


The purpose of the Temi di discussione series is to promote  the  circulation of working
papers prepared within the Bank of Italy or presented in Bank seminars by outside
economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the
responsibility of the Bank.

Editorial Board:
STEFANO SIVIERO, EMILIA BONACCORSI DI PATTI, FABIO BUSETTI, ANDREA LAMORGESE, MONICA

PAIELLA, FRANCESCO PATERNÒ, MARCELLO PERICOLI, ALFONSO ROSOLIA, STEFANIA ZOTTERI,

RAFFAELA BISCEGLIA (Editorial Assistant).



MONETARY POLICY AND THE TRANSITION TO RATIONAL EXPECTATIONS
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Abstract

Under the assumption of bounded rationality, economic agents learn from their past
mistaken predictions by combining new and old information to form new beliefs. The purpose
of this paper is to examine how the policy-maker, by affecting private agents’ learning process,
determines the speed at which the economy converges to the rational expectation equilibrium.
I find that by reacting strongly to private agents’ expected inflation, a central bank would
increase the speed of convergence.

I assess the relevance of the transition period from the learning to the rational
expectations equilibrium when looking at a criterion for evaluating monetary policy decisions
and suggest that a fast convergence is not always suitable.
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1. Introduction1

There is wide consensus on the fact that monetary policy may affect real variables in

the short run. One recent strand of research has obtained this result explicitly incorporating

frictions, such as nominal price rigidities, in a dynamic general equilibrium framework under

the rational expectations hypothesis.

Recently, this issue has been analyzed questioning the assumption that agents are able to

make unbiased predictions of the future course of the economy. Such predictions, it has been

said, would be possible if people had observed the reactions of the policy-maker to various

economic conditions over a long period of time. However, this would not always be the case.

It can be argued, for example, that in the presence of policy regime shifts the public needs

to learn about the new regime: in the early stages of this learning process, previously held

public beliefs could lead to biased predictions. In order to avoid asymptotic instability in the

economy, Evans and Honkapohja (2002a, 2002b, 2003) and Bullard and Mitra (2002) suggest

that economic policies should be designed to be conducive to long-run convergence of private

expectations to rational expectations (E-Stability)2. These papers and, in general, the literature

on monetary policy and bounded rationality are extensively devoted to the analysis of the

asymptotic properties of the equilibrium attainable under learning. There is, however, very

little literature that studies the dynamic properties along the convergence process.

The purpose of this work is to examine how the policy-maker, by affecting private

agents’ learning process, can influence the transition to the rational expectations equilibrium

(REE). I show that policies driving the economy to the same asymptotic REE could imply very

different transitional dynamics in the real economy. By reacting strongly to expected inflation,

a central bank would shorten the transition and increase the speed of convergence from the

learning equilibrium to the REE.

1 I am particularly grateful to my advisor Albert Marcet for many helpful comments and discussions. I also
thank Seppo Honkaphja, Kosuke Aoki, Ramon Marimon, Jordi Galì, Antonio Ciccone, Jose Rodriguez Vicente-
Mora and Alfonso Rosolia for their comments. All remaining errors are mine. The opinions expressed here do
not necessarily reflect those of the Bank of Italy.

2 An earlier paper by Howitt (1992) had already shown that under some interest rate rules the rational
expectation equilibrium is not learnable.
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This is particularly relevant when policy decisions aim to influence social welfare: if

policy-makers know that after a regime change private agents’ perceived inflation would be

higher than the REE, by choosing a policy that reacts strongly to expected inflation they could

substantially increase social welfare. If, instead, perceived inflation is initially lower than the

REE, a weak response to expected inflation and a slow transition might be preferable.

In order to study the transition in the learning process to the REE I adapt arguments

described by Marcet and Sargent (1995), which in turn are based on the theoretical results of

Benveniste, Metivier and Priouret (1990).

The paper is organized as follows. Section 2 presents the monetary policy design

problem, describing the learning equilibrium under two different policy rules. The section

ends showing that under the optimal RE discretionary policy, transition to the REE is very

long. In section 3 I show how the policy-maker could characterize policies, evaluating the

speed at which the learning equilibrium converges to the REE. In section 4 I study policies

that allow the central bank to increase (or reduce) the speed of convergence without affecting

the long-run equilibrium (i.e., the REE equilibrium) and in section 5 I analyze how these

policies influence social welfare.

2. The framework

2.1 The baseline model

Much of the recent theoretical analysis on monetary policy has been conducted under the

“New Phillips curve” paradigm reviewed in Clarida, Galí and Gertler (1999) and Woodford

(1999). The baseline framework is a dynamic general equilibrium model with money and

temporary nominal price rigidities. I consider the linearized reduced form of the economy

with competitive monopolistic firms, staggered prices and private agents that maximize

intertemporal utility. From the private agents’ point of view there is an intertemporal IS curve

xt = E∗

t
xt+1 − ϕ (it −E∗

t
πt+1) + gt(2.1)

and an aggregate supply (AS) modeled by an expectations-augmented Phillips curve:

πt = αxt + βE∗

t
πt+1,(2.2)
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where xt is the output gap, measured as the log deviation of actual output (yt) from potential

output (zt) (i.e., the level of output that would arise if wages and prices were perfectly

competitive and flexible), πt is actual inflation at time t, E∗

t
πt+1 is the level of inflation

expected by private agents for period t+ 1, given the information at time t. Similarly E∗

t
xt+1

is the level of the output gap that private agents expect for period t+ 1, given the information

at time t. I write E∗

t
to indicate that expectations need not be rational (Et without ∗ denotes

RE); it is the short-term nominal interest rate and is taken to be the instrument for monetary

policy; gt is an i.i.d demand shock, with gt ∼ N
(
0, σ2

g

)
.

The IS relationship approximates the Euler equation characterizing optimal

aggregate consumption choices and the parameter ϕ can be interpreted as the rate of

intertemporal substitution. The AS relation3 approximates aggregate pricing emerging from

monopolistically competitive firms’ optimal behaviour in Calvo’s model of staggered price

determination4.

In order to complete the model, it is necessary to specify how the interest rate is settled

and how agents form beliefs. Choosing between policies based on simple rules or derived as a

solution of a specified optimization problem is the starting point for the analysis of monetary

policies. In the literature, there is no consensus on the terminology for rules and optimal

policies. Here I consider the nominal interest rate as the policy instrument and model it by

means of a reaction function, that is, a functional relationship between a dependent variable

(the interest rate) and some endogenous (expected inflation and output gap) and exogenous

(shocks) variables. I consider three cases. I start with a simple expectations-based policy

rule that helps me to introduce in a very simple and intuitive way the concept of speed of

convergence. Second, I describe the optimal RE policy under discretion derived in Evans and

Honkapohja (2002)5. Finally, I introduce a set of expectations-based policy rules and show

how to discriminate between the elements of this set, using a measure of speed of convergence.

3 Here we are not considering cost-push shocks. Introducing cost-push shocks in the Phillips curve would
not change substantially the results on speed of convergence and the role of policy decisions along the transition.
In section 5 I also analyze briefly results in terms of welfare also when I introduce cost-push shocks in the AS.

4 Inflation is increasing with the output gap as price are set as a markup over real marginal costs, which
are increasing with the output gap. Higher expected inflation raises current inflation, as price setters cannot fully
adjust to current shocks.

5 I leave for future research a general study of the transition of learning process for monetary policy problem
under commitment
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Concerning beliefs, I start each analysis by considering the rational expectations

hypothesis in order to focus and discuss subsequently the implications of bounded rationality.

2.2 A simple expectations-based reaction function

It has long been recognized that monetary policy needs a forward-looking dimension.

Let us assume that the central bank, in order to set the current interest rate, uses simple policy

rules that feed back from expected values of future inflation and output gap

it = −γ + γ
x
E∗

t
xt+1 + γ

π
E∗

t
πt+1.(2.3)

The class of expectations-based reaction functions that I first consider has γx =
1

ϕ
in

order to simplify the interaction between actual and expected variables. Under (2.3), in fact,

the economy evolves according to the following system of equations:

[
πt
xt

]
=

[
αϕγ

ϕγ

]
+

[
β + αϕ (1 − γ

π
) 0

ϕ (1 − γ
π
) 0

] [
E∗

t
πt+1

E∗

t
xt+1

]
+

[
0 α

0 1

] [
0

gt

]
,(2.4)

where neither the IS nor the AS are affected by expectations on output gap6.

2.2.1 The rational expectations equilibrium

Under rational expectations (i.e. E∗

t
xt+1 = Etxt+1 and E∗

t
πt+1 = Etπt+1) it has

been shown that the dynamic system defined by (2.4) has a unique non-explosive equilibrium

(Bullard and Mitra, 2002). The equilibrium can be written as a linear function of a constant

and the shocks7:

πt = aπ + αgt and xt = ax + gt,(2.5)

6 For a more general class of expectations-based policy rules without restrictions on γ
x

I refer to section 3.

7 The solution (2.5) is often referred to as the minimal state variable (MSV) solution, following McCallum
(1983), who introduced the concept for linear rational expectations models. This is a solution which depends
linearly on a set of variables (here gt and the intercept) and which is such that there does not exist a solution that
depends linearly on a smaller set.
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where8

aπ =
αϕγ

(1− β − αϕ (1− γ
π
))

and ax = ϕγ + ϕ (1− γ
π
) aπ.(2.6)

Note that expression (2.5) describes the actual law of motion (ALM) of inflation and

the output gap under RE hypothesis and policy (2.3). Private agents’ perceived law of motion

(PLM) of inflation and the output gap under RE are constant and equal to

Etπt+1 = aπ and Etxt+1 = ax.(2.7)

Lemma 1 Under the simple expectations-based reaction function (2.3) the necessary and

sufficient condition for the rational expectations equilibrium to be unique is

1 −
1− β

αϕ
< γ

π
< 1 +

1 + β

αϕ

Proof. See Appendix 2.A.

While the previous lemma provides a characterization of the REE under the

expectations-based reaction function (2.3), the following lemma underlines the relevance of

policy-maker decisions in characterizing the REE and shows how the parameter γ
π

influences

output gap and inflation equilibrium.

Lemma 2 Under the simple expectations-based reaction function (2.3) and under RE: if

γ �= 0, for γ
π
> 1, the higher the value of γ

π
the higher the inflation and output gap levels, for

γ
π
< 1 the higher the value of γ

π
the lower the inflation and output gap levels.

Proof. See Appendix 2.B.

Let us now characterize the equilibrium relaxing the hypothesis of rational expectations.

2.3 Learning models and policy analysis

The current standard hypothesis about expectations in monetary policy design is the

rational expectations hypothesis, meaning that agents do not make systematic forecasting

8 See Appendix 1 for a derivation of the REE.
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errors and their guesses about the future are on average correct. In this paper I focus on

a different approach to modeling expectations. I assume that households and firms make

forecasts using adaptive learning algorithms. Under this approach, the rational expectations

equilibrium may become a limit of the temporary learning equilibrium. By contrast, the

rational expectations approach retains rational expectations equilibrium continuously over

time.

In the literature, economic models with adaptive learning hypothesis have been used for

two different purposes. First, because they provide an asymptotic justification for RE and a

selection device in the presence of multiple REE, they have been used to offer a rationale for

rational expectations. Second, they offer a description of the behaviour of the economy not

only asymptotically, but also along the transition to the REE, showing dynamics that are not

available under perfect rationality and that could be empirically relevant. Papers more focused

on the first aspect of bounded rationality are, for example, those of Evans and Honkapohja

(2002), Bullard and Mitra (2001) and Bullard and Mitra (2002); papers centred on the analysis

of equilibrium along the transition to the REE include Timmerman (1996), Sargent (1999) and

Marcet and Nicolini (2001). I follow this second approach and show that considering learning

in a model of monetary policy design is particularly relevant in order to describe not only

the rational expectations equilibrium to which we could converge under “plausible” learning

schemes, but also the dynamics along the transition to that equilibrium.

2.3.1 The learning mechanism

Let us assume that private agents form expectations by learning from past experiences

and update their forecasts through recursive least squares estimates9.

