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Abstract

The paper considers tests of seasonal integration and cointegration for multivariate time
series. The locally best invariant (LBI) test of the null hypothesis of a deterministic seasonal
pattern against the alternative of seasonal integration is derived for amodel with Gaussian i.i.d.
disturbances and deterministic trend. A test of seasonal cointegration is then proposed, which
paralels the common trend test of Nyblom and Harvey (2000). The tests are subsequently
generalized to account for stochastic trends, weakly dependent errors and unattended unit
roots. Asymptotic representations and critical values of the tests are provided, while the finite
sample performance is evaluated by Monte Carlo simulation experiments. We apply the tests
to the indices of industrial production of the four largest countries of the European Monetary
Union. We find evidence that Germany does not cointegrate with the other countries, while
there seems to exist a common nonstationary seasonal component between France, Italy and

Spain.
JEL classification: C12, C32.
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1. Introduction?®

Economic time series are often characterized by a slowly changing, as opposed to fixed,
seasonal pattern. Models with seasonal unit roots, or unit roots at the seasonal frequencies,
can account for this kind of behaviour. Statistical tests for the presence of seasonal unit roots
in quarterly time series have been proposed by Hylleberg et al. (1990). The tests have been
extended to monthly data and seasonal trends in Beaulieu and Miron (1993) and Smith and
Taylor (1998), respectively. In amultivariate set-up, Lee (1992) and Johansen and Schaumburg
(1999) have proposed likelihood-based tests for the rank of the seasonal cointegration space,
which extend the VAR framework of Johansen (1988, 1991, 1995) to seasonal time series.
Empirical applications are given in, inter alia, Engle et a. (1993), Kunst (1993), Reimers
(1997), Huang and Shen (2002). Franses and McAleer (1998) is a comprehensive survey of
this literature.

In all those articles the tests are constructed from the autoregressive representation of
linear time series. This paper, on the other hand, considerstesting for seasonal integration and

cointegration within the unobserved component model

1) Ye = Ky + St + €&,

where y; = (yit,...,yne) iISa N x 1 vector time series, which is made up of a trend g,
a seasonal component s, and an irregular term e,. Specifically, we test for the presence of
common non-stationary components in the seasonal patternss,; deterministic seasonality will
emerge as a special case. The tests are derived in the multivariate LBI framework of Nyblom
and Harvey (2000) and may be viewed as a generalization to multivariate models of the CH
test of seasonal stability of Canova and Hansen (1995) and subsequent devel opments by Caner
(1998) and Busetti and Harvey (2003).

The main difference between our tests and those of Lee (1992) and Johansen and
Schaumburg (1999) is that they reverse the role of the null and the aternative hypotheses, i.e.
in our case the model is” more stationary” under the null hypothesis than under the alternative
one. This parallels the difference between Nyblom and Harvey (2000) and the rank tests of

1| thank Andrew Harvey, Gianluca Cubadda, Filippo Altissimo, Fabio Fornari and ClaudiaMiani for useful
comments on an earlier draft. The views expressed here are mine and do not necessarily represent those of the
Bank of Italy. Email: busetti.fabio@insedia.interbusiness.it



Johansen (1988, 1991, 1995), and also between the KPSS stationarity test of Kwiatkowski et
al. (1992) and the Dickey-Fuller-type unit root tests.

The tests are applied to the series of the index of industrial production of the four
largest countries of the European Monetary Union. We find evidence that Germany does
not cointegrate with the other countries, while there seems to be a common non-stationary
seasonal component between France, Italy and Spain

In summary, the paper proceeds as follows. Section 2 reviews the definition of seasonal
integration and cointegration. Section 3 introduces the LBI test of seasonal stability against
seasona integration and section 4 the test of seasonal cointegration when the trend is a
deterministic function of time and the disturbances are Gaussian white noise. Section 5 shows
how to modify the tests to allow for the presence of stochastic trends and for serial correlation
in the error term; we also suggest running the tests on prefiltered data to guard from so-called
unattended unit roots, which can potentially vastly reduce the power of the tests in finite
samples. The finite sample properties of the tests are evaluated by Monte Carlo simulation
experiments in section 6. Section 7 applies the tests to the series of industrial production of
European countries and section 8 concludes. The proofs of the propositions are collected in an
appendix.

2. Seasonal integration and cointegration

Seasonal integration and cointegration are defined following Hylleberg et al. (1990) and
Cubadda (1999). Let A(\) be the difference operator at frequency A € [0, 7], that is
B 1—cosAL, A e 0,7},
A(A)_{ 1—2cos \L + 12, A€ (0,7),
where L isthe usua lag operator, LFz; = x, 4, k = 0,1,2,... The operator A()\) isasimple
linear filter with zero gain only at the spectral frequency A € [0, 7|; in other words it removes
unit roots at that frequency.

A rea-valued vector time series process y; is said to be integrated of order d
at frequency A € [0,n], denoted I(d; ), if its d-th A-difference, A(N\)%y,, is a linear
process with a continuous and positive definite spectrum at A. The process y, is said to
be (contemporaneoudly) cointegrated of order d,b at frequency A, CI(d,b;A), if (i) each
component of y, is I(d; A) and (ii) there exists a non-zero vector o such that oy is I(d — b),



where d > b > 0. These definitions generalize to any spectral frequency the concepts of
integration and cointegration of Engle and Granger (1987) formulated for frequency zero. Note
that, as pointed out by Hylleberg et al. (1990, p.230), amore general statement of cointegration
at frequency A € (0, ) is given by replacing the vector o above with a polynomial vector
a(L) = ap + oy L; under this latter definition, the restricted case of o;; = 0 is then usually
termed that of contemporaneous cointegration. However, since the unobserved components
representation of y, considered in this paper can only yields seasona cointegration with
a; = 0, in what follows we will not make further distinctions between the two concepts
of contemporaneous and non-contemporaneous cointegration.

In the context of seasonal time series, the interest lies in the seasonal frequencies
A(h) =2mh/s, h =1, ...,[s/2], where s is the number of seasons and the notation || denotes
the biggest integer that is smaller than or equal to z. The period of A(1) isoneyear. Thisis
denoted as the fundamental frequency, while the other frequencies are called harmonics. For
quarterly series, we have \(1) = 7/2 and A(2) = , corresponding to one cycle per year and

two cycles per year, respectively.

Thus a process is said to be seasonally integrated (cointegrated) if it is I(d; A(h))
(CI(d,b; A(h))) at one of the seasonal frequencies A(h), h = 1,...,[s/2]. In this paper we
concentrate onthecasesd = b = 1.

A seasonally integrated linear process can be represented in terms of a non-stationary
stochastic seasonal component. Likewise, a seasonaly cointegrated process implies the
existence of common stochastic seasonal components. This can easily be seen by extending
the Beveridge-Nelson decomposition from the long-run frequency to the seasonal frequencies,
asdonein Hylleberg et al. (1990), Cubadda (1999) and Phillips and Solo (1988). In particular,
Cubadda (1999) obtains a common trend-common seasonal s-common cycle representation for

seasonally cointegrated processes.

