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We examine the informational effects of M&As by investigating whether bank mergers
improve banks’ ability to screen borrowers. By exploiting a dataset in which we observe
a measure of a borrower’s default risk that the lenders observe only imperfectly, we �nd
evidence of these informational improvements. Mergers lead to a closer correspondence
between interest rates and individual default risk: after a merger, risky borrowers experience
an increase in the interest rate, while non-risky borrowers enjoy lower interest rates. This
�nding is robust with respect to a series of alternative explanations. Further results suggest
that these information bene�ts derive from improvements in information processing resulting
from the merger, rather than from explicit information sharing on individual customers among
the merging parties.
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The unprecedented merger wave observed in the last decade is reshaping the corporate

landscape in most countries, in mature and innovative sectors alike. According to Thomson

Financial, between 1990 and 2001 there were 54,143 M&As in the major industrial countries,

with total value equal to $9,526 billion. A large body of empirical work has investigated the

pricing effects of mergers, considering mainly changes in market power and ef�ciency and

the ensuing net variations in average prices induced by the merger (see, for example, Barton

and Sherman (1984), Kim and Singal (1993), Prager and Hannan (1998), Sapienza (2002),

Focarelli and Panetta (2003)).

However, market power and ef�ciency are not the only important channels through

which M&As can affect the pricing policy of the merging company. In many industries,

mergers might change both companies’ information sets as well as how they process

information. This is likely to be particularly relevant in markets characterized by informational

frictions, such as credit and insurance markets, where mergers could modify the ability of, and

the incentives for, the merging parties to reduce the informational problems. For example,

by acquiring a health insurer, an automobile insurance company might gain information on

the health status of its customers, which could be useful in pricing its automobile insurance

policies. Even for purely horizontal mergers, the increased volume induced by the merger

might justify the adoption of costly improvements in information technology, which enable the

consolidated �rm to maintain better databases on its customers. On the other hand, mergers

could also destroy some knowledge capital of the merging parties, due to corporate cultural

differences among the parties, a need to harmonize the way information is processed, and

changes in the incentives of the workers to produce and gather information in the wake of the

organizational changes arising from the merger.�

� We are grateful to Allen Berger, Bill Evans, Luigi Guiso, Mark Israel, Elizabeth Klee, Francesco Lippi,
Steve Ongena, Nadia Soboleva, Victor Stango, Jeremy Stein, Matthew White, Luigi Zingales and seminar partici-
pants at the Atlanta and Boston Feds, Bank of Italy, Dept. of Justice, George Washington, Harvard, Maryland, the
2003 Winter Econometric Society Meetings in Washington DC, the Bank of Italy-CEPR conference on Money
and Banking, the NBER Industrial Organization Winter 2004 meetings, the 2004 IIOC meetings, and the 2004
AEA meetings in San Diego for comments. The opinions expressed are our own and do not necessarily re�ect
those of the Bank of Italy.

� For example, the model proposed by Stein (2002) suggests that, by increasing the degree of hierarchy,
mergers increase the incentives to produce hard information, and reduce incentives to collect soft information.
Berger, Miller, Petersen, Rajan and Stein (2002) con�rm that small banks in the US rely more heavily on soft
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In this paper we analyze the importance of these informational effects of mergers.

We consider a market in which they are likely to be particularly relevant: bank loans, in

which borrowers’ default risks are an important source of asymmetric information between

lenders and borrowers. We identify the informational bene�ts of mergers by investigating

whether mergers improve banks’ abilities to screen and assess the unknown default risk of

their borrowers.� We employ a unique bank-�rm matched panel dataset from Italy containing

information on individual business loan contracts for a nearly complete sample of �rms from

1988 to 1998. For each loan contract, we observe the interest rate, the amount borrowed, and

the characteristics of the bank and the �rm involved, making it possible to analyze rate changes

for different types of borrowers (e.g., according the their default risk) and lenders (e.g., large

vs. small banks).

The Italian loan market constitutes a natural laboratory for studying the informational

effects of consolidation. First, in the last decade, technological innovation and substantial

deregulation prompted an unprecedented merger wave that reduced the number of Italian banks

by nearly 25 percent. Second, the Italian economy is mainly composed of small and unlisted

�rms, for which the problems posed by asymmetric information are likely to be important, so

if mergers did indeed result in informational ef�ciencies, we are most likely to detect them in

this market. Third, Italian companies secure almost all their external �nancing through credit

lines, which are highly homogeneous products and can be meaningfully compared over time

and across different banks.

The intuition that underlies our empirical approach is simple: banks with superior

screening abilities should have a more precise estimate of a �rm’s default risk, so that they

should charge an interest rate that is more “sensitive” to this risk. Consider a bank with no

screening ability: to it, all potential borrowers are identical, and should be charged identical

interest rates. As the bank improves its screening capacity, it should discriminate among

borrowers according to their default risk, charging higher interest rates to riskier borrowers

and lower rates to high-quality borrowers. Hence, if mergers lead to informational bene�ts,

information when dealing with their customers.

� See, for instance, Stiglitz and Weiss (1981) for an equilibrium analysis of loan markets in which the default
risks of borrowers is unobservable. A number of papers has emphasized the unique role of banks in managing
the problems resulting from imperfect information on borrowers (see for example the seminal papers of Leland
and Pyle (1977) and Diamond (1984) and the review in Gorton and Winton (2003)). Empirical contributions have
con�rmed the speci�c role of banks in producing information on borrowers (see, for example, James (1987)).
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one ought to observe a stricter correspondence between the interest rates and default risks of

a bank’s borrowers after a merger. Therefore, the price impact of these informational bene�ts

might differ considerably across customers. These potential distributional effects of mergers

have been overlooked by the empirical literature cited above, which has only analyzed the

effect of mergers on average market prices.

One dif�culty in implementing our empirical approach is that it requires a measure of a

�rm’s default risk, which is unobserved by banks at the time they extend their loans: however, a

crucial feature of our dataset is the availability of such a variable, in the form of an independent

measure of a �rm’s default risk (the Z-score of Altman (1968)) which, due to accounting rules

and data collection requirements, is only made available to banks with a two-year lag.

We �nd that after a merger the interest rate curve – the relation between the default

probability of each �rm and its loan rate – becomes steeper. Thus, while for the low-risk

borrowers the loan rates decline, for the riskier borrowers – which before the merger bene�ted

from underpriced loans, due to the informational inef�ciencies of their lenders – they actually

rise.

We provide evidence that this “increasing slope” �nding is larger for lending

relationships for which, � ������, the degree of asymmetric information should be higher and,

therefore, the scope for merger-related informational gains larger (such as shorter bank-�rm

relationships, or relationships where the bank supplies a smaller percentage of the borrowing

�rm’s total credit). These �ndings support our interpretation that M&As improve banks’

abilities to screen borrowers. Moreover, we con�rm that the increase in the slope of the

interest rate pro�le does not simply re�ect the fact that merged banks are able to better price

discriminate due to their increased market power. We also explore the possibility that the

“increasing slope” is due to the fact that merged banks price their loans based more on hard

information, de-emphasizing soft information in the process.

Finally, we seek to identify the channels through which the informational bene�ts from

a merger operate. In order to do this, we exploit the fact that Italian �rms often borrow from

multiple lenders (Detragiache, Garella and Guiso 2000). We �nd that the increase in the slope

of the interest rate curve is broadly similar both for the companies that before the deal were

borrowing from only one of the merging parties and for those that were borrowing from both.

This �nding suggests that the potential gains from explicit ������� or sharing of �rm-speci�c
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information - which emerges only when both of the merging banks were lending to the same

company before consolidation - is not the relevant channel of informational gains.�

We also �nd little support for the idea that the information bene�ts arise via a transfer

of screening abilities from a more informationally ef�cient acquiring bank to a less ef�cient

acquired bank. Nevertheless, we uncover an asymmetry in the information improvements

between the acquiring and acquired banks: while acquiring banks improve mostly in

processing existing information (thus suggesting the importance of managerial improvements

in these banks), those taken over become more adept both at using existing information and at

gaining new information.

Our results carry important implications for the controversy on the welfare

redistributions associated with consolidations. First, we show that mergers may affect different

categories of customers in different ways and increase the variance of market prices. This

implication, which is likely to hold in other markets as well, implies new challenges for the

antitrust authorities, because it excludes the possibility of using Paretian criteria to assess the

welfare effects of mergers. Second, the simple consideration of average price effects might

underestimate the welfare effects of mergers, because information improvements should imply

a better allocation of resources. While it is hard to quantify such allocative effects, they are

likely to be nontrivial.�

The rest of the paper is organized in the following way. In the next section we analyze

the related literature and discuss our empirical approach. In Section 3 we introduce the data. In

Section 4 we present and discuss our main empirical �ndings on the presence and magnitude

of informational effects deriving from mergers. In Sections 5 and 6 we consider (and rule out)

various alternative explanations for these informational effects. We investigate the sources of

informational bene�ts in Section 7. Section 8 concludes.

� See also Chen, Hong, Huang and Kubik (2003) for empirical evidence on the effects of scale on mutual
fund performance.

� For example, in a recent paper, Caballero, Hoshi and Kashyap (2003) argue that an important factor behind
the Japanese economic stagnation is that banks lend too much to inef�cient �rms.
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	 ������ the effect of consolidation on market prices is ambiguous. On the one hand,

mergers can increase ef�ciency (through economies of scale and scope or an improvement

in managerial x-ef�ciency), which tends to decrease prices. On the other, if the merging

companies have signi�cant market overlap, their market power might increase, leading to

adverse price changes for consumers. Several early papers found that mergers increase

market power, harming consumers (Kim and Singal 1993, Prager and Hannan 1998). Recent

studies relative to the banking sector, however, have found that after taking into consideration

important features of the transaction, such as multi-product �rms (Kahn, Pennacchi and

Sopranzetti 1999), the degree of increase in market power (Sapienza 2002), the length of

the post-merger period at which the price effects are measured (Focarelli and Panetta 2003) or

conceptual problems in measuring service output (Wang 2003), then mergers might actually

decrease prices for consumers.

One limitation of these studies is that they only consider the market power and ef�ciency

effects of consolidation, ignoring other factors that might affect the pricing policy of the

merged companies. In this paper, we focus on one such factor: information. We consider

the market for bank loans. The starting point of our empirical analysis is a plot using the raw

data, contained in Figure 1. In the upper (lower) graph, we plot average (median) interest

rates charged by banks to �rms against SCORE, a measure of �rms’ default risk (with larger

values of SCORE corresponding to a higher risk).S The two lines in each graph correspond

to merged and unmerged banks. Clearly, the lines for the merged banks exhibit a steeper

slope furthermore, the lending rates of the merged banks are lower for the less risky �rms

(those with a low SCORE measure), but actually higher for riskier �rms. In this paper, we

interpret this steeper tilt of the interest-rate/risk relationship after mergers as evidence of

informational improvements (improved ability to screen borrowers according to their unknown

default risk) stemming from the merger. We illustrate the theoretical underpinnings of such an

interpretation here.

