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Abstract

I analyze empirically the effects of both urban and industrial agglomeration on
men’s and women’s search behavior and on the efficiency of matching. The analysis
is based on on a unique panel data set from the Italian Labor Force Survey micro-
data, which covers 520 randomly drawn Local Labor Market Areas (66 per cent of
the total) over the four quarters of 2002. I compute transition probabilities from
non-employment to employment by jointly estimating the probability of searching
and the probability of finding a job conditional on having searched, and I test
whether these are affected by urbanization and/or industry localization. The main
results indicate that both urbanization and industry localization raise job seekers’
chances of finding employment (conditional on having searched), but neither of them
affects non-employed individuals’ search behavior.
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1 Introduction

Matching models are widely used to analyze the process of job formation in the presence
of labor market frictions. These models are typically taken to operate, and empirically
estimated, at the national level (see Petrongolo and Pissarides (2001) for a survey). In
a context of slow mobility of labor, however, the matching of workers and jobs may
occur instead at a much more localized level (e.g., at the local labor market level), and
in particular, it may be affected by the degree of urban or industrial agglomeration.
Furthermore, the majority of the literature analyzes labor market dynamics by focusing on
the unconditional hazard rate into employment. However, since the latter is the product
of the probability of searching and the probability of finding a job conditional on having
searched, it would also be interesting to explore whether transitions to employment are due
to the effort individuals devote to job seeking and / or to the employment chances per unit
of search.? This distinction is even more important in the context of this study, as local
hazard rates and job seekers’ propensity to search are likely to be differently affected by
agglomeration externalities: the former through changes in labor market tightness (i.e.,
the ratio between the amount of vacancies and the number of job seckers) and in the
technology of matching; the latter through individual resources, search costs and returns,
and hazard rates.

In this paper I empirically analyze the impact of agglomeration on both the individual’s
search intensity and the hazard rate into employment. Even though the final impact is
not a priori obvious, the majority of the transmission channels have a positive effect on

both the two stages of the search process (see Section 2 for more details on the predictions

! While urban centers, in general, are characterized by more job seekers and more vacancies, industrial
areas might be characterized by more firms of the same type and more workers with the same specific
skills. Thus, local markets may differ in the presence of skill heterogeneities: agglomeration may lower
the degree of mismatch between the skills required by firms and those offered by workers, improving
the quality of the match. Also, denser markets may be characterized by a lower degree of information
imperfection. Finally, congestion depends on population and firm density, which may vary to a great
extent across local markets.

2 Peracchi and Viviano (2004) are one of the few exceptions in the literature exploiting this relationship.



of the theory and Table 1 for a summarizing scheme). Indeed, a shorter distance to job
interviews, more frequent ”face-to-face contacts”, and the presence of thicker informal
networks lowering information asymmetries may reduce both commuting and information-
gathering costs, increasing the individual intensity of search.® Another factor on the cost
side that may increase search intensity in the more agglomerated areas is the higher cost
of living (e.g., housing costs), by raising the opportunity cost of staying unemployed. On
the return side, agglomeration may increase job seekers’ search intensity by raising local
wages or improving hazard rates. The latter, in turn, depend on the intensity of job
advertising, the thickness of the labor market, and the technology of matching. While
there is some empirical evidence of higher wages in agglomerated areas, the net effect of
agglomeration on labor market tightness and on the technology of matching is less clear-
cut. Indeed, agglomeration may raise both the demand and the supply of labor, so that
it is not obvious whether it would make markets more or less tight. With regards to the
technology of matching, whether the size of the market improves or depresses the contact
rate (per unit of search) depends on whether ”thick” markets externalities dominate over
congestion effects (see Petrongolo and Pissarides, 2001). Finally, the matching process
may be more efficient in the areas where specialized workers with similar skills and firms
of the same type are pooled together (Marshall’s "labor pooling hypothesis”). However,
the expectation of higher wage offers might increase individuals’ choosiness, lowering the
probability of job offer acceptance and therefore hazard rates. Which of these effects will
prevail is thus a matter of empirical investigation.

In the empirical analysis I use the Italian Labor Force Survey micro-data to estimate
the effects of agglomeration on employment probabilities and job search intensity. First,
to measure the effects of urban agglomeration 1 use a dummy for ”large city”, equal to one
if the individual resides in a local labor market system (LLM) with a population above

404, 526 inhabitants. In contrast to the majority of the studies that use arbitrary cut-off

3 On the other hand, but perhaps less importantly, congestion might increase search costs (e.g., time
spent in traffic jams) and hence lower search intensity.
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points, I adopt the same threshold value devised by Di Addario and Patacchini (2006) on
the basis of spatial autocorrelation analysis applied to Italian LLMs. However, since the
spatial unit of analysis is crucial to determine the existence and extent of agglomeration
externalities (Arzaghi and Henderson, 2005), I also use a continuous variable: the LLM
population size.* Second, to measure the effects of industrial agglomeration I use, alterna-
tively, an ”industrial district” and a ”super-district” dummy, denoting the LLMs with a
high presence of small and medium sized manufacturing firms.”> Since all (but one) super-
districts have a population below the 404, 526 inhabitants, I am able to compare the labor
market dynamics of the non-employed people living in urban or industrially agglomerated
areas to those living in the rest of the country by partitioning the Italian territory into
three sets of LLMs: large cities, small towns containing super-districts, and the rest of
the economy. To my knowledge, the comparison of urbanization and industry localization
effects® on search behavior and employment probabilities has not been analyzed before.
Overall, my results indicate that both urban and industrial agglomeration affect job
seekers’ hazard rates, but neither of them influences their search behavior. In particular,
residing in a large city increases men’s (women’s) chances of finding a job by 6 percent
(8 percent), while each 100,000-inhabitant increase in LLM population raises job seek-
ers’s probability of employment by 1 percent (but only below the 2,400, 000-inhabitant
threshold). With respect to industrial agglomeration, living in a super-district increases
a man’s (a woman’s) probability of finding a job by 8 percent (5 percent). These results

are broadly confirmed after correcting for sample selection. In this case, the positive ex-

4 According to Rosenthal and Strange (2004) the size of the area may matter, as externalities decay
quickly over space (within 10 miles). However, the logarithm of LLM area is rarely significant in my
regressions. While in theory both population size and density may generate agglomeration externalities
on search behavior, in practise this does not seem to be the case in Italy and in the UK (for the latter,
see Petrongolo and Pissarides, 2006).

5 Industrial districts are spatially concentrated productive systems, characterized by a large number
of small firms specialized into one or few stages of a main manufacturing production. Specialization and
inter-firm division of labor enable a district to achieve economies of scale that are external to the single
firm but internal to the cluster as a whole. Super-districts, in turn, are a subset of industrial districts
with the highest incidence of small and medium sized manufacturing employment (see Section 4.2 for
further details).

6 Similarly to Rosenthal and Strange (2004), I use the term urbanization to mean urban agglomeration,
and the term localization as a synonymous of industrial agglomeration.
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ternalities generated by localization appear only beyond the super-district threshold (i.e.,
there is no effect in industrial districts).

These findings suggest that the magnitude of the externalities generated by agglom-
eration on employment probabilities varies according to both the type and the degree of
agglomeration considered, and also to individuals’ gender. This has two main important
policy implications.

First, if the spatial concentration of small and medium sized industrial firms improves
the efficiency of matching, it might be advisable to favor the emergence or the development
of industrial clusters.” However, my results indicate that not all industrial districts reduce
frictions, as the probability of finding a job per unit of search is significantly higher in
super-districts but not in the other industrial districts. While the super-districts subset
has been identified out of industrial districts on the basis of statistical criteria (namely,
firm size and sector concentration), it would be important to study more in detail whether
they also differ along other lines (e.g., product quality, organization of the production
process, etc.).

Second, the absence of urbanization effects on job seekers’ hazard rates beyond the
2,400, 000-inhabitant threshold might imply that the largest cities (i.e., Rome, Milan
and Naples) are "too big”, possibly because of decreasing returns in the local matching
function. Knowing whether these cities are over-sized is an important issue, since reducing
their dimension (for a given industrial composition) would generate productivity gains.®
The paper is structured as follows. The next section presents the theoretical frame-

work; Section 3 reports the empirical model, Section 4 the data set and the variables;

7 Although this is a controversial issue. According to some authors (e.g., Putnam, 1993) the genesis
of Italian industrial districts has been a slow process, with roots in historical events that took place
centuries ago, and thus cannot be fostered by any policy. Nevertheless, since the 1990s Italy provides
subsidies to promote and sustain industrial districts. The Budget Law for the year 2006 (22nd December
2005; articles 366 — 372), for instance, establishes that firms belonging to industrial districts can choose
to pay taxes through the District as an institution (rather than individually). In this case, the District
is also entitled to provide private banks guarantees to lower the capital adequacy that each firm has to
fulfil in order to meet the Basle requirements when applying for a loan.

8 In any case, being "too small” would be worst than being ”too big”, as the loss of real output per
worker generated by under-sized cities is larger than that originating from oversize (Au and Henderson,
2006).
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Section 5 discusses the estimation results; and Section 6 concludes.

2 The theoretical framework

In this section, I am going to present a simple model with the only purpose of identifying
the factors affecting search behavior and hazard rates that could differ between the more
and the less agglomerated areas.

In the standard search and matching literature (for instance, Pissarides, 2000), the
number of matches M is expressed as an increasing and concave function of the amount of
workers searching for employment and the number of vacant positions. To study the effects
of agglomeration on search, I assume that the national labor market is geographically
segmented. Thus, every geographical unit or local labor market j has a matching function
specific to the area, both in terms of arguments (as in Patacchini and Zenou, 2006) and

in terms of technology:

M; = Mj(s;Jj, a;V;) (1)

where J; is the number of searchers in local labor market j, s; the area’s average search
intensity, V; the amount of vacancies, and a; the area’s intensity of job advertising.