In the following sections we consider an unobserved component model where the
coefficients of an otherwise deterministic seasonal component are stochastic and evolve as
random walks. The objective is to make inference on the rank of the disturbances driving
those random walks. The case of rank zero corresponds to deterministic seasonality, full rank
to seasonal integration, while seasonal cointegration occurs otherwise.






11

The objective of this paper is to test for the presence of unit roots at the seasonal
frequencies A(h), h = 1,..., [s/2]. Specifically, if 33, () is of full rank the process displays
seasonal integration at frequency A(h); if rank X, (h) = 0, the seasonal component at that
frequency is deterministic; seasonal cointegration occurs otherwise. In this section we focus
on testing the null hypothesis of deterministic seasonality against the alternative of seasonal
integration; tests of seasonal cointegration are the subject of section 4.

Consider first the case of a model where X, (1) = 0forl # h € {1,2,...,[s/2]},
i.e. all seasonal components are deterministic except at the frequency A(h). Using the
framework of Nyblom and Harvey (2000) we can obtain an optimal test against the alternative
hypothesis of seasonal integration with common signal-to-noise ratio, say ¢, across all series,
the test is consistent for any aternative where 3, (h) has non-zero rank. Specificaly, the
following proposition provides the locally best invariant (LBI) test of Hy : %,,(h) = 0 against
Hi: 3, (h) =¢* (. 21,,),whereq®> > 0anda(h) = 1if h = s/2 and a(h) = 2 otherwise,
under the assumption of Gaussianity of the disturbances.

Proposition 1 Let y; be generated from the model (2)-(7) with %,(1) = 0 for Il # h €
{1,2,....[s/2]}, and let e, be the OLS residuals from regressing y, on (x,,z,)" , t = 1,...,T.
Under Gaussianity, the LBI test of Hy : X,(h) = 0 against Hy : X,(h) = ¢* (. ©®1,,)

rejects when
6) Eon(h) = a(h)irace (ﬁglc(h)) >

~ T
where S5 = TV Y0 evel, C(h) = T2 3" (SARISAR) +SE(RSE(h)) . SA(h) =
S e,cos A(R)s, SP(h) = ! e,sin A(h)s, and c is an appropriate critical value.

Remark 1 When s is even the statistic at the Nyqvist frequency \(s/2) = 7 can be written
without the terms ez sin A\(h)s as they are identically zero, that is SP(s/2) = 0.

The test can be viewed as the extension to multivariate series of the CH test of seasonal
stability of Canova and Hansen (1995). As Busetti and Harvey (2003) show for CH test, the
null limiting distribution of the LBI statistic (8) isindependent of the form of the deterministic
regressors x, as long as they satisfy

T— 00

T
©) lim 7' Dp'xxD;' = Q..
t=1
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and,foreschh=1,...,[s/2],

T
(10) Jim 7 Y Dy'xiz(h) =0,

> t=1
where Dy is a (diagonal) scaling matrix and Q, is a positive definite matrix. Note that x;
may include polynomial trends with possibly level and/or slope shifts. For example, if the
regressorsarex; = (1,¢,d.(«)), whered;(a) isadummy variable equal to 1, for ¢ > o/1" with
0 < o < 1, we have correspondingly Dy = diag(1, T, 1).

Proposition 2 Under Hy : 3,(h) = 0, with x, satisfying (9)-(10) and with %,,(1) = 0 also
Jor 1 # h, the limiting distribution of &, (h) is Cramér-von Mises with a(h)N degrees of
freedom,

(12) Eon(h) 5 /0 B () Bagmyn (r)dr = CoM (a(h)N)

where By(r) = Wy(r) — rWy(1), r € [0,1], denotes a k-dimensional Brownian bridge

process and W (r) a k-dimensional Brownian motion.

The test defined by the statistic (8), though locally most powerful against the alternative
hypothesisH 4 : 2, (h) = ¢* (X. @ ,,), isconsistent against any alternative in which X,,(h)
is different from zero; see remark 2 in the next section.

A joint test against seasonal integration at all frequenciesis obtained by taking the sum
of (8) over h, that is by the statistic

[s/2]

(12) EO,N = Z fo,N(m-

Extending the argument in the proof of proposition 1, it is easy to see that EO,N Is the
LBI statistic for testing the null hypothesis of stationarity at all frequencies
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From the additivity property of independent Cramér-von Mises random variables (cf.
Busetti and Harvey, 2001, p.136), the limiting distribution of (12) under H, is Cramér-von
Mises with (s — 1)V degrees of freedom,

oy — CuM ((s — 1)N).

Note that as T’ — oo (12) diverges (and thus the joint test rgjects the null hypothesis of
deterministic seasonality) if there isaunit root for at least one of the seasonal frequencies.

A test of stability at any subset of the seasonal frequencies can also be constructed in an
obvious way, that is by summing over the relevant frequencies, and critical values are obtained
from a Cramér-von Mises distribution with the appropriate number of degrees of freedom.

Upper tail percentage points for a CoM (k), for & < 12, are tabulated in Canova and
Hansen (1995). Additiona critical values are contained in Table 1 below, in the columns
headed K = 0. Specifically, the first 6 rows of the table (Iabelled one frequency) contain the
upper tail quantiles of CoM(2N), N = 1,2, ...,6, the following 6 rows refer to CvM (3N)
and the final rows to Cv M (11N). The upper tail percentage points have been obtained by
direct simulation of the functional (11) for sample sizes of 1000 over 10000 Monte Carlo
replications. The random number generator of the matrix programming language Ox 2.20 of
Doornik (1998) was used.

For other values of k (that arelarge enough), the quantiles of a C'v M (k) can be obtained
by a Gaussian approximation via a standard Central Limit Theorem. As the mean and the
varianceof aCvM (1) are1/6 and 1/45 respectively, aCv M (k) can be usefully approximated
by a N (k/6,k/45); cf. Hadri (2000) and Harvey (2001). For example, the 0.95 simulated
quantile of CvM (22) is4.907, closeto its Gaussian approximation of 4.817.

In amodel with fixed seasonal dopes, i.e. where p, of (3) is replaced by
[s/2]

(13) p = X8+ Z 1Z(h)d(h),

where X;, Z,(h), 3 are defined below (7) and §(h)= (81(R),...,dx(h)") , h = 1,....[s/2],
are corresponding fixed coefficients, the LBI test for testing Hy : %,,(h) = 0 is obtained
from the same statistic as (8) but constructed using the OL S residuals from regressing y, on
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(x}, 2, tz,) ; denote this statistic by &, (h). Then, astraightforward extension of proposition
(3.1) yields that under H, : X, (h) = 0, with x, satisfying (9)-(10) and with %, (1) = 0 aso
forl # h,

(14) €0 (h) / 7o (7)Y B (1) = CoMy (a()N)

where B/ (r) = By(r) — 6r(1 — r) fol By (s)ds, and By(r) is a k-dimensional standard
Brownian bridge process. The process B/ (r) is sometimes called second level Brownian
bridge and the distribution at the right-hand side of (14) second level Cramér-von Mises
distribution, C'v M5, with a(h) N degrees of freedom; see McNeill (1978) and Harvey (2001).
Then, ajoint test against non-stationary seasonal components at all frequenciesin the presence
of seasonal slopes is provided by the statistic &, y, = S_1/%) ¢ (); under the null hypothesis
E(I ~ asymptotically follows a second level Cramér-von Mises distribution with (s — 1)V

degrees of freedom.

