts of birth,
and argued that shifts in the college-high school wage gap reflect changes in
the relative supply of highly educated workers across cohorts. The authors
argued that the increase in the wage gap for younger men in the U.S.A.,
U.K. and Canada over the past two decades was due to the rising of relative
demand for college educated labor, coupled with the slowdown in the rate of
growth of the relative supply of college educated workers. Tables 5.6 and 5.7
confirm these results for the two countries under consideration here. Both
the estimated mean of log hourly earnings and the estimated mean of the
residuals of log hourly earnings differences between highly (D; = 0), and
poorly (D; = 1), educated individuals are indeed greater for the cohort 1930-
39, (Z; = 1), than for the cohort obtained by merging 1925-29 and 1940-49
cohorts, (Z; =0).
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Table 5.6. Estimated mean log hourly earnings per country,
educational level (D;), and cohort of birth (Z;).

Country Z; Num. D, =0 D, =1 Difference
observ.
Germany Z; =1 471 3.370 (0.030) 2.898 (0.083) 0.472 (0.034)
Z; =0 647 3.271 (0.025) 2.917 (0.079) 0.354 (0.029)
Austria Zi=1 6213 4.509 (0.108) 4.076 (0.024) 0.433 (0.108)
Z;=0 9216 4.467 (0.006) 4.089 (0.025) 0.378 (0.007)

Standard errors in parenthesis.

Table 5.7. Estimated mean residual of log hourly earnings per
country, educational level (D;), and cohort of birth (Z;).

Country Z; Num. D;=0 D, =1 Difference
observ.
Germany Z; =1 471 0.317 (0.030) -0.156 (0.017) 0.473 (0.034)
Z; =10 647 0.201 (0.025) -0.154 (0.016) 0.355 (0.029)
Austria  Z; =1 6213  0.350 (0.009) -0.077 (0.004) 0.427 (0.010)
Z;=0 9216 0.300 (0.006) -0.074 (0.003) 0.374 (0.007)

Standard errors in parenthesis.

Even if the conclusions made by Card and Lemieux’s (2001) do not regard
causal relationships but only observe the wage gap between cohorts, these
general equilibrium considerations can justify the violation of the exclusion
restriction in our cases. The lower average education in the 1930-39 cohort,
as indicated in Table 5.1, can indeed explain the positive return to education
for never-takers, individuals always highly educated under the two different
assignments. Indeed, the exclusion restriction states the instrumental vari-
able has to have only a treatment mediated effect. But given our definition
of the variables Z; and D;, we know that the different educational levels be-
tween cohorts are due only to complier behavior. Consequently the value
of the instrumental variable, other than providing information regarding the
compliers? educational choices, also yields information about the relative
supplies of differently educated workers in different cohorts. For example,
considering individuals born in the 1930-39 period, we know that compliers
born in that cohort will be poorly educated. Therefore, given the invariant
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educational behaviors of noncompliers, it is reasonable to suppose a decrease
in the relative supply of highly educated workers compared to the other
cohort (1925-29 U 1940-49). Consequently, it is reasonable to think that
never-takers would exploit less competitive labor market conditions, then
increasing their mean outcome.

For Austria, the estimated nonparametric LATE assumes a significantly
different from zero value of -0.3018 (s.e.: 0.0716). Relaxing the exclusion re-
striction produces two nonspurious interior solutions characterized by differ-
ent orders of the means of the mixture composed by unassigned never-takers
and compliers, ¢(D; = 0, Z; = 0). Indeed, we observe fi,;y < ji,o for @1, and
o > [l for 0 Aus,2- Solution 0 Aus,1 18 characterized by a more pronounced
significant estimated causal effect for compliers (fi.; — fi.o: -0.3917) compared
to the LATE, and by a significant positive effect for never-takers (fi,;; — fi,,0:
+0.0698). For solution 9AHS,2, on the contrary, the estimated compliers av-
erage causal effect (fi,; — fio: -0.3114) is close to the estimated LATE, and
the estimated noncompliers average causal effects are both not significantly
different from zero. Introducing the further restriction pu,,, > p., for Austria
produces equivalent results for estimating the LATE based on imposing the
exclusion restriction.

The choice of a particular solution depends on both statistical evidence
and economic considerations. Solution 9Aus,1 obtains slightly better sta-
tistical performance concerning the distance d(w,®) (0.0086 compared to
0.0101), and the AR values (0.919 compared to 0.918, and 0.708 compared
to 0.657). However, the choice of the order of means in the mixture ¢(D; =
0,Z; = 0) is not straightforward. Compliers can be considered at least to
be more motivated individuals, but never-takers are always highly educated
under the two different assignments, and so are presumably in better social
conditions and exploit more advantages and opportunities in the labor mar-
ket. For these reasons, the choice of the sign for the difference (p.y — f,0) is
questionable, and depends on a deeper and more specific analysis of the Aus-
trian social-economic context during this period. However, the two interior
solutions for Austria share a null effect for always-takers, and a remarkably
negative effect for compliers.
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6 Conclusions

Identification and estimation issues in analyzing a randomized experiment
with imperfect compliance without exclusion restriction have been consid-
ered. The main difficulties in this task are due to the presence of mixtures of
distributions, which imply both the partial identifiability of the models and
the possibility of having multiple roots for the likelihood equations.