Since, under the simple expectations-based reaction function (2.3), neither the IS nor

the AS relations depend on expected output gap, the learning equilibrium can be described

by focusing on beliefs regarding expected inflation10. I assume that agents do not know the

effective value of aπ in equation (2.5), but estimate it using past information. In this case,

9 See Marcet and Sargent (1989 a, b) or Evans and Honkapohja (2001) for a detailed analysis of least squares
learning.

10 In the next section I show formally that this does not affect the results.
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private agents’ expected inflation is given by:

E
∗

t
πt+1 = aπ,t,(2.8)

where aπ,t is a statistic inferred recursively from past data according to

aπ,t = aπ,t−1 + t
−1 (πt−1 − aπ,t−1) .(2.9)

The perceived law of motion of inflation is updated by a term that depends on the last

prediction error11 weighted by the gain sequence t
−1. It is well known that in this case the

adaptive procedure is the result of a least squares regression of inflation on a constant, and

perceived inflation is just equal to the sample mean of past inflations (Marcet, Nicolini, 1997):

aπ,t =
1

t

t∑

i=1

πi−1.(2.10)

By substituting (2.8) into (2.4) I obtain the actual law of motion of inflation under

adaptive learning:

πt = αϕγ + [β + αϕ (1 − γ
π
)] aπ,t + αgt.(2.11)

An important aspect of recursive learning is that the learning equilibrium may converge

to the REE, i.e., the estimated parameters aπ,t converge asymptotically to aπ. In order to

provide the conditions for asymptotic stability of the REE under least squares learning, I follow

the strand of the literature that uses the E-Stability principle (Marcet and Sargent, 1989a and

Evans and Honkapohja, 2001).

2.3.2 E-stability of the REE

The stability under learning (E-stability) of a particular equilibrium, is addressed by

studying the mapping from the estimated parameters, i.e., the perceived law of motion (PLM),

to the true data generating process, i.e., the actual law of motion (ALM).

11 This formula implies that private agents do not use today’s inflation to formulate their forecasts. This
assumption is made purely for convenience and it is often made in models of learning as it simplifies solving the
model. The dynamics of the model are unlikely to change.
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When expectations in system (2.4) evolve according to expression (2.8), the inflation’s

ALM is

πt = T (aπ,t) + αgt,(2.12)

where

T (aπ,t) = αϕγ + [β + αϕ (1 − γπ)] aπ,t(2.13)

is the mapping from PLM to ALM of inflation.

Let us define the asymptotic mean prediction error, the mean distance between the ALM

and the PLM:

h (aπ) = lim
t→∞

[T (aπ,t)− aπ,t] .(2.14)

As shown in Marcet and Sargent (1999a,b) and Evans and Honkapohja (2001), it turns

out that the dynamic system described by equations (2.9), (2.12) and (2.13) can be studied in

terms of the associated ordinary differential equation (ODE)

daπ

dτ
= h (aπ) = T (aπ)− aπ,(2.15)

where τ denotes “notional” or “artificial” time. Note that the unique fixed point of the T -map,

the aπ that makes daπ
dτ
= 0, is the level of inflation described in equation (2.6), i.e., the REE, aπ.

The REE is said to be E-stable if it is locally asymptotically stable under equation (2.14) and

under some regularity conditions. As stressed by Evans and Honkapohja (2001), “E-stability

determines the stability of the REE under a stylized learning rule in which the PLM parameters

(aπ,t, in our case) are adjusted slowly in the direction of the implied ALM”. Stability under

learning, or learnability of the REE, is desirable because it indicates that if agents are learning

from past data, their forecasts will converge over time to the REE.

The following lemma describes the necessary and sufficient conditions under which the

REE (2.5) is E-stable, pointing out the role of policy decisions.
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Lemma 3 Under the simple expectations-based reaction function (2.3), the REE of (2.4) is

E-stable if and only if

γπ > 1−
1 − β

αϕ

Proof. See Appendix 2.C.

I now show that policy decisions (i.e., the value γ
π
) are important not only to obtain an

improvement in private agents’ forecasts, but also to determine the speed at which the distance

between PLM and ALM shorten over time and the learning equilibrium converges to the REE.

2.3.3 Speed of convergence to the REE

Figure 1 plots the mapping from PLM to ALM (2.13) and shows how private agents’

estimates affect actual inflation along the transition to the REE.

Fig 1
Mapping from PLM to ALM

450

( )HaT

( )LaT

( )πaT

πa
HaLa πa

( ).T

πa

Lemma 3 states that if the slope of the mapping is smaller than 1, the REE is E-stable,

that is, if we start from a perceived level of inflation aL < aπ or aH > aπ , the mean of the

prediction error (i.e., the distance between the ALM and the T (.) mapping), T (aπ,t) − aπ,t,

decreases over time and asymptotically converges to zero (i.e., it converges to the point aπ).
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Is there any difference between a policy that results in the slope of T (.),

[β + αϕ (1− γπ)] = 0.00001 and one with [β + αϕ (1− γπ)] = 0.99999? Looking at the

recent literature on monetary policy and learning (Evans and Honkapohja 2001, 2002a, 2002b,

2003 and Bullard and Mitra 2002), the answer is negative. Since in both cases the REE is

unique and E-stable, both policies are “good”. However, looking at Figure 1 it is clear that the

learning equilibrium along the transition is very different under the two policies. By choosing

the γπ, in fact, the policy-maker not only determines the level of inflation in the REE, but also

the speed at which the distance between perceived and actual inflation narrows.

In the literature, the problem of the speed of convergence of recursive least square

learning algorithms is analyzed mainly through numerical procedures and simulations. The

few analytical results are obtained by using a theorem of Benveniste, Metiver and Priouret

(1990) that relates the speed of convergence of the learning process to the eigenvalues of the

associated ordinary differential equation (ODE) at the fixed point12. In the present case, the

ODE to be analyzed is the one described in expression (2.15) and the associated eigenvalue is

β + αϕ (1 − γπ), i.e., the slope of the mapping from PLM to ALM (2.13).

The following propositions, adapting arguments in Marcet and Sargent (1995), show that

the closer the slope of the mapping from PLM to ALM to 0.5, the slower the learning process.

Proposition 4 Let us define

S1 =

{
γ
π
: γ

π
>

αϕ + β − 1/2

αϕ

}

Under the simple expectations-based reaction function (2.3), if γ
π
∈ S1, then there is Root-t

convergence, i.e.,

√
t (a

π,t − aπ)
D
→ N

(
0, σ2a

)

with

σ2a =
α2σ2

g

[1 − β − αϕ (1 − γπ)]
(2.16)

Proof. See Appendix 2.D.

12 See see for example Marcet and Sargent (1995) for an interpretation of the ODE.
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If the conditions of proposition 4 are satisfied, the estimates a
π,t converge to the RE

value aπ at root-t speed, that is, the speed at which in classical econometrics the mean of

the distribution of the least square estimates converges to the true value of the parameters

estimated. Note that the formula for the variance of the estimator aπ is modified with respect

to the classical case where σ2

a = α2σ2

g.

Proposition 5 Under the simple expectations-based reaction function (2.3), if γπ ∈ S1, then

the weaker the response to expected inflation (the smaller γ
π
), the greater the asymptotic

variance of the limiting distribution, σ2
a
.

Proof. See Appendix 2.E.

Looking at the formula for the asymptotic variance (2.16) it is possible to understand

the role of policy decisions in determining the speed of convergence to the REE: for a weaker

response to expected inflation, the slope of the T (.) mapping is steeper and the convergence is

slower in the sense that the asymptotic variance of the limiting distribution is greater.

Now, let us define S2 =
{
γ
π
: αϕ+β−1

αϕ
< γπ <

αϕ+β−1/2
αϕ

}
. If γπ ∈ S2, the estimates

aπ,t converge to the REE aπ , but at a speed different from root-t. In this case, as Marcet and

Sargent (1995) suggest, the importance of initial conditions fails to die out at an exponential

rate (as is needed for root-t convergence) and the learning equilibrium converges to the REE

at a rate slower than root-t. In particular, even when γ
π
∈ S2 it is possible to show by

means of simulations that as the slope of the T (.) mapping increases, the speed of convergence

decreases13. Figure 2 shows examples for the two cases where γ
π
∈ S1 and γ

π
∈ S2.

Since the least squares algorithm adjusts each parameter towards the truth when new

information is received, the new belief aπ,t+1 will be an average of the previous beliefs aπ,t

and the actual value T (aπ,t) plus an error. When the reaction of the policy maker to expected

inflation is strong (γ
π
∈ S1), the derivative of T (.) is smaller than (or equal to) 1/2 and

T (aπ,t) is close to aπ; when the reaction is weak (γπ ∈ S2), the derivative of T (.) is larger

than 1/2 and T (aπ,t) is close to aπ,t instead of being close to aπ , so the average can stay far

from the REE for a long time.

13 See section 4 for simulations that relate speed of convergence and the slope of the T () mapping.
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Fig. 2

Mapping from PLM to ALM and the speed of convergence

a) Low γ
π

b) High γ
π
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It is worth noting that even though the transition is quite different in the two cases

analyzed here, the learning equilibrium could end up converging to the same REE and,

according to policy-maker preferences, the speed of convergence could become a relevant

variable in the policy decision problem.

2.4 Optimal monetary policy under discretion

The reason the analysis starts with the simple expectations-based reaction function (2.3)

is that it simplifies the dynamics under learning. I now consider the optimal monetary policy

problem without commitment (discretionary policies), where any promises made in the past

by the policy-maker do not constrain current decisions. In deriving the optimal discretionary

policy, I follow Evans and Honkapohja (2002), assuming that the policy-maker cannot

manipulate private agent’s beliefs. This assumption implies that the optimality conditions

derived under learning are equivalent to the ones obtained under RE.

The policy problem consists in choosing the time path for the instrument it to engineer

a contingent plan for target variables πt and (xt − x) that maximizes the objective function

Max
xt,πt

− E0

∞∑

t=0

βtL (πt, xt)(2.17)
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where

L (πt, xt) =
1

2

[
π2

t
+ λ (xt − x)2

]
(2.18)

subject to the constraints (2.1) and (2.2) and E∗

t
πt+1, E∗

t
xt+1 given.

The solution of this problem14, as derived in Evans and Honkapohja (2002), yields the

following optimality conditions15

πt =

λα

(λ + α2)
x+

λβ

(λ+ α2)
E∗

t
πt+1(2.19)

xt =
λ

(λ + α2)
x−

αβ

(λ + α2)
E∗

t
πt+1.(2.20)

The optimal outcome could be written as a reaction function that relates the policy

instrument it to the current state of the economy and the expectations of private agents:

it = γ� + γ�xE
∗

t xt+1 + γ�πE
∗

t πt+1 + γ�ggt(2.21)

14 I consider λ as an exogenous policy parameter, as is often done in monetary policy literature. An alter-
native approach is to obtain λ as the result of the general equilibrium problem. In this case λ would depend on
representative consumer preferences and firms’ price setting rules.

15 To obtain this result note that, after substituting the constraints (2.1) and (2.2) into the loss function, the
problem becomes

Max
it

−

1

2
[ (αE∗

t
xt+1 − αϕit +αgt + (β + αϕ)E∗

t
πt+1)

2
+λ (E∗

t
xt+1 −ϕ (it −E∗

t
πt+1) + gt − x)

2
]

s.t E∗

t
xt+1,E

∗

t
πt+1 given

and the FOC is:

it= −
λ

(λ +α2)ϕ
x+

1

ϕ
E∗

t
xt+1+

(
1 +

αβ

(λ+ α2)ϕ

)
E∗

t
πt+1+

gt

ϕ

and (2.19), (2.20) are obtained by substituting this expression into (2.1) and (2.2).
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where

γ� = −

λ

(λ + α2)ϕ
x (2.22)

γ�
x

=
1

ϕ

γ�
π

= 1 +
αβ

(λ + α2)ϕ

γ�
g

=
1

ϕ

Since interest rate rule (2.21) states that the policy maker should react to the expected

inflation and output gap, it is sometimes called the optimal expectations-based reaction

function (Evans and Honkapohja, 2002). However, to stress the fact that this policy is optimal

under rational expectations but is not necessarily optimal under learning, I call it the RE-

optimal expectations-based reaction function16.

Under rational expectations (i.e. E
∗

t
xt+1 = Etxt+1 and E∗

t
πt+1 = Etπt+1) the

equilibrium of the dynamic system defined by (2.19) and (2.20) is:

πt = Etπt+1 = aπ and xt = Etxt+1 = ax,

where aπ, axare

aπ =
λα

(λ+ α2) − λβ
x and ax =

λ (1− β)

(λ + α2)− λβ
x.

Assuming, instead, that private agents do not know a
π

and a
x

but estimate them

recursively, the expected inflation and output gap would be given by

E∗

t
πt+1 = aπ,t and E∗

t xt+1 = ax,t,

where aπ,t and ax,t are inferred recursively from past data according to

aπ,t = aπ,t−1 + t−1 (πt−1 − aπ,t−1)

16 In sections 4 and 5 I call it Evans and Honkapohja (EH) policy, to avoid notational flutter.
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ax,t = ax,t−1 + t−1 (xt−1 − ax,t−1)

and the ALM of the economy would be

(πt, xt) = T (aπ,t, ax,t) ,

where

T (aπ,t, ax,t) =

(
λα

(λ + α2)
x+

λβ

(λ+ α2)
a
π,t,

λ

(λ+ α2)
x−

αβ

(λ+ α2)
aπ,t

)
(2.25)

is the mapping from PLM to ALM.