Percentage pointsfor Cv M, (k), for k < 4, are tabulated in Nyblom and Harvey (2000).
For k > 4 they are available from myself, on request. A Gaussian approximation can also be
used in this case, noticing that the mean and the variance of a Cv M, (1) are given by 1/15 and
11/6300, respectively; cf. Hadri (2000).

4. Tests of seasonal cointegration

Recall from section 2 that the definition of seasona cointegration of order 1,1 at
frequency A(h) implies the existence of some linear combination of the series, say o'yy,
that is 1(0; A(h)). If o were known a priori, atest for seasonal cointegration would be the
(multivariate) LBI test (8) of the previous section applied to o'y;. The test, however, would
not be valid if « is estimated; cf. Nyblom and Harvey (2000) where the same problem, but
at frequency zero, is considered. Note that unlike the case of cointegration at frequency zero,
where there might be economic reasons for having o known in advance (as for the theories
of balanced growth, purchasing power parity, uncovered interest rate parity, among others),
treating o as known does not appear convincing in the context of seasonal cointegration.

Following the strategy adopted by Nyblom and Harvey (2000) for testing at frequency
zero, we look at the eigenvalues of the statistic f]glc(h), defined in the previous section.
While the LBI stability test (8) is based on the trace of f]glC(h), i.e. the sum of the
eigenvalues, atest of seasonal cointegration considers only the smallest, say R, of them.
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Specifically, we consider the data generating process (2)-(7) under the restriction that the
seasonal component at frequency A(%) is driven by reduced rank random walk coefficients, i.e.
that

%, (h) = (Z3(h) © L,)

with rank(%;(h)) = K, 0 < K < N. Wetake thisrestriction as the null hypothesis:

Ho x : rank(3(h)) = K.

It can easily be seen that under Hy x the vector time series y; is seasonally cointegrated at
frequency A(h), CI(1,1; A(h)), with R = N — K linearly independent cointegrating vectors®.
The alternative hypothesisis

Hy i 2 rank(35(h)) > K,

I.e. that the cointegration space has a lower dimension than under the null hypothesis. Asin
the previous section, we first maintain that 33, (1) = 0forl # h € {1,2,...,[s/2]}, i.e. that all
seasonal components are deterministic except that at the frequency A(h).

Thetest statistic is the sum of the /2 smallest eigenval ues of a(h)f];lc(h),

N

(15) Een(h) = D 4(h),

j=K+1

where ¢1(h) > y(h) > ... > {n(h) > 0 arethe N ordered eigenvalues. Notice that &, y (h)
Is the statistic (8) of the previous section. The following propostion provides the limiting

® Under Ho x there exists a full rank N x K matrix ® such that ®@' = ;. Let a bea N x 1 vector
belonging to the (R-dimensional) left null space of ®, i.e. suchthat «’'® = 0. Thisis a seasona cointegration
vector since it annihilates the stochastic seasonal component at frequency A(%),

o (In ®z4(h)) (7:(h) = v0(h)) = 0.

Infact, sinceit holdsthat o’ (Iy ® z;(h)) = &’ ® z;(h) and we can writen,(h) = (© ® I,, ) n; where
Nt isI1ID(0,1,, ) , we have that

-

o/ (Iy ©2i(1) (7,(1) = 0(h) = (& ©2(n) (O O L, ) 3" m} = ('@ ©7()) 3" m] = 0.

1

J
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distribution of & n(h) under Ho r : rank(3;(h)) = K, 1 < K < N;thecase K = 0 has
been dealt with in the previous section.

Proposition 3  Under Hy x : rank(X;(h)) = K, 1 < K < N, with x, satisfying (9)-(10) and
with3,(1) =0 forl # h,and h # s/2,

(16) Exen(h) =5 Tr (Ciy(h) — Cly(h) Cyy(R) ' Ciy(h))
with

Ci(h) = fol fOT_A s) (fo ds) dr—l—fo (fo )ds) (f W?(s)ds)/dr

* B
Coh) = [ ([T Wi(s)ds) BA(r)dr + [ ( W )ds) Bg(r) dr
Cyp(h) = [ Bi(r BA( Ydr + [ BE(r)BE(rYdr

where W?((T), WIB;(T) are independent K-dimensional demeaned Wiener processes and

B(r), BE(r) independent R-dimensional Brownian bridges.

Remark 2 The fest is consistent for Ha : rank(X;(h)) > K as at least one of the

eigenvalues in (15) is O,(T'); see the proofin the appendix.

Remark 3 When s in even, the limiting null distribution of § . (s/2) is that of Nyblom and
Harvey (2000).

As in the previous section, a joint test for seasonal cointegration at all frequencies is
obtained by taking the sum of (15) over h, that is by the statistic

[s/2]

(17) EK,N = Z fK,N(h)

As the statistics for each individual frequency are asymptotically independent, the limiting
distribution of (17) under the joint null hypothesisHy x : rank(Xy(h)) = K, h=1,...,[s/2],
can be obtained by simulating percentage points from the sum, over i, of independent random
variables, each with asymptotic representation given by proposition 1 (taking into account of
remark 3 which appliesfor s even).

A non-rgjection of the null hypothesis Hpx in the joint test implies seasona

cointegration with R = N — K linearly independent cointegrating vectors at each of the
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seasonal frequencies. Notice that the cointegrating vectors are allowed to differ across
frequencies, that is the linear combination which implies stability at frequency A(h) isin
genera different from that at frequency (1), 1 # h.

Upper tail percentage points for the limiting null distributions of & (), EKN are
provided in Table 1; for the joint statistic we provide values appropriate to quarterly and
monthly data. The figures are thus asymptotic critical values for testing at a single frequency
(different from the Niqvist frequency 7, for which figures are given in Nyblom and Harvey
(2000)) and the joint test at all frequencies for quarterly series (s = 4) and monthly series
(s = 12), wherel < N < 6. The columns headed for K = 0 correspond to the tests of the
previous section where the distribution is a C'vM with an appropriate number of degrees of
freedom, while those for 1 < K < N are appropriate for the tests of seasonal cointegration.
The quantiles have been obtained by direct simulation of the functional (16) for sample sizes
of 1000 over 10000 Monte Carlo replications. The random number generator of the matrix
programming language Ox 2.20 of Doornik (1998) was used.

5. Stochastic trends, serial correlation and unattended unit roots

In the previous sections we have considered the multivariate unobserved component
model (1) under the assumptions that (i) the trend p, is a deterministic function of time, (ii)
theirregular component &, isawhite noise, and (iii) the seasonal components at all frequencies
except that under test are deterministic. These restrictions are relaxed in each of the following
subsections, in turn.