The rate of job-finding for an individual ¢ searching with intensity s;; is:

M;(s;J;,a;V5)
sjJ;

m(sij, a;0;) = si; = sijh;(a;0;) (2)
where h; is the rate of matching per unit of search,” and 6; = V;/s;.J; is a measure of the

area’s labor market tightness.!?

9 That is, the rate at which a worker searching with unit intensity will find a job, if 8;; is normalized
to be between 0 and 1. Under this normalization, in the empirical part of the paper (Section 4) I take
si; to be the probability of searching and h; to be the hazard rate (i.e., the probability of finding a job
conditional on having searched). Since I do not intend to estimate specifically this structural model (which
I am only using to understand the predicted dependencies), there not need to be complete consistency
between this and the empirical section.

10 Note that the individual’s job-finding-rate can be expressed as a function of labor market tightness
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Let a job seeker’s budget constraint be:

b= Cj(si5) + pj2ij (3)

with:
Oj(sij> = djSZj,’}/ > 1 (4)

where b denotes the income of a non-employed person, C;(s;;) the cost of search, z;;
a real consumption good bundle, and p; the area cost of living (e.g. housing costs). I
assume that agents’ utility from consumption u(z;;) is an increasing and concave function
of z;;. The expected intertemporal utility (in steady state) achieved by an unemployed

agent is therefore:

b — Cj(si;
rWi = u (%) + sishy(a360;) (Wi§ = Wij) ®)
J

where Wl]f is her expected lifetime utility when currently employed and r the discount
rate.
The optimal level of search intensity sj; a job seeker will exercise is that which maxi-
mizes (5): OW] /0s;; = 0, or (at an interior solution):
Ci(sij) B
U
u' (2i5) j]T = hj(a;0;)(W;; — W) (6)
Job seekers are thus faced with a trade-off between the marginal cost of increased
search effort in terms of current consumption and the marginal increase in their chances of
finding a job that it induces. Thus, whether search is more or less intense in agglomerated

areas depends on whether labor market size lowers the costs of search and/or increases its

returns. I take this simple model as the starting point to discuss the mechanisms through

only under the assumption of constant returns to scale of the matching function.
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which agglomeration may affect individuals’ search behavior.

2.1 The effects of agglomeration

On the cost side, there are two channels through which agglomeration may affect search:
search costs and the cost of living (see Table 1).

With respect to the former, a shorter distance to job interviews or more frequent face-
to-face contacts due to physical proximity may reduce both transportation costs and the
costs of acquisition of information on vacancies.!' In denser areas, search costs may be
lower also because of the presence of thicker formal and informal networks facilitating
the diffusion of information on job opportunities (Wahba and Zenou, 2005). In contrast,
congestion (e.g., more intense traffic jams, crowded buses, etc.) may, on the contrary,
increase search costs and thus reduce individuals’ search intensity.

With regards to the cost of living, more congested areas are likely to suffer from higher
house prices and rents, which, by increasing the cost of staying unemployed with respect
to lower-density areas, should induce job seekers to search more intensively. This effect
occurs whenever the unemployment benefit b is either fixed or less responsive to the local
cost of living p; than local nominal wages; in fact, there is evidence that wages are actually
higher in denser areas, and b will include some nationally determined benefits that are
not indexed for local cost-of-living.

On the return side (the hazard rate), there are four main channels through which
agglomeration may affect search: wages, labor market tightness, vacancy advertisement,
and the technology of matching.

First, job seekers may search more intensively in agglomerated areas because they have
a higher utility from employment than elsewhere. Indeed, according to the literature on

agglomeration, in larger labor markets wages may be higher than average because of the

1 From the firm’s perspective, in Wheeler (2001) per-worker firm recruitment costs decrease with
population density, as the frequency of interactions enhances the arrival rate of potential workers for a
job opening, which has a fixed cost.
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productivity gains generated by the Marshallian externalities.!?

Second, if agglomeration increased labor market tightness it would also raise hazard
rates and thus individuals’ search intensity. However, whether markets are more or less
tight in agglomerated areas is itself a question of empirical investigation, as there are
reasons to expect the number of both applications and vacancies to be higher than in
non-agglomerated zones.!'

Third, agglomeration may increase job seekers’ propensity to search by intensifying
firms’ job advertising. Also this channel operates through an improvement of the hazard
rate. The impact of agglomeration on the intensity of job advertising is twofold. On
the one hand, if more agglomerated areas were characterized by tighter labor markets
they would also exhibit less intense job advertising, since in this case a lower chance
of filling their vacancies would discourage firms from advertising their positions (a sort
of "discouraged-job” effect). On the other hand, denser areas may be characterized by
more intense job advertising for mainly three reasons. Firstly, because the existence
of thicker networks'* may reduce the cost incurred by firms in advertising their vacant
positions. Secondly, because the higher number of job seekers may allow employers to
more easily cover any fixed costs of advertisement. Thirdly, because of a greater average
labor productivity.!® In all these cases, job seekers exercise more effort simply because

they have better chances to find a job and are hence more encouraged to search than

12 For empirical results on higher urban wages see, for instance, Glaeser and Mare’ (2001) for the US
and Di Addario and Patacchini (2006) for Italy, though de Blasio and Di Addario (2005) find no evidence
of different average earnings in the Italian industrially agglomerated areas (i.e, industrial districts and
super-districts).

13 According to Helsley’s and Strange’s (1990) model, the competition externality that firms generate
when locate in a city (due to the fact that other firms’ profits are reduced) prevails on the productivity
externality (due to the fact that the productivity of all workers is enhanced). Under free entry, this leads
to "too many” firms in cities, which implies, other things being equal, a higher vacancy-to-unemployment
ratio. Since there are no reliable data on vacancies in Italy, I cannot empirically test the existence of
differentials in local labor market tightness due to agglomeration. These can only be inferred from
the impact of urbanization and localization on individual hazard rates, which are increasing in market
tightness and can be measured directly (see Section 5).

14 These can either be informal (e.g., Marshall’s ”industrial atmosphere”) or real network agencies (see
Arzaghi and Henderson, 2005).

15 See Pissarides (2000) for a partial equilibrium analysis of job advertising and Ciccone and Hall (1996)
— among others — for the evidence on higher labor productivity in denser areas.
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elsewhere.'6

Finally, search intensity depends on the technology of matching. Agglomeration may
have an impact both on the chances and on the quality of matching.!” With respect to
the former, on the one hand the greater concentration and / or specialization of matching
agents in agglomerated areas may increase the effective job contact rate, and thus the
hazard rate. On the other hand, a higher density may actually lower the meeting rate
if congestion effects dominate over "thick” markets externalities.!® With respect to the
quality of matches, according to Marshall’s "labor pooling hypothesis” agglomeration
improves the efficiency of matching between jobs and workers, as the areas where many
specialized firms concentrate tend to attract the job seekers with the specific skills required
(for a survey, see Duranton and Puga (2004) and Rosenthal and Strange, 2004). Thus, the
better expected quality of matches may raise the job seekers’ probability of acceptance
as firms make more attractive offers. Which type of external (dis)economy will prevail is,
ultimately, a matter of empirical investigation.

In principle, all the positive effects on hazard rates could be partially or completely
offset by higher reservation wages, which increase job seekers choosiness, lower their ac-
ceptance probability and thus their intensity of search.!® Reservation wages could increase
because of higher expectations of future earnings or because of improved contact rates
(per unit of search). Petrongolo and Pissarides (2006) suggest that when agglomeration
improves the quality of matches and/or the mean of the wage offer distribution increases,

job seekers raise their reservation wages so as to offset any positive effect on hazard rates.

16 As Pissarides (2000) notices, this is the reverse of the discouraged-worker effect.

17 See Duranton and Puga (2004) for a survey. Note that agglomeration may also affect the elasticities
of the matching function with respect to job seekers and vacancies, so as to generate increasing returns to
scale. As a matter of fact, the majority of the empirical studies (see Petrongolo and Pissarides (2001) for
a review) finds constant returns to scale in the aggregate matching function, possibly because reservation
wages adjust to offset the scale effects generated in the contact technology or in the productivity of job
matches (Petrongolo and Pissarides, 2006).

18 See Petrongolo and Pissarides (2001). Besides the negative externality generated by a job seeker on
the other, other sources of congestion may derive from local ”dis-amenities” such as more traffic jams,
crowded subways, pollution, etc. For a survey on agglomeration externalities see Rosenthal and Strange
(2004) and Duranton and Puga (2004).

19 Although, the other side of the coin is that firms become less choosey about whom they hire as their
difficulties in filling vacancies raise.
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Conversely, when agglomeration raises the arrival rate of job offers (for instance, through
a higher vacancy-to-unemployment ratio), hazard rates tend to increase while individual
wages do not.

In conclusion, it is certainly very difficult to predict the sign of the net agglomeration
effect on hazard rates and search intensity, as the equilibrium generating them is very
complex. The aim of this section was really the highlighting of some of the possible
mechanisms at work and the introduction of a note of cautiousness in the interpretation

of the results.

3 The empirical model

As I showed in the previous section (equation (6)), the transition probabilities from non-
employment into employment depend on two elements, one determined by agents’ search
behavior and the other one by the matching process. In order to empirically examine
the impact of agglomeration on the transition probabilities between labor market states,
thus, one needs to find measures of both the individual’s propensity to search and the
effectiveness of matching.

I shall define s; as the probability that a non-employed person looks for a job at
time ¢,2° and h;; as the probability that she finds employment at time ¢ + 1, conditional
on having searched. Each person who was not employed at time ¢ can be in one of the

possible three states at time ¢ + 1 :

1. they sought employment between ¢ and ¢t + 1 and found a job (Fyyq);
2. they sought employment between t and ¢ + 1 but did not find a job (U41);

3. they did not seek employment between ¢ and ¢ + 1 (O 1).