Now, since the right-hand side of (2.25) does not depend on ax,t, as in the previous

section, properties of the learning equilibrium can be described simply by focusing on the

mapping from perceived inflation to actual inflation

πt =

λα

(λ+ α2)
x+

λβ

(λ+ α2)
aπ,t.(2.26)

For reasonable values of the parameters17, the following lemma could be derived (Evans

and Honkapohja, 2002):

Lemma 6 Under the RE-optimal expectations-based reaction function the rational

expectations equilibrium is unique and E-stable.

Proof. See Evans and Honkapohja (2002).

Lemma 6 states that the RE-optimal expectations-based policy rule derived as the

optimal solution of the problem under discretion and rational expectations is a “good” policy,

not only under RE but also under the hypothesis that private agents update their forecasts

through recursive least squares estimates. Here with “good” policy I refer to the criterion used

17 Clarida, Galí and Gertler (2000) and Woodford (1999) derive from regressions on US data respectively,
the following values for the economy parameters

ϕ = 1, α = 0.3, β = 0.99, ρ
u
= 0.35

ϕ = 0.17, α = 0.024, β = 0.99, ρ
u
= 0.35
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by Bullard and Mitra (2001) to evaluate policy rules, based on determinacy and E-stability of

the REE.

However, simulating the model under the RE-optimal expectations-based reaction

function, with λ = 0.5 and Clarida, Galì and Gertler (2000) calibration, the distance between

the learning equilibrium and the REE would be significatively different from zero for many

periods.

Figure 3 shows the evolution of perceived inflation under learning for this policy.

Assuming an initial perceived inflation 15 per cent higher than the REE, more than 450 periods

(quarters) are needed to reduce the distance between the perceived inflation and the REE from

15 to 5 per cent18!

Fig 3
Deviation of actual inflation from the REE

Quarters

Deviation from REE

Applying a similar argument to that used in propositions 4 and 5 it is possible to state the

following proposition about the speed of convergence and the role of the weight to output gap

in the welfare function, λ.

Proposition 7 Under the RE-optimal expectations-based reaction function, the speed of

convergence of the learning process depends negatively on the weight that the policy-maker

18 With Woodford (1999) calibration the convergence is even slower.
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gives to output gap relative to inflation. In particular, under flexible inflation targeting policies

(λ > 0), the greater the weight to output gap, the slower the learning process.

Proof. See Appendix 2.F.

Under learning, with the RE-optimal expectations-based reaction function, proposition

7, by looking at the slope of the mapping from perceived inflation to actual inflation, relates the

speed of convergence of the learning equilibrium to the relevance of output gap in the objective

function (2.17).

Fig 4
Slope of the mapping from PLM to ALM

( )
π

π

a

aT

∂
∂

λ

Figure 4 shows how the slope of the mapping from the PLM to ALM of inflation changes

as the weight that the policy-maker gives to the output gap relatively to inflation increases19.

Table 1 shows that when the policy-maker cares equally about output gap and inflation

(λ = 1), the slope of the mapping of PLM to ALM is around 0.9; when he cares less about

output gap than inflation the slope is smaller (for example if λ = 0.5, then the slope is 0.84)

but, unless λ is smaller than 0.1, root-t convergence is never reached.

19 I use the Clarida, Gali and Gertler (CGG) calibration for US. Similar results obtain with the Woodford
(W) calibration.
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Tab 1
Slope of the mapping from PLM to ALM

λ
dT (aπ)
daπ

0 0

0.09 0.49

0.1 0.52

0.5 0.84

1 0.91

2 0.95

100 0.99

The fact that the learning speed could be very slow (or very fast) depending on policy

decisions20, suggests that when they consider the monetary policy design problem under

learning, policy-makers should take into account the transition to the REE. E-stability, once

transition is taken into account, is not itself sufficient to characterize a policy in a context of

bounded rationality, and policy (2.21), which is optimal under rational expectations, may not

be optimal under learning.

In the following sections I show that, in general, the analysis of the speed of convergence

is helpful in evaluating policy rules.

3. Speed of convergence and policy design

Let us consider a third and more generic set of expectations-based reaction functions

it = γ + γ
x
E∗

t
xt+1 + γπE

∗

t πt+1 + γggt(3.1)

and show how to discriminate between the elements of this set using a measure of the speed

of convergence.

20 This result could be applied to the problem of “optimal delegation”, justifing a conservative central bank
when fast convergence is required.
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I define

Yt =

[
πt

xt

]

and write the ALM of inflation and output gap, obtained by substituting (3.1) into (2.1) and

(2.2):

Yt = Q+ F × E∗

t
Yt+1 + Sgt,(3.2)

where Q and S are vectors that depend respectively on policy parameters γ and γg and F is a

matrix that depends on the policy parameters γx, γπ

Q =

[
αϕγ

ϕγ

]
, S =

[
α
(
1 − ϕγ

g

)(
1− ϕγ

g

) ]
(3.3)

F =

[
(β + αϕ (1 − γπ)) α (1− ϕγx)

ϕ (1 − γπ) (1 − ϕγx)

]
. (3.4)

The REE is

Yt = A+ Sgt,(3.5)

where

A =

[
−αγ

γ
x
(1−β)+(γ

π
−1)α

−γ(1−β)
γ
x
(1−β)+(γ

π
−1)α

]
.(3.6)

The following lemma provides a characterization of the REE obtained under the generic

expectations-based reaction functions (3.1), showing how the choice of the reaction to the

expected inflation and output gap (i.e., the value of γ
π

and γ
x
) determines the equilibrium

level of inflation and output gap under the rational expectations hypothesis.

Lemma 8 In the REE, under expectations-based reaction functions (3.1), for γ �= 0, for

γ
π
> 1 the higher the value of γ

π
the higher inflation and output gap (in absolute values), for

γ
π
< 1 the higher the value of γ

π
the lower the inflation and the output gap level; moreover,

the higher the value of γ
x

the lower the inflation and output gap level (in absolute values).
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Proof. See Appendix 2.G.

3.1 The learning mechanism

Under the generic expectations-based reaction functions (3.1), if private agents update

their forecasts through recursive least squares algorithms, expected inflation and output gap

evolve in a more complex way then described in section 2.3. As both the IS and the

AS relations also depend on the expected output gap21, the learning equilibrium cannot be

described only by focusing on beliefs regarding expected inflation (see Appendix 2.H for a

complete description of the learning mechanism under the generic reaction function of the

type (3.1)).

In this case, if agents do not know A but estimate it recursively, expectations are given

by:

E∗

t
Yt+1 = At,(3.7)

where At are statistics inferred from past data according to

At = At−1 + t
−1 (Yt−1 −At−1) .(3.8)

By substituting (3.7) into (3.2) I obtain the ALM of inflation and output gap under

adaptive learning

Yt = T (At) + Sgt,

where T (.) is the mapping from PLM to ALM

T (At) = Q+ F ×At

and

dA

dτ
= T (A)−A(3.9)

21 In equation (3.2) I do not impose that the elements in the second column of theRmatrix are not necessarily
zero.
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is the associated ordinary differential equation. Note that the unique fixed point of the T -map

is the vector A derived in equation (3.6). As in section 2.3, the REE is said to be E-stable if

it is locally asymptotically stable under equation (3.9) and under some regularity conditions.

Underlying the role of policy decisions, the following lemma describes the necessary and

sufficient conditions under which the REE (3.5) is E-stable.

Lemma 9 Under a generic expectations-based reaction function (3.1), the necessary and

sufficient conditions for a rational expectations equilibrium to be E-stable are

γ
π
> 1 −

1 − β

αϕ
−

γ
x

α
for γ

x
≤
−1 + β

ϕβ

γ
π
> 1 −

(1 − β)

α
γ
x

for γ
x
≥
−1 + β

ϕβ

Proof. See Appendix 2.H.

Figure 5 shows, with CGG calibration, all the combinations (γ
π
, γ

x
) under which the

REE is E-stable22.

Fig 5
E-stable region under the expectations-based policy rule
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Note that, since the RE-optimal expectations-based policy rule (2.21) is an element of the

set of generic expectations-based policy rules (3.1), pointsA and B represent the combination

22 A similar figure was obtained under Woodford (1999) calibration.
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γ�
π
, γ�

x
in the two extreme cases where policy-makers do not care about the output gap, λ = 0

(point A), and where they give equal weight to both inflation and the output gap, λ = 1 (point

B). Figure 5 shows that in both cases the REE is E-Stable23. However, for λ = 1 this is very

close to the bounds of the E-stability region; in this case, if the policy-maker chooses the RE-

optimal expectations-based policy rule but improperly calibrates the model it can easily end

up outside the stability region, enforcing a non-stationary policy.

Finally, the fact that the origin is not in the stable region is consistent with the non-

convergence result of Evans and Honkapohja (2002): policies that react only to shocks,

ignoring expectations, are unstable under learning.

3.2 The transition to the REE

In the previous sections, I have shown that policy-makers settle the coefficients of matrix

F , by means of reaction functions. This means that the evolution of estimated coefficients in

private agents’ forecasts (i.e., the speed at which private agents learn) strictly depends on

policy decisions.

Proposition 10 Let us define

Q1 =

{
γ
π
, γ

x
: γ

x
≤

4β − 1

4ϕβ
and γ

π
> 1 +

β

αϕ
−
γ
x

α

}

Q2 =

{
γ
π
, γ

x
: γ

x
≥

4β − 1

4ϕβ
and γ

π
> 1 +

1− 2β

2αϕ
−

1 − 2β

α
γ
x

}
.

Under expectations-based reaction functions (3.1), if (γ
π
, γ

x
) ∈ Q1 or Q2, then the

speed of convergence of the learning equilibrium is Root-t, that is

√
t (At −A) D→ N (0,Ω)

23 It is possible, moreover, to show that for any positive and finite value of λ, i.e., for all flexible inflation tar-
geting policies under the optimal expectation-based reaction function (2.21) the rational expectation equilibrium
is E-Stable (Evans and Honkapohja, 2002).
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where the matrix Ω satisfies

[
I

2
(F − I)

]
Ω + Ω

[
I

2
(F − I)

]
′

+ SS
′
σ
2

g
= 0(3.10)

Proof. See Appendix 2.I.

Under the generic expectations-based reaction function (3.1), if the REE is E-stable but

conditions in proposition 10 are not satisfied, then not all the eigenvalues of the matrix F

are smaller than one half. In this case, as suggested in section 2.3, the learning equilibrium

converges to the REE at a slower rate than root-t.

Figure 6 shows all combinations of γ
π

and γ
x

for which there is root-t convergence.

Fig 6
Root-t convergence under the expectations-based policy rule
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By comparing Figure 5 and Figure 6, it is apparent that the set of combinations (γ
x
, γ

π
)

resulting in root-t convergence is much smaller than the one under which E-stability holds.

PointsA andB in Figure 6 show the combination γ�
π
, γ�

x
, i.e., the reaction to expected inflation

and output gap under the RE-optimal expectations-based policy rule, in the two extreme cases

where policy-makers do not care about the output gap, λ = 0 (point A), and where they give

equal weight to both inflation and the output gap, λ = 1 (point B). As derived in section 2.4,

Figure 6 shows that when the policy-maker gives weight λ = 1 there is no root-t convergence.



30

In the previous sections, in order to characterize how policies determine the speed of

converge to REE, I focused only on one policy parameter at a time (γ
π

in section 2.3 and λ in

section 2.4). Here, on the contrary, since the speed of convergence, as suggested by Marcet

and Sargent (1995), is determined by the eigenvalues of F and this matrix depends on both γ
π

and γ
x
, I have to focus on two policy parameters at a time. For this reason I define the speed of

convergence isoquants that map elements of the set of expectations-based reaction functions

into a speed of convergence measure.

Definition 1 A speed of convergence isoquant is a curve in R2 along which all points (i.e.,

combinations (γ
π
, γ

x
) of an expectations-based reaction function (3.1)) result in the same real

part of the largest eigenvalue z1of the matrix F 24.

For simplicity I restrict the analysis to the set

Γ = {γ
π
, γ

x
: γ

π
> 0, γ

x
> 0 and 0 ≤ z1 < 1} .

The following definition and proposition describe the main properties of the speed of

convergence isoquants:

Definition 2 The speed of convergence, represented by the speed of convergence isoquants, is

monotonically increasing in the reaction to expected inflation (γ
π
) if, given the reaction to the

expected output gap (γ
x
), the real part of the largest eigenvalue z1of the matrix F is decreasing

in γ
π
.

A similar definition for monotonicity with respect to the expected output gap could be

settled.

Proposition 11 The speed of convergence relation, represented by the speed of convergence

isoquants and defined over Γ is: (i) monotonically increasing in γ
π
, (ii) not monotonic with

respect to γ
x
.

