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MAXMIN PORTFOLIO CHOICE
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Abstract
We solve two robust portfolio selection problems, where a maxmin criterionis adopted to deal with parameter uncertainty. The two models, which yieldclosed formulae for the optimal allocation, lend themselves to be thoroughlyanalyzed both from a geometric and a game-theoretic point of view.
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1. Introduction1
Traditional static portfolio selection models, such as Markowitz's (1952), as-sume that the distribution of asset returns is objectively known to the decisionmaker. We extend Markowitz's model by relaxing this assumption and taking intoaccount the possibility that the decision maker's beliefs about future asset returnscannot be summarized by a unique probability distribution, but there is a wholeset of probability distributions which are deemed plausible. Markowitz's portfolioselection problem is: supx2Rn EQ [W (x)]� 
2VarQ [W (x)]

where x is a vector of portfolio weights, W is stochastic future wealth (depending onthe portfolio choice x), EQ and VarQ denote expectation and variance with respect toa probability measure Q and 
 is a constant parametrizing risk aversion. A decisionmaker �a la Markowitz chooses a portfolio in order to maximize a mean-variancefunctional and she is able to uniquely determine the mean and the variance of herfuture wealth, because her beliefs are represented by a unique proabablity measureQ. In our model, instead, there is not a unique distribution of asset returns Q, buta whole set of possible distributions � and, for each choice of the portfolio x, theinvestor evaluates the consequence of her choice under the worst possible scenario,i.e. under the probability measure which minimizes the value of the mean-variancefunctional. Thus, the investor solves the following maxmin problem:
supx2Rn infQ2�EQ [W (x)]� 
2VarQ [W (x)]

The above problem is conceptually very simple. The only di�culty lies in the factthat it is not obvious how to specify the set �. We propose two di�erent speci-�cations, which allow to derive closed-form solutions of the problem. As we willlater detail reviewing the related literature, our portfolio selection model is not the
1I wish to thank Erio Castagnoli, Fabio Maccheroni, Massimo Marinacci and two anony-mous referees for helpful comments and suggestions. The views expressed in the arti-cle are those of the author and do not involve the responsibility of the Bank of Italy.E-mail: marco.taboga@bancaditalia.it .