20 Note that in the theoretical model presented in Section 2, s;; was a continuous variable greater of
equal to zero denoting the number of search units supplied by the individual ¢. Here, without loss of
generality, I am normalizing search intensity to be between zero and one.
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Let S;; be the latent variable determining whether a non-employed person looks for a
job at time ¢ (i.e., the difference in her expected utility from searching and not searching)
and hy the variable determining whether a job seeker finds employment at time ¢ + 1
(incorporating both the likelihood of her meeting a prospective employer and the sign of
the surplus generated by that match). Even though hi and §;; are not observable, I can
express them as a function of two non-coincident sets of individual and location-specific
variables, X;; and Z;; (detailed in Section 5), using the Labor Force Survey micro-data

on labor market transitions:?!

iLit =" X + € (7)

and

Sit = Zi + €ar (8)

The probability of observing a person who has searched at time t is thus Pr(+'Z;;+€5; >
0| Zit), which I assume to be a probit ®(y'Z;;). Similarly, the probability of observing a
job seeker finding a job at ¢ + 1 is Pr(0' Xy + €1, > 0] Xy) = (6’ Xy).

My econometric methodology will consist in the joint estimation of s;; and h; by
maximum likelihood. To ensure robustness, two alternative econometric specifications
will be estimated.

[ first consider a simple search model where (after controlling for observable charac-
teristics) individuals can be treated as identical, in the sense of being randomly matched
to vacancies. In this framework, the transition probability from non-employment into
employment is the product of the probability of searching s;; and the probability h; that
a job seeker finds a job. Thus, I will estimate s; and h;; by maximizing the following

likelihood function (as in Peracchi and Viviano, 2004):*

21 Even though in the estimations I allow for location-specific effects, in this exposition I take the
geographic area indexes j as implicit in the individual characteristics of agent 1.

22 A large part of the empirical literature on hazard functions (see Devine and Kiefer (1991) for a
review) assumes that the error terms are distributed according to a logistic function. I adopt here a
normal distribution to be consistent with the second econometric model (see below). In any case, I
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L= I e@x)iexz)] [[ n-e@xenz) [ 1-o-'2)]

1€{Fiy1} 1e{Ut+1} 1€{O0t+1}

If there was unobservable heterogeneity among workers, however, the probabilities of
searching and finding a job (conditional on the X; and Z;’s) would not be independent. I
therefore correct the above maximum-likelihood estimation to take into account the fact
that the hazard-rate equation can be estimated only on the censored sample of the agents
who search (Z;7y + €, > 0). To do so I adopt the method proposed by van de Ven and
van Praag (1981) for bivariate probit models with sample selection. In this case, the

likelihood function is:

L= JI @%XrZp) [[ ®:(-0XrZ—p) [] 1-00'z) (0)
ic{Et+1} ie{Ut+1} i€{Ot+1}
where @ is the bivariate standard normal cumulative distribution of the joint probability
of s;; and hy, and p is the correlation between the error terms. This method corrects the
bias that arises from using (9) when the error terms in equations (7) and (8) contain some
common omitted variable.

The results of the two estimation methods are reported in Section 5.

4 The data

4.1 The data set

For the empirical estimation I use the Labor Force Survey (LFS), conducted in the year
2002 by the Italian National Statistical Office (Istat). This survey is the main source of

information on individuals’ working condition, unemployment and job search behavior, in

also tested all the specifications reported in Section 5 assuming a logistic distribution and obtained very
similar results (available upon request).
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addition to their personal characteristics. The survey is conducted quarterly in two stages:
about 1,300 municipalities are sampled at the first stage, and about 70,000 households
at the second one. The LFS follows a rotating scheme according to which each family
is interviewed for two successive rounds, and then again for two other consecutive waves
after two quarters of interruption, for a total of four times. So, theoretically 50 per cent
of the sample is kept constant between two consecutive rounds.

The LFS has a natural longitudinal dimension with people followed up to fifteen
months, but the (yearly) longitudinal files constructed by Istat on the basis of a stochas-
tic matching algorithm?? (recovering 90 percent of the potential sample) do not contain
information on individuals’ place of residence, and therefore cannot be used to study the
effects of agglomeration on labor market dynamics. However, even though the linkage of
individual records across surveys is made problematic by the lack of a personal identifier, I
was able to reconstruct the longitudinal quarterly transitions with a deterministic method
linking individuals’ records on the basis of their place of residence, their family identifier
and some time-invariant information (i.e., the date of birth and sex; see the Appendix for
further details). This method enables me to recover 75 percent of the potential sample.
In principle, the loss of the remaining observations could be a potential source of bias for
my estimates in case it was not randomly distributed. However, when I test whether this
loss is due to random reporting errors in the key variables or to the non-random exit of
some individuals from the LFS (i.e., "attrition”; see the Appendix for the methodology
adopted and the test outcome), the results confirm that the matching procedure I used

to construct the panel dataset is appropriate for an analysis of labor market dynamics.

4.2 The agglomeration variables

In this paper most agglomeration variables are defined at the ”local labor market” (LLM)

level. LLMs are clusters of municipalities aggregated on the basis of the residents’ daily

23 For a thorough explanation of the differences between stochastic and deterministic methods, see
Paggiaro and Torelli (1999).
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commuting flows to their place of work.?* LLMs are relatively self-contained, in that, by
definition, they offer employment to at least 75 per cent of their residing workers, both with
respect to the total number of workers in the area and with respect to the total number
of residents. Exhaustive partitions of the territory based on worker commuting have
been devised in many OECD countries,? since they reflect local labor market conditions
better than administrative areas do. The literature on matching is increasingly basing the
empirical analysis on LLMs, in order to avoid a geographical aggregation bias in contexts
of imperfect labor mobility. The geographical reach of agglomeration externalities is
itself at the center of the literature debate, and may depend on the specific phenomenon
analyzed.?® In this respect, the characteristic of self-containment makes LLMs particularly
suited to be my spatial unit of analysis, since it enhances, by construction, the likelihood
that a job seeker searches within the boundaries of the labor market where he resides.
Various measures of agglomeration, both urban and industrial, are examined.
Urbanization is measured with the LLM population size.?” Since the absolute level
of population increases very gradually across LLMs, with the largest variations occur-
ring only at the upper end of the distribution, I also use a "large city” dummy to test
whether agglomeration economies manifest themselves only beyond a certain threshold
value. Nevertheless, the choice of a threshold defining a large city is not a straight-forward
issue; it should not be arbitrary and should plausibly be country-specific.?® Thus, this
paper adopts the threshold level of 404, 526 inhabitants devised by Di Addario and Pat-

acchini (2006) on the basis of spatial autocorrelation analysis applied on Italian LLMs.?

24 The flows are obtained from the 1991 Population Census data. I assigned each LFS observation to
a LLM with an Istat’s algorithm matching LLMs to municipalities.

25 The UK, for instance, has been divided into 308 ” Travel-To-Work Areas” (OECD, 2002).

26 See Arzaghi and Henderson (2005) for a discussion on this issue and Petrongolo and Pissarides (2001)
for a review of matching studies based on LLMs.

27 T also tested the joint effect of logarithm of LLM population size and logarithm of LLM area, but
the latter was never significant. Also Petrongolo and Pissarides (2006) make a case for using the UK’s
Travel-To-Work Areas size rather than their density, in contrast with the earlier literature (e.g., Ciccone
and Hall (1996), Ciccone (2002), or Coles and Smith, 1996), stating that density is more important than
population or employment size in generating externalities.

28 The Italian population, for instance, is much more dispersed over the territory than the US one,
suggesting the use of different threshold values in the two countries.

29 More specifically, the authors define a LLM as a large city if it lies in either the HH or in the HL
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The intuition behind this methodology is that in order for a LLM to be classified as a
large city, its population: 1) must be above the national average, and 2) must not be
uniformly distributed (i.e., it must show a significant correlation with that of the neigh-
boring LLMs).3® Finally, in order to check the sensitivity of the results to the presence
of outliers I replicate all the estimations on the sub-sample excluding the three largest
LLMs (those with a population above 2,400, 000 inhabitants).3!

Industry localization is measured by two alternative dummies denoting the incidence of
LLM small-firm manufacturing employment: ”industrial districts” and ”super-districts”.
Industrial districts are identified by an Istat’s algorithm that associates to each LLM a
dummy variable equal to one if the area shows both a dominant sectoral specialization
and a higher-than-average share of small and medium enterprises and manufacturing em-
ployment.?? As the threshold values used to single out industrial districts are somewhat
arbitrary, I also use a stricter definition: the super-districts, which are simply an indus-
trial district subset with a higher share of both manufacturing and small and medium

enterprises employment (see Cannari and Signorini (2000) for the identification criteria).

4.3 Italy: a good case study

The LLM characteristic of self-containment together with a very limited mobility of labor,

make Italy a good case study for analyzing agglomeration effects, as under these condi-

quadrant of the Moran Scatterplot and if it is associated to a significant local Moran’s I statistic. The
404, 526-inhabitant threshold corresponds to the lower bound of the LLM population distribution in the
large-city set.

30 Note that the surrounding LLMs, chosen on the basis of a k-nearest neighbor weight matrix, are not
part of the large city itself.

31 That is, the LLMs containing Rome, Milan and Naples, the three largest municipalities in the
Center, North, and South of the country. The population level of the remaining LLMs is below 1, 500, 000
inhabitants.

32 More specifically, an LLM is an industrial district if: (1) the share of LLM’s manufacturing employ-
ment in total non-farm employment is higher than the corresponding share at the national level; (2) the
LLM’s share of small and medium enterprises manufacturing employment in total non-farm employment
is higher than that at the national level; (3) for at least one sector, the ratio between the LLM’s share of
sector employment in total manufacturing employment and the corresponding share at the national level
is greater than one; (4) in at least one sector for which the LLM’s specialization index is greater than
one, the LLM’s share of small and medium enterprises employment in total employment is higher than
the corresponding share at the national level (see Istat (1997) for further details).
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tions LLMs can conceivably be considered as separated markets, and this minimizes the
possible problems of self-selection. If, on the contrary, the urbanization and localization
variables were endogenous (e.g., because correlated to some omitted unobservable factor),
the agglomeration effects on hazard rates and search intensity would not be correctly de-
tected. For instance, if it were the case that the most able job seekers moved to the largest
cities,®® the urbanization effect on hazard rates would be biased upwards (provided that
the probability of finding a job increased with city size and that ability could be observed
by the employer before forming the match). In contrast, if the more generous government
support or the presence of a stronger informal labor market in the largest cities attracted
particularly the less able or lazier people, the urbanization coefficients on hazards would
be biased downwards.