Proof. See Appendix 2.L.

24 In the definition I relate speed of convergence to the eigenvalues of the matrix F . In general, as shown in
previous sections, the speed of convergence is related to the eigenvalues of the derivatives of the mapping from
PLM to ALM, T (A). In this case, the derivative is equal to F .
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Proposition 13 states that, for a given reaction to output gap expectations, the policy-

maker, by increasing the reaction to expected inflation increases monotonically the speed at

which private agents learn. On the contrary, for a given reaction to expected inflation, by

increasing the reaction to the expected output gap, private agents could learn both faster or

slower, depending on the value of γ
π
.

Figure 7 shows the speed of convergence isoquants: the lower the isoquant, the slower

the convergence. In fact, the larger the real part of z1, the lower the isoquant and, from Marcet

and Sargent (1995), the larger the real part of z1, the slower the convergence.

Fig 7
The speed of learning isoquants
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Figure 7 illustrates a practical way of using the speed of convergence of the learning

equilibrium to characterize monetary policies. For example, a combination of γ
π

and γx just

above the isoquant z1 = 1 (for example, point B) determines an E-stable REE, but would

imply very slow convergence. The combinations of γπ and γx that stay above the isoquant

z1 = 0.1 imply a very fast learning process. The combinations of γπ and γx that stay above

the isoquant z1 = 0.5 imply a learning process that converges to the REE at a root-t speed.

Let us now see how to make active use of the speed of convergence in the study of

optimal policies under discretion.
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4. Discretionary policy and learning

In section 2.4, it was shown that under rational expectations the optimal monetary policy

under discretion is given by the reaction function (2.21). Now, considering the generic set of

expectations-based reaction functions (3.1) we have that

Proposition 12 Under rational expectations, there are infinitely many expectations-based

reaction functions, i.e., combinations of γ, γx, γπ, γg that result in the optimal REE for {πt, xt}

defined in (2.23) and (2.24).

Proof. See Appendix 2.M.

Evans and Honkapohja (2002) say that the expectations-based reaction function (2.21)

is not only a “good” policy because it determines an E-stable REE, but it also “implements

optimal discretionary policy in every period and for all values of private expectations” in a

context where “private agents behave in a boundedly rational way”. In order to identify (2.21)

as the optimal policy rule under discretion and learning, however, the crucial assumption is

that “the policy-maker does not make active use of learning behaviour on the part of agents”

(Evans and Honkapojha, 2002).

If, under rational expectations, the problem of optimal “discretionary policy” implies, by

definition, that policy-makers cannot affect private agents’ expectations, under the hypothesis

of bounded rational private agents, since policy decisions affect the learning process, a rational

policy-maker with full information should take properties of the learning equilibrium into

account in solving the monetary policy design problem. In fact, if private agents’ expectations

are the result of the estimates of the learning parameters that depend on past values of the

monetary policy instrument, the policy-maker’s decisions, will affect future estimates and,

consequently, the private agents’ learning process25. The expectations-based reaction function

(2.21) is not necessarily optimal under learning but could be defined as asymptotically-optimal.

However, if private agents’ perceived law of motion is well specified, once the learning process

has converged to rational expectations, not only the policy rule (2.21) will be optimal, but

proposition 14 says there is a continuum of expectations-based policy rules that result in

the same REE. Since these policies could determine different learning equilibria along the

25 See Dedola and Ferrero (2003) for a derivation of the truely optimal policy under learning.
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transition to the REE, a device for discriminating between them is required26 and the speed of

convergence isoquants derived in the previous section could be a useful starting point.

Let us consider a restricted set of asymptotically-optimal expectations-based reaction

functions and describe the speed of convergence that these determine along the transition to

the REE.

Proposition 13 The maximum speed of convergence of the learning process that could

be reached under the restricted set of asymptotically-optimal expectations-based reaction

functions,

it = γ ′
+ γ ′

x
Etxt+1 + γ ′

π
Etπt+1 + γ ′

ggt,(4.1)

with

γ ′

g = γ∗

g =
1

ϕ
(4.2)

γ ′
= γ∗

= −
λ

(λ+ α2)ϕ
x

γ ′

π
=

γR − γ∗

aπ
−

ax

aπ
γ ′

x
=

λ ((1 + αϕ) (λ + α2)− λβ)

(λ + α2)− λβ
x−

1 − β

α
γ ′

x
,

depends negatively on the weight that the policy-maker gives to output gap relative to inflation.

Proof. See Appendix 2.N.

Proposition 15 states that taking the set of reaction functions with coefficients γ
′

and γ
′

g
equal to the ones in the optimal expectations-based reaction function (2.21) and

γ
′

π =
λ((1+αϕ)(λ+α2)−λβ)

(λ+α2)−λβ
x −

1−β

α
γ
′

x, the economy converges asymptotically to the optimal

REE under discretion, but for a given λ the policy-maker can bring about a different speed

of convergence. Note, instead, that under policy rule (2.21) for each λ there was a given

speed of convergence. In particular, under asymptotically optimal expectations-based reaction

functions (4.1), the larger the relative weight on output gap (λ), the larger will be the real part

of the biggest eigenvalue of the F matrix and the slower the fastest speed of convergence that

a policy-maker could induce.

26 “There is no single policy rule that is uniquely consistent with the optimal equilibrium. Many rules may
be consistent with the same equilibrium, even though they are not equivalent insofar as they imply a commitment
to different sorts of out-of equilibrium behaviour” (Svensson and Woodford, 1999).
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Figure 8 shows, in the same picture, the speed of learning isoquants and, for given λ,

combinations of γx and γx under which the economy will converge asymptotically to the

optimal REE under discretion.

Fig 8
Asymptotically-optimal expectations-based reaction functions
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The line λ = 0 shows that if the policy-maker does not care about the output gap,

by imposing γ
π
= γ ′

π
, he can choose combinations of γ

π
and γ

x
such that the speed of

convergence ranges from very slow to very fast: the line λ = 0, in fact, intersects isoquants

z1 = 0.1 (very fast speed), z1 = 0.7 (speed of convergence slower than root-t) and many others.

If, instead, the relative weight to output gap is one half, i.e., the line λ = 0.5, the policy-maker

could choose only combinations of γ
π

and γ
x

such that the speed of convergence is slower than

root-t: the line λ = 0.5 does not intersect any isoquant with z1 ≤ 0.5; if the policy-maker cares

equally about inflation and output gap, i.e., the line λ = 1, he can choose only combinations

of γ
π

and γ
x

such that the speed of convergence is very slow, slower than root-t, since the line

λ = 1 does not intersect any isoquant with z1 ≤ 0.7.

Points A and B in Figure 8 also show another important result that will be analyzed

further in the next section: for a given value of λ there are infinitely many expectations-based

policies that determine asymptotically the same REE, but induce a faster (or slower) speed of

convergence than the one determined by policy (2.21).
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4.1 The mapping from PLM to ALM

In order to show how the central bank can make active use of private agents’ learning

behaviour in the monetary policy design problem under discretion, I now consider more in

detail the mapping from perceived to actual variables.

To avoid notational flutter, let us define the parameters

Γ
∗ =

λβ

(λ + α2)
,Φ∗ =

λα

(λ+ α2)
x

and rewrite the coefficients in the RE-optimal expectations-based reaction function (2.21),

γ∗ = −
Φ∗

ϕα
, γ∗x = γ∗g =

1

ϕ
, γ∗π =

(
1 +

β − Γ∗

αϕ

)
(4.3)

and the optimality conditions (2.19) and (2.20)

[
πt

xt

]
=

[
Φ∗

Φ
∗

α

]
+

[
Γ∗ 0

−

(β−Γ∗)
α

0

] [
Etπt+1

Etxt+1

]
.(4.4)

Under least square learning the mapping from PLM to ALM (2.26) can be rewritten as

T (aπ,t, ax,t) =

(
Φ∗ + Γ∗aπ,t,

Φ∗

α
−

(β − Γ∗)

α
aπ,t

)
.(4.5)

In order to study the convergence of the learning equilibrium to the REE, section 2.3

showed that the analysis could be concentrated on the mapping from perceived inflation to

actual inflation

T (aπ,t) = Φ∗ + Γ∗

aπ,t(4.6)

The necessary and sufficient condition for E-stability reduces to Γ∗

< 1.

To give an example, since I consider λ to be an exogenous policy parameter, let us

assume that the policy-maker gives a positive weight λ = 0.5 (note that with this weight I

assume that the policy-maker cares twice as strongly about inflation than about output gap). In

this case the mapping T (aπ,t) has a slope equal to 0.84 under CGG parametrization. Figure 9

shows the mapping from PLM to ALM.
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Figure 9 shows that, even if initial perceived inflation is not too far from the REE,

since the slope of the T (.) mapping is close to 1, the transition from the learning to the

RE equilibrium is very slow.

Fig 9
The mapping T (a

π,t) from PLM to ALM (λ = 0.5)

( )πaT

πa

πata ,π
πa

( )πaT

4.2 Adjusting the learning speed

In the previous section, under the RE-optimal expectations-based reaction function

(2.21) suggested by Evans and Honkapohja (2002) (EH policy from now on), if the policy-

maker follows a flexible inflation targeting policy rule with λ = 0.5, the private agents’

learning process will converge very slowly to the RE (slower than root-t convergence). The

question now is how a policy-maker who wants in the long run (i.e., once the private agents

have learned the REE) to reach the same REE determined by the reaction function (2.21) can

speed up or slow down the private agents’ learning process. To answer to this question let us

introduce a new expectations-based policy rule27:

27 At the beginning of this section I showed an asymptotically-optimal policy (4.1) that allowed a choice
to be made among different speeds of convergence. However, under that policy, the analysis of the learning
dynamics involved a mapping from PLM to ALM with both perceived inflation and output gap. Here, instead, I
consider a policy that allows a choice between diffent speeds of convergence just by looking at a mapping from
PLM to ALM involving only expected inflation, as under the RE-optimal expectations-based reaction function
(2.21).
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Definition 3 The Adjusted Learning Speed-Γ′ (ALS-Γ′) policy rule, is an expectations-based

reaction function

i
ALS
t (Γ′) = γALS + γALSx Etxt+1 + γALSπ Etπt+1 + γALSg gt(4.7)

with coefficients

γALS = −

Φ∗ (1 − Γ′)

(1− Γ∗)αϕ
= −

λx (1− Γ′)

ϕ (λ+ α2)− ϕλβ
(4.8)

γALSx , γALSg =
1

ϕ

γALSπ =

(
1+

β − Γ′

αϕ

)

where 1 < Γ′ < 0 is the slope of the new mapping from perceived inflation to actual inflation

obtained under the ALS-Γ′ policy:

T ′ (a
π,t) =

(1 − Γ′)

(1 − Γ∗)
Φ∗ + Γ′

aπ,t.(4.9)

Note that, under least square learning, the ALS-Γ′ policy leads to a mapping from PLM

to ALM

T ′ (aπ,t, ax,t) =

(
(1− Γ′)

(1− Γ∗)
Φ∗ + Γ′aπ,

Φ∗ (1− Γ′)

(1 − Γ∗)α
−

(β − Γ′)

α
aπ,t

)
(4.10)

that does not depend on the perceived output gap. Therefore, in order to study convergence of

the learning equilibrium to the REE, as under EH policy, the analysis can concentrate on the

mapping from perceived inflation to actual inflation (4.9).

Figure 10 shows the new mapping T
′ (aπ,t) under the ALS-Γ′policy. In particular, it can

be observed that T ′ (aπ,t) has the same fixed point, aπ , as under the EH policy, but the intercept

and the slope are different. The policy-maker, in order to speed up (slow down) the transition

to the REE should follow an expectations-based reaction function that induces a rotation of

the mapping from PLM to ALM around the fixed-point (i.e., the REE), with a slope Γ′ lower

(higher) than under the EH policy.
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Fig 10
The mapping T′

aπ
(aπ,t) under the ALS-Γ′ policy (Γ′ < Γ

∗)

( )πaT

πa

( ) ( )ππ aTaT ',

( )πaT '

πata ,π
πa

The following proposition compares the REE and asymptotic properties of the learning

equilibrium under ALS-Γ′ and EH policies.

Proposition 14 Under rational expectations, the ALS-Γ′ policy results in the same REE for

{πt, xt} derived under the EH policy. Under least squares learning, the ALS-Γ′ policy results

asymptotically in the same REE for {πt, xt} derived under the EH policy.

Proof. See Appendix 2.O.

To stress the differences in the role of the policy-maker in determining the properties

of the learning equilibrium along the transition to the REE, under ALS-Γ′ and under the EH

policies, consider again equations (4.3) and (4.8).