8

�rst to adopt a maxmin rule. However, besides delivering easily interpretable closedformulae for the optimal portfolio under di�erent speci�cations of �, we show thatconclusions drawn by previous models are highly dependent on the assumptionsmade about �. In particular, existing models assume that � is a neighborhood of areference model and that relative entropy measures the distance of alternative mod-els from the reference model. In models based on relative entropy an "observationalequivalence" property holds, whereby an increase in uncertainty is observationallyequivalent to an increase in risk aversion. We show that observational equivalenceceseas to hold when measures of distance between models alternative to the relativeentropy are used.
Parameter uncertainty has long been recognized as a problem in portfolio se-lection. Frankfurter, Phillips and Seagle (1971) are among the �rst researchers tostress the importance of parameter uncertainty in portfolio selection: they presentthe results of some simulations where Markowitz's portfolios are likely to be notmore e�cient than an equally weighted portfolio, because of errors in parameterestimation. A wealth of studies con�rms their �ndings: among them Barry (1974),Bawa and Klein (1976) and Jobson and Korkie (1980). Also, a widespread opin-ion came about that portfolios constructed using sample moments of returns ofteninvolve very extreme positions, which are far from being truly optimal: Green andHolli�eld (1992) provide a rigorous analysis of this claim. As a follow up to thesecritiques some proposals were made to improve upon Markowitz's (1952) model:for example, Frost and Savarino (1988) and Black and Litterman (1992) proposeBayesian procedures to improve the performance of estimated optimal portfolios. Avery recent work by Jagannathan and Ma (2003) also gives a contribution to thedebate: they discuss how imposing constraints on portfolio weights can sometimesimprove the performance of estimated optimal portfolios. The main idea behindthese studies is that the optimal portfolio can only be estimated by the investor,since the true distribution of asset returns is unknown, and straightforward sub-stitution of estimated moments into Markowitz's formula for the optimal portfolioyields an estimator of the truly optimal portfolio, which, although consistent, hasrather undesirable statistical properties. In sinthesis, what these models do is to
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devise better estimators of the optimal portfolio.
A di�erent approach to robust portfolio selection is to incorporate parameteruncertainty directly into the �nancial decision problem, by specifying the investor'sattitudes both towards investment risk and towards parameter uncertainty. A tax-onomy of such models has been proposed by Uppal and Wang (2003), who identifytwo main classes of models.
A �rst class of models is characterized by the use of Gilboa and Schmeidler's(1989) multiple priors preferences. Roughly speaking, multiple priors preferencesare based on the adoption of a minimax rule akin to the one we use in this paper:a decision maker with multiple priors evaluates acts by jointly determining a utilityfunction and a set of probability measures and taking the in�mum of the functionover the set of probability measures. Epstein and Wang (1994), Dow and Werlang(1992) and Chen and Epstein (2002) develop portfolio selection models based onmultiple priors preferences. Among them, only Chen and Epstein, whose model isset in continuous time, explicitly derive the optimal portfolio allocation.
A second class of models makes use of some tools borrowed from the robustcontrol literature: Maenhout (2004) adapts a framework developed by Anderson,Hansen and Sargent (2003) to develop a continuous-time model where the decisionmaker has got a preference for robustness; Maenhout's (2004) model, which extendsthe classical Merton's (1990) model, assumes that the decision maker has got areference probability measure over asset returns, but she considers also alternativeprobability measures, equivalent to the reference measure (in the probabilistic senseof equivalence), and she chooses among these measures according to a penalty func-tion based on the relative entropy between the probability measures. Uppal andWang (2003) extend Maenhout's model to take into account multiple sources of un-certainty and shed some light on real world phenomena such as underdiversi�cationand the home bias. Both Maenhout and Uppal and Wang explicitly characterizethe optimal trading strategies.
Among the models we have cited, none provides an asset allocation rule for
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the simplest case of a one-period horizon and a single investor. There are, however,some studies aimed at this direction: Krasker (1982), for example, analyzes the im-plications of minimax behavior for portfolio choice; in his model the agent minimizesover a set of probability measures obtained by "-contamination of a reference mea-sure; Krasker shows how some commonly held portfolios (portfolios without shortpositions or portfolios replicating the market portfolio) can be rationalized by indi-vidual minimax behavior, rather than on equilibrium considerations. Also Becker,Marty and Rustem (2000) analyze minimax portfolio strategies: the focus of theirresearch is on computational issues and they limit their attention to the case wherethe investor is able to identify a �nite number of scenarios, where by scenario theymean a possible combination of means and variances for the assets to be includedin the portfolio.
This paper presents two static portfolio selection models, based on a maxmincriterion, which deliver easily interpretable portfolio allocation rules. The two mod-els are similar: they both con�ne attention to mean-variance expected utility and tothe case where the investor is uncertain about expected returns; the only di�erencebetween the two models is the speci�cation of the set of probability measures overwhich the decision maker minimizes; we show how a slightly di�erent speci�cationof this set can lead to substantially di�erent portfolio allocation rules. We try toimprove our understanding of the two models by analyzing both their geometricproperties, in line with a long standing tradition of analyzing Markowitz's-like op-timal portfolios from a geometric standpoint, and by stressing the game-theoreticaspects of the minimax setting.
The �rst of our two models roughly con�rms what has been found by Maen-hout (2004) for the continuous-time case: the presence of parameter uncertainty(and aversion to it) is observationally equivalent to an increase in risk aversion; theinvestor behaves as if he corrected his initial estimate of the vector of expected excessreturns by reducing all expected excess returns by the same proportion; as a conse-quence, the structure of the optimal portfolio is the same obtained in the classicalMarkowitz's framework, but everything is scaled down. This partially contradicts
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the literature questioning the validity of Markowitz's portfolios, since mean-variancee�cient portfolios seem to be robust to the kind of misspeci�cation introduced here.
The second model delivers an asset allocation rule which, to our knowledge, iscompletely novel. The investor's optimal behavior seems to be more pessimistic thanin the �rst model: not only he reduces his initial estimate of excess expected returns,but the reduction is larger for those assets in which he has invested more heavily;he acts as though nature were so malignant to see to which assets the investor ismore exposed and choose the worse scenarios exactly for those assets. In the secondmodel, using a di�erent measure of distance between probabilistic models (not basedon relative entropy), observational equivalence between an increase in uncertaintyand an increase in risk aversion no longer holds, which suggests that conclusionsdrawn by previous works might be rather specialized.
The paper is organized as follows: Section 2 describes the common featuresof the two portfolio selection models and some of their general properties. Section3 describes the �rst model and Section 4 the second one. Section 5 contains someconcluding remarks.

2. The framework
We consider the one-period allocation problem of an agent who has to decidehow to invest a unit of wealth for one period, dividing it among n + 1 assets. Thegross return on the i-th asset after one period is a square integrable random variabledenoted by Ri. The (n�1) vector of the returns on the �rst n assets is denoted by Rand the (n�1) vector of portfolio weights (henceforth called a portfolio), indicatingthe fraction of wealth invested in each of the �rst n assets, is denoted by x. Weassume the return on the (n+ 1)-th asset is riskfree, that is a.s. equal to a constantRf .
The end-of-period wealth is denoted by W (x), to highlight its dependence onthe portfolio chosen by the investor, and is equal to:

W (x) = Rf + x0 �R��!1 Rf� (1)
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where �!1 is a column vector of ones of dimension n. The above de�nition of W (x)implicitly accomodates the requirement that the portfolio weights sum up to unity.
We assume that there are no frictions of any kind: securities are perfectlydivisible; there are no transaction costs or taxes; the agent is a price-taker, in thatshe believes that her choices do not a�ect the distribution of asset returns; thereare no institutional restrictions, so that the agent is allowed to buy, sell or short sellany desired amount of any security2.
According to Markowitz's model, an investor with risk aversion 
 chooses theportfolio weights x so as to solve:

supx2Rn EQ [W (x)]� 
2VarQ [W (x)]
where Q is the unique probability measure describing the investor's beliefs aboutfuture asset returns.