However, the risk that either the most or the least able people move to the most
agglomerated areas is relatively little in Italy, since labor mobility is, in general, particu-
larly low.?* Indeed, even the unemployed job seekers, who are generally the most likely
to migrate (Dohmen, 2005), are unwilling to move out of their town of residence to find
a job. As Table 2 shows, up to 80 percent of the unemployed Italians are ready to ac-
cept a job only in their LLM of residence, and more than 41 percent do not intend to
move from their own municipality.>® The table also indicates that just 1.1 percent of the
non-employed individuals in working age interviewed by the LFS in the four 2002 waves
had been absent from their household of residence at the time of the interview for more
than a year, and a merely 0.2 percent was also looking for a job. Moreover, using data

from the biannual Bank of Italy’s Survey of Household Income and Wealth, Di Addario

33 In a context where people have a preference for urban consumption amenities this phenomenon could
occur because the most able individuals, who can command higher wages, might be better capable of
affording the large cities’ higher cost of living (in Venables (2002), for instance, big cities’ crowding costs
select the high quality workers).

34 This might be less so for graduate students, even though the absence of government study-grants
and the imperfections of the housing market lower also students’ mobility with respect to what occurs
in other OECD countries. Moreover, the recent increase in the number of universities, spread all over
the territory, might discourage students further from going to study in a LLM different from that where
their family resides.

35In Italy there are about 8,100 municipalities, amounting to an average of 10.3 municipalities per
LLM.
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and Patacchini (2006) find that none of the (about) 1,500 employees present in the panel
Section of the Survey changed residence between 1995 and 2002.%6

Labor mobility has been decreasing over time, especially with respect to long-distance
movements (Cannari, Nucci and Sestito, 2000): between 1960s and 1990s the share of
inter-town changes of residence in total population fell from 0.3 to 0.2 percent.?” The
authors show that a large part of this reduction is explained by a house price increase
over the period in the areas with better employment perspectives relatively to the rest of
the country (namely, the North versus the South).

Indeed, the rigidities in the Italian housing market can certainly discourage geographic
mobility.

First of all, the presence of rent controls down-sizes the private rented sector, rationing
rents and increasing workers’ moving costs. The degree of imperfection of the Italian rental
market is apparent from the figures on the distribution of rent contract types, reported
in Table 3. In 2000, the share of non-liberalized rents was still surprisingly low: only
16 percent of rent contracts were in derogation from the rent-control law,® 35 percent
of households were still under controlled rents (equo canone’ law), up to a quarter of
contracts were informal, more than 16 per cent regarded council housing, and almost 5
percent were subsidized.

Secondly, the large transaction costs for buying and selling a house raise migra-
tion costs further and discourage owner-occupiers from becoming renters when relative
price change,® thus increasing the bias towards owner-occupation. The share of owner-

occupying households is indeed rather high in Italy (more than 70 percent of the total)

36The figure on mobility amongst the employed individuals is rather low also according to the LFS
(Table 2), which reports that 7 percent of the employees interviewed in 2002 declared to work in a province
different from the one of their residence (this might include commuting).

37 Even though between 1995 and 2002 net migration flows from the South to the Center-North of the
country have increased from 100,000 to 130,000 units per year, the initial absolute levels are still very
low (amounting to 0.2 percent of the population), and are less than half those of 1960s (Bank of Italy,
Annual Report for 2004, 31st May 2005).

38 Before 1992 the ’equo canone’ law put ceilings on rents. Afterwards rents were liberalized for new
contracts, in derogation from the rent-control law (L.359/1992).

39 In Ttaly tenure choices may be less responsive to prices than in the US, where the housing market is
characterized by a high residential mobility across States.
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and has been increasing over time, hampering mobility further (see Henley, 1998).% As a
matter of fact, homeowners have a lower propensity to move than renters (after controlling
for individual observable characteristics; Di Addario, 2002).*' The propensity to change
house is generally low even within the same city: figures from the 2000 Bank of Italy’s
Survey of Household Income and Wealth indicate that only 7 percent of households are
planning to change house in the next two years.*?

Finally, the sub-optimal size of the market rented sector together with the high trans-
action costs for buying and selling a house may also bias people’s choices towards daily
commuting rather than change of residence. However, this would not raise endogeneity
issues in my agglomeration variables, since they are defined on the basis of LLMs, which

are self-contained precisely in terms of workers’ daily commuting flows.

4.4 The sample

In 2002 LFS surveyed 777,248 individuals. In order to analyze transition probabilities I
restricted the sample to the people who were surveyed for at least two consecutive waves.
Since my analysis concerns the labor market dynamics of non-employed persons, I also
excluded the individuals already employed at time ¢ and those either below the age of 15
or above that of 64. After excluding the persons for whom there were missing observations
on the relevant variables, the data set comprises 71,247 non-employed individuals, 11,276
of which job seekers. Note that in this paper the pool of job seekers is larger than the set

of the people recorded as unemployed according to the ILO definition. This is because,

40 Note that according to Dohmen (2005): 1) high homeownership rates lead to greater unemployment,
and 2) migration is more sensitive to wage than to unemployment differentials. Indeed, after controlling
for individual characteristics, the probability of owner-occupying is higher in the South of Italy (Di
Addario, 2002), where migration rates are low in spite of the presence of higher unemployment rates than
in the North (see Table 5). Also in line with Dohmen’s (2005) theory, in Italy wage differentials over the
territory are rather small in size.

4l The author also shows that immigrants are less likely to buy the house of residence, confirming a
greater difficulty or reluctance to settle in a province different from one’s own.

42 The data does not enable me to tell whether people intend to change house within or across LLMs,
but since the most frequently reported motivation for moving is the purchase of a house, I presume that
the majority of the expected moves would be within the same municipality.
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having only quarterly data (higher frequency data do not exist in Italy), I have to assume
that each search period (the time interval between ¢ and ¢+ 1) lasts three months — in line
with a large part of the empirical literature on matching (see Petrongolo and Pissarides
(2001) for a survey). Thus, to ensure temporal consistency between stock and flow data
(transitions to employment) the job seekers’ pool must comprise all non-employed people,
willing to start working immediately, whose last search action took place in the previous
quarter — rather than in the previous month, as it is in the ILO definition (see Brandolini
et al. (2004), and Peracchi and Viviano (2004) for a discussion).

In Italy there are 784 LLMs. LLM population size, density and area vary greatly. The
mean population size is 73,424 inhabitants, ranging from 2,901 in Limone sul Garda to
3,311,431 in Rome. Density ranges from a minimum of 10 inhabitants per square Kms.
(Crodo) to a maximum of 3,250 (Naples), with a mean of 184.6. Finally, the mean of the
LLM area distribution is 384 square Kms., ranging from 10.4 (Capri) to 3,539 (Rome).
Nineteen of the 784 LLMs have a population above the 404, 526 inhabitant threshold, 199
are classified as industrial districts, and 99 as super-districts.

My sample includes 520 LLMs (66 percent of the total) and comprises an average of
137 individuals per LLM. Since the LFS is stratified to represent Italian regions and mu-
nicipalities, all the 19 large cities are always sampled (for a total of 20, 335 observations).*?
Furthermore, even though the LFS was not designed to represent the industrial district
or super-district population, the sample distribution reflects that found at the national
level: in my sample, 28 percent of LLMs are classified as industrial districts (25 percent

in Ttaly) and 13.5 percent as super-districts (12.6 percent at the national level).**

43 These are (in descending order of population levels): Rome, Milan, Naples, Turin, Bari, Florence,
Genoa, Palermo, Bologna, Catania, Venice, Padua, Desio, Taranto, Verona, Bergamo, Cagliari, Como
and Lecce.

44 For a total of 12,863 individuals sampled in industrial districts and 5,285 in super-districts.
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5 Empirical analysis

I now turn to the empirical estimation of the determinants of individual search intensities
and hazard rates, examining in particular whether these probabilities differ between ag-
glomerated and non-agglomerated areas. The estimations were conducted separately for
men and women and, unsurprisingly, labor market dynamics turned out to be substan-

tially different for the two groups.

5.1 Descriptive statistics

Table 4 reports the quarterly transition probabilities and flows both at the aggregate
level and for men and women separately. The transition matrix shows that in Italy
there is a high unemployment persistence, as 63 percent of the people unemployed in the
quarter preceding the interview are still unemployed in the successive quarter. While these
numbers are very similar for men and women, significant gender differences can be found
in other respects. First, in the average probability of finding a job, conditional on being
non-employed at time ¢: the transition probability from unemployment into employment is
almost 18 percent for men and only 10 percent for women, and the respective probabilities
of finding a job for those recorded as inactive at time ¢ are 5 and 3 percent respectively.*®
Second, the transition probability from unemployment into inaction, greater than that
into employment for both sexes, is much larger for women than for men (in line with other
empirical results, e.g., Broersma and Van Ours, 1999). Finally, Table 4 shows that the
flows from inactivity to employment as a percentage of the working age population are
generally more substantial than those from unemployment into employment (1.4 versus
0.8 percent; in line with previous results, e.g., Petrongolo and Pissarides, 2001). In light of
this fact, and consistently with the most recent literature (Broersma and Van Ours (1999);

Brandolini et al., 2004), I shall estimate hazards from non-employment to employment

45 However, when expressed in percentage of the working age population, the flows from inactivity to
employment are larger for women than for men.
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rather than from unemployment.