Taking parameters α,ϕ, β as given, under the EH policy, the speed of convergence of

the learning equilibrium to the REE relies entirely on λ. By choosing a λ the policy-maker is

also choosing the slope of the T (.) mapping (in the previous example, with λ = 0.5, the slope

was equal to 0.84) and, as shown in section 2, he determines the speed of convergence.

On the contrary, under ALS-Γ′ policy, the policy-maker could choose separately the

relative weight on output gap and the speed at which agents learn, i.e., the slope of the T (.)

mapping, without affecting the REE. To see this, note that expression (4.8) can give
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Γ′ =
(
1 − γ

ALS

π

)
αϕ+ β.(4.11)

Equation (4.11) shows that, given the parameters α,ϕ, β, each value of the policy

reaction parameter γALSπ has a corresponding slope of the T (.) mapping, Γ′, independently

from λ. In particular,

Lemma 15 The response of interest rate to a rise in expected inflation is higher under the

ALS-Γ′ than under the EH policy if Γ′
< Γ

∗, is lower if Γ′
> Γ

∗.

Proof. See Appendix 2.P.

The following proposition formally compares the transition under ALS-Γ′ and under the

EH policies.

Proposition 16 Assume that private agents form expectations through recursive least squares

learning; define aπ,t
(
i
ALS (Γ′)

)
and aπ,t

(
i
EH

)
the perceived inflation under ALS-Γ′ and EH

policies, πt
(
i
ALS (Γ′)

)
and πt

(
i
EH

)
actual inflation under ALS-Γ′ and EH policies. Finally,

assume that the economy starts from a point where the learning equilibrium and the REE do

not coincide, in particular

aπ,0

(
i
ALS (Γ′)

)
= aπ,0

(
i
EH

)
�= a

π

– if γALSπ > γ∗π , than for every 0 < t <∞

∣∣aπ,t
(
iALS (Γ′)

)
− aπ

∣∣ <
∣∣aπ,t

(
iEH

)
− aπ

∣∣

and

∣∣πt
(
iALS (Γ′)

)
− aπ

∣∣ <
∣∣πt

(
iEH

)
− aπ

∣∣

– if γALSπ < γ∗

π , than for every 0 < t <∞

∣∣aπ,t
(
iALS (Γ′)

)
− aπ

∣∣ >
∣∣aπ,t

(
iEH

)
− aπ

∣∣
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and

∣
∣πt

(
iALS (Γ′)

)
− aπ

∣
∣ >

∣
∣πt

(
iEH

)
− aπ

∣
∣

Proof. See Appendix 2.Q.

Proposition 19 says that if initial perceived inflation is the same under both policies but

different from the REE, under an ALS-Γ′ policy that induces a flat slope in the T () mapping,

perceived and actual inflation will always be closer to the REE than under the EH policy. The

opposite is true when the mapping under ALS-Γ′ policy is steeper than under EH policy.

In general, comparing two ALS-Γ′ policies gives the following corollary to Proposition

19.

Corollary 17 Consider two ALS policies i
ALS (Γ′

1
) and i

ALS (Γ′

2
) with 0 < Γ′

1
< Γ′

2
< 1 and

aπ,0

(
i
ALS (Γ′

1
)
)
= aπ,0

(
i
ALS (Γ′

2
)
)
�= aπ

than

∣∣
a
π,t

(
i
ALS (Γ′

1
)
)
− a

π

∣∣ <
∣∣a

π,t

(
i
ALS (Γ′

2
)
)
− a

π

∣∣

∣∣πt
(
i
ALS (Γ′

1
)
)
− aπ

∣∣ <
∣∣πt

(
i
ALS (Γ′

2
)
)
− aπ

∣∣

The intuition is the following: if the policy-maker reacts strongly to a change in expected

inflation, the difference between private agents’ expectations and actual inflation will be

greater; since for 0 < t <∞ if private agents make larger errors they will adapt their estimates

faster, the transition to the REE will be shorter. In other words, the stronger the policy-maker’s

response to a change in private agents’ expectations, the faster private agents learn and the

shorter the transition to the REE.

The fact that under the ALS policy for every 0 < t < ∞ the distance from the REE

could be smaller (greater) than under the EH policy could be used to address the following

question: how long does it take under the two policies to get ε-close to the REE, i.e., starting
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from the same distance from the REE, |aπ,0 − aπ| > ε, how many periods are needed under

the two policies to have |πt − aπ| < ε?

Figure 11 compares the results of a simulation under the EH policy rule (2.21) and under

an ALS policy with Γ′
= 0.5 (i.e., root-t convergence is imposed) assuming an initial perceived

inflation 15 per cent higher than the REE.

Fig 11
Deviation of actual inflation from the REE

ALS-policy (z 1 =0,5)

ALS-policy (z 1 =0,5)

EH-policy

EH-policy

Quarters Quarters

Deviation (%) Deviation (%)

Under the ASL policy, after 1 quarter the distance to the REE is already halved, after

3 quarters the distance is below 5 per cent and after 20 quarters it is below 2 per cent. On

the contrary, under EH policy, more than 100 quarters are necessary to halve the distance and

more than 500 to reduce it to 5 percent.

Table 2 compares the transition of the learning equilibrium to the REE for different ALS-

Γ
′ policies. Let us consider, for example, the ALS-Γ′ policy with γ

ALS
π = 2.6. Assuming an

initial perceived inflation 15 per cent higher than the REE, the distance from the REE can be

reduced to less than 5 per cent, in:

- 1/2 of the time needed under the ALS-Γ′ with γALSπ = 2.3

- approximately 1/5 of the time needed under the ALS-Γ′ with γALS
π

= 2

- approximately 1/40 of the time needed under the ALS-Γ′ with γALSπ = 1.6
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- approximately 1/150 of the time needed under the EH policy!

Tab 2
Transition under the ALS-Γ′ policy

γALS
π

Γ
′ T(<10%) T(<5%) T(<3%) T(<1%)

4.0 0.1 1 1 1 2

3.6 0.2 1 1 2 5

3.3 0.3 1 1 2 10

3 0.4 1 2 4 24

2.6 0.5 1 3 8 72

2.3 0.6 1 6 21 322

2 0.7 2 16 90 3489

1.6 0.8 4 114 1461 > 10000

1.51 0.84 6 445 > 10000 > 10000

1.3 0.9 30 > 10000 > 10000 > 10000

1For γALS
π

= 1.5, the ALS and EH policies coincide.

This section looked at the role of policy decisions in determining the speed of

convergence under learning, focusing on the mapping from perceived inflation to actual

inflation. Now, before asking how the policy-maker can make use of this role to increase

social welfare, a brief analysis is made of the behaviour of the output gap along the transition.

Fig. 12

Output gap under EH policy and ALS-Γ′ policy

45
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Mappings (4.5) and (4.10) show that the actual output gap, under both EH and ALS

policies, depends only on perceived inflation (Figure 12). In particular,

Lemma 18 Under EH and ALS policies, when initial perceived inflation is higher (lower)

than the REE, the output gap converges to the REE from below (above).

Proof. See Appendix 2.R.

Now it is possible to return to the question addressed at the beginning of the paper: is

the RE-optimal expectations-based reaction function still optimal under learning? Are policies

that speed up the learning process always better than policies that involve a slow transition to

the REE?

5. Welfare analysis

In January 1999, with the start of stage 3 of the Economic and Monetary Union,

monetary competencies were transferred from each country of the European Union to the

European Central Bank. Before that date people were accustomed to take into account the

monetary policy of their own country when making economic decisions. After the start of

stage 3, they faced a new policy-maker (and a new monetary policy) and inflation and output

gap equilibria determined under the new policy regime were, in some cases, different from

the ones implied by the previous policies. Let us consider, for example, countries like Italy or

Spain, whose rates of inflation are historically higher than in other member states, and assume

that in those two countries expected inflation at the start of the EMU was higher than the REE

determined by the new monetary regime. Under the assumption that private agents need time

to learn the new equilibrium, it is clear that the dynamics of the learning equilibrium along the

transition to the REE play an important role in the analysis of monetary policy decisions based

on welfare measures. Questions like the ones raised at the end of the previous section show up

spontaneously.

To answer to those questions I consider separately the two cases where initial expected

inflation is higher than the REE and where it is lower. The reason why I proceed in this way is

that in the literature it is well known that under the loss function (2.18) the first best plan would

be, for all t, to have inflation and output gap at their target levels, i.e., πFB
t

= 0 and x
FB

t
= x.
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As many works have shown, under no commitment, the first best solution is not feasible if

x �= 0. The optimal (time-consistent) policy in this case leads to a REE with inflation higher

than the first best and output gap lower28:

πREE
t

=
λα

(λ+ α2)− λβ
x > πFB

t
for all t

xREE
t

=
λ (1− β)

(λ + α2)− λβ
x < xFB

t
for all t

Under learning, however, monetary policies could result in a learning equilibrium that

remains far from the REE for a long (or short) time. Therefore, if initial perceived inflation is

higher than the REE, as in previous section, actual inflation will be higher and output gap lower

than the REE along the transition. In this case, a policy-maker who bases decisions on the loss

function (2.18) would prefer policies that make inflation fall and output gap rise quickly to the

REE. On the contrary, if initial perceived inflation is lower than the REE, the policy-maker

would prefer policies that make inflation climbing and output gap landing slowly to the REE.

Since EH policy is not taking into account the transition, I claim that there are ALS-Γ′ policies

that will make our economy better off.

In order to verify this claim, let us start by assuming that the EH policy (which is optimal

under RE) is also optimal when private agents form expectations through adaptive learning.

The aim is to compute the welfare cost of alternative monetary policies, i.e., ALS-Γ′, that

asymptotically result in the same REE as the RE-optimal expectations-based reaction function,

but along the transition result in different learning equilibria.

The social loss associated with EH policy is defined as:

L
EH

0
= E0

∞∑

t=0

βtL
(
πt

(
iEH
)
, xt
(
iEH
))

,

28 Under CGG parametrization, assuming λ = 0.5, the REE would be

πt = 1.57 ∗ x and xt = 0.05 ∗ x
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where L
(
πt

(
i
EH

)
, xt

(
iEH

))
is the period t loss function defined in equation (2.18) and

πt
(
iEH

)
, xt

(
iEH

)
denote the contingent plans for inflation and output gap under EH policy.

Similarly, the social loss associated with ALS-Γ′ policies is defined as

L
ALS

0
(Γ′) = E0

∞∑

t=0

βtL
(
πt

(
iALS (Γ′)

)
, xt
(
iALS (Γ′)

))
.

Three measures of the welfare cost (or gain) of adopting policy ALS-Γ′ instead of the

reference EH policy are considered.

5.1 Percentage loss in total welfare

This measure of the welfare loss (gain) is merely the percentage increase (decrease) in

the social loss of moving from EH to ALS-Γ′policy:

ω
(
L
ALS

0
(Γ′)

)
=

(
L
ALS
0

(Γ′)− LEH
0

LEH
0

)
∗ 100.

Note that for values of ω
(
L
ALS
0

(Γ′)
)
< 0 there is a welfare gain in adopting ALS-Γ′

policy instead of EH, while for ω
(
L
ALS
0

(Γ′)
)
> 0, there is a welfare loss.

I run simulations of the model for 10000 periods, assuming that the policy-maker follows

a flexible inflation targeting policy rule with λ = 0.5, the output gap target is x = 0.02 and

using CGG calibration. I start with the assumption of an initial expected inflation 15 per

cent higher than the REE and I compute social losses under the EH and ALS-Γ′ policies for

different values of γALS
π

(i.e., different Γ′).

Figure 13 shows that ALS-Γ′ policies with Γ
′ < Γ

∗, by inducing a fast convergence,

reduce the social loss up to 11 per cent relative to EH policy. Policies with Γ
′ > Γ

∗, on the

contrary, increase the social loss by up to 10 per cent. In particular, a central bank that follows

an ALS-Γ′ policy with γALSπ = 2.6 can, by increasing the speed of convergence to root-t, lower

the value of the loss function by 8.6 per cent relative to the EH policy. In order to analyze how

the percentage increase (decrease) in the social loss evolves along the transition simulations

are also run for T < 10000 periods.
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Fig 13
Percentage loss in total welfare (π0 > πRE)

Loss (%)
Policy)95,0('Γ−ALS

Policy)5,0('Γ−ALS

PolicyEH

Γ′

Table 3 shows the results for different T , pointing out that most of the gain from using

an ALS-Γ′ policy with fast transition is concentrated in the first 20 periods.