Consider a lending relationship between bank � and �rm �. Firm �’s default probability,

�� , is unknown to the bank and represents a source of asymmetric information between �rm

9 Both the SCORE variable and the de�nition of interest rates are discussed in detail below. We net out year
effects by regressing the raw interest rates on year dummies. The interest rates used in the subsequent analysis
are the residuals from this regression.
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� and bank �. Assuming zero expected pro�ts, the interest rate that bank � charges to �rm �,

���, satis�es �� � ��������� � �� � ���� � �, where �� denotes bank �’s information about

�rm �. For default probabilities �� close to zero, this relationship between interest rates ��� and

expected default probabilities �������� is approximately ��� � ��������.�

Across �rms, the default probabilities �� are randomly drawn from a beta distribution

with parameters ��� ��, so that the average probability of failure in the population is �� � �
���

.

The information set �� consists of 	� binary signals 
 � ��� ��, with �	�
 � �� � �� . Here,

	� measures the screening ability of the bank, with larger values of 	� indicating that bank �

is better informed. Using Bayes rule, the posterior mean (and hence the interest rate) after 	�

signals and  “�” signals is

��� � ����	�� � �
� � 

�� �� 	�
�(1)

For a given level of informedness 	�, the expected number of “�” signals out of 	� signals is

���	�� ��� � 	��� so that, on average, bank � charges �rm � an interest rate of

������	�� ��� �
� � ��	�
� � �� 	�

� 
�� ��	��� ��� ��	����(2)

where ��	� � �
�����

. Expression (2) formalizes the fact that, as more information becomes

available, the posterior shifts away from the prior mean �� towards the actual default probability

��. In fact, ���� � �� ����� ��	� � �� and ��
��

� ���
������	�

� �. As the screening capability

increases, the interest-rate/risk curve shifts down and steepens in slope:

�������	�� ���
�	�

� ����	��
�	�

���
���	��

�	�
���(3)

This equation offers an empirical strategy to detect informational improvements in

banks’ screening abilities, provided that we have a measure of the actual default probability

�� and of banks’ screening ability 	�. If mergers indeed lead to informational improvements,

then a merger event would proxy for increases in screening ability 	�, so that Eq. (3) would

imply relationships between merger activity, average interest rates, and default probability

resembling the graphs in Fig. 1. This is the strategy we will follow in our empirical

� In our data, the incidence of non-repayment of a loan from one year to the next is 1.3%, small enough for
the linear approximation to be valid.
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speci�cation, where we will run regressions of the form

��� � �
 � �� ������� � �� ��� � �� �������� � ���(4)

where ������ is a dummy variable set equal to one if bank � has recently merged and

��� � ������ � ��� is an orthogonal error. The hypothesis that mergers improve information

(i.e. an increase in 	�) would imply that �� � � and �� � �, in line with the graphs in Figure

1.�

Needless to say, there could be alternatives to the information-based interpretation of the

increased steepness of the interest-rate/risk relationship documented in Figure 1.� Hence, it

is an empirical question to distinguish our informational interpretation from alternative non-

informational explanations, and a substantial portion of this paper focuses on these issues.�


'� ����

We use four main sources of data. (1) Interest rate data and data on outstanding loans

come from the Italian 
������� �� ������, or Central Credit Register. (2) The �rm-level

balance sheet data come from the 
������� �� ������� database. (3) Banks’ balance-sheet

and income-statement data come from the Banking Supervision Register at the Bank of Italy.

(4) Data on the mergers and acquisitions are drawn from the Census of Banks. By combining

these data, we obtain a matched panel dataset of borrowers and lenders extending over an

eleven-year period. We begin with a brief descriptions of the data sources. Speci�c details

regarding the construction of the sample and further descriptive analysis are contained in the

appendix.

� The result that the steepness of the pro�le increases with screening ability also has a very natural interpre-
tation in terms of measurement error in a regression framework. Assume that each bank forms its own assessment
of the probability of default, which is equal to the actual one plus some random noise: ��� � �� � ��� , with ���
distributed ������ with zero mean and bank-speci�c variance �� inversely related to screening abilities. Then, the
use of the actual default probability �� in the regression (4) can be seen as a variable measured with error, where
the “true” variable is the bank’s assessment. If mergers improve screening abilities, resulting in a smaller ��, we
should expect �� � �, as a result of the usual attenuation bias due to the “mismeasured” variable �� .

� Indeed, a recent paper by Hauswald and Marquez (2003) contains a model in which improvements in
information technology among lenders leads to a decreased interest rate sensitivity to �rms’ risk characteristics,
arising from “winner’s-curse” effects which occur in models of lender competition (see Broecker (1990) for
additional modeling of winner’s curse effects in a banking context).

�� Moreover, we focus on informational effects as re�ected in loan prices (interest rates), not on other loan
parameters such as credit availability, or loan size. However, Bonaccorsi di Patti and Gobbi (2003) present
evidence, using the same dataset, that mergers have rather small effects on borrowers’ credit availability.
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The Central Credit Register (hereafter CR) is a database that contains detailed

information on all individual bank loans extended by Italian banks. Banks must report data

at the individual borrower level on the amount granted and effectively utilized for all loans

exceeding a given threshold,�� with a breakdown by type of the loan (credit lines, �nancial and

commercial paper, collateralized loans, medium and long-term loans and personal guarantees).

In addition, a subgroup of around 90 banks (accounting for more than 80 percent of total bank

lending) have agreed to �le detailed information on the interest rates they charge to individual

borrowers on each type of loan. Summary statistics for these banks are reported in Table 1.

We restrict our attention to short-term credit lines, which have ideal features for our

analysis. First, the bank can change the interest rate at any time, while the borrower can

close the credit line without notice. This means that (i) a change in the merging banks’

ability to process �rm-speci�c information can have almost immediate repercussions on the

pricing of the loans� and (ii) differences between the interest rates on loans are not in�uenced

by differences in the maturity of the loan. Second, the loan contracts included in the CR

are homogeneous products (for example, they are not collateralized), so that they can be

meaningfully compared across banks and �rms. Third, short term bank loans are the main

source of borrowing of Italian �rms. For example, in 1994 they represented 53 percent of

the total debts according to the Flow of Funds data. We de�ne the interest rate as the ratio

of the payment made in each year by the �rm to the bank to the average amount of the loan.

The interest payment includes the �xed expenses charged by the bank to the �rm (e.g. which

encompass the cost of opening the credit line or the cost of mailing the loan statement).

The 
������� �� ������� (hereafter CB) collects yearly data on the balance sheets and

income statements of a sample of about 35,000 Italian non-�nancial and non-agricultural �rms.

This information is collected and standardized by a consortium of banks interested in pooling

information about their customers. A �rm is included in the CB sample if it borrows from at

least one of the banks in the consortium. The database is fairly representative of the Italian

non-�nancial sector.�� Table 2 reports descriptive statistics for the sample.

�� The threshold was 41,000 euros (U.S. $42,000) until December 1995 and 75,000 euros thereafter.

�� The �rms in the CB sample represent about 49.4% of the total sales reported in the national accounting
data for the Italian non-�nancial, non-agricultural sector.
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The unique feature of the CB data set is that, unlike other widely used data sets on

individual companies (such as the Compustat database of US companies), it has wide coverage

of small and medium companies� moreover, almost all the companies� in the CB sample are

unlisted. The coverage of these small �rms makes the data set particularly well suited for our

analysis, because informational asymmetries are potentially strongest for these �rms so that,

if mergers did indeed result in informational ef�ciencies, we are most likely to detect them in

this sample.

Table 3 (Panel A) details the M&A activity of reporting banks. Given that reporting

banks tend to be larger banks, they are more likely to be the acquiring party in a merger. The

�nal sample includes 1,300,000 bank-�rm-year observations.

3.1 ������� �� ��� ������ ����� �
���

In addition to collecting the data, the CB computes an indicator of the risk pro�le of

each �rm (which we refer to in the remainder of this paper as the SCORE). The SCORE

represents our measure of a �rm’s default risk, and plays a crucial role in the analysis.

Therefore, before turning to the econometric tests and discussing the empirical evidence, we

describe in detail the computation, timing of the release and the characteristics of the SCORE.

The SCORE, which takes values from 1 to 9, is computed annually using discriminant

analysis based on a series of balance sheet indicators (assets, rate of return, debts etc.)

according to the methodology described in Altman (1968) and Altman, Marco and Varetto

(1994). The CB classi�es �rms into four credit-worthiness categories on the basis of the

SCORE variable: (i) “safe” (SCORE=1,2), (ii) “solvent” (SCORE=3,4), (iii) “vulnerable”

(SCORE=5,6), and (iv) “risky” (SCORE=7,8,9). Table 4 reports �rm characteristics for

different SCORE classes. As expected, higher SCORE �rms are smaller and more leveraged�

they also pay a higher interest rate.

Two characteristics of the SCORE are crucial to our analysis. First, the SCORE is

computed by the 
������� �� ������� ex post, using actual balance-sheet data, so that it

represents a good proxy of the actual default probability of the �rm in each year. In Figure 2,

we plot the SCORE variable against indicators of actual default incidence.�� We see that the

�� The de�nition of default in the dataset includes �rms in liquidation or other bankruptcy proceedings, and
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SCORE is an accurate predictor of actual default incidence among the �rms in our dataset: for

instance, �rms with a SCORE of 3 in a given year have a probability of defaulting within the

next two years (i.e. during years � or �� �) of less than 1%, but this probability rises for �rms

with a SCORE of 8 to10%. An even more pronounced trend appears when considering the

event of default within the next three years (i.e. years �, � � �, � � �).

Second, the SCORE for �rm � in year � (along with all the other data collected by the CB)

only becomes available to banks after approximately 15 months: for example, the information

on the balance sheets for 1995 was made available to banks only at the end of March 1997.

Hence, because the data used in this paper are measured at the end of each year, the ������

only becomes available to banks in year � � � (that is, the ����� that a bank observed

in December 1992 was the ����� for 1990): thus, it represents information that is not

available to banks when they set interest rates in year �, and a potential source of asymmetric

information between �rms and banks in year �.��

The amount of innovation in ������ with respect to �������� is non-negligible:

Table 5 (Panel A) shows that, after including �rm �xed effects, the slope coef�cient in a

regression of ������ on �������� is only 0.30, and the R-squared is only 64%. Moreover,

the additional information contained in ������ greatly helps in predicting actual �rm

defaults: in Panel B of Table 5, we display results from probit regressions of actual default

incidence (as measured by whether a given �rm defaulted within years �, � � �, or � � �)

on the different ����� measures.�� A comparison of the �rst two columns indicates that

using ������ instead of �������� improves the �t of the regression almost twofold, as

measured by the pseudo-��, indicating that the former has more predictive power.

To examine this issue more closely, we also run probit regressions of the default

incidence on both �������� and the residual (denoted ��
���) from the linear projection

of ������ on �������� (by construction, ��
��� is orthogonal to �������� and thus

represents an innovation with respect to the information available to the bank at time �), in

those which have not paid repayment installments on loans for at least six months.