Instead, we assume that the investor solves the following problem:
supx2Rn infQ2�EQ [W (x)]� 
2VarQ [W (x)]

where � is a set of probability measures. The investor's beliefs are not representedby a unique probability measure, but there are many such measures. A choice x isevaluated by considering the probability measure which minimizes the value of thatchoice, that is the decision maker evaluates her choices in the most conservative way,by choosing the worst-case scenario given her choice.
In what follows we will specify the set � in such a way that the followingproperties hold:

8Q;P 2 �; P 6= Q) EP [R] 6= EQ [R]8Q 2 �; V arQ [R] = �
2This assumption can be weakened, by simply requiring that at an optimum institutional re-strictions are not binding.
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where � is a positive de�nite and symmetric (n� n) matrix. To avoid trivialities,we also assume that the eigenvalues of � are distinct and that EQ [R] � �!1 Rf 6= 0for any Q 2 �. The meaning of the two properties above is straightforward: to twodi�erent probability measures in the set � are associated two di�erent vectors ofmeans, but the same covariance matrix.
A fundamental assumption of the mean-variance model is that the investorperfectly knows the vector of expected returns. Unfortunately, the assumption ishardly realistic, because, at best, the investor has got an imprecise estimate ofit. Our model captures the investor's lack of con�dence about her estimate of thevector of expected returns, by considering more than one value for it. As far as thecovariance matrix � is concerned, we assume that there is no uncertainty about it.This is in line with the majority of the literature (see, for example, Chen and Epstein(2002) and Uppal and Wang(2003)) and has both practical and theoretical reasons.On the one hand, concentrating on the vector of means keeps the model tractable.On the other hand, it is often possible to sample the price processes generating the

returns R at frequencies higher than the frequency considered for calculating thereturns. If sampling at higher frequencies is possible and the price increments areserially independent, more precise estimates of � can be obtained without addingany precision to the estimate of �; for a discussion of this point see for exampleGourieroux and Jasiak (2001), Campbell and Viceira (2002) or Merton (1990).
Given the above assumptions, the portfolio problem becomes:

supx2Rn infQ2�Rf + x0 �EQ [R]��!1 Rf�� 
2x0�x
We propose two di�erent speci�cations of the set of probability measures �.In both cases, we take a reference measure P , under which R is normally distributedwith mean � and covariance matrix � and we specify the set � as a subset of theset � = �Q (�) : dQ (�)dP = exp��0��1 (R� �)� 12�0��1�

� ; � 2 Rn�
where by dQ(�)dP we have denoted the Radon-Nikodym derivative with respect to
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P of the measure Q (�) corresponding to a � 2 Rn. � contains all the probabilitymeasures Q (�) which are equivalent to the reference measure P and such that underthe measure Q (�) the vector R of returns is multivariate normal with:
EQ(�) [R] = �+ �VarQ(�) [R] = �

The �rst speci�cation of � we propose is:
� = fQ (�) 2 � : R [Q (�) jjP ] � "g

where R [Q (�) jjP ] denotes the relative entropy of the measure Q (�) with respectto the measure P and " is a positive constant. The set � contains all those proba-bility measures belonging to � whose relative entropy with respect to the referencemeasure does not exceed a prespeci�ed constant. Calculating the relative entropyis a straightforward matter:
R [Q (�) jjP ] = EQ(�) �ln�dQ (�)dP

�� = 12�0��1�
Taking as given this speci�cation of the set � and noting that there is a one-to-one correspondence between � and Rn, we can rewrite the portfolio selectionproblem as follows:

supx2Rn inf�2�1
Rf + x0 ��+ � ��!1 Rf�� 
2x0�x

where �1 = �� 2 Rn : 12�0��1� � "�
Since � is positive de�nite, we can de�ne an inner product on Rn as follows:

h�1; �2i��1 = �01��1�2
and write: �1 = f� 2 Rn : k�k��1 � �g
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where � = p2", so that it is clear that �1 is just a closed ball in Rn centeredabout the zero vector: this interpretation will turn out to be useful in the ensuingdiscussion.
By analogy with the portfolio selection problem just outlined, we propose toanalyze also the problem

supx2Rn inf�2�2
Rf + x0 ��+ � ��!1 Rf�� 
2x0�x

where �2 = f� 2 Rn : k�k � �g
and k:k is the usual Euclidean norm on Rn.

Both problems have some features in common, which we discuss before ana-lyzing them separately. They both are minimax problems: for a highly readablediscussion of minimax problems we refer the reader to Rockafellar (1970). De�ne
V (x; �) = Rf + x0 ��+ � ��!1 Rf�� 
2x0�x

A saddle point of V (x; �) with respect to maximizing over Rn and minimizingover �i (�i = 1; 2) is a point (x�; ��) 2 Rn ��i satisfying:
V (x; ��) � V (x�; ��) � V (x�; �) ; 8x 2 Rn; 8� 2 �i

A basic theorem from minimax theory (see Rockafellar (1996), Lemma 36.2)states that a saddle point has the property that:
inf�2�i supx2Rn V (x; �) = V (x�; ��) = supx2Rn inf�2�iV (x; �)