Tab 3
Percentage loss in total welfare after T periods (π0 > πRE)

γALSπ Γ
′ T=10 T=20 T=50 T=100 T=10000

4.0 0.1 −9.7 −11.3 −12.0 −11.9 −11.3

3.6 0.2 −8.9 −10.6 −11.4 −11.4 −10.9

3.3 0.3 −8.0 −9.6 −10.6 −10.7 −10.5

3 0.4 −7.0 −8.5 −9.6 −9.8 −9.7

2.6 0.5 −5.8 −7.2 −8.3 −8.6 −8.6

2.3 0.6 −4.4 −5.6 −6.6 −7.0 −7.1

2 0.7 −2.8 −3.6 −4.3 −4.7 −4.9

1.6 0.8 −0.9 −1.1 −1.4 −1.5 −1.6

1.51 0.84 0 0 0 0 0

1.3 0.9 1.5 2.0 2.5 2.9 3.2

1.1 0.95 2.8 3.8 5.0 5.8 6.6
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Figure 14 and Table 4 show that under the assumption of an initial expected inflation

15 per cent lower than the REE, by inducing a slower convergence, the policy-maker could

greatly reduce the welfare loss.

Fig 14
Percentage loss in total welfare (π0 < π

RE)

Loss (%)

Policy)95,0('Γ−ALS

Policy)5,0('Γ−ALS

PolicyEH

Γ′

A central bank that follows an ALS-Γ′ policy with γ
ALS
π = 1.1 can, by increasing the

slope of the mapping from perceived inflation to actual inflation to Γ
′
= 0.95, slow down the

transition and lower the value of the loss function by approximately 7 per cent relative to the

EH policy. On the contrary, a policy-maker who speeds up the transition to root-t convergence,

following an ALS-Γ′ policy with γ
ALS
π = 2.6, would increase the value of the loss function by

approximately 11 per cent relative to the EH policy (Figure 14).
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Tab 4
Percentage loss in total welfare after T periods (π0 < π

RE)

γALS
π

Γ
′ T=10 T=20 T=50 T=100 T=10000

4.0 0.1 15.7 16.3 16.0 15.3 14.2

3.6 0.2 14.2 15.1 15.1 14.6 13.7

3.3 0.3 12.6 13.7 14.0 13.7 13.0

3 0.4 10.7 12.0 12.6 12.5 12.0

2.6 0.5 8.6 9.9 10.7 10.9 10.7

2.3 0.6 6.3 7.5 8.4 8.7 8.7

2 0.7 3.8 4.7 5.4 5.7 5.9

1.6 0.8 1.1 1.4 1.7 1.8 1.9

1.5 0.84 0 0 0 0 0

1.3 0.9 −1.7 −2.3 −2.9 −3.3 −3.6

1.1 0.95 −3.1 −4.3 −5.6 −6.3 −7.1

Table 4 shows that most of the loss from using an ALS-Γ′ policy with fast transition is

concentrated in the first 20 periods.

While the percentage loss (gain) in total welfare from using alternative ALS policies

shows the importance of the speed of convergence when private agents form expectations

through recursive leats squares estimate, this measure of the welfare loss has no simple

economic interpretation. As an alternative measure, the “inflation equivalent” can be

calculated.

5.2 The inflation equivalent

This measure of the welfare loss, denoted by ωALS
π

(Γ′), is computed as the fraction of

inflation under EH policy that a central bank is willing to accept above πt
(
i
EH

)
to be as well

off under policy ALS-Γ′ as under policy EH. Formally the “inflation equivalent” is implicitly

defined by:

L
ALS

0
(Γ′) = E0

∞∑

t=0

βtL
((
1 + ωALSπ (Γ′)

)
πt
(
iEH
)
, xt
(
iEH
))

.



49

Note that for values of ωALS
π

(Γ′) > 0 there is a welfare gain in adopting ALS-Γ′ policy

instead of EH, while for ωALS
π

(Γ′) < 0 there is a welfare loss.

Solving for ωALS
π

(Γ′), for different values of γALS
π

, I obtain similar qualitative results

as before (Table 5). However, by computing the “inflation equivalent” I can say, for example,

that when initial expected inflation is 15 per cent higher than the REE, the inefficiency of EH

policy is equivalent to an inflation up to 7 per cent higher than πt

(
i
EH

)
. In other words,

under an ALS-Γ′ policy with γALSπ = 3.6, welfare can be increased by an amount equivalent

to a reduction of inflation of 7 per cent below the πt

(
i
EH

)
level. Again, most of the welfare

differences under ALS and EH policies are concentrated in the first 20 periods.

Tab 5
Inflation equivalent after T periods

(π0 > πRE)
γALSπ Γ

′ T=10 T=20 T=50 T=100 T=10000

3.6 0.2 5.4 6.4 7.0 6.9 6.7

2.6 0.5 3.5 4.3 5.0 5.2 5.2

2 0.7 1.6 2.1 2.6 2.8 2.9

1.5 0.84 0 0 0 0 0

1.1 0.95 −1.9 −2.2 −2.9 −3.4 −3.8

(π0 < πRE)
γALSπ Γ

′ T=10 T=20 T=50 T=100 T=10000

3.6 0.2 −8.1 −8.5 −8.6 −8.3 −7.8

2.6 0.5 −5.0 −5.7 −6.1 −6.2 −6.1

2 0.7 −2.2 −2.7 −3.2 −3.3 −3.4

1.5 0.84 0 0 0 0 0

1.1 0.95 1.8 2.5 3.3 3.8 4.3

Before concluding I wish to emphasize two aspects concerning the robustness of welfare

results.

5.3 Robustness

In the previous section the speed of convergence and welfare were studied by running

simulations with λ = 0.5 and x = 0.02. Changing these parameters would not change the

finding that EH policy, that is optimal under rational expectations, is not optimal under learning

and that, when initial perceived inflation is higher than the REE, the central bank could increase



50

welfare by inducing a faster transition. However, in the extreme case where x = 0, if initial

inflation is lower than the REE, the finding that a slower convergence to the REE increases

welfare does not hold anymore. In fact, when x = 0, in our model, the optimal policy under

discretion results in a REE with inflation and output gap equal to the first best, and the faster

the transition the higher will be welfare under learning.

The new-Keynesian model analyzed in this paper is derived assuming that only one

shock affects the economy. Under this assumption the policy-maker neutralizes the real effects

of the shock whether it follows the EH policy or an ALS-Γ′ policy, i.e., γ∗

g
= γALSg =

1

ϕ
.

However, when an additional shock hits the economy (for example, a “cost-push shock”, ut)

the policy-maker cannot, in general, neutralize both shocks at the same time. In this case,

since the two policies along the transition to the REE would react differently to ut, welfare

analysis could be affected. Simulations show that the introduction of a cost-push shock affects

the results only in the amount of the welfare gain (or loss).

Tab 6
Percentage loss in total welfare with cost-push shocks (T = 10000)

(π0 > πRE)
γALSπ Γ

′
100 ∗ ωALS

π
(Γ′) ω

(
L
ALS

0
(Γ′)

)

4.0 0.1 5.6 −11.1
3.6 0.2 5.4 −10.8
2.6 0.5 4.5 −8.9
1.6 0.7 2.9 −5.2
1.5 0.84 0 0
1.1 0.95 −2.3 7.3

(π0 < π
RE)

γ
ALS
π

Γ
′ 100 ∗ ωALS

π
(Γ′) ω

(
LALS
0

(Γ′)
)

4.0 0.1 −15.0 24.2
3.6 0.2 −14.5 23.3
2.6 0.5 −11.1 17.7
1.6 0.7 −5.9 9.8
1.5 0.84 0 0
1.1 0.95 9.0 −11.2
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Table 6 shows that adding an AR(1) shock ut in the aggregate supply expression29, when

initial private agents’ perceived inflation is higher than the REE, a central bank that follows an

ALS-Γ′ policy with γ
ALS

π
= 2.6 can lower the value of the loss function by approximately 9

per cent relative to the EH policy (8.6 per cent without cost-push shocks); when initial private

agents’ perceived inflation is lower than the REE, an ALS-Γ′ policy with γ
ALS

π
= 1.1 can

lower the value of the loss function by approximately 11.2 per cent (7.1 per cent without cost-

push shocks). In terms of inflation equivalent, in the first case, under an ALS-Γ′ policy with

γ
ALS

π
= 2.6, welfare could be increased by an amount equivalent to a reduction of inflation of

4.5 per cent below the πt

(
i
EH

)
level (5.2 per cent without cost-push shocks); in the second

case, an ALS-Γ′ policy with γ
ALS

π
= 1.1, the reduction of inflation would be 9 per cent below

the πt

(
i
EH

)
level (4.3 per cent without cost-push shocks).

The results obtained in this section show that optimal policies derived under RE are not

optimal under learning. Using results for the speed of convergence could help to increase social

welfare by taking into account the transition from learning equilibrium to the REE. Solving for

the true optimal policy under discretion and learning would envolve taking into account that

the policy-maker could make active use of private agents’ learning behaviour. However, since

the optimal monetary policy has to be derived by substituting the private agents’ PLM into the

objective function, it would be time-dependent. Further analysis in this direction is required

and will be left for future research.

6. Conclusions

In this paper I have shown that considering learning in a model of monetary policy

design is particularly important in order to describe not only the asymptotic properties of

rational expectations equilibrium to which the economy could converge, but even to describe

the dynamics that characterize the transition to this equilibrium.

The central message of the paper is that policy-makers should not only look at monetary

policies that determine a stable equilibrium under learning, but also take into account how

policy decisions affect the speed at which learning converges to rational expectations. In

particular, under certain policies, the REE is E-stable, but the period needed to converge to

29 I assume λ = 0.5, x = 0.02, ut = ρuut−1 + εu,t with ρu = 0.5 and εu,t ∼ N (0,0.05)
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this equilibrium could be incredibly long. Reacting strongly to expected inflation, a central

bank would shorten the transition and increase the speed of convergence from the learning

equilibrium to the REE.

A policy-maker who considers his role in determining the dynamics of the private agents’

learning process could choose a policy rule that induces agents to learn at a given speed,

affecting the welfare of society. In particular, if the policy-maker knows that after a regime

change private agents’ perceived inflation would be higher than the REE, by choosing a policy

that reacts strongly to expected inflation he would determine a fast convergence and could

increase social welfare. If, instead, perceived inflation is initially lower than the REE, a slow

transition is preferred when the output gap target is greater than zero, a fast transition when

the target is equal to zero.



Appendix 1

To derive the REE, consider the mapping from the PLM to the ALM

T (aπ, ax) = (αϕγ + (β + αϕ (1− γπ)) aπ, ϕγ + ϕ (1 − γπ) aπ)

and analyze the ordinary differential equation (ODE):

d

dτ
(aπ, ax) = T (aπ, ax)− (aπ, ax)

where τ denotes notional time. The REE can be derived by looking at the fixed point of the

differential equation, by imposing d

dτ
(aπ, ax) = 0:

aπ = αϕγ (1− β − αϕ (1− γ
π
))−1

ax = ϕγ + ϕ (1 − γ
π
) aπ

The REE is:

[
πt

xt

]
=

[
αϕγ

(1−β−αϕ(1−γ
π
))

ϕγ(1−β)
(1−β−αϕ(1−γ

π
))

]
+

[
α

1

]
gt.
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A. PROOF OF LEMMA 1

The necessary and sufficient condition for determinancy of the REE is given by all the

eigenvalues of the matrix

[
β + αϕ (1− γ

π
) 0

ϕ (1 − γ
π
) 0

]

being inside the unit circle; since the eigenvalues are equal to 0 and β +αϕ (1 − γ
π
) it is only

necessary to check for −1 < β + αϕ (1− γ
π
) < 1.