5.1 Stochastic trends

In an unobserved component model like (1), in general, the trend is alowed to be
stochastic. A flexible form of the trend function which is typically adequate for many
economic time series is the local linear trend of Harvey (1989), where both the level and
the slope are stochastic and evolve as random walks. In this unrestricted form the trend e, is
an 1(2;0) process, which becomes /(1; 0) if the variance of the slope is kept fixed. The trend
will be cointegrated if the variance matrix of the level and/or of the slope disturbance is not of

full rank.

Testing seasonal integration and cointegration in a model with a stochastic trend can
be carried out by two strategies. either by removing the stochastic trend by appropriate
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differencing or by estimating a fully parametrized model and constructing the test from the
one-step-ahead prediction errors.

An 1(1;0) trend is annihilated by applying the standard first difference operator.
However, the resulting irregular component is no longer a white noise but a moving average
process. The statistics of the previous section are thus no longer appropriate, but the test
can be run after a nonparametric modification that allows the irregular component to follow
aweakly dependent process. This modification will be the subject of the next subsection. If
the data are not differenced the test will be still consistent but suffer from a big loss of power
in finite samples for the problem of the unattended unit roots as explained in subsection 5.3.
For the case of an /(2; 0) stochastic linear trend, as the variance of the slope istipically small
compared with that of the other components, it can be anticipated that it may be adequate
to apply the tests to first differenced data. In fact, the Monte Carlo experiments reported in
Busetti and Harvey (2003) for the CH test suggest that taking first differencesislikely to bea
good strategy in practice.

A parametric approach to deal with a stochastic trend can also be employed. In
particular, Busetti and Harvey (2003) considers modifications of the CH test to account for the
presence of stochastic components, other than the seasonal, by fitting a parametric model to
the data. Theideaisto put the model in state space form and estimate the nuisance parameters
under the aternative hypothesis of seasonal integration or cointegration. Then the Kalman
filter will be run under the appropriate null hypothesis and the Kalman filter innovations used
to compute the statistic £ (1) of the previous section. The limiting null distribution will be
unchanged; cf. Busetti and Harvey (2003) for more details. In that paper they also produce
extensive Monte Carlo experiments for a quarterly (univariate) model made of a stochastic
trend component plus a seasonal and awhite noise irregular term. Their results show that the
parametric test at frequency 7 (but not that at frequency 7/2) is dightly oversized in asample
of 200 observations, and that oversizing trandates to the joint tests. In terms of power, the
parametric tests are superior, but not by very much, with respect to running the nonparametric
tests based on first differenced data.

5.2 Nonparametric correction of serial correlation

If we replace the assumption of 11D for the irregular component <, of (2) by that of weak
dependence, we will require a non-parametrically modified version of the statistics £ (h) in
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order to obtain a statistic with a pivotal limiting null distribution. For the case N = 1 Busetti
and Harvey (2003) suggest a modified statistic where the sample variance of the observations
is replaced by a nonparametric estimator of the spectrum of =, at frequency A(h). We propose

an analogous correction for our multivariate model.

Let ©2()\) denote (27) the multivariate spectral density of e, at frequency A, A € [0, 7].
Then in our statistics we replace s, by a consistent estimator, say ﬁ(h), of the spectrum at
frequency A(h), eg.

m

Q(h) = Y k(j,m)T(5) (cos A(h)j — isin A(h))
j=—m
where k(.,.) is a kernel function, e.g. the Newey-West kernel k(j,m) = 1 — |j| /(m + 1),
f(]j]) =71 ZtT:jH eqe, ;1S the sample autocovariance of the OLS residuals and at lag
j > 0,and T(—|j]) = L(|j]). Alternative options for the kernel may be found in, inter
alia, Priestley(1989) and Andrews (1991). Setting the bandwidth parameter m such that
m — oo and m/T"? — 0 asT — oo ensures that Q(h) % Q(A(h)) under the null
and remains stochastically bounded under the alternative hypothesis of stochastic seasonality,
thereby ensuring consistency of the test; see Stock (1994, p.2797-2799). Note that in general
ﬁ(h) isacomplex matrix but it can be computed by calculationsin the real domain by splitting

thereal part and the imaginary part.

Thus we have the following spectral nonparametric statistic for seasonal integration
(18) &o.n (1) = a(h)trace (ﬁ(h)*l(}(h))

where a(h), C(h) are defined asin proposition 1. An analogous correction holds for the test

of seasonal cointegration,

N

(19) Senlh)y= > 65(h),

J=K+1
where £3(h), ..., 03 (h) arethe N ordered eigervalues of a(1)€2(h) ' C(h). Notethat, as2(h)
and C(h) are positive definite hermitian matrices, the eigenvalues of (k) ' C(h) arereal and

positive, see e.g. Rao (1973).

Testing at all seasonal frequencies can be carried out in an obvious way, by summing the

previous statistics over h.
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By extending the arguments of Busetti and Harvey (2003) and Nyblom and Harvey
(2000) it is straightforward to show that the limiting null distributions of (18), (19) are as
given by propositions 3.2 and 4.1 respectively.

An aternative way of alowing for seria correlation in the error term e, is to estimate
afully parametric model and compute the test statistics from the Kalman filter innovations as
explained in the previous subsection.

5.3 Unattended unit roots

Busetti and Taylor (2003) and Taylor (2003) have considered the effect of unit root
behaviour at some frequency on the stability tests at other frequencies; this situation istermed
" unattended unit roots”. They show that the power of the testsis vastly reduced in the presence
of unattended unit roots, indeed, under the null hypothesis, the test statistics converge in
probability to zero. However, a smple way to avoid this reduction in power is to prefilter
the data so as to annihilate any unattended unit roots.

In the context of testing for seasonal integration and cointegration at frequency A(h),
h € {1,...,]s/2]}, one may wish to guard against the effects of unit roots at the other
seasonal frequencies \(7), I # h. Thisis accomplished by computing the tests after the filter
Vs(A(h) = (1+ L+...4+ L5 1) /A(X(h)) has been applied to the data; note that the seasonal
sum operator in the numerator isjust the product, over frequencies, of thefirst differencefilters
A(A(R)) of section2: TTI% A(A(h)) = 14 L+...+L**. Asan example, the test at frequency
7 for quarterly datawill be computed on the transformed data (1 + 7.?) ;.

Since the application of the prefilter V(A(h)) transforms a white noise into a moving
average process, the tests need to be computed with some correction for serial correlation, asin
the previous subsection, even if theirregular component isawhite noise. Theresulting process
will be strictly non-invertible at all seasonal frequencies except A(h), that is the spectrum at
A(h) is apositive definite matrix.

Consequently, we suggest using the statistics (18), (19) where the OLS residuals are
computed from the regression of V,(A(h))y: on w; = (V4(A(h))x}, z,)'; note that the
prefiltered regressors V,(A(h))z, span the same space as z;. If the data generating process
also contains a unit root at frequency zero, as when the trend p, is arandom walk process, the

data should be prefiltered by (1 — L) Vs (A(h)).
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A further advantage of prefiltering is that it makes the tests robust to the presence of
structural breaks at the filtered frequencies, as the filter transforms alevel shift into at most f
outliers, where f is the degree of the filter, that have no effect asymptotically; see Busetti and
Taylor (2003).