As a consequence, if we are able to �nd a saddle point of V (x; �), we havefound a solution to the portfolio allocation problem, that is:
V (x�; ��) = maxx2Rn min�2�iRf + x0 ��+ � ��!1 Rf�� 
2x0�x
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This characterization of a solution lends itself to a nice game-theoretic inter-pretation. We can think of our portfolio selection problem as a simultaneous twoplayers game, where one player chooses the portfolio weights so as to maximize hisown utility and the other player changes the vector of expected returns so as tomake the �rst player as worse o� as possible. A saddle point (x�; ��) of the minimaxproblem is a Nash equilibrium of the game: the inequality
V (x; ��) � V (x�; ��) ; 8x 2 Rn

means that, given player 2's decision to displace the vector of means by ��, player 1cannot do any better by deviating from his choice x�; likewise, the inequality
V (x�; ��) � V (x�; �) ; 8� 2 �i

implies that, given player 1's decision to choose the portfolio x�, player 2 cannot doany better by deviating from his choice ��.
In the next two sections we will discuss the geometry of the two portfolioproblems and their solutions: section 3 discusses the problem where minimisationis over �1, which we dub "minimum entropy" minimax portfolio selection problem,while section 4 discusses the problem where minimization is over �2, which we dub"minimum norm" minimax portfolio selection problem.

3. Minimum entropy portfolio selection
In this section we discuss how to solve the "minimum entropy" problem

supx2Rn inf�2�1
Rf + x0 ��+ � ��!1 Rf�� 
2x0�x (2)

where �1 = f� 2 Rn : k�k��1 � �g
and k�k��1 =qh�; �i��1 = p�0��1�

In line with a long standing tradition of analyzing the geometric propertiesof portfolio selection models, we �rst present some facts about the geometry of ourproblem:
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Theorem 1 Let (x�; ��) be a solution to (2), with x� 6= 0, then x� 2 X� and �� 2 ��
where

X� = nx 2 Rn : x = �1��1 ��+ �� ��!1 Rf� ; �1 2 Ro�� = f� 2 �1 : � = �2�x�; �2 2 Rg
Furthermore, for any x 2 Rn there exists x 2 X� such that:

x0 ��+ �� ��!1 Rf� = x0 ��+ �� ��!1 Rf�x0�x � x0�x
and for any � 2 Rn there exists � 2 span (�x�) such that:

x�0 ��+ � ��!1 Rf� = x�0 ��+ � ��!1 Rf�

�

��1 � k�k��1

Given any displacement �� of the vector of expected returns, the optimalportfolio x� lies in the one-dimensional subspace of Rn spanned by the vector��1 ��+ �� ��!1 Rf�. Similarly, given any vector of portfolio weights x�, the opti-mal displacement �� of the vector of expected returns belongs to the one-dimensionalsubspace of Rn spanned by the vector �x�. Furthermore, X� is the minimum vari-ance frontier, i.e. the set of all those portfolios which have the lowest possiblevariance for a given level of expected return and a given choice of ��. Likewise, thespan of �x� can be interpreted as a "minimum entropy frontier", in the sense thatit contains all those displacements of the vector of means which generate the lowestpossible entropy for a given reduction of the portfolio expected return and a givenchoice of x�. In terms of the game-theoretic interpretation given in the previoussection, these optimality conditions read as follows: whatever his risk aversion co-e�cient 
, player 1 will never �nd it convenient to choose a portfolio out of the setX�, because, for any portfolio not belonging to X�, he is able to �nd a portfoliobelonging to X�, with the same expected return, but a lower variance; as far asplayer 2 is concerned, whatever the maximum level of entropy he can generate bychanging the vector of expected returns, he will never �nd it convenient to choose a
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displacement to the vector of means out of the set ��, because, for any displacementnot belonging to ��, he is able to �nd a displacement belonging to �� which doesnot change player 1's utility, but generates less entropy; with the entropy thus saved,he is able to provoke a further displacement to the vector of means and make player1 worse o�.
Having investigated some basic aspects of the geometry of the portfolio prob-lem, we now give its solution:

Theorem 2 Let c = �=r����!1 Rf�0��1 ����!1 Rf�
If c < 1 problem (2) is solved by

x� = 1� c
 ��1 ����!1 Rf�
�� = �c����!1 Rf�

if c � 1 it is solved by:

x� = 0�� = �����!1 Rf�
Remember that the solution to the classical portfolio optimization problem(when there is no uncertainty about �) is:

x� = 1
��1 ����!1 Rf�
Introducing some uncertainty (letting � 6= 0) has the e�ect of inducing a pro-portional reduction of the weights given to the risky assets in the optimal portfolio,with the same constant of proportionality for all assets. Hence, introducing someambiguity (or increasing it) is observationally equivalent to increasing the coe�cientof absolute risk aversion 
. The proportions between portfolio weights remain un-altered: the structure of the portfolio remains essentially the same, but everything
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is scaled down and leverage is reduced. The reason why this happens is that theoptimal perturbation to the vector of excess expected returns over the riskfree assetis just a proportional reduction of it: the agent behaves as if her initial estimate ofthe vector of excess expected returns were too optimistic and she reduces it propor-tionally, as if her optimism had to be corrected to the same degree for every singleasset. This behavior is a consequence of the way we have speci�ed the set �1 overwhich minimization takes place and, in particular, it depends on the norm we havechosen on Rn. In the next section we will show how changing the norm leads to asubstantial modi�cation of the agent's behavior.
4. Minimum norm portfolio selection

In this section we discuss how to solve the "minimum norm" problem
supx2Rn inf�2�2

Rf + x0 ��+ � ��!1 Rf�� 
2x0�x (3)
where �2 = f� 2 Rn : k�k � �g
and k:k is the usual Euclidean norm on Rn.