The Italian labor market is known to be segmented with respect to territory (see, for
instance, Peracchi and Viviano, 2004). While, traditionally, labor market conditions are
analyzed at the macro-area level (North, Center, and South),*® T examine whether they
also differ along the degree of urban and / or industrial agglomeration. Table 5 reports
descriptive statistics for the year 2002 on the employment, unemployment and activity
rates for all the agglomeration units considered in this paper (large cities, industrial
districts, super-districts, and industry-thin small-sized towns). It also shows the share of
job seekers in total non-employed population and the hazard rate into employment. The
former, computed as the ratio between the sum of the employed and unemployed persons
at time ¢ and the non-employed people who searched in the preceding quarter,*” can be
interpreted as a measure of average search intensity. The hazard to employment is the
probability that a job seeker finds a job between successive quarters, and is computed as
the ratio between the individuals moving into employment between time ¢ — 1 and ¢ and
total job seekers.

In 2002 the unemployment rate ranged from a minimum of 3 percent in super-districts
to a maximum of 10 percent in large cities. Conversely, employment rates were lowest in
large cities and highest in super-districts (55 percent against 65 percent). These patterns
are largely confirmed at the macro-area level, so that they cannot be explained by the fact
that most industrial districts or super-districts are located in the regions of the Center-
North-East of the country.*® With regards to labor market dynamics, the industrially
denser areas show the lowest share of job seekers and the highest hazards to employment

from non-employment (respectively, 11 and 51-57 percent). In contrast, large cities show

46 Tn 2002, for instance, unemployment rates ranged from 3 percent, on average, in the North-East to
14 percent in the South, while employment rates ranged, respectively, from 64 percent to 50 percent (see
Table 5).

4T That is, those who at time ¢t — 1: a) undertook at least one search action in the previous 30 days
(including the individuals searching for the first time); or b) searched, even if not actively; or ¢) did not
search, but were willing to work.

48 Also, note that within the South the super-district unemployment and employment rates are of a
comparable size (respectively, 3 and 63 percent) to those in the North.
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the lowest hazards to employment, probably in large part due to the greater stock of job
seekers concurring for available jobs. These offsetting effects are mostly confirmed in all
the Italian macro-areas.

The descriptive statistics of Table 5 would thus indicate that agglomeration is associ-
ated with specific labor market dynamics. In particular, these results suggest that search
intensity is highest in large cities and hazard rates are highest in the industrially agglom-
erated areas. The impact of agglomeration, however, can be better analyzed in a more
comprehensive model where the features of the local labor markets and the characteristics

of individuals are taken into account.

5.2 Empirical specification

The empirical models proposed in Section 3 can be used for this purpose. In the remainder
of this section, I will first examine a baseline model estimating the parameters of the
log-likelihood functions (9) and (10) on the basis of individual and local labor demand
characteristics, then test the existence of agglomeration effects on both hazard rates to
employment and search intensity.

The hazard rate to employment depends first of all on variables affecting local labor
demand conditions and the individual’s productivity. The former are proxied with two
set of indicators. First, two indexes meant to capture contemporaneous labor demand
shocks: the share of employees working overtime in total workers and the average number
of extra-hours worked.?® The coefficients on these variables should be either significantly
positive or zero, depending on whether demand expansion is or is not fully compensated
by overtime work increases. In the latter case, a rise of overtime work would be accom-
panied by an increase in the number of vacancies, which, other things being equal, would

improve the hazard rate. In contrast, if all the demand increase was entirely compensated

49 T am aware that these indexes are imperfect proxy for demand, as they could also reflect supply-side
conditions. Ideally, I should control for vacancies (even though the majority of hazard studies does not;
Petrongolo and Pissarides, 2001), but there are no data for Italy.
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by overtime work, my indicators should not affect the hazard rate. The second local
labor market variable I consider is the geographical density of job seekers (similarly to
Petrongolo, 2001).5 Since, as shown in Section 2, hazard rates are increasing in local
labor market tightness, I expect job seeker density to have a negative sign. The personal
characteristics that I use to control for the individual’s productivity are age, age squared,
and educational attainment (first degree, high school, middle school). T also control for
search duration (0-1 month, 1-5 months, 6-11 months), expecting it to be inversely re-
lated to the chances of finding a job, for a dummy denoting whether the individual had
previous work experience, as well as for seasonal and geographical dummies. Finally, I
control for the number of employed household members, which could be taken as a proxy
of network quality. The idea is that family networks are important to find employment
and that employed individuals have access to better quality networks than unemployed
ones, as they presumably have more information on job offers.”!

As seen in the theoretical model (equation (6)), an agent’s optimal search intensity s;
depends on the hazard rate h; into employment that he anticipates facing if he searches.
In estimating the equation for search intensity, I therefore include all the individual and
labor-market explanatory variables used in the hazard-rate equation. In order to identify
the propensity to search, I also add proxies for the value (monetary and other) of non-
search activities, which I expect to lower the probability of participation in any given
application round (i.e., search intensity). These are: a) the individual’s position within
the household (single living alone, household head, and spouse); b) the self-perceived work

status (housewife, student, or retired);?* and c¢) the number of non-working people in the

50" Alternatively to the logarithm of job seekers, I also tested the effect of the logarithm of the total
labor force and that of the population above the age of 15, with no different results.

5! This is similar to Wahba and Zenou (2005), who proxy network quality with the number of family
members in the labor force and consider it an agglomeration variable (as Di Addario, 2005). The validity
of this variable clearly relies on the absence of unobserved characteristics (such as ability) shared among
family members.

52 Since the household decisions are linked by a budget constraint, the position in the household may
matter. Note that the sum of the three self-perceived work status dummies equals to being inactive at
time t.
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household.?3

5.3 The results
5.3.1 Baseline model

Tables 6 and 7 present the results of the baseline model for men and for women, re-
spectively. To show the robustness of my results, in each table I report the outcomes of
both the econometric models discussed in Section 3 ((9) and (10)). In spite of the fact
that the Wald-test always rejects the null hypothesis of zero correlation between the error
terms, confirming the presence of a selection bias, the two estimation methods provide
the same signs and statistical significance levels for almost all the regressors considered
in the hazard rate equation (which is the one subject to the selection problem).

a) Hazard rates

In the baseline model for men (Table 6), hazard rates are higher for the individuals with
previous work experience, better-quality family networks and for the older population;®*
they are lower in the South and for the more educated people. As expected, the probability
of moving from non-employment into employment decreases with search duration (see,
among others, Lancaster, 1979). In particular, individuals who have been searching for
less than one month have a chance of finding a job twice as large as those who have
been searching for more than one year.®> Moreover, a higher LLMs’ job seeker density
reduces the individual’s probability of finding a job, probably because of the congestion
that unemployed workers create on each other (see Burgess (1993) or Petrongolo and
Pissarides, 2001). Finally, neither the LLM share of overtime workers in total workers

nor the LLM average extra-hours worked have any significant impact on hazard rates,

53 Using data at the provincial level from the Consulente Immobiliare, I also controlled for house prices
and rents, but these were never significant. I used data for 2002, the oldest year available (1965 for house
prices and 1993 for rents), and the average of the entire period.

54 Even though this result is in contrast with some empirical studies on the UK (e.g., Lancaster, 1979),
it is in line with previous findings on Italy (see, for instance, Peracchi and Viviano, 2004).

55 Throughout the paper, marginal effects have been computed at the mean for the continuous variables
and for a discrete change from 0 to 1 for the dummy variables.
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possibly because demand increases are fully compensated by overtime work. In contrast
to the male population, women have a higher chance to find a job when they are younger,
when they have a University degree,’® and when they live in the North-East, while the
thickness of family networks does not affect their likelihood of finding a job (Table 7).57

b) Search propensities

Search intensity increases with age, education, past work experience, and with re-
siding in the North-East. In contrast, students, retired workers and housewives search
less intensively, probably because these categories of job seekers assign a higher value to
non-search activities than those who perceive themselves as unemployed. Interestingly,
the position in the household matters differently for the two sexes, as being a household
head or a spouse increases the probability of searching for men but decreases it for women
(with respect to being an offspring or having other positions within the household). This
different behavior probably reflects the tendency for wives and mothers to stay at home,
and a greater need for non-employed husbands and fathers, who are most often the pri-
mary earners in the household, to increase their search effort. The hypothesis that men
and women differ in search behavior because the traditional household division implies
that they face different (opportunity) costs of search is consistent with the finding that
when the number of non-working individuals in the family increases only men raise their

search effort.’® Moreover, consistently with having higher chances of finding employment,

56 These results are less surprising than those for men, which could possibly derive from a different
composition of the non-working population (e.g., a higher incidence of old women difficult to employ,
such as long-term unemployed, or people with health problems), and/or from a greater choosiness of the
most educated men (which could completely offset the positive effect of higher meeting rates).

57 This could occur either because networking is a more male-oriented search channel, or because female
networks are of a lower quality. It is also possible that women living in families where more members work
have a higher reservation wage, as they can benefit from a higher income (in contrast, men might not
”afford” to be choosey because of the different role they have in the household). In passing, note that the
fact that the number of employed household members has an opposite effect for men and women contrasts
with the hypothesis that this variable captures, rather than network quality, unobservable ability shared
by the members of the same family.

58 Note that this may be due to child care, as Italy lacks of policies aimed at supporting mothers’
employment. In order to examine this hypothesis further, I also ran the same regressions (not reported
here) on the parent sub-sample, controlling for the number of children below the age of six. I find that
a marginal increase in this variable lowers women’s probability of searching by 1 percent (at 1 percent
statistical significance), but does not affect men’s behavior (for similar outcomes, see Del Boca, 2001).
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the men who have better-quality family networks search more intensively, while women’s
behavior is not affected by the thickness of family networks. Finally, the LLM job seeker
density is non-significant for both men and women, implying that non-employed individ-

uals do not exercise more effort when competition for vacant jobs raises.