Alternatively, a parametric approach could also be employed to deal with unattended
unit roots. Thiswould require the test to be computed from the Kalman filter innovations, by

keeping all the components with unit roots unrestricted except that under test.

6. Monte Carlo results

In this section we use Monte Carlo simulation methods to investigate the finite sample
size and power properties of the tests for seasonal integration and cointegation considered in
the previous sections.We generate quarterly data from the DGP (2)-(7), setting

26:<(1).5 (1)5>
We focus on the properties of the tests at the fundamental frequency A(1) = /2 and of
the joint tests at both seasonal frequencies 7/2 and 7. The power of the tests depend on the
magnitude of the variance matrices, ¥,,(1) and X,,(2), driving the non-stationary components
at frequencies A\(1) = w/2 and A(2) = 7. As concerns frequency 7 we set X2, (2) = ¢33,
where the square root of the signal-to-noise ratio ¢, varies among 0,0.1,0.5. As our main

objective is to study the finite sample behaviour of the tests at frequency 7/2, setting g2 > 0
allows us to see the effect of an unattended unit root.

We consider three cases of the data generating process at frequency /2 :
(A) 277(1) = q%EEJ
(B) 277(1) = q%'??

O=m=-d ().

where in each case the sgquare root of the signal-to-noise ratio, ¢, varies among
0,0.025,0.050,0.075,0.1,0, 5. The results are reported in Tables 2.A, 2.B, 2.C respectively.
Case (A) isthe LBI set-up; case (B) departs from the LBI as it does not mantain the same
cross correlation in 33, (1) asin 3.; case (C) corresponds to a common seasonal component
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with the same loadings for the two series, that is seasonal cointegration with cointegration
vector equal to (1, —1).

The results are for quarterly series of length 7 = 100. For each configuration of the
parameters of the data generating process we compute 6 statistics:

(1) 41(1) + £5(1), to test the null hypothesis K = 0 at frequency /2 with datain levels,

(2) £1(1) + £5(1), to test the null hypothesis K = 0 at frequency 7/2 from prefiltered
data,

(3) £1(1) 4+ £o(1) + £4(2) + £2(2), to test the null hypothesis K = 0 jointly at frequencies
/2 and 7 with dataiin levels,

(4) £5(1), to test the null hypothesis K = 1 at frequency 7/2 with datain levels,
(5) £5(1), to test the null hypothesis K = 1 at frequency /2 from prefiltered data,

(6) £2(1) + ¢5(2), totest the null hypothesis K = 1 jointly at frequencies 7 /2 and 7 with
datainlevels.

When the prefilter V4(A\(1)) = 1 4 L is applied to the data, the eigenvalues ¢;(h),
j,h = 1,2, are computed using a spectral estimate ﬁ(h) with a Newey-West kernel with
bandwidth m = 4.

The empirical rejection frequencies, reported in percentages, are based on 100,000
replications and refer to tests run at the 5% significance level. All experiments were
programmed using the random number generator of the matrix programming language Ox
2.20 of Doornik (1998).

Consider first the results of Table 2.A for the case of no unattended unit root, ¢, = 0.
The LBI test (1) of K = 0 at frequency /2 appears dightly oversized; in fact, the prefiltered
test (2) computed with bandwidth m = 4 has a size closer to the nominal 5% and, although
prefiltering is not advisable as ¢o = 0, it does not suffer from a significant power loss with
respect to (1). As expected, the power of the joint test (3) islower than that of the LBI test at
the single frequency /2.

The tests for seasonal cointegration (4)-(6) display much lower power than (1)-(3),
but they are consistent since the smallest eigenvalues ¢»(1), ¢5(1) are O,(T). Thus, in finite
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samples one might find spurious evidence for seasonal cointegration when in fact the seriesare
seasonally integrated without common components. However, in an additional simulation (not
reported in the table), where the sample size has been enlarged to 7" = 200, we have obtained
25.7,49.1, 66.3, 99.7 as rejection frequencies for the test (4) when ¢; = 0.050, 0.075, 0.100,
0.500 respectively; thus, for moderately large samples, the hypothesis of seasonal cointegration
ismuch more likely to be rejected.

It is interesting to examine the effect of the unattended unit root at frequency 7. When
g2 = 0.5 the power of test (1) in the levels is very low; on the other hand, the regjection
frequencies of the prefiltered test (2) are largely comparable to those of the LBI test where
g2 = 0. Herethejoint test in levels(3) has almost unit rejection probability, being driven by the
unit root at frequency 7. Analogous effects apply to the tests (4)-(6) of seasonal cointegration.

Table 2.B has been included mainly to demonstrate that the power of the tests is not
much influenced by the cross correlation structure of X, (1). The figures in Table 2.B are
broadly comparable with those in Table 2.A; similar figures would also apply for moderate
negative cross correlation.

The case of a data generating process with perfect correlation in X, (1), that is with
seasonal cointegration, isexamined in Table 2.C. Consider first the case ¢, = 0. Evenfor large
values of ¢; the rgjection frequencies of the seasonal cointegration tests (4)-(6) never exceed
5.1%; that is, the empirical size of the test, defined as maximum probability of rejecting the
null hypothesis when it is true, turns out to be close to the nomina size even in a sample
of T" = 100. Note that the finite sample power of the seasonal cointegration test is in the
figures of Table 2.A-B and thus has aready been discussed above. As concerns the power of
the tests (1)-(3) of the null hypothess K = 0, it is somehow lower than the corresponding
figuresin Table 2.A-B but higher than the power of the seasonal cointegration tests (4)-(6) of
the same tables. Finally, the unattended unit root, ¢, > 0, has the effect of reducing power in
aqualitatively similar way to that of the previous cases.

7. Application: industrial production in the euro area

Figures 1A-1D show the logarithm of the monthly index of industrial production in the
four largest countries of the European Monetary Union: Germany, France, Italy and Spain.
The data refer to the period 1985M 1-2001M 12; the source is Eurostat.
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All series are characterized by large seasonal swings and it also appears, from visual
inspection, that the seasonal patterns are not constant over time. The main questions we want
to address are whether the seasonality of industrial production is deterministic and whether
there are co-movements at the seasonal frequencies.

We apply the tests of seasonal integration and cointegration to each combination of the
four countries, allowing for serial correlation in the error term as explained in subsection
5.2. The results are displayed in Tables 3.A-B, for values of the bandwidth parameter
m = 5,10, 15; these values are compatible the number of observations 204. The choice of
m reflects the usual trade-off between size and power of the tests, see e.g. Kwiatkowski et
al. (1992). For our case, a good compromise between correct size and good power could be
m = 10. The shaded figures indicate rejection at 5% significance level of the null hypothesis
that there are K non-stationary seasonal components, that is seasonal cointegration with
R = N — K cointegrating vectors. In Table 3.A the tests are applied to first differenced
data to account for a stochastic trend; in Table 3.B the data have a so been prefiltered to guard
from unattended unit roots, as explained in section 5.3 (that is the tests at frequency A(h) are
carried out on the filtered observation (1 — L) V(A(h))y:).