�� It is possible that, on its credit application, a �rm may be required to report balance-sheet information that
is used to compute 	
���. However, even if it acquired this information, the bank would still be unable to
compute 	
���, because 	
��� is also a function of the period � balance- sheet data of all other �rms,
which the bank does not possess.

�� The default indicator used in these regressions corresponds to the ��������� graphed in Figure 2.
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order to quantify the importance of the information that banks do not have, i.e. ��
��|, in

predicting �rm defaults. The third column shows that even after controlling for �����|32,

the marginal effect of the new information ��
��| on the probability of actual default is

statistically signi�cant and equal to 0.016 (this is not a small magnitude considering that the

mean default incidence is only 0.04)� furthermore, the pseudo-�2 doubles with respect to the

regression with only �����|32.

Hence, the change in SCORE between year ��� and � appears to represent a potentially

important and useful source of uncertainty from the bank’s point of view. This makes SCORE

an appropriate proxy for the default probability �� in the model given in Section 2 above.

However, we check that our results are robust to using alternative measures of �rm default

(see below).

)� �'%!�!��* ��� *��

The raw data presented in Figure 1 above are consistent with the hypothesis that mergers

improve information, by making banks more adept at screening borrowers according to their

default risk (as measured by �����). However, the interest rate curves shown in the graph

could merely re�ect differences between merged and non-merged banks, or differences in

the pool of borrowers. Therefore, we now turn to the regression analysis, to check whether

the relation persists once we control for the characteristics of the borrowers and those of the

lenders.

Most of our empirical work is based on the following basic regression for bank �, �rm �,

and year �:

���| � �
f
� �

�
�������| � �2 � ������| � �� � �������| �������|�

��
e
� �����c|3� � �D � !"#�c| � �S � ��"�| � $� � �| � ���|�(5)

In the above equation, ���| is the interest rate on credit lines charged by bank � to �rm � in year

�, measured by the difference between the bank’s loan rate and the 3-month interbank interest

rate. ������| is a dummy variable that equals 1 if bank � was involved in a merger in the

�ve years prior to year �.�S To abstract away from any pricing effects due to the compositional

49 Focarelli and Panetta (2003) point out that the effects of mergers are long-lived, and that it can take up to
�ve years for some effects to occur. We have also experimented both by shortening this lag period to 3 years and
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changes of portfolio reallocations after a merger, we restrict ������� to be equal to one

only for ����������  ����!���, de�ned as �rms that were borrowing from bank � in the year

prior to the merger.�� ������� is the default risk measure for �rm � in year �. ���������

and !"#��� are, respectively, a set of time-varying �rm- and bank-speci�c control variables.

To control for changes in market concentration that are unrelated to consolidation, we include

the Her�ndahl-Hirschman Index (HHI) of the local market (de�ned at the provincial level,

following the antitrust authority de�nition) for bank loans (��"��)� $� is a �rm-speci�c

�xed effect and �� is a time dummy. Finally, we include a zero-mean random error ����.

Within the framework of Eq. (5), �
�

captures the price effect of the merger. A

positive value would imply that the market power effect prevails over the ef�ciency effect,

harming borrowers, while a negative value would indicate that the ef�ciency gains outweigh

the increase in market power, leading to a reduction in the loan rate. The value of �
�

represents

the slope of the interest rate pro�le, i.e. the risk-return relationship prevailing in the market

for bank loans. We expect a positive value for this parameter. A positive value for �
�

would

be consistent with the hypothesis that a merger leads to informational ef�ciencies, in the form

of a steeper interest rate pro�le.��

Our speci�cation of the interest rate equation is similar to Pagano, Panetta and Zingales

(1998) and Sapienza (2002). In particular, by employing �rm-level �xed effects we use a �rm

before the merger as a control for itself after the merger. Moreover, by including a calendar-

year �xed effect we control for cyclical patterns common across all �rms and banks. The

�rm covariates capture the relation between the loan rates and �rms’ characteristics that are

not captured by the ����� (to avoid simultaneity, all variables are lagged one year). We

include size (the log of total assets), leverage (the ratio of debt to the sum of debt plus capital)

by extending it to 11 years (our sample length), with no noticeable effects on the results.

�� Thus, new borrowers that initiate their lending relationship with a bank shortly after a merger are not
included among the treatment observations. In this paper, both dropped pre-merger borrowers and new post-
merger borrowers are included in the control group. However, to ensure the robustness of our results to banks’
portfolio allocation decisions, we also performed unreported regressions where both of these groups of borrowers
were excluded from the sample, with virtually no change in the results.

�� Because the interpretation of our results depends critically on the idea that high-quality information im-
plies a higher sensitivity of the loan rate to the risk characteristics of the �rm (i.e., a steeper interest rate curve),
we have run auxiliary regressions to con�rm that the data support the thesis that a bank’s responsiveness to the
SCORE is correlated to its informational ability. Details of and results from these regressions, which strongly
support this view, are contained in the appendix.
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and pro�tability (the return on sales). We also control for bank-speci�c variables that might

in�uence the loan rates. We include size (proxied with total assets) and the cost-income ratio

(a standard proxy for ef�ciency).

The estimates of equation (4), reported in Panel A of Table 6, con�rm that, after a merger,

banks’ sensitivity to the SCORE rises by 8.7 basis points (the coef�cient is signi�cant at the 1

percent level). This �nding squares with the graphical evidence from Figure 1 and is consistent

with the hypothesis that M&As lead to higher sensitivity of the loan rates to the risk pro�le

of the borrower. The point estimate of �
�

implies non-trivial costs for the borrowing �rms.

These costs, to put them in perspective, come to approximately 78 basis points for the worst

companies (SCORE=9). However, this calculation does not consider the average price effect

of the merger, i.e. the effect on the intercept of the interest rate pro�le. The negative estimate

of �
�

indicates that M&As reduce the intercept of the �-����� curve by 29.7 basis points,

or 2.5 percent of the median loan rate.�	 The change in shape of the �-����� relationship

implies that only the good �rms (i.e. those with SCORE below 4) bene�t from the merger:

the lower-quality �rms (with SCORE exceeding 4), in contrast, experience higher loan interest

rates.

The other coef�cients are all signi�cant and have the expected signs. The loan rates are

higher for riskier companies (higher SCORE) and for companies with higher leverage, and

lower for larger companies� pro�tability (measured by return on sales) has no effect. The loan

rate is also higher for small banks (measured by total assets) and inef�cient ones (high ratio of

costs to gross income) and, as expected, for more concentrated markets.

We re-estimate our model including both �rm- and bank- �xed effects, in order to

account for bank-level unobserved heterogeneity. The results obtained using this alternative

speci�cation are similar to those previously reported: the estimate of �
�

is equal to 8.8 basis

points and remains strongly signi�cant (see Panel B of Table 6).�� Throughout the paper,

in order to retain the comparability of our results with those of the previous studies, we

�� This result is consistent with the �ndings of previous research on the Italian banking industry: Sapienza
(2002) �nds that the typical merger leads to a rate reduction of about 40 basis points (considering a market share
of the target bank of 2.9 percent� see Table III in her paper).

�� We estimate our model also including only bank-speci�c �xed effects (unreported). The results do not
change.
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will continue to use the results obtained using �rm-speci�c �xed effects as our preferred

speci�cation.

While bank-level �xed effects account for time-invariant unobserved heterogeneity,

they do not control for time-varying unobserved heterogeneity at the bank-year level, which

could drive the timing of mergers. For example, some banks may experience unobservable

improvements in screening ability, which cause them to acquire less informationally ef�cient

banks, furnishing a reverse-causality explanation for our empirical �nding that �
�
� �. We

discuss this possibility below, explicitly testing the hypothesis that mergers are driven by

positive shocks to screening ability.

��� ������ �+��,� We undertake several analyses to assess the robustness of results to

the inclusion of other control variables and the use of alternative estimation methods. Our

results prove to be remarkably robust.

A potential concern is that the results could be driven by a form of sample selection:

speci�cally, if informationally superior banks are more likely to merge, then the �
�

parameter

could simply be capturing systematic differences between the information-screening ability

of merging banks relative to banks that do not merge, and thus should not be read as causal

effects of the merger. To check for this possibility, we have rerun the regressions excluding

all the observations relating to banks that never merged. In this case, the control group is

composed solely of the pre-merger (and post-merger+ six years) observations for the merging

banks. The results, not reported for brevity, turn out to be stronger than the previous ones,

with �
�

estimated to be 0.136 in the basic speci�cation with �rm �xed effects. This indicates

that our results are not driven by a selection hypothesis whereby banks that merge are better

than average in their information-screening abilities: the increased steepness appears to be

predicated by the merger itself.

Another possible problem is that, given the increase in the number of mergers over

time (see Table 3), the interaction term ����� ����� could capture a trend in banks’

informational ef�ciency that is unrelated to the mergers. For example, the improvements in

informational ef�ciency could merely re�ect the positive effects of an expansion in banks’

ICT spending on their informational ef�ciency. Therefore, as a further robustness check,

we re-estimate our model interacting the ����� with a set of year dummies, which

capture any trend effects in banks’ informational improvement common to all banks. This
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speci�cation – which represents an extreme test of the robustness of our model – yielded

results (unreported) which are qualitatively similar to the previous ones. Namely, the

coef�cient on the SCORE*MERGE interaction remains statistically signi�cant, albeit reduced

in magnitude.��

An implicit assumption of our interpretation so far is that, after a merger banks re-

optimize by charging their riskier borrowers a higher interest rate rather than dropping them

altogether. Therefore, we consider a potential selection problem, which can result if, after

mergers, banks just drop riskier �rms. In Figure 3 we present a histogram showing the

percentage of loan observations associated with �rms of a given SCORE, broken down

according to whether the lending bank did or did not merge in the sample period (denoted

��"�������). For banks that merged, we further break down the loan observations into whether

they occurred before (denoted ��������) or after (denoted ���������) the merger. As the

graph shows, the loan portfolio of merging banks is virtually unchanged before and after

the merger� furthermore, the loan portfolios of merging banks are identical to those of non-

merging banks. This suggests that the selection problem of merging banks dropping risky �rms

is not present. Moreover, we estimate non-linear speci�cations of our model (to check whether

the increasing slope �nding could simply re�ect a movement along a non-linear interest rate

pro�le). The (unreported) results remained unchanged.

We check that our results are not in�uenced by the inclusion in our sample of both private

and public banks (Sapienza (forthcoming) shows that state-owned banks differ in their lending

policies from private banks). To address this issue, we have also run the regressions excluding

public banks. Results were virtually unchanged.