To parallel the discussion made in the previous section, we �rst present somefacts about the geometry of the problem:
Theorem 3 Let (x�; ��) be a solution to (3), with x� 6= 0, then x� 2 X� and �� 2 ��
where

X� = nx 2 Rn : x = �1��1 ��+ �� ��!1 Rf� ; �1 2 Ro�� = f� 2 �2 : � = �2x�; �2 2 Rg
Furthermore, for any x 2 Rn there exists x 2 X� such that:

x0 ��+ �� ��!1 Rf� = x0 ��+ �� ��!1 Rf�x0�x � x0�x
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and for any � 2 Rn there exists � 2 span (x�) such that:

x�0 ��+ � ��!1 Rf� = x�0 ��+ � ��!1 Rf�

�

 � k�k
The interpretation of this theorem is virtually the same given to the analogoustheorem in the previous section. The only relevant di�erence is in the geometry of��. Given any vector of portfolio weights x�, the optimal displacement �� of thevector of expected returns belongs to the one-dimensional subspace of Rn spanned bythe vector x� (remember that in the previous section it belonged to the span of �x�).This can be thought of as a frontier of minimum norm displacements of the vectorof expected returns, in the sense that it contains all those displacements which havethe minimum possible norm for a given reduction of the portfolio expected returnand a given choice of x�. The geometry of X� deserves no further comments, sinceit is the same as in the previous section.
The solution to (3) contains a constant, which is itself a solution to an equationwhose properties are investigated by the following:

Lemma 4 The function

f (c) = ����!1 Rf�0 h
c� + Ii�2 ����!1 Rf�
is well-de�ned, continuous and strictly increasing on the interval (0;1). Further-

more,

limc!0 f (c) = 0
limc!1 f (c) = ����!1 Rf�0 ����!1 Rf�

so that the equation ����!1 Rf�0 h
c� + Ii�2 ����!1 Rf� = �2 (4)
admits a unique and positive solution whenever

� <r����!1 Rf�0 ����!1 Rf�
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Since f (c) � �2 is a strictly increasing and continuous function, the uniquesolution of Equation (4) can be easily found numerically, either by bisection or by aNewton algorithm employing the analytical derivatives reported in the proof in theAppendix. Note also that the solution c to the above equation, if seen as a functionof the parameter �, is strictly increasing.
We are now ready to give the solution to the portfolio selection problem:

Theorem 5 Let c be the unique positive value which solves the equation:����!1 Rf�0 h
c� + Ii�2 ����!1 Rf� = �2
Then problem (3) is solved by:

x� = [
� + cI]�1 ����!1 Rf�
�� = �cx� = � h
c� + Ii�1 ����!1 Rf�

if � <r����!1 Rf�0 ����!1 Rf� and by

x� = 0�� = �����!1 Rf�
if � �r����!1 Rf�0 ����!1 Rf�.

The solution to the classical portfolio optimization problem (when there is noambiguity about �) can also be written as:
x� = [
�]�1 ����!1 Rf�

Introducing parameter uncertainty (letting � 6= 0), the matrix 
� is aug-mented by the matrix cI. Hence, introducing parameter uncertainty (or increasing
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it) is equivalent to increasing all the variances of the asset returns by a constant,while leaving the covariances unchanged. Unlike in the case analysed in the previoussection, the proportions between portfolio weights are altered and the structure ofthe portfolio changes. In Section 3 the investor behaved as if her initial estimate ofthe vector of excess expected returns were too optimistic, here the investor behavesas if the riskiness of the assets included in her portfolio were initially underestimated.Analysing the way �� is set provides further insights into the agent's behavior: �� isproportional to x�; roughly speaking, this means that the reduction of the excess ex-pected returns is not proportional, but the investor expects that her initial estimateof excess expected returns is more biased (and hence needs a greater correction) forthose assets in which she is more heavily invested.
5. Concluding remarks

We have analyzed two portfolio selection models which extend Markowitz'smodel taking into account parameter uncertainty. When the probabilistic distribu-tion of asset returns is not objectively known to the decision maker, there seems tobe room for modelling devices which allow for the impossibility of forming a uniqueprobability distribution. In our models optimal portfolios are chosen according to amaxmin criterion: the investor chooses a portfolio so as to maximize a mean-varianceutility function and, at the same time, she selects a probability distribution of assetreturns, among a set of plausible distributions, evaluating the consequences of herchoice under the worst possible scenario. The speci�cation of the set of probabil-ity measures over which minimization takes place turns out to be crucial: di�erentspeci�cations give substantially di�erent results. Both of our models assume thatuncertainty a�ects the vector of expected returns: the decision maker considers allthe vectors in a neighborhood of a reference vector, which, roughly speaking, canbe considered as an initial estimate made by the investor. In one case we obtainan optimal allocation rule which is not di�erent from the rule we would obtain in aframework without parameter uncertainty: introducing uncertainty (and a maxminbehavior) is observationally equivalent to an increase in risk aversion. The implica-tion of this model is that Markowitz's portfolios, calculated disregarding parameter
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uncertainty, seem to be robust: this partially contradicts a rich literature question-ing the validity of Markowitz's portfolios when parameters are uncertain. However,with a second model, we obtain quite di�erent implications: the structure of theoptimal portfolio is di�erent from that of a Markowitz's portfolio; the investor actsas though she was altering the covariance matrix of the returns, increasing all thevariances and leaving the covariances unchanged. In this latter case the introductionof parameter uncertainty is observationally equivalent to an increase in the riskinessof the assets to be included in the optimal portfolio. Further insights into the dif-ferences among the two models can be derived by analyzing how the investor selectsthe vector of expected returns: in the �rst case she reduces proportionally all herinitial estimates of the excess expected returns; in the second case she reduces morethe estimates of the excess expected returns of those assets where she has moreheavily invested, apparently displaying more pessimism than in the �rst case.
The models we have presented deliver easily interpretable closed formulae forthe optimal portfolios: thus, they can be useful devices for analyzing both thenormative and the positive implications of minimax behavior in portfolio selection.On the positive side they allow the researcher to easily perform some comparativestatics and understand the behavioral implications of taking into account parameteruncertainty. On the normative side, they can be used as guidance in those situationswhere an investor wants to design portfolios which are optimal in the minimax sense.