The rows of the tables indicate to which subset of the four countries, Germany, France,
Italy and Spain, the tests are applied; the columns indicate the seasonal frequency to which the
figuresrefer. The last 3 columns contain the joint test at all seasonal frequencies.

Consider the last 4 rows of Table 3.A, which apply the tests to the 4-dimensiona
vector of the series of industrial production. The results for each single seasonal frequency
Ah) = 2mh/s, h = 1,...,[s/2], maybe with the exception of A\(2) = 7/3, seem to indicate
one common seasonal component across the four countries; the joint test, however, supports
the view of 2 non-stationary seasonal components. If we consider the same results for the
prefiltered data, in Table 3.B, the situation changes substantially. Here the tests strongly point
to rejection of the hypothesis of one common seasonal component (K = 1) for each of the
frequencies A(1), A(2), A(3), A(4); there also appears to be argection of K = 2 when the
bandwidth parameter m is set equal to 5. Again, combining the results for each frequency in
thejoint test givesastronger indication of non-stationarity. Inthelight of subsection5.3itisno
surprise that the tests based on prefiltered data provide less evidence of seasonal cointegration
asthey do not suffer from the reduction of power due to unattended unit roots.
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Given that the four countries seem to be characterized by two common seasonal
components at most frequencies, it is interesting to figure out whether there is any country
whose seasonal pattern does not cointegrate with the others. In fact this seems to be the
case of Germany. The pairwise analysis contained in the first 6 rows of Table 3.B shows that
Germany does not cointegrate with any of the other European countries at most of the seasonal
frequencies. On the other hand, the results of the tests with . = 10 and 15 on the trivariate
series of French, Italian and Spanish industrial production provide evidence for a single non-
stationary component at each frequency except /3 (thergjection of K = 1 inthejoint test is
also influenced by the outcome at 7/3). Thisview isalso supported by looking at the pairwise
analyses of France-Italy, France-Spain and Italy-Spain. Note that the corresponding results
for non-prefiltered data in Table 3.A show much more evidence of seasonal cointegration;
however, as previoudly explained, these outcomes are likely to be an artifact dueto the presence
of unattended unit roots.

Finally, we also present the results for the Nyblom-Harvey tests at frequency zero in
order to understand whether there are also co-movements in the stochastic trend components
of the series. The results are contained in Table 4 for m = 3,6,9,12, 15; the prefiltered data
are obtained by applying the seasonal sumfilter 1 + L + L? + ... + L', It isinteresting to see
that there is less evidence of cointegration at frequency zero than at the seasonal frequencies.
In fact, the results for the prefiltered data with m = 9 indicates a 5% rejection of the null
hypothesis of two non-stationary trends among the four series, which would imply the presence
of a single cointegration vector. In particular, it is worth noticing that the three countries that
seemed characterized by co-movements at the seasonal frequencies, France, Italy and Spain,
appear, on the other hand, to have their own idiosyncratic trends.

8. Concluding remarks

The paper has proposed tests of seasonal integration and cointegration in the framework
of multivariate unobserved component models. The tests have been derived under the
assumption of Gaussian white noise disturbances and then extended to models with stochastic
trends, weakly dependent errors and unattended unit roots. The finite sample properties of
the tests have been investigated by Monte Carlo smulation experiments. The Monte Carlo
results point to the practical advice of prefiltering the data to avoid large power reduction
due to unattended unit roots, and confirm analogous findings for univariate series in Busetti
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and Taylor (2003) and Taylor (2003). Prefiltering seems particularly relevant for the seasonal
cointegration test, whose power is not so large in a sample of 100 observations.

The application of the tests to the prefiltered series of industrial production across
the main countries of the European Monetary Union has provided evidence of seasond
cointegration with a single common component for France, Italy and Spain. Germany, on
the other hand, seems to be characterized by its own idiosyncratic seasonal pattern. Much
more evidence of cointegration has emerged from the same tests but without prefiltering the
data; however, in the light of the theoretical arguments and simulation results on the effect of
unattended unit roots, that evidence is likely to be related to the limited power of the testsin
this context.



Appendix: proofs of the propositions

Proof of proposition 1. The proof amounts to first showing that (2)-(7) belongs to the
class of models considered by Nyblom and Harvey (2000) and then applying their theorem
A.l

Letx; = (%}, z(1), ..., z([s/2])") , t = 1,...,T, bethe p* x 1 augmented vector of
regressors, with p* = p+ s — 1, and B8 = (B}, Yi(1), ., Yio([5/2])) , i = 1,...,N, the
corresponding p* x 1 vector of coefficients. Write (2)-(7) as

(20) Y = X* B +

(TxN)  (Txp*)(p*xN) (TxN)

where Y = (yq,....yr) , X*=(x},....x3) , B=(8],...,8%), U = (ui,...,ur) with, for
t=1,....,T,u = S Z,(h)(y,(h) — 7o(h)) + &. Clearly,

[s/2]
B (uar)) = Zy(h)E,(h)Zy(h) min(t,s) + 1(t = 8)E. t,s =1, T
h=1

Then, under Hy : X,(h) = ¢*(X.@1,,) and assuming X,,(1) = 0 for I # h, the
covariance matrix of vec (U) is given by
(21) 2.0 (In+¢°G(h))
where G(h) is defined by
(G(h)]

, = min(t, s) cos (A(h) (t — s)), ts=1. ..

t

Under Gaussianity, theorem A.1 of Nyblom and Harvey (2000) can be applied to the
model (20) with covariance structure (21). Thisimmediately yields the LBI statistic

22) trace {(E’E)*1 (E’G(h)E)} ,

where E = (ey,...,er) = Y —X*(X¥X*)"'X”Y are the OLS residuals from the
multivariate regression (20). The test is locally most powerful and invariant under the group
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of affine linear transformations

Y — YP + X*A,

where P isan arbitrary non-singular N x N matrix and A is an arbitrary p* x N matrix.

Using standard trigonometric identities, it can be verified that (22) can be rewritten as
Ta(h)trace {f]glC(h)} :

where . = 7' 1 ejel, C(h) = T2 (S (h) +SP(SP(R)) . SA(h) =
S escosA(h)s, SP(h) = ' e,sinA(h)s. On dividing by 7', we then obtain the

s=1

expression given in the proposition.

Proof of proposition 2: By the functional central limit theorem of Chan and Wei (1988)
and using the same arguments as proposition 1.1 of Busetti and Harvey (2003), under Hg
7384, (h) = Wha(r ) and, for h # s/2, 77385 (h) = WE(r; .), where the
notation = indicatesweak convergence of the associated probability measureand W4 (r; X.),
WZ(r; X.) are independent N-dimensional Wiener processes with variance X.. As under
the null hypothesis 3. 5 3. the proposition follows by an application of the Continuous
Mapping Theorem and using the result that the sum of two independent random variables
with a Cramér-von Mises distribution with a and b degrees of freedom respectively follows a
Cramér-von Mises distribution with a + b degrees of freedom (see Busetti and Harvey, 2001,
p.136).