A potential concern with our analysis is that loans are just one of the products banks

offer to their customers. This means that the interest rates used in our regressions could be

affected by strategies for marketing other products to �rms - for example, a bank may offer a

low loan rate but charge a higher fee on bond issues or IPOs. Although we mitigate this risk by

�� In another set of unreported results, we addressed the potential endogeneity of the SCORE variable (arising
perhaps from �rm-year unobservables which might also in�uence the interest rate that a �rm is granted) by
�xing a �rm’s SCORE at its pre-merger average. This de�nition of SCORE alleviates potential correlation
between SCORE and time-varying �rm unobservables which might in�uence the �rm’s interest rate. However,
this removes all time variation in SCORE, so that the level effect of SCORE (ie., the coef�cient �

�
in Eq. (2)) is

no longer identi�able in the presence of �rm dummies. However, we can still estimate the important interaction
of MERGE and SCORE, and we �nd that it remains positive and signi�cant.
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focusing on homogeneous products, we cannot eliminate it. However, this problem is likely

to be negligible for our analysis. In fact, credit lines are by far the most important �nancial

product purchased by Italian �rms from their bank, while only a tiny fraction of companies

purchase other important �nancial products. For example, only 80 Italian companies went

public during our sample period (1988-98) and only 28 issued bonds on public markets. These

corporate events - which could in�uence the pricing of loans and generate confounding effects

- are uncommon in the Italian �nancial system generally and virtually non-existent for small,

closely-held companies, which represent by far the largest component of our sample.

-� �� !� ���**. !�%��&��!��� �/!����� %��& � �0��&)*��

Up to now, we have ascribed the increase in the slope of the interest rate curve to

the informational gains from mergers. In this section, we reinforce this interpretation by

examining the effect of mergers on sub-samples of �rms for which, � ������, the informational

gains from consolidation should differ in a predictable way. If we found that our estimates of

the change in the slope of the interest rate curve across these sub-samples con�rmed our priors,

we would take this as evidence in favor of the hypothesis that this change is indeed determined

by informational gains and not by other factors.

5.1 ����� "�# �������  ���$��� �������������

First, we consider the duration of bank-�rm relationships, i.e. the number of years

for which �rm � has been a borrower of bank �. Because banks develop information over

time, through repeated interactions with their customers, lasting relationships are likely to

be associated with less asymmetric information (Rajan (1992), Petersen and Rajan (1994)).

Therefore, for �rms with a short relationship with the bank, there should be more scope for

merger-related informational gains than for �rms with long lasting relationships. Accordingly,

we expect the post-merger increase in the slope of the interest rate curve to be larger for short

than for lasting relationships.

We split our sample into two subgroups: “long lasting relationships”, i.e. the bank-

�rm pairs that have a relationship of 5 years or more� and “short relationships”, i.e. those

with duration of less than 5 (we have experimented with alternative splitting points, obtaining

similar results). We re-estimate equation (4) separately for these two groups. The results,



23

reported in Table 7, are consistent with our hypothesis: the increase in the slope of the interest

rate curve (the coef�cient of the interaction term MERGE*SCORE) is equal to 6.7 basis

points for the short duration sub-sample, but only 2 basis points for the �rms with lasting

relationships (the difference between the two coef�cients is highly signi�cant). Economically

this result implies that for �rms with short relationships, the difference between the lending

rate of the worst and the best �rms (SCORE=1 or 9, respectively) increases by 48 basis points.

In contrast, for the �rms with lasting relationships the spread between low- and high-quality

�rms increases by 16 basis points. The estimates of the other coef�cients are generally similar

to those reported in Table 6.

5.2 ���� "�# ������ ������

For the same reasoning that we used for the length of the relation, one should expect

that banks should be better informed about �rms for which they supply a large share of

credit. Therefore, according to our hypothesis the merger-related informational gains (and

the increase in the slope in the interest rate pro�le) should be larger for banks that represent a

small proportion of a �rm’s total borrowing.

To test this hypothesis, we compute %���, the proportion of total lending to �rm �

provided by bank �, and split our bank-�rm observations into two subsamples. The �rst

“fringe lender” sub-sample includes all observations for which %��� is below the median (15

percent), and the second “main lender” subsample contains observations with %��� above the

median. The results, reported in Table 8, are consistent with our hypothesis: the increase

in the sensitivity of the loan rate to the SCORE is higher for loan relationships in which the

bank is a “fringe bank”, where we expect informational gains to be stronger (the difference is

statistically signi�cant). Again, we �nd this result to be robust to alternative splitting points.

As a further check, we have also used a measure of �rm-bank distance, splitting

according to whether �rm and bank headquarters are in the same region, on the assumption

that geographical proximity improves the bank’s information about the �rm, so that less should

be gained from the merger. The results, not reported for brevity sake, again indicate that the

increase in the sensitivity is greater when the �rm and the bank are located in different regions,

suggesting larger informational gains.
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All in all, we �nd this evidence remarkably supportive of the hypothesis that mergers

increase the banks’ screening ability.

1� �+� 2!������!�# �*�)�34 *������!/� �5)*����!���

In this section we analyze other potential explanations of the increase in the slope of the

interest rate curve. At the very least, we want to control for other merger-related factors that

in�uence the sensitivity of the loan rate to company risk, to verify that they are not responsible

for our �ndings.

6.1 %� ������� �������� �������� �� ��� �����������&

We begin by considering the alternative explanation that merging banks might rely

increasingly on hard information (objective and codi�ed measures of �rm performance, such

as that contained in the default risk measure SCORE) in pricing loans, so that lending

relationships based on soft information (i.e., uncodi�able information collected, for example,

through direct interaction with the �rms’ managers) may be disproportionately de-emphasized.

This intuition is formalized by Stein (2002), who shows that larger, more hierarchical banks

— such as those which may result from a merger — could provide less incentives for loan

of�cers to collect soft information about borrowers. Under this interpretation, the higher slope

we �nd might re�ect a shift from soft to hard information, as proxied by SCORE, rather than

an overall increase in screening ability.

The risk that our results may be driven by a shift from soft to hard information is

attenuated by the characteristics of our sample. In fact, our dataset contains only the medium

and large banks in the Italian market, excluding small banks, for which soft information is

likely to be more important. Moreover, all �rms in our sample have �nancial records as

well as balance-sheet information readily available from CB, so that the need to collect soft

information may be greatly reduced. Hence, lending relationships among parties in our data

may not be characterized by much soft information, either before or after mergers.�� However,

rather than speculating, we tackle this issue empirically.

�� The characteristics of our sample also imply that the evidence reported in this section cannot be interpreted
as an empirical test of the importance of soft vs. hard information in banks’ lending policies.
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We �rst explore this issue by considering mergers involving small target banks, for which

the impact of the organizational changes, and the ensuing modi�cations in banks’ lending

policies, resulting from the merger are likely to be larger.�� Accordingly, we check whether

the magnitude of the increasing slope effect for the borrowers of small target banks differs from

the other the borrowers of merging banks. If our results simply re�ect an increase in banks’

reliance on hard information after the merger at the expense of soft information, then we should

expect the increasing slope effect to be larger for the sub-sample of previous borrowers of small

target banks, for which the shift from soft to hard information should be more pronounced.

In Table 9, we report the results obtained by including an additional variable obtained by

multiplying the interaction term MERGE*SCORE by a dummy (SMALLTAR) set equal to 1 if

before the merger the company was borrowing from a small target bank. The coef�cient of this

variable captures the difference in the increase in the slope of the interest rate pro�le between

the borrowers of small target banks and other borrowers.�� The results obtained using both of

the reported speci�cations indicate that the incremental change in the slope of the interest rate

curve for small target banks (measured by the coef�cient on MERGE*SCORE*SMALLTAR)

is small and statistically indistinguishable from zero.

Another simple and direct way to address the issue of the importance of hard information

is to use a variable measuring actual defaults, i.e. to see whether merged banks charge higher

rates to �rms that subsequently default. This might be a rather crude check, because default

is rare in our dataset, even among �rms with a high SCORE, but it allows us to compare the

pricing policy of merged and unmerged banks using an ex-post measure of credit worthiness.

To perform this check, we replaced SCORE in Eq. (5) with a measure of actual default

incidence (namely, an indicator of whether a �rm defaulted two years into the future).�� The

results, not reported for brevity, indicate that �rms that will default in the next two years are

charged on average 61 basis points more than non-defaulting �rms by unmerged banks, and the

�� Using US data, Berger et al. (2002) and Cole, Goldberg and White (2000) �nd that small banks (which
are more likely to be the target banks in a merger) tend to use soft information more extensively in dealing with
their customers. Sapienza (2002) provides evidence consistent with this hypothesis for the Italian credit market.

�� As a measure of size, we have taken the average (over the sample period) number of �rms that the target
bank serves, a number that ranges from 220 to nearly 5,000, with a median of 650. Our results are robust when
we use alternative splitting points of 500, 1,000 or 1,500.

�	 The default indicator corresponds to the ��������� variable graphed in Figure 2. According to the de�ni-
tions adopted by the supervisory authority, a loan is classi�ed as a bad loan when the bank starts a legal procedure
to recover its claim.
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additional increase for merging banks is 13 basis points (�
�
� ����� with a t-stat of 4.30).��

The discarding of soft information would imply a lesser ability to detect troubled �rms, an

implication that is in contrast with our �nding that �rms that defaulted ex-post were charged

higher rates by merged banks. Therefore, we take our result as evidence that, overall, merged

banks have a greater capacity to identify risky borrowers.��

6.2 '� ��� (���������� �����) �� �� ������ ��!��&

If the merging banks have signi�cant local market overlap, the merger could lead to an

increase in market power. Therefore, we consider the alternative explanation that the effects

we have documented in Section 4 may be attributed to market power: speci�cally, a merged

bank, with enhanced monopoly power, may be able to exercise greater price discrimination

among its customers. If �rms with high SCORE have a less elastic demand curve for loans,

due to dif�culties in obtaining funding from alternative sources, then a monopolist may exploit

this situation by charging higher rates.

While the market power hypothesis is consistent with the steeper interest rate pro�le

and increased post-merger interest rate dispersion, it has dif�culty explaining the decrease in

rates for the less risky �rms.�� On the other hand, if the merger had both market power and

cost-reduction effects, then our observed results could be consistent with the explanation that

the market power effect dominated for the risky �rms, resulting in higher interest rates, but

the cost-reduction effects dominated for the less risky �rms, leading to the lower interest rates

that we observe. In order to test this hypothesis, we decompose the merger observations in

our sample into ��$������ and ���$��$������ observations. Speci�cally, for every observation

�� As an additional check, we also investigated whether interest rates charged by merged banks are better
predictors of actual defaults than those charged by the non-merging banks. We ran probit regressions of actual
default incidence on the interest rates separately for the two subsamples, �nding that the pseudo-R� is larger for
the merged subsample (0.053) than the nonmerging subsample (0.044).

�� In an additional (unreported) sample split, we �nd that the “increasing slope” result is marginally smaller
for the sub-sample of loan relationships involving small �rms, versus those involving large �rms (where a �rm
is classi�ed as “small” if its total assets lie below the 25-th percentile of the �rms in our dataset). This result
suggests that the interest rate reassessment following mergers is not disproportionately affecting small �rms,
which are those for which we expect soft information to be more important.