Appendix
Proof of Theorem 1. We �rst prove that �� 2 �� where

�� = f� 2 �1 : � = �2�x�; �2 2 Rg
Remember that we have de�ned an inner product on Rn as follows:

h�1; �2i��1 = �01��1�2
and that �1 = f� 2 Rn : k�k��1 � �g
where k:k��1 is the norm induced by the above inner product. We �rst observe thatk��k��1 = �. Suppose instead that k��k��1 < �, then, by continuity of the norm, it ispossible to �nd a strictly positive scalar � such that k�� � �x�k��1 < �. (�� � �x�) isan admissible choice since it belongs to �1 and, unless x� = 0, x�0 (�� � �x�) < x�0��,so that �� cannot yield a minimum of x�0��. Having established that if �� is anoptimum then k��k��1 = �, it is easy to prove that �� must belong to the set ��.Suppose �� does not belong to ��. Take the projection ���x� (�� is a scalar) of ��on the subspace spanned by the vector �x� and note that:

x�0�� = h�x�; ��i��1 == h�x�; ���x� + (�� � ���x�)i��1 == h�x�; ���x�i��1 + h�x�; �� � ���x�i��1 == h�x�; ���x�i��1 = x�0���x�
So, ���x� yields the same value of the objective as ��. Furthermore, by Pithagoras'theorem:

k��k2��1 = k���x�k2��1 + k�� � ���x�k2��1 > k���x�k2��1

where the last inequality is strict because we are assuming that �� =2 �� and hence
�� � ���x� 6= 0
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The above inequality implies that k���x�k��1 < � and ���x� 2 �1, but this is acontradiction: x�0�� = x�0���x� implies that ���x� is optimal and k���x�k��1 < �implies that it cannot be optimal. We now prove that x� 2 X�, where
X� = nx 2 Rn : x = �1��1 ��+ �� ��!1 Rf� ; �1 2 Ro

Being an optimum, x� solves:
maxx2Rn nx0z � 
2x0�xo

where z = �+ �� ��!1 Rf . De�ne an inner product on Rn as follows:
hx1; x2i� = x01�x2

Suppose x� does not belong to X�.Take the projection ����1z (�� is a scalar) of x�on X� and note that:
x�0z = 
��1z; x��� = (5)= 
��1z; ����1z + �x� � ����1z��� == 
��1z; ����1z�� + 
��1z; x� � ����1z�� == 
��1z; ����1z�� = �����1z�0 z

Furthermore, by Pithagoras' theorem:
kx�k2� = 

����1z

2� + 

x� � ����1z

2� > 

����1z

2�

where the last inequality is strict because we are assuming that x� =2 X� and hence
x� � ����1z 6= 0

The above inequality implies that:
x�0�x� > �����1z�0� �����1z�

and, recalling (5):
x�0z � 
2x�0�x� < �����1z�0 z � 
2 �����1z�0� �����1z�



26

so that x� cannot be an optimum.
Proof of Theorem 2. De�ne the function

V (x; �) = Rf + x0 ��+ � ��!1 Rf�� 
2x0�x
As we have explained in section 1, if there exists a couple (x�; ��) satisfying

V (x; ��) � V (x�; ��) � V (x�; �) ; 8x 2 Rn; 8� 2 �1 (6)
then the problem (2) is solved by (x�; ��). Let us start from the case

c = �=r����!1 Rf�0��1 ����!1 Rf� < 1
We will show that the couple

x� = 1� c
 ��1 ����!1 Rf�
�� = �c����!1 Rf�

satis�es the double inequality (6). Note that
V (x; ��) = Rf + (1� c)x0 ����!1 Rf�� 
2x0�x

V (x; ��) is a strictly concave function of x, hence a �rst order condition is su�cientto locate a global maximum of V (x; ��) with respect to x. The �rst order conditionyields: x� = 1� c
 ��1 ����!1 Rf�
so that indeed x� satis�es the inequality

V (x; ��) � V (x�; ��) ; 8x 2 Rn
From the proof of Theorem 1 we know that, for any x� 6= 0, �� can be a solution tothe problem min�2�1