B. PROOF OF LEMMA 2

Consider (2.6) and take derivatives

∂αϕγ [1− β − αϕ (1− γ
π
)]−1

∂γ
π

=

α2ϕ2γ (1− γ
π
)

[1− β − αϕ (1− γ
π
)]2

and

∂ϕγ (1− β) [1 − β − αϕ (1 − γ
π
)]−1

∂γ
π

=
αϕ2γ (1 − β) (1 − γ

π
)

[1− β − αϕ (1− γ
π
)]2

that is

∂aπ

∂γ
π

> 0 iff γ
π
> 1

∂ax

∂γπ
> 0 iff γ

π
> 1

C. PROOF OF LEMMA 3

Consider the ordinary differential equation (ODE)

daπ

dτ
= T (aπ)− aπ

= αϕγ + [β + αϕ (1− γ
π
)]aπ − aπ
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The solution of daπ

dτ
= 0 is

aπ = αϕγ [1− β − αϕ (1− γπ)]
−1

is E-stable under the dynamics of the ODE (Marcet and Sargent (1989) and Evans and

Honkapohja, 2001) if and only if

[β + αϕ (1 − γ
π
)] < 1

that is

γ
π
> 1−

1 − β

αϕ

D. PROOF OF PROPOSITION 4

Given the recursive stochastic algorithm

a
π,t = aπ,t−1 + t−1 (αϕγ + [β + αϕ (1− γπ)]aπ,t−1 + αgt−1 − aπ,t−1)

let

h (aπ) = [αϕγ + [β + αϕ (1− γπ)] aπ − aπ]

and let aπ be such that h (aπ) = 0. By the theorem of Benveniste et. al.(Theorem 3, page 110),

if the derivative of h (aπ) is smaller than −1/2, then

√
t (aπ,t − aπ)

D→ N
(
0, σ2

a

)

where σ2
a

satisfies

[h′ (aπ)]σ
2

a
+ E [αϕγ + [β + αϕ (1− γ

π
)]aπ − aπ + αgt]

2 = 0
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Note that the derivative of E [αϕγ + [β + αϕ (1− γπ)] aπ − aπ] being smaller than

−1/2 coincides with [β + αϕ (1− γπ)] being smaller than 1/2, i.e., γπ being larger than

1 − 1/2−β
αϕ

E. PROOF OF PROPOSITION 5

The formula for the asymptotic variance of the limiting distribution is

σ2a =
α2

[1 − β − αϕ (1 − γπ)]
σ2g

and for γπ ∈ S,

∂σ2a
∂γπ

= −
αϕ (1− β − αϕ (1− γπ))

[1 − β − αϕ (1 − γπ)]
2
α2σ2g < 0

F. PROOF OF PROPOSITION 7

The argument is similar to the one used in the proof of Propositions 4 and 5.

In order to have root-t convergence there must be

λβ

(λ + α2)
< 1/2

that is

λ <
α2

2β − 1

For values of λ > α
2

2β−1
there is no root-t convergence and, as in lemma 3, convergence will be

slower.

G. PROOF OF LEMMA 8

Consider (3.5) and (3.6) and take derivatives

∂αγ [(1− β) γ
x
− (1 − γ

π
)α]−1

∂γ
π

=
α2γ (1 − γ

π
)

[(1− β) γ
x
− (1 − γ

π
)α]2

and

∂γ (1− β) [(1− β) γ
x
− (1− γ

π
)α]−1

∂γ
π

=
αγ (1− β) (1− γ

π
)

[(1− β) γ
x
− (1 − γ

π
)α]2
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that is

∂aπ

∂γ
π

> 0 iff γ
π
> 1

∂ax

∂γ
π

> 0 iff γ
π
> 1

∂αγ [(1− β) γ
x
− (1 − γ

π
)α]−1

∂γ
x

= −
αγ (1− β)

[(1 − β) γ
x
− (1− γ

π
)α]2

< 0

and

∂γ (1− β) [(1− β) γ
x
− (1− γ

π
)α]−1

∂γ
π

= −
γ (1 − β)

2

[(1 − β) γ
x
− (1 − γ

π
)α]2

< 0

H. PROOF OF LEMMA 9

Let us define

Yt =

[
πt

xt

]

the (3.2) can be rewritten as

Yt = g (EtYt+1, επt, εxt, η)

where η is a vector of parameters in the economy that includes parameters of monetary policy.

Under least squares learning hypothesis, it is assumed that the private agents do not know

the effective value of the aπ, ax coefficients, but estimate them through recursive least square

regressions. In this case, agents’ expectations are given by:

EtYt+1 = h (ut, aπ,t (µ) , ax,t (µ))

where aπ,t (µ) and ax,t (µ) are certain statistics inferred from past data and h is the forecast

function that depends on today’s state and the statistics. These statistics are generated by
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learning mechanisms fx and fπ

aπ,t (µ) = fπ (aπ,t−1 (µ) , επt, µ)

ax,t (µ) = fx (ax,t−1 (µ) , εxt, µ)

where µ are certain learning parameters that govern how past data are used to form the

statistics.

In the context of the present model,the function h will be

EtYt+1 =

(
aπ,t

ax,t

)

I assume learning mechanisms fx and fπ

aπ,t = aπ,t−1 + t−1 (πt−1 − aπ,t−1)

ax,t = ax,t−1 + t−1 (xt−1 − ax,t−1)

The PLM of the boundedly rational agents is assumed to be well specified30. Under least

square learning, agents at time t estimate the model

πt = aπ + κπt

xt = ax + κxt

by running a least squares regression of πt and xt on an intercept using available data. Let

(aπ,t, ax,t) denote the least squares estimate using data on πi, xi , i = 1, ..., t− 1. Expectations

30 A well-specified PLM is one that considers all the state variables that we have unde RE:

πt = aπ

xt = ax
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are then given by

[
Etπt+1

Etxt+1

]
= At

where

At =

[
aπ,t
ax,t

]

Then, the ALM of inflation and output gap is

[
πt

xt

]
= Q+ FAt

Thus the mapping from PLM to ALM takes the form

T (A′

t
) = Q+ FAt

Consider the stability under learning (E-stability) of the rational expectation solution A

as the situation where the estimated parameters At converge to A over time.

From Evans and Honkapohja (2001), the E-stability is determined by the following

matrix differential equation

d

dτ
(A′) = T (A′)−A′

For this framework E-stability conditions are readily obtained by computing the derivative of

T (A′)−A′ and imposing that the determinant of the matrix with the derivatives of the previous

differential equation with respect to A is greater than zero and the trace of the matrix with the

derivative is greater than zero. In particular, the eigenvalues of F , z1 and z2, must have real

parts less than one (let us define the biggest eigenvalue of the F matrix as z1).

Then, let us distinguish between the two cases:

A. The “real” case.

In this case two conditions must be satisfied in order to have convergence to the REE:

I. For reality

(αϕ (1 − γπ) + β + (1 − ϕγx))
2
− 4β (1− ϕγx) > 0
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II. z1 < 1

That is
(αϕ(1−γ

π
)+β+(1−ϕγ

x
))

2
+

√
(αϕ(1−γ

π
)+β+(1−ϕγ

x
))2−4β(1−ϕγ

x
)

2
< 1

Under equality

γ
π
= 1−

(1− β)

α
γ
x

Since by hypothesis z1 ≥ z2, if z1 < 1 then also z2 < 1.

Assuming the Clarida, Gali and Gertler calibration, the relation

1. 24 − 1. 32γ
π
+ 0.09γ2

π
− 0.8γ

x
+ γ2

x
+ 0.6γ

π
γ
x
> 0

shows the combinations of γ
π
, γ

x
for which the eigenvalues z1 and z2 are real.

In order to have z1 < 1

γ
π
> 1 −

1

3
γ
x

Graphically, it is necessary to be inside the shadowed area.

-2-1 1 2 3

γπ

γx

2

4

6

8

10

12

14

B. The “complex” case.

In this case two conditions must be satisfied in order to have convergence to the REE:

I. For the solution to be imaginary,

(αϕ (1− γ
π
) + β + (1− ϕγ

x
))2 − 4β (1− ϕγ

x
) < 0
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II. Real part of z1 < 1

(αϕ (1 − γ
π
) + β + (1− ϕγ

x
))

2
< 1

That is

γ
π
> 1−

1− β

αϕ
−

γ
x

α

Since by hypothesis z1 ≥ z2, if z1 < 1 then also z2 < 1.

Assuming the Clarida, Galí and Gertler’s calibration, the relation

(0.3 (1− γ
π
) + 0.9 + (1 − γ

x
))2 − 4 ∗ 0.9 (1− γ

x
) < 0

shows the combinations of γ
π
, γ

x
for which the eigenvalues z1 and z2 are complex.

In order to have the eigenvalue z1 inside the unit circle,

γ
π
>

2

3
−

10

3
γ
x

Graphically, it is necessary to be inside the shadowed area.

-2-1 1 2

γπ

γx

2

4

6

8

10

12

14

In the following pictures, the shadowed areas represent the combinations of γ
π

and γ
x

for which least squares learning converges to rational expectations, under the alternative

values of the parameters given by Clarida, Gali and Gertler (1999).
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-2-1 1 2

γπ

γx

2

4

6

8

10

12

14

A

.

.
B

Note that the “optimal” combinations of γ
π
,γ

x
with the CGG (2000) parameters are:

For λ = 0

γ�
π

= 4

γ�
x

= 1

For λ = 1

γ�
π

= 1. 25

γ�
x

= 1

I. PROOF OF PROPOSITION 10

Consider again the mapping from PLM to ACL under the least square learning

hypothesis:

T (A′

t
) = Q+ FAt
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From Marcet and Sargent (1992) it follows that in order to have root-t convergence the

eigenvalues of F must have the real part smaller than 1

2
.

Then, let us distinguish between the two cases:

A. The “real” case.

In this case two conditions must be satisfied in order to have convergence to the REE:

I. For reality

(αϕ (1 − γπ) + β + (1 − ϕγx))
2
− 4β (1− ϕγx) > 0

II. z1 < 0.5

That is
(αϕ(1−γ

π
)+β+(1−ϕγ

x
))

2
+

√
(αϕ(1−γ

π
)+β+(1−ϕγ

x
))2−4β(1−ϕγ

x
)

2
<

1
2

Consider what happens under equality:

γπ = 1 +
1 − 2β

2αϕ
−

1− 2β

α
γ
x

Note that if z1is smaller than 1

2
then even z2 is smaller than 1

2
.

Assuming the values of the parameters of Clarida, Gali and Gertler (1999), the relation

1. 24 − 1. 32γ
π
+ 0.09γ2

π
− 0.8γ

x
+ γ2

x
+ 0.6γ

π
γ
x
> 0

shows the combinations of γ
π
, γ

x
for which the eigenvalues z1 and z2 are real.

In order to have z1 < 1

2
,

γ
π
> −0. 33 + 2. 6 7γ

x

B. The “complex” case.

In this case two conditions to be satisfied in order to have root-t convergence:

I. For the solution to be imaginary,

(αϕ (1 − γ
π
) + β + (1 − ϕγ

x
))2 − 4β (1− ϕγ

x
) < 0
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II. Real part of z1 < 1

2

(αϕ (1 − γ
π
) + β + (1 − ϕγ

x
))

2
<

1

2

That is

γ
π
> 1 +

β

αϕ
−

γ
x

α

Note that if z1is smaller than 1

2
then even z2 is smaller than 1

2
.

Assuming the values of the parameters of Clarida, Gali and Gertler (1999), the relation

1. 24 − 1. 32γ
π
+ 0.09γ2

π
− 0.8γ

x
+ γ2

x
+ 0.6γ

π
γ
x
< 0

shows the combinations of γ
π
, γ

x
for which the eigenvalues z1 and z2 have an imaginary

part.

In order to have the real part of z1 < 1

2
,

γ
π
> 4.0− 3.33γ

x

L. PROOF OF PROPOSITION 13

Consider the set Γ = {γ
π
, γ

x
: γ

π
> 0, γ

x
> 0 and 0 ≤ z1 < 1}.

Monotonically increasing with respect to γ
π
: for every h = (γ1

π
, γ1

x
) ∈ Γ and

w = (γ2
π
, γ1

x
) ∈ Γ, with γ2

π
≥ γ1

π
, w implies a value for the real part of z1 smaller or equal to

the one with h.

Proof. z1 is the biggest eigenvalue of F :

z1 =
(αϕ (1− γ

π
) + β + (1− ϕγ

x
))

2
+

+

√
(αϕ (1 − γ

π
) + β + (1− ϕγ

x
))2 − 4β (1 − ϕγ

x
)

2

Consider a h = (γ1
π
, γ1

x
) ∈ Γ such that z1 = z1

1
is real. In this case

(αϕ (1− γ
π
) + β + (1− ϕγ

x
))2 − 4β (1− ϕγ

x
) > 0
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For every ε ≥ 0 there is a w = (γ2
π
, γ2

x
) = (γ1

π
+ ε, γ1

x
) ∈ Γ with γ2

π
≥ γ1

π
.

For the combination (γ
π
, γ

x
) = w, the biggest eigenvalue of F , z2

1
is equal to

z2
1
=

(αϕ (1− (γ1
π
+ ε)) + β + (1 − ϕ (γ1

x
)))

2
+

+

√
(αϕ (1− (γ1

π
+ ε)) + β + (1− ϕ (γ1

x
)))2 − 4β (γ1

x
)

2

There could be two cases:

A. w is such that z2
1

is real. In this case

(
αϕ

(
1−

(
γ1
π
+ ε

))
+ β +

(
1 − ϕγ1

x

))2
− 4βγ1

x
> 0

Now, it is obvious that z2
1
− z1

1
< 0 and monotonicity with respect to γπ is satisfied.

B. w is such that z2
1

is complex. In this case z1
1

should be compared with the real part of z2
1
:

(αϕ(1−(γ1π+ε))+β+(1−ϕγ1x))
2

Since

(αϕ (1− (γ1
π
+ ε)) + β + (1− ϕγ1

x
))

2
−

(αϕ (1 − γ
π
) + β + (1 − ϕγ

x
))

2
< 0

monotonicity with respect to γ
π

is satisfied.