�� For instance, the literature on competition and third-degree price discrimination shows that a monopoly
tends to raise prices to ��� consumers, relative to the duopoly case. See Stole (forthcoming), section 2 and Holmes
(1989). See also Borenstein (1989) and Busse and Rysman (forthcoming) for empirical work on the effects of
competition on price discrimination.
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where �������� � �, we classify that observation as “in-market” if both parties to the

merger in which bank � participated were active lenders in �rm �’s province in the year before

the merger� if only one of the merging banks was active in �rm �’s province before the merger,

we classify it as “out-of-market”.�	

Since an increase in local market concentration only occurs for the in-market sample,

if the market power interpretation of our results is correct, then the slope of the interest

rate pro�le should increase only for the in-market observations� by contrast, for the out-of-

market sub-sample the sensitivity of the loan rate to the SCORE should not be affected. We

re-estimate the basic regression for the two sub-samples separately. The results from this

regression, reported in Table 10, are similar for the in-market and out-of-market sub-samples.

Indeed, not only does the interest rate curve become steeper in both sub-samples, but the

increase in the slope is also larger for out-of-market mergers than for in-market mergers (the

SCORE*MERGE interaction coef�cients are equal to 11.9 and 6.6 basis points, respectively)

– exactly the opposite to what one would expect under the market power interpretation.

6� �+�������!7!�# �+� �+����*� �& �+� !�&��'��!���* !'%��/�'����

Next, we exploit several unique features of our dataset to investigate potential channels

through which the informational bene�ts of a merger may work. First, due to the matched

nature of our dataset, we can distinguish between a given merger’s effects on the borrowers

of the acquiring (“bidder”) bank, the borrowers of the acquired (“target”) bank, and also on

the set of �rms which borrowed from  ��� bidder and target banks. Second, we observe the

SCORE variable two years before the banks, which we exploit to distinguish between the

types of informational improvements effected by a merger: namely, we distinguish between

the merger’s effects on a bank’s use of the information that is at its disposal at the time of

the merger, and on its production of new information. We hope to pinpoint the mechanisms

whereby informational improvements affect banks’ pricing behavior after a merger.

7.1 %����������� ������� �� ��������� ��  ��� "�# ������  ����

In the �rst set of regressions, we split the �������� dummy into three mutually

exclusive and exhaustive dummies  �&&�����, '!���'���, and  �&'!����. The �rst

�� Italy is divided into 103 provinces, corresponding roughly in dimension to U.S. counties.
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dummy is equal to 1 if the observation refers to a �rm that was a pre-merger borrower only

of the bidder bank. Analogously, the dummy '!���'��� refers to �rms that were borrowing

only from the target bank. Finally,  �&'!���� is set equal to one if, before the deal, the �rm

was borrowing from both the bidder and target banks in a given merger. Table 3 (panel B)

reports the number of observations for each of these categories. Since the large banks in our

dataset are more likely to be the bidder than the target, most commonly the observations have

 �&&����� � � (43%), while 2.8% of the observations have '!���'��� � � and only

0.7% have  �&'!���� � �. We estimate the following regression:

���� � �� � �� � �&&����� � �� � '!���'��� � �� � �&'!���� � �� � ������� �

�� � �������� � �&&������ � �� � �������� � '!���'���� �

�� � �������� � �&'!����� � �� � ��������� � �	 � !"#��� �

��� � ��"�� � $� � �� � �����(6)

By comparing the sizes and magnitudes of ��� ���and ��, we can distinguish between several

hypotheses. First, the merger may improve banks’ ability to process information, simply

because information processing is likely to be characterized by increasing returns to scale:

for example, the implementation of internal rating systems or the construction of detailed

customer databases may require large �xed outlays that need to be allocated over a large

volume of output� moreover, the accuracy of the predictions of the rating procedures will

increase with the number of customers in the database. As a consequence, the larger banks

that result from consolidation may invest more heavily in such activities and install costly

technologies that were not feasible for either partner before the deal. The hypothesis that

informational gains arise from a general improvement in the merged banks’ ability to process

information (or an increase in their incentives) implies that all �rms borrowing from a bank

involved in an M&A should be affected: �� � �� �� � �� �� � �� moreover, if this is the only

source of informational gain, we should �nd that the increase in the steepness does not depend

on the identity of the lender(s) before the merger: �� � �� � ���

On the other hand, a �nding that �� � �� is consistent with the interpretation that the

informational gains arise when a more ef�cient bidder bank transfers its superior information

processing capabilities or managerial skills to a less ef�cient target bank. In this case, the

reassessment of the loan portfolio of the acquired bank would bring interest rates more closely



29

into line with the actual default risk of �rms only for the loans of the target bank, which were

mis-priced prior to the merger.

Finally, the informational gains may result from pooling information that, before the

deal, was only available separately to each of the merging parties. Even when both merger

parties have a business relationship with the �rm, they might have access to different sources

of information. For example, by assisting the �rm in its international activity, one of the banks

might have good information on its performance abroad, while the other might manage the

company’s checking account and thus obtain privileged information on its sales in the domestic

market. This means that the consolidated bank, pooling these different sources of information,

could have better knowledge of the company than either individually.�� These information-

pooling effects would only apply to  �&'!� observations, the �rms that borrowed from

both bidder and target banks before the merger, and should therefore generate a larger increase

in the steepness for these subset of observations: �� � ����� � ��.

The results from this regression are presented in Table 11. We �nd that for companies

borrowing from only one of the merged banks - the bidder �� the target - the interest rate curve

becomes steeper. For the loans that refer to the bidder banks, the estimate of the coef�cient of

the interaction term (�� in equation 3) is equal to about 9 basis points using both �rm-speci�c

�xed effects (see Panel A of the Table) and bank- and �rm-speci�c effects (see Panel B). In

economic terms, this implies that the spread between the worst and best �rms (with SCORE

equal to 9 and 1) increases by approximately 70 basis points. The estimate of �� (i.e. the

increase in the slope of the interest rate curve for target banks) ranges from 7.6 to 8.6 basis

points (using �rm-speci�c and �rm and bank-speci�c dummies, respectively). The fact that

the gains are similar for the bidder and target banks (an F-test indicates that the difference

between �� and �� is not statistically signi�cant) suggests that the merger does not result in a

transfer of managerial skills from one party to the other, but instead improves the operations

of both banks in equal magnitude.

This result also addresses the issue, which we raised earlier, of the potentially

endogenous timing of mergers: that the MERGE variable could be correlated with bank- and

year-speci�c unobservables related to a bank’s screening ability, which also affect interest

�� See Broecker (1990) and Vives (1999) (chap. 10)) for theoretical discussions of information sharing in
oligopoly, and Genesove and Mullin (1999) for empirical evidence from the sugar industry.
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rates. However, the �nding that mergers improve the screening abilities of both merging

banks roughly equally implies that differences in screening abilities between the merging

partners should not be driving mergers and, hence, that the timing of mergers is not related to

unobserved changes in banks’ screening abilities. Indeed, this corroborates previous research

on bank M&As in Italy: Focarelli, Panetta and Salleo (2002) show that the decision to merge

is not related to credit management, but rather to strategies aimed at increasing the bank’s

revenue from services (e.g., sales of mutual funds).

The estimate of �� (the coef�cient of the ����� � �&'!� term) is slightly smaller

than �� and ��: 3.9 basis points with �rm �xed-effects and 5.5 basis points with both �rm and

bank �xed effects. This tells against the notion that informational effects accrue from pooling

information on single customers.��

This result also allows us to assess one potential informational disadvantage of multiple

banking, which is that it might curtail the incentives of each bank to gather information on

�rms, due to free-riding. �� If this were the case, we would expect that the effects of mergers

on information are stronger for �rms borrowing from both banks, because centralizing two

previously separated relations should attenuate the free riding problem. Hence, these results

also indicate that the free riding problem connected with multiple banking does not seriously

compromise information gathering.��

�� Apart from the small number of observations, which might result in imprecise estimates, a possible ex-
planation for the slightly lower coef�cient on 	
�� ������� is �rm selection. Indeed, the probability of
having a loan from both a bidder and target bank is higher for large companies, which have more bank relation-
ships than small companies. This conjecture is supported by the data: the ������ �rms are twice as large in
terms of total assets as the others, and have a larger number of bank relations. These factors imply that, due to the
sample design, ������ �rms may be informationally more transparent that ����� or ����� �rms,
so that the informational gains from the merger are likely to be small.

�� For example, the “arm’s length investors” in Rajan (1992) are assumed to have no incentive to monitor the
�rm, due to free-riding problems.

�� In these regressions, the implicit control group also includes all observations at banks that do not merge
throughout the sample period. To control for the possibility that they are systematically different from the banks
that do merge, we re-ran these regressions omitting never-merging banks from the sample, with no noticeable
changes in the results. Furthermore, we also ran the regressions on the BIDDER, TARGET, and BIDTAR sub-
samples separately, using as a control group in each case only the same �rms before the merger. The results did
not yield appreciable differences: in particular, the rankings of the magnitudes of �	� �� and �� remained the
same as in the results reported in Table 11.
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7.2 %�������������  ��!��� �*������ �� ��! �����������

Next, we exploit another dimension of our data — speci�cally, the peculiar timing

features of the SCORE variable — to distinguish between two types of improvements in

information processing. We observe the risk indicator SCORE two years before the banks

in our dataset do. As such, we decompose the SCORE variable in year � as the sum of two

parts: ����
��������, which denotes the �tted value from a linear regression of �������

on ���������, and ��
����, the residual from this equation. Hence, the predicted value

����
�������� proxies for the existing information about �rm � that banks possess at the

same time that they decide on the interest rate, while ��
���� proxies for the “new” information

about �rm � that appears between year ��� and �.�� Given that the residual is, by construction,

orthogonal to ��������� and, thus represents an innovation with respect to the balance sheet

information available to the bank at time �, the sensitivity of the interest rate to it measures the

ability of a bank to gather further information on the default risk beyond that contained in

���������. Therefore, we amend the basic regression (Eq. (2)) by using ����
��������

instead of �������, and by including the year � residual ��
����. We also interact both

variables with the merger dummies.

The regression results are reported in Table 12. In the �rst column of results, the

coef�cients on both of the interactions ����� � ����
������� and ����� � ��
���

are positive and signi�cant (with point estimates of 0.113 and 0.011, respectively), indicating

that a merger leads not only to increased acquisition of new information but also to better use

of existing information.

In the second set of results reported in Table 12 we break down the merger effects into

those on the  �&&�� �rms, on the '!���' �rms, and on the  �&'!� �rms. The

coef�cients of the interaction with ����
������� and ��
��� are positive and signi�cant

for both the  �&&�� and '!���' �rms, suggesting that after the merger these �rms

are affected by both types of informational changes. Moreover, in the ����
�������

interactions, the BIDDER effect exceeds the TARGET effect (0.115 vs 0.047), while the

reverse holds for the ��
��� interactions (0.011 vs. 0.034). This suggests that the acquiring

�� That is, we �rst run the regression 	
���� � �� � �� � 	
������ � �� � ���, including a full
set of �rm dummies �� . Results are reported in Panel A of Table 5. Then we set ����	
����� � ��� �
��
�
	
������ ���� and ������� � 	
���� �����	
�����, where the hats (�) denote estimated values.
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banks improve primarily in the processing of existing information, while vis-a-vis borrowers

from the acquired banks the new information acquisition effect dominates. In contrast, for the

 �&'!� �rms, neither interaction is signi�cantly different from zero.