Supposing that the outcome distributions of various compliance statuses
are in the same parametric class, the model is identifiable if w, # w. and w,, #
w.. This is a set of less restrictive conditions compared to simple mixture
models, where identifiability is assured only up to permutations of the label
components. Furthermore, these conditions for the mixing probabilities are
easily testable under the usual assumptions for identifying causal effects by
the Instrumental Variables method.

Taking into account the possibility of having multiple roots, statistical
theory guarantees that an efficient estimate can be made by the root clos-
est to a consistent, but not efficient, estimate of the parameter vector such
as that resulting from the method of moments. Additional problems arise
when supposing normally distributed outcomes because of two reasons: the
unboundedness of the likelihood and the fact that a unique estimate from the
method of moments can be obtained only by imposing homoscedastic con-
ditions for the two mixtures. In the heteroscedastic case, the detection can
be restricted to the root closest to the method of moments estimate of the
mixing probabilities. A simulation-based analysis proves that the detection
of the efficient likelihood estimate is feasible when good mixture disentagle-
ments of both the mixtures occur as highlighted by the allocation rates. This
depends both on the distances between means (relative to the variances) and
on the balancing of the conditional mixing probabilities in the two mixtures.
For computational purposes and in order to exploit the particular incomplete
structure of the likelihood, an EM algorithm can be easily developed.

An empirical microeconomic example was also proposed. We estimate
the return to schooling for individuals born in Germany and Austria between
1925 and 1949, where the proposed assignment to treatment is the cohort
of birth. This microeconomic context has been suggested by a recent paper
from Ichino and Winter-Ebmer (2004).

Directions for future research can be suggested for some of the questions
examined in this paper. An open issue regarding identifiability is the as-
sessment of the extent of possible deviations from the assumption of linear
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independence of the class of mixture components, particularly for the case
of mixtures of truncated distributions. Difficulties under the Bayesian ap-
proach due to the presence of mixing probabilities intersecting the various
likelihood factors could be addressed by studying suitable conjugate priors
or by the implementation of recently proposed Bayesian methods for mixture
models (for example, label invariant loss function, Celeux et al., 2000). The
empirical application suggests another interesting direction for exploration,
such as the possibility of extending the results to a case of a multivalued
treatment (in Section 5, the years of education have been transformed in a
binary treatment using residuals from preliminary regressions).

7 Appendix A

Given that G is a linearly independent set over R, the mixture in ¢(D; =
1, Z; = 1) is identifiable up to permutations of the label components in the
parametric sub-vector (wg, We, My, M. )- Lhe pairs (6',8"), 8" £ 6" € © in
E¢(D;=1, z;=1) are such that @' is an element of the set

{0, : (w;, wlm rrl;l? n,cl) X {w'fw nn07 77(:0} X {naO} X {nnl} | Zwt = 17 Wy > 07 Vt} )
¢
and 0" is an element of the set
{9” t(Was wes Mats Mer) X {Wns Moy Meot X {Ma0} X {Mpi} | Zwt =1, w >0, Vt} ’
¢

where (W, Wi, .y, n.) = (W2, W2, 0, n%) up to permutations of the
label components.

Again, given that G is a linearly independent set over R, we cannot have
Wi = wimll, unless ), = n’, and W/, = w!. Consequently, permutations
of the label components in ¢(D; = 1, Z; = 1) are restricted to the case W/, =
w), = w! = w/. The pairs (6',8"), 0' # 8" € © in =(p,_1, z,=1) N E(D;=1, ,—0)
are such that 6’ is an element of the set

{0, : (wiw wlm 77:117 77::1777510) X {wfh o> 77(:0} X {nnl} | Zwt = 17 wg > 07 Vt} )
t

and 0" is an element of the set
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{0” : (wg7 w,c,7 7721» 772,1»7720) X {wfh o> 77(:0} x {nnl} | Zwt = 17 Wy > 07 Vt} )
t

where:
/ / / / / _ " " /! " " 3 / /
(wcw Wes Mats 77c1>77a0) - (wcw Wes Mats ncbnao)? if Wq 7é Wes
or
/ / - 1" 1" . .
(1)1, 1) = (1Y, n7)) up to permutations in the label components, and
/ / / _ " " " 3 ! ! "o "
(wcw wmnaO) - (wcw wc?ﬂaO)? if Wg = We =Wy = We-

Given the constraint >, w; =1, we have w), = 1—w), —w, = 1-wl —w! =
wl'. Given the linear independence of the elements of G, we cannot have
/ / _ 1 ! / _ /! ! " 4 4 3 4
win,, =wim,., unless 7, = 1), and w; = w; . This implies that the pairs