V (x�; �)
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only if �� = �2�x� for some �2 2 Rn and if ��0��1�� = �2. Substituting for �� in thelast equality, we obtain: �22 = �2x�0�x�and substituting for x�:
�22 = � 
1� c

�2 �2����!1 Rf�0��1 ����!1 Rf�
As a consequence, if �� solves the problem, it must be either

�2 = 
c1� cor �2 = � 
c1� cSince V (x�; �2�x�) = Rf + x�0 ����!1 Rf�� 
2x�0�x� + �2x�0�x�
and � is positive de�nite, it is clear that, between the two possible values of �2, �2 =� 
c1�c is the one which yields the lowest value of V (x�; �2�x�). As a consequence,the only point in �1 which satis�es all the necessary conditions for a solution to (2)is: �� = � 
c1� c�x�But V (x�; �) is continuous in � and �1 is a compactum, so that �� must indeedyield a minimum. Substituting for x� gives:

�� = �c����!1 Rf�
and hence we have proved the second part of the inequality, i.e.:

V (x�; ��) � V (x�; �) ; 8� 2 �1
Let us now analyze the case in which c � 1. We have to show that the couple:

x� = 0�� = �����!1 Rf�
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satis�es the double inequality (6). �� obviously satis�es k�k��1 � �. Observe that
V (x; ��) = Rf � 
2x0�xsince the quadratic form x0�x is positive de�nite V (x; ��) obviously attains a globalmaximum at x� = 0, so that indeed x� satis�es the inequality

V (x; ��) � V (x�; ��) ; 8x 2 Rn
Furthermore, V (x�; �) = Rf ; 8� 2 �1so that �� = �����!1 Rf� 2 �1 does satisfy the inequality:

V (x�; ��) � V (x�; �) ; 8� 2 �1

Proof of Theorem 3. The proof of this theorem closely parallels the proof ofTheorem 1. The proof that x� 2 X� is identical, so we only prove �� 2 ��, where
�� = f� 2 �2 : � = �2x�; �2 2 Rg

Remember that �2 = f� 2 Rn : k�k � �g
where k:k is the usual euclidean norm. We �rst observe that k��k = �. Supposeinstead that k��k� < �, then, by continuity of the norm, it is possible to �nd astrictly positive scalar � such that k�� � �x�k < �. (�� � �x�) is an admissiblechoice since it belongs to �2 and, unless x� = 0, x�0 (�� � �x�) < x�0��, so that ��cannot yield a minimum of x�0��. Having established that if �� is an optimum thenk��k = �, it is easy to prove that �� must belong to the set ��. Suppose �� doesnot belong to ��. Take the projection ��x� (�� is a scalar) of �� on the subspacespanned by the vector x� and note that:

x�0�� = hx�; ��i == hx�; ��x� + (�� � ��x�)i == hx�; ��x�i+ hx�; �� � ��x�i == hx�; ��x�i = x�0��x�
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So, ��x� yields the same value of the objective as ��. Furthermore, by Pithagoras'theorem: k��k2 = k��x�k2 + k�� � ��x�k2 > k���x�k2
where the last inequality is strict because we are assuming that �� =2 �� and hence

�� � ��x� 6= 0
The above inequality implies that k��x�k < � and ��x� 2 �1, but this is a contra-diction: x�0�� = x�0��x� implies that ��x� is optimal and k��x�k < � implies that itcannot be optimal.
Proof of Lemma 4. We can write

f (c) = c2z0 [
� + cI]�2 z
where we have set z = ���!1 Rf . Since � is positive de�nite and c is strictly positive,
the matrix [
� + cI] is positive de�nite and hence invertible, so that the function iswell de�ned. Furthermore, if the eigenvalues of � are distinct also the eigenvaluesof [
� + cI] are distinct, for any value of c. This is a consequence of the fact that, ifthe eigenvalues of 
� are �1, �2,. . . , �n, then the eigenvalues of [
� + cI] are �1+ c,
�2 + c,. . . , �n + c. Hence also the eigenvalues of the matrix


c� + I
are distinct. We will now use the following lemma, which can be found in vanBossum (2002) and descends from a more general theorem in Torki (2001):
Let A be a symmetric and positive de�nite (n� n) matrix which can be written

as: A = y1B1 + y2B2 + : : :+ ykBk
where B1, B2,..., Bk are positive semide�nite matrices and y1, y2,..., yk are positive

scalars. Let A have n distinct eigenvalues �1, �2,..., �n (they are real and strictly
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positive) and denote by u1, u2,..., un their respective eigenvectors (chosen so as to

be orthonormal). Then: @�i@yj = u0iBjui
@2�i@yl@yj = 2Xr 6=i

u0iBluru0iBjur�i � �r
De�ne: A (c; t) = 
c� + I + tzz0
We can diagonalize A (c; 0) as follows:

A (c; 0) = U�U 0
where U is the matrix whose columns u1, u2,..., un are the orthonormal eigenvectorsof A (c; 0) and � is the diagonal matrix of eigenvalues. The function g can be writtenas: f (c) = z0U��2U 0z
Expanding the product:

f (c) = z0u1u01z�21 + z0u2u02z�22 + : : :+ z0unu0nz�2nor: f (c) = u01zz0u1�21 + u02zz0u2�22 + : : :+ u0nzz0un�2nwhich, applying the above lemma, becomes:
f (c) = nX

i=1 1�2i @�i@tTaking the derivative with respect to c, we get:
f 0 (c) = dfd (
=c) d (
=c)dc =