8� ����* �!�# ��&��,�

In this paper, we have presented evidence in favor of the hypothesis that an important

effect of bank mergers is to improve banks’ abilities to screen lenders. Consistently with the

information hypothesis, we �nd that merged banks exhibit a closer correspondence between

the price of loans and the default risk of each �rm than unmerged banks, resulting in a steeper

interest rate pro�le. Our results indicate that the pricing effects of mergers differ across

�rms: speci�cally, high-quality �rms bene�t from the merger, while riskier �rms experience

increased interest rates. We attribute these effects to improvements in information processing

rather than explicit information pooling between the merging parties. Additional results

suggest an asymmetry in the information improvements between the bidder and target banks:

while acquired banks improve by making better use of existing information, acquiring banks

become more adept both at using existing and at gaining new information.

Our results also raise additional questions, which we plan to address in future work.

First, it will be important to investigate more deeply the causes of the informational

improvements. Could they stem from a general sort of information pooling, whereby the

merging banks combine their pre-merger expertise in lending to particular industrial sectors or

geographical locations? Another possibility is that informational improvements derive from

changes in the organizational structure of the banks. Inquiry into this issue requires bank-level

information on the organizational structure and we are currently exploring the possibility of

obtaining such information for the banks in our sample. The second question regards the effect

of the changes in loan rates on banks’ lending to different categories of �rms. A number of

papers have found that merged banks reduce the small-business share of their portfolio (see,

for example, Berger, Saunders, Scalise and Udell (1998)). It would be interesting to explore

whether this effect is solely the consequence of the rate changes induced by the merger, or

whether it also re�ects modi�cations in the production technology or management objectives

of merged banks.
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More broadly, our �ndings carry important implications for the controversy on the

welfare redistributions associated with consolidations. Previous empirical studies have

examined only the effect of M&As on the average level of market prices, ignoring potentially

important consequences for higher moments of the price distribution. We show that mergers

may affect different categories of customers in different ways and increase the variance of

market prices: while some customers bene�t from the consolidation, others could be harmed.

Moreover, if consolidation leads to better pricing of risk, the welfare effects might be stronger

than those obtained by considering average price changes only. This implication, which is

likely to hold in other markets as well, implies new challenges for the antitrust authorities,

because it excludes the possibility of using Paretian criteria to asses the welfare effects of

mergers.



))���!5

�� ��&)*� ������ ��!��4 ����!*� Summary statistics for the banks that report interest

rates are shown in Table 1. In Panel A we report data for all banks in our sample. Over the

entire period the median bank size (as proxied by total assets) is about 3,700 million euros

and 1,137 employees. The ratio of operating costs to gross revenues (a standard indicator of

ef�ciency) is 33.1 percent, while the ratio of bad loans to total lending (a proxy for riskiness)

is 4.9 percent. Software expenses per employee are equal to about 1,100 euros.

In Panels B and C we distinguish banks on the basis of their participation in a merger

during the period 1988-98. In particular, we classify a bank as a “bidder” if it acquired another

bank during our sample period, and a “target” if it was acquired (a bank could be both bidder

and target, if it acquired another bank before itself being taken over). The bidder banks are

larger than average (median of 9,049 million euros and 2,789 employees). The cost-income

ratio, the ratio of bad loans to total loans and the software expenses per employee are similar

to the rest of the sample. The target banks are similar to the bidders in these parameters, but

smaller in size (median size is 4,999 million euros).

Summary statistics on the �rms included in the Centrale dei Bilanci are shown in Table

2. The median �rm in the sample has total assets equal to 0.78 million euros, 31 employees, a

return on sales of 8 percent, and leverage of 60 percent. Short-term debt represents the largest

component of total debt (81 percent).

As for bank-�rm relationships, the median �rm borrows from 4 banks. As we noted

before, this feature of the Italian loan market makes it appropriate not only to examine the

informational consequences of bank mergers, but also to disentangle them into those arising

from explicit information pooling among the merging banks, and those arising when the

consolidated bank is able to exploit economies of scale in information processing. Finally,

for the median �rm the ratio between credit utilized and credit granted is 38.2 percent.

In table 3 we group �rms according to their SCORE. As expected, leverage is greater

for riskier �rms, ranging from 15 percent for safe �rms (SCORE=1,2) to 81 percent for risky

�rms (SCORE=7,8 and 9). Another interesting difference emerges in the pattern of bank-

�rm relationships. In particular, the credit lines are more likely to be exhausted for riskier

�rms: the proportion of companies recording an overdraft (i.e. a credit line for which credit
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utilized exceeds that granted) increases from 4 percent for safe to 31 percent for risky �rms. A

consistent pattern emerges for the interest rates, which range from 13.2 percent for companies

with low credit risk to 14.7 percent for those in the worst shape (SCORE=7,8,9).

The banks reporting detailed interest rate data range from 68 in 1997 to 88 in 1989. In

total, we have 863 bank-year observations (see Panel A of Table 4). These reporting banks are

larger than average, and they account for more than two thirds of total Italian banking industry

loans. The number of bank-year observations affected by a merger ranges from 6 in 1990 to

26 in 1995. Our sample includes 1,300,000 bank-�rm-year observations (see Panel B). Of

these observations, 43 percent of the observations refer to companies borrowing from bidder

banks, 2.8 percent to companies borrowing pre-merger from target banks, and 0.7 percent to

companies borrowing from both. Hence, just over half of the observations refer to �rms that

do not borrow from a bank that merges during our sample period.

�" ��� *�� %��& � 5!*!��. ��#����!��� In this section, we consider results from

auxiliary regressions to verify the hypothesis that a bank’s responsiveness to the SCORE

variable (namely, a steeper interest rate curve) is correlated to its informational ability. To

this end, we examine how the slope of the interest rate curve differs between banks which

we classify � ������ as having better information or information processing ability, and those

banks that have worse information. If our assumption is valid, banks that are better informed

should have a steeper interest rate curve.

We consider two proxies of a bank’s informedness. One is the duration of the bank-

�rm relation, measured by the number of consecutive years that a bank has had a lending

relationship with a given �rm. The potential informational bene�ts of lasting bank-�rm

relationships are analyzed by Rajan (1992). The empirical evidence has shown that the length

of the relationship affects the availability and the cost of credit.�� We re-estimate Eq. (5),

replacing the dummy ����� with this proxy. The coef�cient of the interaction between

the SCORE and our indicator represents the increase in the slope of the interest rate curve

resulting from an increase in the duration of the relationship, so that we expect a positive

value. The results, reported in Panel A of Table A1, are consistent with our view. In particular,

�� See Petersen and Rajan (1994) and Berger and Udell (1995) for the U.S. and Angelini, di Salvo and Ferri
(1998) for Italy.
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the coef�cient of the interaction term is positive (equal to 0.0191) and statistically signi�cant.

The coef�cient of the SCORE is also positive and signi�cant, as expected.��

Our second proxy is the amount of expenditure in computer software per employee, a

standard indicator of a bank’s information processing capability. As above, we estimate Eq.

(5) replacing the dummy ����� with our proxy (see Panel B of Table A1). Again, the

results are consistent with the hypothesis that more informed banks exhibit a steeper interest

rate curve: the coef�cient of the interaction between the SCORE and software expenditure is

positive (equal to 0.0246) and statistically signi�cant (the coef�cient of the SCORE is also

positive and statistically signi�cant).

We note that our two proxies may be endogenous, correlated with unobservables

that also affect the loan rates. But as we are not seeking causal effects here, but just a

descriptive measure of how interest rate sensitivity differs across banks depending on their

information characteristics, this does not matter to us. By and large, these �ndings validate

our interpretational assumption that the sensitivity of the loan rates to the SCORE variable is

related to the informational sophistication of the banks.

�� We perform a further check on the relation between the loan rates and the SCORE by dropping from the
right-hand side of the regression our proxy of banks’ informedness (the length of bank-�rm relationships) and
the interaction term. The results (unreported) con�rm the existence of a positive and signi�cant relation between
loan rates and the SCORE.
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Table 1 

 
SUMMARY STATISTICS: THE BANK SAMPLE  

 
The summary statistics of Panel A refer to all banks that report the interest rates charged on credit lines. Panel B to the 
banks that were bidders in a merger. Panel C to the banks that were target in a merger. The number of observations is 
the number of bank-years. Size is the bank’s total assets in millions of euros. Employees is the number of employees at 
the end of the year. Bad loans is a percentage of total loans. Cost-income ratio is the ratio of overhead to gross income 
(in %). Software per employee is the ratio of expenses in software to the number of employees, expressed in thousands 
euros. 

Variables Obs. Mean Stand. Dev. 5t h pctile Median 95th pctile 

 Panel A: All Banks 

Size  900 10,726.8 16,965.6 481.3 3,709 54,354.1 
Employees  896 3,179.9 4,582.5 206 1,137 14,038 
Bad loans  893 6.2 6.3 1.9 4.9 15.8 
Costs-income ratio  893 34.5 6.1 25.4 33.1 43.2 
Software per employee  792 1.3 1.1 0.1 1.1 3.2 

 Panel B: Bidder Banks in Mergers 

Size  107 19,386 23,902 1,193 9,049 75,096 
Employees  106 5,325 5,733 365 2,789 18,987 
Bad loans  107 6.2 4.7 2.0 5.6 15.1 
Cost-income ratio  106 33.6 6.8 25.2 33.2 44.3 
Software per employee  91 1.4 1.3 0.4 1.1 3.9 

 Panel C: Target Banks in Mergers 

Size  28 7,254 7,804 144 4,999 26,952 
Employees  28 2,270 2,769 67 1,551 10,014 
Bad loans  28 9.3 13.4 1.2 4.2 50.0 
Cost-income ratio 24 34.0 8.9 23.6 31.9 51.6 
Software per employee  23 1.1 0.8 0.1 1.1 3.1 

 
 



 

  
Table 2 

 
 

SUMMARY STATISTICS: THE FIRMS SAMPLE 
 

The summary statistics in the table refer to the company sample. Total assets are expressed in million euros. 
Employees is the number of employees at year-end. Short term debt is expressed as a proportion of total 
debt. The SCORE is the indicator of the risk of the company computed each year by the Centrale dei 
Bilanci (higher values indicate riskier companies). Number of lenders is the number of banks from which 
the company borrows. Utilized credit is expressed as a proportion of credit granted.  