Proof of proposition 3. Since there exists a non-singular matrix P such that PX. P’ =
I and PX,(h)P" = diag(q,...,qn), See Rao(1973, p.41), and the test is invariant to
premultiplication of the observations by an arbitrary N x N matrix, without loss of generality
we can consider, throughout this proof, the case . = I and 33, (h) = diag(q, ..., qv)-

Partition the N x 1 vector e, as e; = (e}, e),) , where the two components have
dimensions K x 1 and (N — K) x 1 respectively. Without loss of generdity, under Ho x :
rank(%,(h)) = K, we can assume that 3, (h) = diag(qi, ..., 9k, 0, ...,0), i.e. that the first
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K components of the observation vector y, have non-stationary stochastic seasonality and that
the remaining N — K components have deterministic seasonality.

From asimple extension of the arguments of Theorem B1 of Nyblom and Harvey (2000),
it follows that, under Hy k-, the K largest eigenval ues of a(h)f];lc(h) are O,(T") while the
sum of the N — K smallest eigenvalues, £ (h), isO,(1) and asymptotically equivalent to

a(h)TT <022(h) — CQl(h)CH(h)71012(h)> s
where
T
= (SamSi(h) +SEMSH(hY), i,5=1,2,
t=1
and S (h) =3 e cos A(h)s, SE(h) = 3!, e sin A\(h)s, i =1,2.

By the functional central limit theorem of Chan and Wei (1988) and the continuous

mapping theorem, we have the following asymptotic results:

-2 _ '
THaQ Sl > [ Wits)ds
T73/a(h)Q 8%, (h) = / W (s)ds, h+#s/2,
T73/a(h)Sqir(h) = Ba(r)
T7§ \% a’(h SQ[TT] h) = Bg(?"), h 7é 8/27
where, for i = A, B, Wo(r) = Wi(r) — fol W (r)dr, Wi.(r) are indepemdent K-
dimensional Wiener processes and B%;(r) independent R-dimensional Brownian bridges,

and Q =diag(q, ..., qx ). Then the proposition follows by an application of the Continuous
Mapping Theorem.
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A=1/6 A=1/3 A=m/2 A=21/3 A=51/6 A=T all \'s

m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15] m=5 m=10 m=15

GE-FR K=0 2.861 3.144 2822 | 2795 2778 2413 | 2.395 3.237 2.602 | 4.023 2931 2360 | 1.552 1.813 1.503 | 2.398 1.540 1.140 | 16.024 15.443 12.839
K=1 0.222 0.390 0437 | 0.733 0.669 0.587 | 0.347 0.634 0.490 | 0.534 0.561 0.502 | 0.131 0.314 0.251 | 0.057 0.081 0.074 | 2.023 2.650 2.341

GE-IT K=0 3.036 3.378 3.209 | 3.384 3.925 3.841 | 2.853 2555 2.093 | 3.111 2.754 2.263 | 2420 2.762 2.285 | 2.574 1.682 1.224 |17.378 17.056 14.915
K=1 0461 0.608 0.629 | 1.172 1.097 0.891 | 0.230 0.306 0.289 | 0.473 0.541 0.504 | 0.283 0.519 0.377 | 0.120 0.111 0.089 | 2.738 3.182 2.779

GE-SP K=0 3.328 3.387 3.333 | 2.871 3.077 2.888 | 3.206 3.610 3.256 | 2.028 2.305 1.883 | 4.644 3.453 2595 | 2.125 1.568 1.151 | 18.201 17.399 15.107
K=1 0.401 0470 0543 | 0495 0.551 0.538 | 0.654 0.748 0.648 | 0.450 0.551 0.468 | 0.278 0.404 0.323 | 0.101 0.192 0.143 | 2.379 2.916 2.663

FR-IT K=0 2176 2.688 2.583 | 2.164 2.617 2309 | 2.147 2512 1.875 | 3.774 2945 2240 | 2.031 2517 2.049 | 1.049 0.896 0.702 |13.341 14.174 11.759
K=1 0.352 0.475 0.487 | 0.369 0.427 0.421 | 0.213 0.287 0.249 | 0.348 0.285 0.240 | 0.202 0.302 0.287 | 0.045 0.046 0.041 | 1.529 1.821 1.725

FR-SP K=0 2.650 2.669 2450 | 2.024 2.351 1.957 | 2230 2443 1.849 | 3.388 2830 2.131 | 4.423 3226 2447 | 0.619 0.695 0.586 |15.334 14.215 11.419
K=1 0.112 0.182 0.233 | 0.153 0.154 0.161 | 0.085 0.178 0.145 | 0.422 0.509 0.394 | 0.185 0.300 0.272 | 0.101 0.191 0.143 | 1.058 1.514 1.349

IT-SP K=0 2.756 2.681 2463 | 2465 3.292 3.151 | 2.671 2599 2.038 | 2.396 2541 1.985 | 4.516 3.320 2477 | 1.182 0.954 0.730 | 15.987 15.388 12.843
K=1 0.245 0.271 0.273 | 0.533 0.696 0.687 | 0.353 0.329 0.289 | 0.221 0.293 0.258 | 0.123 0.185 0.170 | 0.100 0.187 0.140 | 1.575 1.961 1.818

K=0 3456 3.846 3.716 | 3.773 4.360 4.266 | 3.239 3.752 2.926 | 4.922 3.865 3.097 | 2.660 3.076 2.529 | 2.704 1.752 1.286 | 20.754 20.652 17.820

GE-FR-IT K=1 0.641 0.904 0952 | 1.370 1.298 1.093 | 0.501 0.834 0.670 | 0.869 0.849 0.763 | 0.421 0.702 0.564 | 0.163 0.163 0.138 | 3.965 4.750 4.181
K=2 0.167 0.293 0.318 | 0.162 0.173 0.167 | 0.154 0.180 0.173 | 0.316 0.275 0.232 | 0.082 0.172 0.168 | 0.041 0.046 0.041 | 0.921 1.139 1.098

K=0 3.528 3.682 3.664 | 3.274 3.459 3.176 | 3.449 4155 3.712 | 4.601 3.874 3.118 | 4.821 3.718 2832 | 2.514 1.734 1.287 |22.188 20.622 17.790

GE-FR-SP K=1 0.505 0.668 0.777 | 0.838 0.801 0.727 | 0.742 0925 0.776 | 1.002 1.122 0.992 | 0.453 0.662 0.555 | 0.152 0.251 0.198 | 3.692 4.429 4.025
K=2 0.103 0.179 0.226 | 0.083 0.092 0.102 | 0.070 0.158 0.124 | 0.385 0.443 0.338 | 0.100 0.245 0.213 | 0.050 0.058 0.053 | 0.790 1.174 1.056

K=0 3.0563 3.174 3.067 | 2.682 3.546 3.363 | 2.834 3.037 2.343 | 4.097 3458 2619 | 4.740 3.660 2.800 | 1.331 1.112 0.872 | 18.737 17.986 15.063