5.3.2 Effects of agglomeration

To examine the effects of agglomeration on s; and h;, I add the variables discussed in
Section 4 to the baseline specification. Tables 8 and 9 summarize the results on hazard
rates and search intensity for the two econometric models (9) and (10). In both tables,
[ first consider the joint effect of the large city and the super-district dummies (first
specification).”® T then substitute the large city variable with LLM population size, and
test its effect with either the super-district or the industrial district dummy (second and
third columns). In the last three columns I replicate the former specifications on the
sub-sample excluding the three largest LLMs.5°

Thus, after controlling for LLM job seekers’ density, which captures the negative
congestion externality exercised by the unemployed workers on each other (see Petrongolo,
2001), I find that urban agglomeration has an overall positive effect on the probability of
finding a job. Indeed, as Table 8 shows, residing in a large city improves men’s employment
possibilities by 6 percent (at the 6 percent statistical significance level) and women’s
chances by 8 percent (at the 1 percent statistical significance level), both in the full
and in the restricted samples (columns (8.1), (8.4), (8.7), and (8.10)). In contrast, the
level of population is significant only once I exclude the three largest LLMs from the

sample (at the 4-6 percent level for men and at the 1 percent level for women; columns

59T also considered the effect of each of these variables separately, with no substantially different results.
Note that whether the signs and the statistical significance of the urbanization and localization dummies
can correctly identify agglomeration differentials in employment probabilities and search behavior clearly
relies on LLMs to be separated markets (see, for instance, Coles and Smith (1996) or Duranton and
Monastiriotis, 2002), as discussed in Section 4.3.

60 The number of observations drops from 25,116 to 22,332 in the men’s sub-sample and from 46, 131
to 40,885 in the women’s case. The non-employed individuals residing in the excluded LLMs amount to
2,848 for Rome, 1,835 for Milan, and 3,530 for Naples.
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(8.5)-(8.6) and (8.11)-(8.12)). In particular, each 100, 000-inhabitant increase raises both
men’s and women’s probability of employment by 1 percent. This result implies that job
seekers benefit from agglomeration externalities only below the very top of the population
distribution. There are various reasons for why this could be the case. First, positive
externalities may predominate over crowding effects only below the 2,400, 000-inhabitant
threshold.®! Second, the three largest cities may be over-sized with respect to employment
possibilities.®? Third, it is possible that in Rome, Milan and Naples the positive effect of
agglomeration on meeting rates is fully compensated by a lower acceptance probability,
cancelling-out the final impact on hazard rates.

With respect to localization, searching in more industrially agglomerated areas raises
mens’ chances of finding a job by 8 percent in super-districts, by 4-5 percent in industrial
districts (respectively, at the 3 and 8-11 percent statistical significance level; columns (8.1)-
(8.6)). In contrast, women have a higher probability of finding a job only in super-districts
(by b percent, at the 8-10 percent statistical significance level; columns (8.7)-(8.12)).

The positive externalities deriving from (sufficiently thick) industry localization are
robust to controlling simultaneously for all the urbanization variables. When comparing
the urbanization effects on hazard rates to those of industry localization, it is evident
that in the men’s sample the super-district coefficient is greater than the large-city one,
while for women it is the reverse. This finding is even more apparent from Table 9, which
examines the hazard rates per unit of search for the econometric model correcting for
sample selection ((10)). In this case, for localization to create significantly positive net

externalities a minimum degree of firm thickness is necessary. Indeed, searching in more

61 Positive externalities could be due to the presence of tighter markets (more intense job advertising
or more vacancies), urban wage premia, higher meeting rates, or better quality of matches; negative
externalities might be generated by congestion (see Section 2).

62 This may occur if job seekers chose to reside in the largest cities because of the amenities that these
offer (e.g., cultural events, better quality of services, presence of infrastructures not available elsewhere,
etc.), independently of the labor market conditions (so that they do not move elsewhere even if the
chances of finding employment are reduced).

63 This could happen if the three largest cities: a) exhibited a higher quality of matches than in the rest
of the country, b) job seekers expected firms to make more attractive offers than those located elsewhere,
and c) job seekers’ higher choosiness lowered their acceptance probability so as to offset their greater
probability to meet a vacancy.
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industrially agglomerated areas raises the probability of finding employment (per unit of
search) only above a certain threshold of manufacturing small-sized firm concentration.
Thus, while residing in an industrial district has no effect on hazard rates, other things
being equal, living in a super-district increases men’s probability of finding a job (at the
4 percent statistical significance level; columns (9.1)-(9.2) and (9.4)-(9.5)); the super-
district localization effect on women’s employment chances is only significant at the 11-
13 percent level (specifications (9.7)-(9.8) and (9.10)-(9.11)). In contrast, the positive
impact of urbanization is more significant for women than for men (respectively, at the 1-
2 and 10-13 percent statistical significance level). A possible explanation of why industry
localization (urbanization) improves more the matching of men (women) than that of
women (men), is that the latter apply for jobs (e.g., in the tertiary sector rather than
in industry, in administration rather than in the production process, etc.) that benefit
less (more) from industrial (urban) agglomeration externalities than those preferred by
men.%

[ now turn to the effects of agglomeration on men’s and women’s search behavior. The
bottom part of Tables 8 and 9 shows the results.

In general, agglomeration does not affect either men’s or women’s behavior in any of
the samples considered. Indeed, in spite of the fact that urbanization and localization

improve their employment chances per unit of search, job seekers do not search more

intensively in large cities nor in the more agglomerated areas (columns (8.13)—(8.24) and

64 Of course, it is also possible that the employers in the more industrially agglomerated area employers
segregate women (which would lower the probability of finding a job per unit of search; see Black, 1995).
Apart from the most commonly reported reasons, this could occur if in super-districts, where the mastery
of production is both accumulated over a lifetime and transmitted from generation to generation, the
old-generation-male employees passed on their knowledge to their sons rather than to their daughters.
While not finding any presence of wage discrimination in Italian industrial districts, de Blasio and Di
Addario (2005) find some evidence of vertical segregation (i.e., after controlling for observable individual
characteristics, industrial-district female employees do not earn any differently than their male counter-
parts, but have a lower probability of becoming entrepreneurs than men). Alternatively, it is possible
that super-district women have higher reservation wages and thus accept job offers less frequently than
super-district men. This could occur if in super-districts, where the traditional division of labor in the
household is likely to be more persistent than in large cities, women tended to decide the amount of labor
to offer in the market on the basis of the whole family income rather than on that of their own (see Del
Boca, 2001). However, neither of these two hypotheses would help explaining why urban agglomeration
effects are less important for men than for women.
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(9.13)—(9.24)). This may seem somewhat surprising, as job-seekers should increase their
propensity to search when their chances of finding a job rise. This finding could be
explained either by the fact that people do not need to exert a higher level of search
effort to find a job precisely because they have greater chances of employment,% or by
the fact that in the most populated areas search cost increases offset the higher chances of
employment. Indeed, the large commuting costs due to congestion (travelling on crowded
public transportation, spending time in traffic, etc.) may discourage people from searching

even though they have a higher probability of finding a job.

6 Conclusions

In this paper I analyze agglomeration effects on both individual search intensity and
hazard rates from non-employment (rather than from unemployment) into employment
for Italian men and women. More specifically, I empirically examine whether population
size and small-sized manufacturing firm concentration generate overall net positive or
negative externalities.

From the descriptive statistics, I would have expected hazard rates to be significantly
higher (lower) in the more industrially agglomerated areas (the largest cities), and search
intensity to be highest (lowest) in large cities (in super-districts). However, after con-
trolling for individuals’ observable characteristics, I find that only the matching process
is (positively) affected by agglomeration. As to search intensity, on average it is not af-
fected by either urbanization nor industrial agglomeration. A possible explanation of why
the intensity of search does not increase despite higher hazard rates is that job seekers
are discouraged from bearing the higher commuting costs produced by the presence of a
large population mass (i.e., travelling on congested public transportation, spending time

in traffic, etc.).

65 Although in the model presented in Section 2 the causality runs only from search intensity to hazard
rates (and not viceversa).
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While these findings hold on average, it is interesting to analyze whether they occur
at any level of agglomeration or only above certain threshold values. In this paper I show
that results are sensitive to both the type and the degree of agglomeration of the local
labor market. In particular, industry localization creates positive net economies mainly in
super-districts, that is, in the subset of industrial clusters with the highest concentration
of small and medium firms in the manufacturing sector; for "regular” districts the effect
is less significant. Moreover, job seekers’ employment chances raise with the degree of
urbanization, but only below to the 2,400, 000-inhabitant threshold (either because Rome,
Milan and Naples are too congested, or because their local matching process is more
efficient than elsewhere and this increases job seekers’ choosiness).

Finally, while agglomeration effects are usually studied either at the urban or at the
industry level, I am able, by using an Istat algorithm that identifies the more industri-
alized LLMs, to compare the magnitude of urbanization and localization effects on job
seekers’ probability of finding a job. Surprisingly, I find that the relative importance of
the two effects depends on gender, as the urbanization (localization) differential in hazard
rates is larger for women (men) than for men (women). While it is well known that labor
markets dynamics are gender-specific, it is less obvious this is also the case for agglomer-
ation externalities (even though this result is not new in the literature: see, for instance,
Rosenthal and Strange, 2002). A possible explanation can be found in the behavioral
differences between men and women, due to the different role they traditionally have in
the household, which makes them face different opportunity costs of search (e.g., increas-
ing women’s choosiness). These differences might be exacerbated by the lack of policies
aimed at supporting mothers’ employment during child care. Alternatively, men and
women might prefer searching in sectors (e.g., industry versus services) and/or jobs (e.g.,
production as opposed to administration) that are differently affected by agglomeration.
Segregation might help explaining why women do not ”prefer” applying for vacancies in

the industrial district production process (even though it would be more difficult to ex-
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plain why men should be segregated in large cities). Only in case of segregation would

affirmative action policies be effective (see Flabbi, 2001).
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Appendix

Appendix: Attrition analysis

I reconstructed the LFS longitudinal data with a deterministic method. The loss of
observations implied by this method can be due to reporting errors in the household
identifier or in the other individual variables (typically, the date of birth), but it can be
also due to genuine ”attrition”: this is the loss of information deriving from the non-
availability of some of the people to be re-interviewed at time ¢ + 1. In what follows I use
the term ”attrition” for both types of losses.