Variable Obs.  Mean Stand. Dev. 5thpctile Median 95thpctile 

Total Assets  329,622 3.6 119.9 0.04 0.78 8.4 
Employees  293,281 73.7 637.9 3 31 224 
Leverage 329,611 55.3 30.1 0.1 60.3 96.0 
Return on Sales  328,650 9.1 9.9 4.3 8.6 20.4 
Short term debt   304,440 70.2 31.9 0.2 81.0 100.0 
SCORE  318,645 5.1 1.8 2 5 8 
No. of lenders  329,623 4.4 3.3 1 4 11 
Utilized credit  319,792 50.2 54.3 0 38.2 138.4 

 
 



 

 Table 3 
 
 

MERGER ACTIVITY: OVERALL SAMPLE 
 

Panel A: Bank-year Observations 
Number of banks is the number of bank-year observations in the sample of 
banks that report detailed information on the loan rates to individual borrowers 
(the reporting banks). Percentage of loan market is the ratio between the loans 
of the reporting banks and total banking industry loans. Number of bidders 
(targets) is the number of reporting banks that in each year was involved in a 
merger as a bidder (target).  

Year No. of 
Banks 

No. of 
Bidders 

No. of targets 

1988 87 7 0 
1989 88 13 0 
1990 87 5 1 
1991 84 12 4 
1992 81 11 4 
1993 79 5 2 
1994 75 8 0 
1995 73 22 4 
1996 71 8 3 
1997 68 7 2 
1998 70 8 1 
Total 863 106 21 

 
 

Panel B: the bank-firm-year observations 
A firm is classified as a borrower of a bidder, a target or both for the 5 years following the 
merger if the firm was borrowing from the merging bank in the year before the merger. Number 
of observations is the number of bank-firm-year observation in our sample. 

Year 
No. of 

observations 
% of firms that 
borrow from a 

bidder  

% of firms that 
borrow from a 

target 

% of firms that 
borrow from a 
bidder & target 

1988 96,353 10.1 0,0 0,0 
1989 95,648 25.4 0,0 0,0 
1990 105,073 27.7 0.1 0.1 
1991 112,088 33.0 1.8 0.9 
1992 116,942 39.3 6.0 0.5 
1993 122,606 40.1 4.5 0.4 
1994 134,037 48.9 3.6 0.3 
1995 128,549 69.7 4.2 0.5 
1996 116,307 61.9 4.0 1.4 
1997 143,844 50.3 3.2 1.3 
1998 126,075 53.9 2.0 1.6 
Total 1,297,522 43.3 2.8 0.7 

 
 

  



 

Table 4 
 

FIRM CHARACTERISTICS BY RISK CLASS 
 

The summary statistics refer to the company sample. Companies have been grouped on the basis of the risk indicator computed 
each year by the Centrale dei Bilanci (the SCORE: higher values indicate riskier firms). Panel A refers to safe firms 
(SCORE=1,2). Panel B refers to solvent firms (SCORE=3,4). Panel C refers to vulnerable firms (SCORE=5,6). Panel D refers 
to risky firms (SCORE=7,8,9). Employees is the number of employees at year-end. Average loan rate is the average interest 
rate paid by the company on credit lines. Number of lenders is the number of banks from which the company borrows. 
Percentage of overdrafts is the proportion of firms with at least one credit line with credit utilized exceeding credit granted. 

  Variable Obs. Mean Stand. Dev. 5thpctile Median 95thpctile

 Safe firms (SCORE=1,2) 

Employees 26,954 80.7 292 5 34 261 
Leverage 29,317 19.2 16.8 0.5 15.2 50.7 
Average loan rate 23,906 14.3 4.0 10.2 13.2 22.2 
No. of lenders 29,317 2.8 2.3 1 2 7 
Percentage of overdrafts 29,317 4.2 14.1 0 0 29.8 

 Solvent firms (SCORE=3,4) 

Employees 88,841 85.5 539.5 6 35 254 
Leverage 98,047 40.2 21.7 0.3 42.1 73.6 
Average loan rate 91,022 14.2 3.4 10.4 13.5 20.4 
No. of lenders 98,047 4.1 3 1 3 10 
Percentage of overdrafts 98,047 8.3 18.9 0 0 50.2 

 Vulnerable firms (SCORE=5,6) 

Employees 90,115 70.1 650.1 4 31 212 
Leverage 101,195 63.3 24.1 0.4 68.8 92.3 
Average loan rate 98,595 14.5 3 10.8 14.0 20.0 
No. of lenders 101,198 5 3.5 1 4 12 
Percentage of overdrafts 101,198 15.7 25.9 0 0 75.2 

 Risky firms (SCORE=7,8,9) 

Employees 78,135 57.0 487.8 2 24 177 
Leverage 90,076 74.3 26.7 0.6 81.4 103.8 
Average loan rate 88,627 15.1 3 11.1 14.7 20.4 
No. of lenders 90,083 4.8 3.4 1 4 11 
Percentage of overdrafts 90,083 31.0 33.5 0 20.2 100 
       

 
 



 

Table 5 
 

SCORE PREDICTABILITY 
 

Panel A: Regression of SCORE(t) on SCORE(t-2) 
In Column A we report the results of regressing SCOREt  on SCOREt-2 including firm 
fixed effect, while in Culumn B without fixed effects. Standard errors are reported in 
parentheses. The symbol *** indicates a significance level of 1 per cent or less; ** between 
1 and 5 per cent; * between 5 and 10 per cent.  

 Panel A:  Panel B: 

Variables Firm fixed effects  No fixed effets 

     
SCOREt-2 .296 *** .752 *** 
 (.002)  (.001)  
    
Constant 3.12 *** .918 *** 
 (.009)  (.006)  
    

No. of Observations 538,714    538,714  
R-Square 63.5  42.1  
    

 
 

 
Panel B: Predicting the default probability 

Results of the probit regressions where the dependent variable is a dummy that takes the vaule 1 
if the firm defaults within the next three years and the independent variable are SCORE(t),  
SCORE(t-2) and  RESID(t), i.e. the  residual from the  pooled (across banks, firms and years) 
regression of SCORE on SCORE(t-2). RESID(T) summarizes the new information contained in 
SCORE(t) with respect to  SCORE(t-2).  Coefficients are the marginal estimates. 
 

 
      

       
       

SCORE(t)   .0215 ***     
 (.0001)      
       

SCORE(t-2)   .0183 **
* 

.0147 *** 

   (.0002)  (.0002)  
RESID(t)     .0166 *** 

     (.0002)  
       

No. of Observations 208,932  178,859  178,254  
Pseudo R-Square 15.80  8.80  17.57  

 
 
 



 

Table 6 
 

EFFECT OF M&AS ON BANKS’ INFORMATION  
 

In Panel A we report the results of estimating equation (2) of the paper. In Panel B we 
report the results of estimating equation (2) of the paper using firm- and bank-specific fixed 
effects. Standard errors adjusted for clustering over firm-year are reported in parentheses. 
The symbol *** indicates a significance level of 1 per cent or less; ** between 1 and 5 per 
cent; * between 5 and 10 per cent.  

 Panel A:  Panel B: 

Variables Firm fixed effects  Bank and firm  
fixed effects 

     
SCORE .036 *** .032 *** 
 (.004)  (.004)  
    
MERGE*SCORE  .087 *** .088 *** 
 (.004)  (.004)  
    
MERGE -.297 *** -.347 *** 

 (.021)  (.021)  
Firm Controls:     

Size (log value) -.019 *** -.019 *** 
 (.004)  (.004)  
Return on Sales -.003  -.007  
 (.043)  (.042)  
Leverage .191 *** .186 *** 
 (.020)  (.020)  

     
Bank Controls:     

Size (log value) -.033 *** -.012  
 (.011)  (.048)  
Cost-Income ratio 2.962 *** .017  
 (.053)  (.089)  

    
Market Concentration 1.937 *** 1.737 *** 
 (.271)  (.271)  
    
No. of Observations 1,061,785  1,061,785  
R-Square 58.4  60.2  

 



 

Table 7 
 

EFFECT OF MERGERS ON INFORMATION: 
LONG VS. SHORT BANK-FIRM RELATIONS 

 
In Panel A we report the results of estimating equation (2) of the paper for firm-bank relations with a length less than 5 year, 
while in Panel B for relations of 5 years or more. Difference Test is the value of an F-test on the difference between the 
coefficients for the short and long relations. Standard errors adjusted for clustering over firm-year are reported in parentheses. 
The symbol *** indicates a significance level of 1 per cent or less; ** between 1 and 5 per cent; * between 5 and 10 per cent. 

 Panel A: Panel B: Panel C: 

Variables Short bank-firm relations Long bank-firm 
relations  

Difference test  
(long vs. short 

relations)  

SCORE 0.035*** 0.060*** 0.003 *** 
 (0.004)  (0.007)    
     
MERGE*SCORE 0.067*** 0.020*** 0.001  *** 
 (0.005)  (0.006)    
     
MERGE -0.179*** -0.0294  0.001  *** 
 (0.029)  (0.035)    
      
Firm Controls:     

Size (log value) -0.013*** -0.007  0.450   
 (0.004)  (0.007)    
Return on Sales 0.077  -0.189*** 0.002  *** 
 (0.051)  (0.072)    
Leverage 0.171*** 0.228*** 0.160   

 (0.024)  (0.034)    
Bank Controls:     

Size (log value) -.0710*** 0.069*** 0.000  *** 
 (0.014)  (0.018)    
Cost-Income ratio 3.155*** 2.543*** 0.000  *** 
 (0.067)  (0.092)    

     
Market Concentration 2.302*** 2.417*** 0.826  

 (0.381)  (0.398)    

No. of  Observations 669,877  391,908   
R-Square 59.3  63.8   

 
 
  



 

Table 8 
 
 

EFFECT OF MERGERS ON INFORMATION: 
IMPORTANT VS. FRINGE BANKS 

 
In Panel A we report the results of estimating equation (2) of the paper for firm-bank relations where the bank account for less 
that 15% of the total loan of the firm, while in Panel B for more than 15%. Difference Test is the p-value of an F-test on the 
difference between the coefficients for the short and long relations. Standard errors adjusted for clustering over firm-year are 
reported in parentheses. The symbol *** indicates a significance level of 1 per cent or less; ** between 1 and 5 per cent; * 
between 5 and 10 per cent. 

 Panel A: Panel B: Panel C: 

Variables Less than  15% of  
 total loans  

More  than  15% of  
total loans  

P-value for the null: 
less = more 

SCORE .052 *** .050 *** 0.26  
 (.005)  (.005)    
     
MERGE*SCORE .101 *** .079 *** 0.003 *** 
 (.005)  (.006)    
     
MERGE -.314 *** -.255 *** 0.176  
 (.030)  (.033)    
     
Firm Controls:     

Size (log value) -.019 *** -.038 *** 0.045 ** 
 (.005)  (.010)    
Return on Sales .023  -.106 ** 0.097 * 
 (.065)  (.053)    
Leverage .263 *** .123 *** 0.000 *** 

 (.030)  (.026)    
Bank Controls:     

Size (log value) -.117 *** -.140 *** 0.315  
 (.015)  (.017)    
Cost-Income ratio 2.509 *** 2.648 *** 0.211  
 (.071)  (.086)    

     
Market concentration 1.552 *** 1.890 *** 0.488  

 (.395)  (.351)    

No. of  Observations 607,285  385,615   
R-Square 58.4  70.9   

 
  
 
 



 

Table 9 
 

EFFECT OF M&AS ON BANKS’ INFORMATION:  
SMALL TARGETS  

 
Small targets are defined as the acquired banks that before the merger had a number of 
customers (as reported in the sample) below the median number of customers for all target 
banks  (650). In Panel A we report the results of estimating equation (2) of the paper. In 
Panel B we report the results of estimating equation (2) of the paper using firm- and bank-
specific fixed effects. Standard errors adjusted for clustering over firm-year are reported in 
parentheses. The symbol *** indicates a significance level of 1 per cent or less; ** between 
1 and 5 per cent; * between 5 and 10 per cent.  