/ " / /! : — —_ —
(0 ,0 ), 0 7é 0" € ©in (D=1, Z;=1) N =(D;=1, Z;=0) N =(D;=0, Z;=1) alre such
that 8’ is an element of the set

{0, : (wiw w,mw;z? 77;17 771:1777510777111) X {”nO? 77(:0} | Zwt = 17 wy > 07 Vt} 9
t
and 0" is an element of the set
9" - " "o 1" 1 1" 1" -1 0.V
: (wcw Wer Wy Ma1s ncbnaO?nnl) X {”nO? 77(:0} | Zwt =1, w >0, 13 ’
t

where:
/ 1

/ / / / / / _ " " " " " " : /
(wcw wc7wn7 nal? ncl?”aO?”nl) - (wm wmwm nab 77c1777ao>77n1)> lf wa 7é
/
c)

or

(11, 1) = (17, n7)) up to permutations in the label components, and
/ "

(wéw wlmwm 77:107 77;11) = (wg7 wg?“”n? 772:07 77;;1% if w; = w,c = wg = w,c,'
Finally, given that G is a linearly independent set over R, the mixture in
¢(D; =0, Z; = 0) is identifiable up to permutations of the label components
in the parametric sub-vector (wy, We¢, M,,0, M) This implies that the pairs
(6',0"), 0" +£ 0" € © in = are such that one of the following conditions holds:

(1)1, n.y) = (1?7, n7)) up to permutations in the label components, and

! ! I / / _ " "o, " " . /A B
(wm Wes Wh nn07 nc07na07nn1) - (wcw Wey Wy, nnO? ncO? na07 nnl)? if We = We =

w

(M0, M) = (Mo, M%) up to permutations in the label components, and

/ / / / _ " " " " " : ro_ r_
(wcw wmwmnal? 77c1777a0777n1) - (wcw wmwn?nal? 77c1777a0777n1)> lf Wy = W, =
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or
(161> Ma) = (Ma1, M) and (700, M) = (Mo, M) UP to permutations
in the label Components, and (MZU w,mw;z? 77;07 77;11) = (MZ, WZ>WZ»7’IZO>7’IZ1):

ifw =w. =W, =wl=uwl =ue

8 Appendix B

If (W4, We, Ma15 M) is one of the multiple roots for the likelihood equations
based only on the units i € ¢(D; =1, Z; = 1), then
aZzEg(Di:l,Zi:l) log f(yi, dis 2i;0)/0(M41,Me1) R X
MNa1=Ma1sMec1="Nc1

where f(y;, d;, z;;0) is in the parametric class (1).
A root of the likelihood equations based on the entire sample satisfies

0> . log f(yi, d;, 2;;6)/0(8) =0, and

=0,

0 >, log fly,di,z;0)+ Y log f(yi di, 250)/0(8) = 0.

igs(Di=1, Z;=1) i€s(Di=1, Z;=1)

This implies

0 Z log .f(yu di7 Zis 0)/8( T, Wa,y Wny Wey Moy Mnos Mt s 77c0) = 07

igs(Di=1, Z;=1)

a Z log .f(yZ7 di7 Zi; 0)/8( , wa7wc) =0

ies(D;=1, Z;=1)

and

o >, log f(yi di, 23 0)/0(0,1,m.) = 0.

ies(D;=1,Z;=1)

Consequently, (7,1, 7.,) is also a sub-vector of a root of the likelihood
equations based on the entire sample. Analogous arguments hold for a root
of the likelihood equations based only on the units i € ¢(D; =0, Z; = 0).
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9 Appendix C

Now, we define the set S(y) as:

S(y) = {0 €6|3tz € {al,c1,n0,c0}, n € {1,...,N}, piy, = Yn, 0v- = 0},
where O is the closure of ©.

Theorem 3 For any i.i.d. sample (y,d,z) of N wunits, the likelihood func-
tion L(0) degenerates at every point of S(y):

Vy, V8*eS(y), 3 (9““) €O, k=1,2 ) such that lim, .., 8% = 6* and
limy o L(0) = o0.

Proof: suppose that 0,1 = 0 or 0.4 = 0 in 8. The likelihood can be
written:

L(e) = H f(yZ7 di7 ZZ,O) = H f(yZ7 di7 25y T, Wa>wc>77a1>77c1)'

ies(D;=1, Z;=1)

H .f(yu di7 255 O\nab ncl) = L1(7T7 Way,Wey Mgt 77c1)'L2(9\77a1> 77(;1):

ig¢<(Di=1, Z;=1)

where the first factor of L(8) is the likelihood for a mixture of two normal
distributions:

L1(0) = H [Wa -N (yi§ Nal»U?Ll) +we N (yi§ Nel»Uzl)} .
i¢s(D;=1, Z;=1)

This factor degenerates if 0,4 — 0 and p,; — yn, or if 0,1 — 0 and
te — Yn, Day(1969). Given that Lo(6\n,;,n,.,) does not depend on o,; and
0.1, this implies the degeneracy of the overall L(€). Analogous arguments
hold if 6,0 =0 or 0,9 = 0 in O%e
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