If the information loss was correlated to working condition changes, attrition would
be a potential source of bias for the estimation of labor market dynamics. This typically
occurs when people change residence because they find employment in a different loca-
tion, in which case the exit from the LFS sample is determined by a movement towards
employment.

In order to test for the effects of attrition in the estimation of labor market dynam-
ics, 1 follow the approach proposed by Jiménez-Martin and Peracchi (2002), looking at
individuals’ survey participation at time ¢, ¢t + 1 and t + 4 (i.e., respectively, one quarter
and one year after the first LFS interview). As Jiménez-Martin and Peracchi (2002), I
identify two sets of individuals: (1) those participating at all the three surveys (full-time
respondents); and (2) those participating at time ¢ and ¢ + 1 but not at time ¢ + 4 (non
full-time respondents). More formally, let D be an indicator equal to 1 if the person is a
full-time respondent and to 0 elsewhere, and consider a standard three-state labor market.
Let ’/Til]? be the probability of moving from state i = U, O at time t to state j = E, U, O% at
time t 4 1, for an individual whose sample participation is denoted by D = 0, 1. Attrition

may bias transition probabilities if:

7T?j #* 7Ti1j (11)

66 E=Employed, U=Unemployed, O=Out of the labor force.
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fori=U,0, j=FEU,OQ.

Consider the statistic l;; = 7

— ;. If attrition was not a source of bias for transition
probabilities, under the null hypothesis /;; would be equal to zero. In other words, if full
time respondents and people who are subject to attrition have the same probability to
move towards all the other labor market states then I can assume that attrition does not
affect transition probabilities.

Critical values for [;; can be easily derived. Because of the central limit theorem,
l;; divided by its standard error has a t-Student’s distribution. Rejection at 95 percent
significance level, for instance, occurs for values of [;; greater than 2 in absolute value.
Table Al reports the test statistics by gender, age group (15-34 and 35+) and area
of residence (North—West, North—East, Center, South), and Table A2 reports the test
statistics by gender, age group and educational attainment (at most primary, at least
secondary education). As the tables show, the test results confirm the adequacy of the

adopted matching procedure in my study of labor market movements, for all the socio-

demographic groups considered.
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Table Al. Testing for the effect of attrition by sex, age and macro-area of residence

Men Women

Age Age Age Age

15-34 | 35-64 | 15-34 | 3564
North West
lyg | 033 | -0.10 | 0.35 0.13
lyy | -0.44 | -0.25 | 0.31 | -0.27
lyo | 0.07 | -0.05 | -0.20 | -0.28
log | 0.09 0.02 | -0.04 | 0.00
lov | -0.06 | 0.00 | -0.03 | 0.01
loo | 0.03 0.02 | -0.06 | 0.35
North East
lyg | -0.39 | 0.21 | -0.91 | -0.04
lyy | -0.46 | -1.05 | 0.02 | -0.43
lyo | 0.57 0.23 0.03 | -0.21
log | 0.15 0.05 | -0.07 | -0.02
loy | -0.02 | -0.01 | -0.10 | -0.04
loo | -1.31 | 0.12 | -0.95 | -0.19
Centre
lyg | 0.07 0.01 0.13 0.00
lyy | -0.10 | -0.54 | -0.11 | 0.03
lyo | -0.10 | 0.65 0.12 | -0.44
log | -0.01 | -0.05 | 0.02 0.04
lov | 0.03 0.01 0.01 0.02
loo | -0.73 | 0.34 | -1.00 | -0.66
South
lyg | -0.06 | 0.22 | -0.09 | -0.06
lyy | -0.91 | -2.03 | -1.14 | -0.34
lyo | -0.18 | 0.00 | -0.11 | -0.24
log | -0.10 | -0.01 | -0.01 0.02
lov | -0.29 | 0.01 | -0.20 | 0.00
loo | -0.80 | 0.08 | -1.55 | -1.38

Source: elaboration on LFS data.
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Table A2. Testing for the effect of attrition by sex, age and education

Men Women

Age Age Age Age
15-34 | 3564 | 15-34 | 35-64
At most compulsory education
lyg | 0.23 0.00 0.04 | -0.03
lyy | -0.65 | 0.08 | -0.24 | 0.05
lvo | 0.42 | -0.08 | 0.20 | -0.21
log | 025 | -0.02 | -0.20 | -0.11
loy | -0.05 | 0.17 | -0.10 | 0.03
loo | -0.20 | -0.16 | 0.30 0.07
At least secondary education
lyg | 0.16 0.11 0.30 0.15
lyy | -0.01 | 0.10 | -0.23 | 0.06
lyo | -0.15 | -0.21 | -0.06 | -0.21
log | -0.25 | 0.04 0.27 0.01
lov | -0.25 | -0.02 | 6.76 0.00
loo | 0.50 | -0.02 | 0.80 | -0.01

Source: elaboration on LFS data.
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Tables

Table 1: Agglomeration effects on labor market dynamics

|

Agglomeration factors increasing individual search intensity:

| distance to job interviews transportation costs l search costs 1
T face-to-face contacts job information-gathering costs | | search costs i}
1 formal and informal networks information on vacancies T search costs 1
T congestion house prices and rents T | cost of being U | 1
productivity gains wages T | hazard rates 1
T number of vacancies labor market tightness T | hazard rates T
T formal and informal networks job advertising T | hazard rates T
T number of job seekers

productivity gains

T concentration of matching agents chances of matching T hazard rates T
labor pooling quality / efficiency of matching | T hazard rates T

|

Agglomeration factors

lowering individual search intensity:

T expectations on wages and hazards

reservation wages, choosiness

hazard rates

T number of job seekers

labor market tightness

hazard rates

T labor market tightness

job advertising

hazard rates

T congestion > thick market externalities

chances of matching

hazard rates

T congestion

job information-gathering costs

—|—[—|—|—

search costs

— |||+

Note: U = unemployed.
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Table 2: Mobility attitudes

Acceptable job location by those unemployed

Own Daily commuting Anywhere Anywhere
municipality distance in Italy
41.3 38.8 14.9 5.0
Job location of those employed
Own Other municipality No fixed Other province
municipality | in same province place or abroad
55.2 30.7 6.9 7.1

Presence in the household

at the time of interview

Present Absent for Absent for Absent for
less 1 year more 1 year more 1 year
and searching | not searching
98.3 0.6 0.2 0.9

Source: author’s elaboration on LFS data.
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Table 3: Frequency of rent contracts by landlord type

Contract type: ‘ No. \ %

Rent-controlled 595 | 35.0
In derogation from rent-control law 269 | 15.8
Non-resident 3 0.2
Informal/friendship 422 | 249
Subsidized 81 4.8
Council housing 277 | 16.3
Other 51 3.0
Total 1,698 | 100.0
Source: elaboration on the Bank of Italy’s Survey of Household Income and Wealth data.
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Table 4: Average Transition Probabilities

Quarterly transition probabilities

Employed;y1 Unemployed; 1 Inactives4q Total
Men and Women
Employed; 96.9 0.9 2.2 100.0
Unemployed; 13.9 62.6 23.6 100.0
Inactive; 3.5 3.9 92.6 100.0
Population compositiony; 54.6 5.7 39.7 100.0
Men
Employed, 97.5 0.9 1.6 100.0
Unemployed; 17.8 63.7 18.5 100.0
Inactive; 4.9 4.7 90.4 100.0
Population composition; 68.2 5.3 26.5 100.0
Women
Employed, 95.9 1.0 3.2 100.0
Unemployed; 10.4 61.7 27.9 100.0
Inactive; 2.8 3.5 93.7 100.0
Population compositiony; 41.5 6.1 52.9 100.0
Quarterly transition flows
Employed;y; Unemployed;y; Inactive;;; Population composition;
Men and Women
Employed, 52.4 0.5 1.2 54.1
Unemployed; 0.8 3.7 14 5.8
Inactive; 14 1.6 37.1 40.0
Population compositiony; 54.7 5.7 39.6 100.0
Men
Employed; 66.0 0.6 1.1 67.7
Unemployed; 1.1 3.4 1.0 5.4
Inactive; 1.3 1.3 24.3 26.9
Population compositiony; 68.3 5.3 26.4 100.0
Women

Employed, 38.9 0.4 1.3 40.6
Unemployed; 0.7 3.9 1.8 6.3
Inactive; 1.5 1.8 49.8 53.1
Population compositiony 41.1 6.1 52.8 100.0

Source: elaboration on LFS data (January-April 2002). Note: flows are expressed in percentage of the working age population.
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Table 5: Descriptive statistics.