 Panel A:  Panel B: 

Variables Firm fixed effects  Bank and firm  
fixed effects 

     
SCORE .036 *** .032 *** 
 (.004)  (.004)  
    
MERGE*SCORE  .087 *** .088 *** 
 (.004)  (.004)  
    
MERGE*SCORE*SMALLT
AR 

-.019  -.008  

 (.022)  (.021)  
    
MERGE -.293 *** -.303 *** 

 (.022)  (.021)  
    
MERGE*SMALLTAR -.150  -.101  

 (.124)  (.123)  
    

Firm Controls:     
Size (log value) -.019 *** -.019 *** 
 (.004)  (.004)  
Return on Sales -.003  -.007  
 (.043)  (.042)  
Leverage .191 *** .186 *** 
 (.023)  (.020)  

     
Bank Controls:     

Size (log value) -.039 *** -.014  
 (.011)  (.048)  
Cost-Income ratio 2.962 *** .013  
 (.053)  (.089)  

    
Market Concentration 1.922 *** 1.733 *** 
 (.271)  (.271)  
    
No. of Observations 1,061,785  1,061,785  
R-Square 58.4  60.1  

 



 

Table 10 
 

EFFECT OF MERGERS ON INFORMATION: 
IN-MARKET VS. OUT-OF-MARKET MERGERS 

 
In Panel A we report the results of estimating equation (2) of the paper for in-market mergers, i.e. 
mergers where both the acquiring and acquired parties to a period t merger were already active 
lenders in a given province during period t-1. In Panel B we report the results of estimating equation 
(2) of the paper for out-of-market mergers, i.e. mergers where only one of the merging parties (the 
acquiring or the acquired bank) to a period t merger was already active lender in a given province 
during period t-1. In Panel C report the results of estimating equation (2) of the paper for the pooled 
sample, letting the coefficient of the MERGE*SCORE variable to differ for in and out of market 
mergers (the INMKT coefficient represents the deviation from the out of market one). Standard 
errors adjusted for clustering over firm-year are reported in parentheses. The symbol *** indicates a 
significance level of 1 per cent or less; ** between 1 and 5 per cent; * between 5 and 10 per cent. 

 Panel A: 
In market mergers 

Panel B: 
Out of  market 

mergers 

Variables   

SCORE .044 *** .046 *** 
 (.004)  (.004)  
    
MERGE*SCORE .065 *** .119 *** 
 (.004)  (.005)  
    
MERGE -.364 *** -.241 *** 
 (.025)  (.030)  
    
Firm Controls:    

Size (log value) -.016 *** -.020 *** 
 (.004)  (.004)  
Return on Sales -.036  .070  
 (.045)  (.048)  
Leverage .188 *** .212 *** 

 (.021)  (.023)  
Bank Controls:    

Size (log value) .036 *** .211 *** 
 (.012)  (.014)  
Cost-Income ratio 3.008 *** 2.355 *** 
 (.056)  (.059)  

    
Market Concentration 2.071 *** 2.615 *** 

 (.288)  (.368)  
    
No. of  Observations 891,449  815,865  
R-Square 59.3  58.1  

 



 

Table 11 
 

WHENCE INFORMATIONAL IMPROVEMENTS:  
INFORMATION POOLING 

 
In Panel A we report the results of estimating equation (3) of the paper. In Panel B we 
report the results of estimating equation (3) of the paper using using firm- and bank-
specific fixed effects. Standard errors adjusted for clustering over firm-year are reported 
in parentheses. The symbol *** indicates a significance level of 1 per cent or less; ** 
between 1 and 5 per cent; * between 5 and 10 per cent.  

 Panel A:  Panel B: 

Variables Firm fixed effects  Bank and firm  
Fixed effects 

     
SCORE .035 *** .032 *** 
 (.004)  (.004)  
   
BIDDER*SCORE .091 *** .090 *** 
 (.004)  (.004)  
   
TARGET*SCORE .073 *** .086 *** 
 (.010)  (.010)  
   
BIDTAR*SCORE .039 * .055 *** 
 (.020)  (.020)  
   
BIDDER -.294 *** -.343 *** 

 (.022)  (.020)  
   
TARGET -.445 *** -.445 *** 

 (.059)  (.060)  
   
BIDTAR -.306 *** -.416 *** 

 (.116)  (.114)  
Firm Controls:    

Size (log value) -.018 *** -.019 *** 
 (.004)  (.004)  
Return on Sales -.002  -.006  
 (.043)  (.042)  
Leverage .192 *** .187 *** 
 (.020)  (.020)  

Bank Controls:    
Size (log value) -.032 ** .003  
 (.010)  (.048)  
 Cost-Income ratio 2.970 *** .013  
 (.053)  (.088)  

   
Market Concentration 1.938 *** 1.747 *** 

 (.271)  (.270)  
   
No. of Observations 1,061,785  1,061,785  
R-Square 58.4  60.0  



 

 
Table 12 

 
DISTINGUISHING BETWEEN EXISTING AND NEW INFORMATION 

In Panel A we report the results of estimating eq. (2) of the paper by using Et-2SCORE(t), i.e. the 
predicted value of SCORE from a pooled (across banks, firms and years) regression of SCORE on 
SCORE(t-2) and including  RESID(t), i.e. the  residual from the same regression.  In Panel B we report the 
results of estimating eq. (3) by using the same variables as regressors. Standard errors adjusted for 
clustering over firm-year are reported in parentheses. The symbol *** indicates a significance level of 1 per 
cent or less; ** between 1 and 5 per cent; * between 5 and 10 per cent.  

 Panel A: Panel B: 

Variables No distinction between 
bidder and target banks  

Distinguishing bidders 
from targets  

Et-2SCORE(t) 0.312 *** 0.123 *** 
 (0.013) (0.005  
RESID(t) 0.054 *** 0.054 *** 
 (0.004) (0.004)  

MERGE* Et-2SCORE(t) 0.113 *** —  
 (0.005)   
BIDDER* Et-2SCORE(t) —  0.115 *** 
  (0.005)  
TARGET* Et-2SCORE(t) —  0.047 *** 
 (0.012)  
BIDTAR* Et-2SCORE(t) —  0.001  
 (0.024)  
MERGE*RESID(t) 0.011 * —  
 (0.006)   
BIDDER*RESID(t) —  0.011 * 
 (0.006)  
TARGET*RESID(t) —  0.034 ** 
 (0.016)  
BIDTAR*RESID(t) —  -0.035  
 (0.032)  
MERGE  -0.401 *** —  
 (0.024)   
BIDDER —  -0.412 *** 
 (0.025)  
TARGET —  -0.380 *** 
 (0.067)  
BIDTAR — -0.185  
 (0.131)  

Firm Controls:                              
Size (log value) -0.019 *** -0.019 *** 
 (0.005) (0.005)  
Return on Sales -0. 029  -0.026  
 (0.047) (0.047)  
Leverage 0.094 *** 0.095 *** 
 (0.022) (0.022)  

Bank Controls:     
Size (log value) -0.020 * -0.008  
 (0.011) (0.011)  
Cost-Income ratio 2.984 *** 2.962 *** 
 (0.055) (0.055)  

Market Concentration 1.803 *** 1.793 *** 
 (0.288) (0.288)  

No. of Observations 973,237  973,237  
R-Square 58.9  58.9  

 



 

 
Table A1 

 
THE EFFECT OF INFORMATION ON THE  
SLOPE  OF THE INTEREST RATE CURVE 

 
In this table we report the results of estimating equation (1) of the paper replacing the MERG dummy with 
two proxies of the quality of the information that banks produce on their borrowers. The first proxy is the 
length of the bank-firm relationship (Panel A). The second is the bank’s computer software expenditures 
per employee (see Panel B). The dependent variable is the bank-firm-specific interest rate on credit lines. 
The equations includes firm-specific fixed effects and time dummies. Standard errors adjusted for 
clustering over firm-year are reported in parentheses. The symbol *** indicates a significance level of 1 per 
cent or less; ** between 1 and 5 per cent; * between 5 and 10 per cent.. 

 Proxy of the degree of banks’ informedness:  

Variables Panel A  Panel B 

 Length of bank-firm 
relationship 

 Software expenses 

SCORE .010 *  .047 *** 
 (.006)   (.004)  
   
Length of relationship -.019 **  —  

 (.007)   
     
SCORE*Length of 

relationship 
.019 ***  —  

 (.001)   
     
Software expenses  —   -.077 *** 

 (.010)  
SCORE*software expenses  —   .024 *** 

 (.002)  
Firm Controls:     

Size (log value) -.005   -.010 *** 
 (.004) (.004)  
Return on Sales -.073   -.060  
 (.048) (.044)  
Leverage .170 ***  .183 *** 

 (.021)   (.020)  
Bank Controls:     

Size (log value) .034 ***  .036 *** 
 (.012) (.011)  
Cost-Income ratio 2.459 ***  2.653 *** 

 (.065)   (.058)  
     
Market concentration 2.549 ***  2.575 *** 
 (.284) (.274)  

No. of Observations 811,945   965,696  
R-Square 61.5   60.6  

 
 
 



Figure 1: The relationship between interest rates and default risks: merged vs. unmerged

banks

Score

 unmerged merged

1 2 3 4 5 6 7 8 9
-.6091

1.27326

Score

 unmerged merged

1 2 3 4 5 6 7 8 9
-1.70638

.732883

y-axis: Interest rate; x-axis: firm default risk measure SCORE (see Section 3.1 for details)

Note: The average and median interest rate may be negative because we netted out year effects by

regressing the raw interest rates on year dummies. The interest rates plotted here are the residuals

from this regression.



Figure 2: Does SCORE predict actual default accurately?
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Each point gives the percentage of (firm-year) observations with a given SCORE for which the firm

defaulted during or after year t. The default t1 line graphs the percentage of observations in which

the firm defaults within years t or t+1, for different values of SCORE, and the default t2 line graphs

the percentage of observations in which the firm default within years t, t+ 1, and t+ 2.



Figure 3: Do banks reallocate portfolio towards less risky borrowers after a merger?
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Each bar shows the percentage of borrowers with a given SCORE value, for different subsamples

of banks. The nevermerge subsample are observations at banks which never merge in the sample

period; the premerge subsample are the pre-merger observations for banks which merge during the

sample period; the postmerge subsample contains the post-merger observations for banks which

merge during the sample period.
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