Consider an h = (γ1
π
, γ1

x
) such that z1

1
is complex. In this case only the real part of z1

1
:

(αϕ(1−γ
π
)+β+(1−ϕγ

x
))

2
is of interest.

Take a w = (γ1π + ε, γ
1
x), in this case ‖w − h‖ =

[
(γ1

π
+ ε− γ1

π
)
2

] 1

2

= ε. In the point

(γ
π
, γ

x
) = w, the biggest eigenvalue of F , z2

1
is equal to

z2
1

=
(αϕ (1 − (γ1

π
+ ε)) + β + (1 − ϕγ1

x
))

2
+

+

√
(αϕ (1− (γ1

π
+ ε)) + β + (1− ϕγ1

x
))2 − 4βγ1

x

2

Note now, that if z1
1

is complex, z2
1

cannot be real: if z1
1

is complex 4βγ1
x

>

(αϕ (1 − γ1
π
) + β + (1 − ϕγ1

x
))

2.
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Now, since

(
αϕ

(
1− γ1

π

)
+ β +

(
1− ϕγ1

x

))2
>
(
αϕ

(
1 −

(
γ1
π
+ ε

))
+ β +

(
1− ϕγ1

x

))2

then 4βγ1
x
> (αϕ (1 − (γ1

π
+ ε)) + β + (1 − ϕγ1

x
))

2 , i.e., z2
1

is complex. In this case it is

obvious that monotonicity with respect to γ
π

is satisfied.

No Monotonicity with respect to γ
x
: Consider an h = (γ1

π
, γ1

x
) ∈ Γ and a w =

(γ1
π
, γ2

x
) = (γ1

π
, γ1

x
+ ε) ∈ Γ such that z1

1
and z2

1
are complex. In this case it is easy to see

(using a similar argument to the previous proof) that z1
1
≤ z2

1
; take now h = (γ1

π
, γ1x) ∈ Γ

and a w = (γ1π, γ
2

x) = (γ1π, γ
1

x + ε) ∈ Γ such that z1
1

and z2
1

are real and it is easy to see that

z2
1
≤ z1

1
.

M. PROOF OF PROPOSITION 14

Substituting the value of the conditional expectations into (2.21), the optimal policy rule

could be written as:

it = γR + γRg gt

γR =
λα

(λ + α2)− λβ
x

γRg =
1

ϕ

This expression says that the policy-maker should offset demand shocks (gt) by adjusting

the nominal interest rate in order to neutralize any shock to the IS curve. Since this

optimal policy rule involves only the fundamentals of the economy (demand and supply

shocks), it could be defined as the optimal fundamentals-based reaction function under rational

expectations (Evans and Honkapohja (2002))31.

Now, consider a generic expectations-based policy rule of the form:

it = γ + γxEtxt+1 + γπEtπt+1 + γggt

31 Many autors (see for example Woodford (1999)) have shown that this interest rate rule leads to indetermi-
nacy, i.e., a multiplicity of rational expectations equilibria.
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Assuming rational expectations, expected values could be substituted in the previous

expression to obtain the following policy rule:

it = (γ + γxax + γπaπ) + γggt

By comparing this equation with the optimal fundamentals-based policy rule, a system

of two equations on four unknowns (γ, γx, γπ, γg) is obtained:

γR = (γ + γxax + γπaπ)

γRg = γg

Obviously, this system has multiple solutions.

N. PROOF OF PROPOSITION 15

By considering the values of the coefficients of the reaction function γ∗
g
, γ∗,γR and the

rational expectations values ax, aπ given, the combinations of γx and γπ are obtained that

determine asymptotically the same equilibrium derived under the optimal expectations-based

reaction function (2.21):

γπ =
(λ+ α2) (1 + αϕ)− λβ

α (λ + α2)ϕ
−

(1− β)

α
γ
x

Consider the isoquants of Figure 8:

γ
π
= 1−

(1 − z1) (β − z1)

z1αϕ
+
(β − z1)

z1α
γ
x

for γ
x
< γ̂

x

γ
π
= 1 +

β + 1 − 2z1
αϕ

−

1

α
γ
x

for γ
x
≥ γ̂

x

with a kink on (
γ̂
x
=
−z2

1
+ β

ϕβ
, γ̂

π
= 1 +

(β − z1)
2

αϕβ

)
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Restricting the analysis to the set Γβ = {γπ, γx : 0 < z1 < β, γπ > 0, γx > 0}, now the

maximum speed of convergence problem defined for 0 < z1 < β:

min
γ
π
,γ
x

Z (γπ, γx)

s.t. γπ =
(λ+ α2) (1 + αϕ)− λβ

α (λ + α2)ϕ
−

(1− β)

α
γx

has a solution (use proposition 3.D.1 in Mas-Colell et al., 1995), and there is also an indirect

speed of convergence function v (λ) that is strictly decreasing on λ (use proposition 3.D.3 in

Mas-Colell et al., 1995). The maximum speed of convergence that could be induced by a

combination (γ
π
, γ

x
) for a given λ will always coincide with the kink. Note that

∂γ̂
x

∂z1
=

−2z1
ϕβ

< 0

∂γ̂
π

∂z1
=
−2 (β − z1)

αϕβ
< 0 for z1 < β

Now, since the higher the level curve, the faster the convergence, it must be shown that

as λ increases, the line

γ
π
=

(λ + α2) (1 + αϕ)− λβ

α (λ+ α2)ϕ
−

(1 − β)

α
γ
x

moves downward and the fastest speed of convergence that is feasible is lower, or in other

words the smallest z1 that can be reached is larger.

O. PROOF OF PROPOSITION 17

Under the EH policy, the economy evolves according to the following dynamic system:

[
πt
xt

]
=

[
Φ∗

Φ
∗

α

]
+

[
Γ∗ 0

−

(β−Γ∗)
α

0

] [
Etπt+1

Etxt+1

]

The REE under EH policy is

πt =

Φ∗

(1− Γ∗)
and xt =

Φ∗ (1− β)

(1 − Γ∗)α
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Under the ALS-Γ′ policy, the economy evolves according to the following dynamic

system:

[
πt

xt

]
=

[
Φ
∗(1−Γ′)
(1−Γ∗)

Φ∗(1−Γ′)
(1−Γ∗)α

]
+

[
Γ
′

0

−

(β−Γ′)
α

0

] [
Etπt+1

Etxt+1

]

It is evident that the REE under ALS-Γ′ policy is the same as under the EH policy.

Under learning, when both Γ′ and Γ∗ are smaller than one the REE is E-stable.

P. PROOF OF LEMMA 18

If

1 > Γ∗ > Γ′

then

γ ′

π
=

(
1 +

(β − Γ
′)

αϕ

)
>

(
1 +

β − Γ∗

αϕ

)
= γ∗

π

Similarly if

1 > Γ′ > Γ∗

Q. PROOF OF PROPOSITION 19

a
π
=

Φ∗

(1 − Γ∗)

πt

(
i
EH

)
= Φ∗ + Γ∗

aπ,t

(
i
EH

)

πt

(
i
ALS (Γ′)

)
= Φ∗ (1 − Γ∗)−1 (1− Γ′) + Γ′

a
π,t

(
i
ALS (Γ′)

)
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aπ,t

(
i
EH

)
= aπ,t−1

(
i
EH

)
+ t

−1
(
πt−1

(
i
EH

)
− aπ,t−1

(
i
EH

))

aπ,t

(
i
ALS (Γ′)

)
= a

π,t−1

(
i
ALS (Γ′)

)
+ t

−1
(
πt−1

(
i
ALS (Γ′)

)
− a

π,t−1

(
i
ALS (Γ′)

))

a
π,0

(
i
ALS (Γ′)

)
= aπ,0

(
i
EH

)
= aπ,0 �= a

π

I will proove the proposition for γALS
π

> γ∗
π
. A similar procedure could be used for the case

γALS
π

< γ∗
π
.

Let γALSπ > γ∗π , then

Γ
′ < Γ

∗

Now, for t = 0, since

π0
(
i
EH

)
− aπ = Γ

∗

(
aπ,0 −

Φ∗

(1− Γ∗)

)

and

π0

(
i
ALS (Γ′)

)
− aπ = Γ′

(
aπ,0 −

Φ∗

(1 − Γ∗)

)

then

∣∣
π0

(
i
ALS (Γ′)

)
− aπ

∣∣ <
∣∣π0

(
i
EH

)
− aπ

∣∣

For t = 1, since
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aπ,1

(
i
EH

)
− aπ = π0

(
i
EH

)
− aπ

aπ,t

(
i
ALS (Γ′)

)
− a

π
= π0

(
i
ALS (Γ′)

)
− a

π

then

∣∣
a
π,t

(
i
ALS (Γ′)

)
− aπ

∣∣ <
∣∣aπ,1

(
i
EH

)
− aπ

∣∣

Moreover, since

π1

(
i
EH

)
− aπ = Φ

∗

+ Γ∗ (Φ∗ + Γ∗

aπ,0)− aπ

π1

(
i
ALS (Γ′)

)
− aπ = Φ∗ (1− Γ′) (1− Γ∗)−1 + Γ′

(
Φ∗ (1− Γ∗)−1 (1− Γ′) + Γ′

aπ,0

)
− aπ

x1

(
i
ALS (Γ′)

)
− a

π
=
Φ∗ (1− Γ′)

(1 − Γ∗)α
−

(β − Γ′)

α

(
Φ∗

(1 − Γ′)

(1 − Γ∗)
+ Γ′a

π,0

)
− x

then

π1

(
i
EH

)
− aπ = Γ

∗2

(
aπ,0 −

Φ∗

(1 − Γ∗)

)

π1

(
i
ALS (Γ′)

)
− aπ = Γ′2

(
a
π,0 −

Φ
∗

(1 − Γ∗)

)

and since

Γ∗2
> Γ′2
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then

∣∣π1

(
i
ALS (Γ′)

)
− aπ

∣
∣ <

∣
∣π1

(
i
EH

)
− aπ

∣
∣

Similarly for t > 1.

R. PROOF OF LEMMA 21

Given that

x
REE

=
Φ
∗ (1 − β)

(1− Γ∗)α

it must be shown that if a
π,0

(
i
ALS (Γ′)

)
= aπ,0

(
i
EH

)
> aπ , then for every 0 ≤ t <∞,

xt

(
iALS (Γ′)

)
, xt

(
iEH

)
< xREE

and for all 0 ≤ t′, t <∞, with t′ > t

xt
(
iALS (Γ′)

)
< xt′

(
i
ALS (Γ′)

)
< x

REE and xt

(
i
EH

)
< xt′

(
i
EH

)
< x

REE

If aπ,0
(
i
ALS (Γ′)

)
= aπ,0

(
i
EH

)
< aπ , then for every 0 ≤ t <∞,

xt

(
iALS (Γ′)

)
, xt

(
iEH

)
> xREE

and for all 0 ≤ t′, t <∞, with t′ > t

xt
(
iALS (Γ′)

)
> xt′

(
i
ALS (Γ′)

)
> x

REE and xt

(
i
EH

)
> xt′

(
i
EH

)
> x

REE

xt

(
i
EH

)
=

Φ∗

α
−

(β − Γ∗)

α
a
π,t

(
iEH

)

xt
(
iALS (Γ′)

)
=

Φ∗ (1− Γ′)

(1− Γ∗)α
−

(β − Γ′)

α
aπ,t

(
iALS (Γ′)

)
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let aπ,0 < a. Since

(Γ′
− β)

α
,
(Γ∗

− β)

α
< 0

in

x0
(
iEH

)
− x

REE
=

(Γ∗

− β)

α

(
aπ,0 −

Φ
∗

(1 − Γ∗)

)

x0

(
i
ALS (Γ′)

)
− x

REE =
(Γ′
− β)

α

(
aπ,0 −

Φ
∗

(1− Γ∗)

)

then x0
(
i
EH

)
, x0

(
iALS (Γ′)

)
< 0.

For t = 1, we have

x1
(
iEH

)
− x

REE
= Γ∗

(Γ∗

− β)

α

(
aπ,0 −

Φ
∗

(1 − Γ∗)

)

x1

(
i
ALS (Γ′)

)
− aπ = Γ

′ (Γ′
− β)

α

(
a
π,0 −

Φ
∗

(1 − Γ∗)

)

and again it is obvious that x1
(
iEH

)
, x1

(
iALS (Γ′)

)
< 0 and

x1
(
iALS (Γ′)

)
> x0

(
iALS (Γ′)

)
and x1

(
iEH

)
> x0

(
iEH

)

similarly for t=2,3,... and for the case aπ,0
(
iALS (Γ′)

)
= aπ,0

(
iEH

)
> aπ.
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