=  nX
i=1 1�2i @2�i@ (
=c) @t � 2 nX

i=1 1�3i @�i@t @�i@ (
=c)
!�� 
c2� =

= � 
c2
 nX

i=1 2�2i
X
j 6=i

u0i�uju0izz0uj�i � �j � 2 nX
i=1 u

0i�uiu0izz0ui�3i
!
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Setting Qij = u0i�uju0jzz0ui and noting that Qij = Qji, we can write:
f 0 (c) = � 
c2

nX
i=1
"2 i�1X

j=1
� Qij�2i (�i � �j) + Qji�2j (�j � �i)

�� 2Qii�3i
# =

= � 
c2
nX

i=1
"2 i�1X

j=1
 ��2j � �2i �Qij�2i�2j (�i � �j)

!� 2Qii�3i
# =

= � 
c2
nX

i=1
"�2 i�1X

j=1
�(�i + �j)Qij�2i�2j

�� Qii (�i + �i)�2i�2i
# =

= 
c2
nX

i=1
nX

j=1 Qij (�i + �j)�2i�2j
The Qijs are positive, since the matrix � is positive de�nite and the matrix zz0 issemipositive de�nite; furthermore, at least one of the Qijs is strictly positive; thiscan be proved by contradiction: if the Qijs are all zero, then z0ui = 0 for every i, butthe eigenvectors are orthogonal to each other and span Rn, so that z = 0, which wehave excluded a priori. Since at least one of the Qijs is strictly positive and all theeigenvalues, c and 
 are strictly positive, f 0 (c) > 0, and we have proved the claimthat f (c) is strictly increasing on the interval (0;1). We now prove the two claimsthat

limc!0 f (c) = 0
limc!1 f (c) = ����!1 Rf�0 ����!1 Rf�

The �rst one is easily proved as follows:
limc!0 f (c) = limc!0 �c2z0 [
� + cI]�2 z� =

= z0 [
�]�2 z limc!0 c2 = 0
The second one is a consequence of the continuity of f (c):

limc!1 f (c) = z0 h limc!1 
c� + Ii�2 z == z0I�2z = z0z
Combining these two facts with the fact that f (c) is continuous and strictly increas-ing on the interval (0;1), we deduce that f (c) assumes any value in the interval
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(0; z0z) and that indeed the equation����!1 Rf�0 h
c� + Ii�2 ����!1 Rf� = �2
admits a unique and positive solution whenever

� <r����!1 Rf�0 ����!1 Rf�

Proof of Theorem 5. De�ne the function
V (x; �) = Rf + x0 ��+ � ��!1 Rf�� 
2x0�x

We have to show that the couple (x�; ��) satis�es
V (x; ��) � V (x�; ��) � V (x�; �) ; 8x 2 Rn; 8� 2 �2 (7)

Let's start from the case
� <r����!1 Rf�0 ����!1 Rf�

We will show that the couple
x� = [
� + cI]�1 ����!1 Rf�
�� = � h
c� + Ii�1 ����!1 Rf�

satis�es the double inequality (7). Note that
V (x; ��) = Rf + x0 ����!1 Rf�� x0 h
c� + Ii�1 ����!1 Rf�� 
2x0�x

V (x; ��) is a strictly concave function of x, hence a �rst order condition is su�cientto locate a global maximum of V (x; ��) with respect to x. The �rst order conditionis: ����!1 Rf�� h
c� + Ii�1 ����!1 Rf�� 
�x = 0
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Premultiplying everything by c
��1 �
c� + I�, one easily gets the solution:
x� = [
� + cI]�1 ����!1 Rf�

so that indeed x� satis�es the inequality
V (x; ��) � V (x�; ��) ; 8x 2 Rn

From the proof of Theorem 3 we know that, for any x� 6= 0, �� can be a solution tothe problem min�2�1
V (x�; �)

only if �� = �x� for some � 2 Rn and if ��0�� = �2. Substituting for �� in the lastequality, we obtain:
�2 ����!1 Rf�0 [
� + cI]�2 ����!1 Rf� = �2

or: �2 ����!1 Rf�0 h
c� + Ii�2 ����!1 Rf� = c2�2 (8)
Since by assumption c is such that:����!1 Rf�0 h
c� + Ii�2 ����!1 Rf� = �2
equation (8) becomes: �2 = c2
As a consequence, if �� solves the problem, it must be either � = c or � = �c. Since

V (x�; �x�) = Rf + x�0 ����!1 Rf�� 
2x0�x+ �x�0x�
and the inner product x�0x� is strictly postitive (we are assuming x� 6= 0), it isclear that, between the two possible values of �, � = �c is the one which yields thelowest value of V (x�; �x�). So, the only point in �1 which satis�es all the necessaryconditions for a solution to (3) is:

�� = �cx�



34

But V (x�; �) is continuous in � and �1 is a compactum, so that �� must indeedyield a minimum. Substituting for x� gives:
�� = � h
c� + Ii�1 ����!1 Rf�

and hence we have proved the second part of the inequality, i.e.:
V (x�; ��) � V (x�; �) ; 8� 2 �2
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