Employment Unemployment Job Activity Hazard into
rate rate seekers rate employment
Italy
Large city 54.7 10.2 17.0 60.9 24.7
Large city and super-district 63.3 3.7 8.0 65.7 29.5
Small town and super-district 64.6 3.0 11.0 66.6 56.9
Small town - other 54.6 9.8 17.1 60.6 32.5
Industrial district 63.3 3.5 10.5 65.7 51.2
North-West
Large city 61.9 5.3 11.5 65.4 36.6
Large city and super-district 63.3 3.7 8.0 65.7 29.5
Small town and super-district 63.9 2.1 6.4 65.2 60.8
Small town - other 62.7 4.3 10.7 65.5 47.5
Industrial district 63.1 3.5 8.9 65.4 48.2
North-East
Large city 62.2 3.3 8.7 64.3 55.5
Large city and super-district - - - - -
Small town and super-district 65.4 2.4 11.3 70.0 62.7
Small town - other 65.3 4.0 14.2 68.1 55.3
Industrial district 65.1 2.8 10.6 66.0 59.5
Center
Large city 59.1 7.3 15.8 63.8 19.3
Large city and super-district — — - — —
Small town and super-district 64.2 4.4 13.8 67.2 49.4
Small town - other 55.9 7.3 14.0 60.3 35.6
Industrial district 62.9 4.7 13.8 66.3 47.6
South
Large city 42.1 214 23.4 53.5 19.8
Large city and super-district - - - - -
Small town and super-district 62.5 2.5 134 64.1 70.3
Small town - other 45.1 17.5 21.1 54.7 24.8
Industrial district 53.4 5.6 10.5 56.6 38.8

Source: elaboration on LFS data. Note that the only LLM that is both a large city and a super-district is that of Desio.
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Table 6: Baseline models for men

Hazard to employment

Search intensity

Probit Heckprobit Probit Heckprobit

Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeft. | P-val.
LLM’s job seekers (log) -0.102 | 0.000 | -0.089 | 0.000 | 0.019 | 0.178 | 0.018 | 0.190
LLM’s area (log) 0.030 | 0.331 | 0.013 | 0.668 | -0.041 | 0.112 | -0.041 | 0.113
LLM'’s average extra hours worked 0.001 | 0.999 | -0.180 | 0.791 | -0.540 | 0.348 | -0.544 | 0.338
LLM’s share of overtime workers in total workers | -0.009 | 0.196 | -0.010 | 0.133 | -0.006 | 0.180 | -0.007 | 0.171
Quarter I (seasonal dummy) 0.060 | 0.229 | 0.059 | 0.207 | 0.010 | 0.735 | 0.011 | 0.718
Quarter II (seasonal dummy) 0.074 | 0.151 | 0.072 | 0.154 | 0.068 | 0.013 | 0.068 | 0.014
North-East 0.157 | 0.115 | 0.146 | 0.137 | 0.116 | 0.047 | 0.115 | 0.048
Center -0.033 | 0.694 | -0.034 | 0.677 | -0.013 | 0.802 | -0.016 | 0.745
South -0.177 | 0.017 | -0.135 | 0.063 | 0.043 | 0.389 | 0.045 | 0.363
Age 0.016 | 0.124 | 0.053 | 0.000 | 0.090 | 0.000 | 0.091 | 0.000
Age squared 0.000 | 0.371 | -0.001 | 0.000 | -0.001 | 0.000 | -0.001 | 0.000
University degree or higher -0.165 | 0.085 | -0.124 | 0.163 | 0.237 | 0.001 | 0.238 | 0.001
High school -0.151 | 0.012 | -0.168 | 0.004 | 0.041 | 0.316 | 0.041 | 0.320
Middle school -0.118 | 0.045 | -0.139 | 0.015 | -0.013 | 0.737 | -0.009 | 0.802
Past work experiences 0.205 | 0.001 | 0.263 | 0.000 | 0.094 | 0.064 | 0.101 | 0.043
Search duration: < 1 month 1.378 | 0.000 | 0.804 | 0.000 | -1.022 | 0.000 | -1.015 | 0.000
Search duration: 1-5 months 0.546 | 0.000 | 0.549 | 0.000 | 0.133 | 0.039 | 0.135 | 0.036
Search duration: 6-11 months 0.310 | 0.000 | 0.293 | 0.000 | -0.047 | 0.502 | -0.046 | 0.515
Employed family members 0.048 | 0.044 | 0.053 | 0.020 | 0.040 | 0.014 | 0.039 | 0.017
Single living alone 0.116 | 0.071 | 0.083 | 0.189
Household head 0.121 | 0.037 | 0.086 | 0.137
Spouse 0.400 | 0.001 | 0.361 | 0.002
Student -0.149 | 0.133 | -0.253 | 0.008
Housewife -1.136 | 0.000 | -1.128 | 0.000
Other inactive condition -1.348 | 0.000 | -1.369 | 0.000
Number of non-working household members 0.021 | 0.127 | 0.023 | 0.090
Constant -0.408 | 0.260 | -1.134 | 0.002 | -0.447 | 0.103 | -0.471 | 0.082
Number of observations: 25,116 25,116
of which uncensored: 5,545

Source: author’s elaboration on LFS data. Note: White-robust standard errors adjusted for clustering.
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Table 7: Baseline models for women

Hazard to employment

Search intensity

Probit Heckprobit Probit Heckprobit

Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val.
LLM’s job seekers (log) -0.070 | 0.001 | -0.069 | 0.001 | -0.013 | 0.286 | -0.014 | 0.280
LLM’s area (log) 0.043 | 0.287 | 0.041 | 0.301 | 0.007 | 0.746 | 0.007 | 0.765
LLM'’s average extra hours worked -0.458 | 0.490 | -0.461 | 0.474 | 0.041 | 0.931 | 0.044 | 0.925
LLM’s share of overtime workers in total workers | 0.007 | 0.281 | 0.006 | 0.350 | -0.005 | 0.166 | -0.005 | 0.160
Quarter I (seasonal dummy) 0.030 | 0.531 | 0.033 | 0.479 | 0.038 | 0.193 | 0.039 | 0.178
Quarter II (seasonal dummy) 0.066 | 0.206 | 0.056 | 0.267 | 0.000 | 0.988 | 0.000 | 0.986
North-East 0.192 | 0.031 | 0.191 | 0.030 | 0.095 | 0.057 | 0.096 | 0.057
Center -0.074 | 0.299 | -0.070 | 0.317 | -0.035 | 0.404 | -0.035 | 0.402
South -0.276 | 0.000 | -0.254 | 0.000 | 0.003 | 0.942 | 0.004 | 0.934
Age -0.035 | 0.000 | -0.025 | 0.018 | 0.063 | 0.000 | 0.062 | 0.000
Age squared 0.001 | 0.000 | 0.000 | 0.010 | -0.001 | 0.000 | -0.001 | 0.000
University degree or higher 0.123 | 0.204 | 0.188 | 0.049 | 0.191 | 0.000 | 0.193 | 0.000
High school -0.037 | 0.623 | -0.020 | 0.790 | 0.079 | 0.014 | 0.080 | 0.013
Middle school -0.090 | 0.223 | -0.092 | 0.200 | 0.010 | 0.745 | 0.009 | 0.768
Past work experiences 0.233 | 0.000 | 0.294 | 0.000 | 0.129 | 0.000 | 0.133 | 0.000
Search duration: < 1 month 1.346 | 0.000 | 0.954 | 0.000 | -1.054 | 0.000 | -1.057 | 0.000
Search duration: 1-5 months 0.603 | 0.000 | 0.609 | 0.000 | 0.152 | 0.012 | 0.152 | 0.013
Search duration: 6-11 months 0.511 | 0.000 | 0.508 | 0.000 | 0.072 | 0.220 | 0.072 | 0.224
Employed family members 0.045 | 0.120 | 0.036 | 0.216 | -0.005 | 0.752 | -0.006 | 0.694
Single living alone -0.094 | 0.168 | -0.099 | 0.148
Household head -0.153 | 0.002 | -0.147 | 0.003
Spouse -0.302 | 0.000 | -0.299 | 0.000
Student -1.046 | 0.000 | -1.041 | 0.000
Housewife -1.269 | 0.000 | -1.266 | 0.000
Other inactive condition -0.975 | 0.000 | -0.994 | 0.000
Number of non-working household members 0.017 | 0.110 | 0.017 | 0.115
Constant -0.719 | 0.041 | -0.946 | 0.007 | -0.033 | 0.879 | -0.009 | 0.966
Number of observations: 46,131 46,131
of which uncensored: 5,731

Source: author’s elaboration on LFS data. Note: White-robust standard errors adjusted for clustering.
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Table 8: Marginal effects on hazard rates and search intensity (probit model)

Hazards to employment: men

(8.1) (8.2) (8.3) (8.4)(%) (8.5)(%) (8.6)(%)
Coeft. | P-val. | Coeft. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val.
LLM’s population 0.001 | 0.318 | 0.001 | 0.282 0.008 | 0.057 | 0.009 | 0.038
Large city dummy 0.059 | 0.057 0.063 | 0.065
Super-district dummy 0.077 | 0.036 | 0.081 | 0.035 0.084 | 0.030 | 0.086 | 0.032
Industrial district dummy 0.043 | 0.107 0.051 | 0.075
Hazards to employment: women
(8.7) (8.8) (8.9) (8.10)(*) (8.11)(*) (8.12)(*)
Coeft. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val.
LLM’s population 0.002 | 0.189 | 0.002 | 0.226 0.010 | 0.002 | 0.010 | 0.002
Large city dummy 0.077 | 0.009 0.075 | 0.016
Super-district dummy 0.049 | 0.080 | 0.050 | 0.080 0.047 | 0.096 | 0.047 | 0.098
Industrial district dummy 0.006 | 0.789 0.007 | 0.737
Search intensity: men
(8.13) (8.14) (8.15) (8.16)(*) (8.17)(*) (8.18)(*)
Coeft. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val.
LLM’s population 0.001 | 0.141 | 0.001 | 0.181 -0.002 | 0.272 | -0.002 | 0.240
Large city dummy -0.004 | 0.744 -0.009 | 0.494
Super-district dummy 0.005 | 0.600 | 0.006 | 0.541 0.005 | 0.636 | 0.005 | 0.643
Industrial district dummy -0.007 | 0.424 -0.009 | 0.255
Search intensity: women
(8.19) (8.20) (8.21) (8.22)(*) (8.23)(*) (8.24)(*)
Coeft. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val. | Coeff. | P-val.
LLM’s population 0.000 | 0.134 | 0.000 | 0.196 0.000 | 0.985 | 0.000 | 0.917
Large city dummy -0.001 | 0.885 -0.003 | 0.656
Super-district dummy 0.002 | 0.827 | 0.002 | 0.777 0.001 | 0.867 | 0.001 | 0.866
Industrial district dummy -0.006 | 0.239 -0.007 | 0.155

Source: author’s elaboration on LFS data. Note: White-robust standard errors adjusted for clustering.

(*) Computed on the sub-sample excluding the three largest LLMs (i.e., Rome, Milan, and Naples).
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