FR-IT-SP K=1 0.437 0.600 0.658 [ 0.679 0.849 0.845| 0.454 0522 0450 | 0.636 0.675 0.546 | 0.327 0.514 0.482 | 0.150 0.240 0.185| 2.682 3.400 3.165
K=2 0.081 0.114 0.133 | 0.128 0.126 0.130 | 0.080 0.169 0.138 | 0.149 0.159 0.145| 0.119 0.177 0.161 | 0.044 0.044 0.040 | 0.602 0.789 0.747

K=0 3.946 4.257 4.545| 4161 5.007 5.174 | 4102 4686 4.111 | 5.320 4570 3.798 | 5.126 4.232 3.221 | 2.846 1.944 1.431 |25.501 24.696 22.281

GE-FR-IT-SP K=1 0.810 1.086 1.191 | 1462 1.398 1.203 | 1.053 1.174 0991 | 1.177 1261 1.138 | 0.578 0.906 0.747 | 0.258 0.338 0.265 | 5.338 6.164 5.535
K=2 0.271 0.394 0438 | 0.224 0.249 0.256 | 0.225 0.329 0.289 | 0.540 0.582 0471 0.194 0.376 0.349 | 0.136 0.126 0.107 | 1.589 2.055 1.911

K=3 0.080 0.101 0.115| 0.059 0.075 0.088 | 0.066 0.131 0.106 | 0.124 0.135 0.130 | 0.069 0.097 0.098 | 0.037 0.042 0.039 | 0.435 0.580 0.575

Table 3.A. Results of the tests for non prefiltered data. Shaded figures indicate rejection at 5% significance level.




A=1/6 A=1/3 A=T/2 A=21/3 A=51/6 A=T all \'s

m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15| m=5 m=10 m=15] m=5 m=10 m=15

GE-FR K=0 3.932 3.543 3.046 | 6.691 4.128 3.341 | 6.994 4459 3.585 | 5238 3.131 2451 | 3.509 2232 1.802 | 2836 1.615 1.167 |29.200 19.108 15.391
K=1 0.857 0.781 0653 | 1.560 0.936 0.709 | 1.323 0.823 0.647 | 0.984 0.641 0.522 | 0.611 0.417 0.360 | 0.201 0.134 0.114 | 5536 3.732 3.006

GE-IT K=0 3.715 3.566 3.242 | 11.203 7.177 6.123 | 4.794 2905 2.222 | 5.587 3422 2.656 | 5.384 3482 2777 | 3.017 1.705 1.224 |33.701 22.257 18.244
K=1 1.051 0937 0.783 | 2288 1.334 0.982 [ 0.575 0.367 0.301 | 1.030 0.677 0.554 | 0.997 0.632 0.501 | 0.182 0.110 0.086 | 6.123 4.057 3.206

GE-SP K=0 3.685 3.681 3.647 | 7.778 4.852 4.066 | 8.804 5.737 4.861 | 4.317 2662 2.072 | 6.339 3.746 2.798 | 2960 1.697 1.239 | 33.883 22.375 18.684
K=1 0.724 0.820 0.722 | 1.423 0.895 0.710 | 1.742 1.082 0.838 | 0.930 0.597 0.482 | 0.791 0.517 0.424 | 0.325 0.204 0.165| 5936 4.116 3.339

FR-IT K=0 3.865 3.268 2.756 | 6.428 4.051 3.282 | 4.926 2958 2.246 | 5.617 3.249 2399 | 4909 3.061 2.366 | 1.644 0.993 0.763 |27.390 17.580 13.813
K=1 0.755 0.609 0534 | 1124 0.731 0.598 | 0.615 0.390 0.314 | 0.502 0.308 0.246 | 0.686 0.458 0.368 | 0.125 0.079 0.064 | 3.807 2.574 2.124

FR-SP K=0 3.539 3.013 2552 | 5437 3.233 2446 | 5371 3.271 2541 | 5291 3.109 2.340 | 5930 3.460 2.536 | 1.381 0.879 0.709 | 26.949 16.965 13.125
K=1 0.375 0.291 0.285 | 0.407 0.272 0.236 | 0.512 0.356 0.305 | 0.911 0.546 0.420 | 0.596 0.379 0.301 | 0.336 0.212 0.171 | 3.137 2.057 1.719

IT-SP K=0 3.701 3.197 2653 | 9915 6.862 6.104 | 5545 3.308 2.516 | 5.018 2.989 2.261 | 6.042 3.531 2.592 | 1.676 1.004 0.772 |31.897 20.890 16.897
K=1 0477 0.363 0.327 | 1.831 1.161 0.906 | 0.813 0.500 0.397 | 0.529 0.347 0.289 | 0.343 0.240 0.207 | 0.336 0.212 0.172 | 4.328 2.824 2.299

K=0 4769 4.354 3.858 | 12.867 8.457 7.549 | 7.811 4.929 3946 | 7.371 4.433 3435 | 6.034 3.874 3.106 | 3.182 1.816 1.318 |42.034 27.863 23.211

GE-FR-IT K=1 1554 1357 1.146 | 2802 1.666 1.252 | 1.733 1.084 0.860 | 1.542 0.994 0.815| 1.385 0.902 0.730 | 0.343 0.218 0.179 | 9.359 6.221 4.983
K=2 0.500 0.399 0.350 | 0.435 0.282 0.232 | 0.361 0.231 0.189 | 0.498 0.305 0.243 | 0.352 0.252 0.224 | 0.119 0.073 0.058 | 2.265 1.542 1.295

K=0 4502 4.267 4.094 | 8.706 5.373 4.435|10.434 7.126 6.538 | 7120 4.296 3.363 | 6.861 4.101 3.112 | 3.211 1.853 1.360 |40.835 27.015 22.901

GE-FR-SP K=1 1230 1.169 1.027 | 1.869 1.146 0.896 | 2.104 1.330 1.049 | 2.067 1.335 1.110 | 1.283 0.844 0.703 | 0.459 0.295 0.243 | 9.013 6.119 5.028
K=2 0.364 0.291 0.284 | 0.224 0.157 0.144 | 0.360 0.245 0.207 | 0.737 0.445 0.339 | 0.462 0.306 0.253 | 0.110 0.073 0.062 | 2.258 1.517 1.289

K=0 4379 3.784 3.269 | 10.393 7.177 6.374 | 6.707 4.105 3.232 | 6.488 3.773 2802 | 6.820 4.048 3.009 | 1.996 1.216 0.944 |36.782 24.103 19.631

FR-IT-SP K=1 1.062 0.849 0.765| 2.202 1406 1.117 | 1.283 0.832 0688 | 1.131 0.691 0545 1.051 0.703 0575 | 0424 0.269 0.219| 7.153 4.750 3.908
K=2 0.268 0.201 0.193 | 0.338 0.225 0.194 | 0.420 0.286 0.239 | 0.216 0.143 0.123 | 0.303 0.206 0.175 | 0.088 0.056 0.046 | 1.634 1.117 0.970

K=0 5232 4972 4.792 |16.172 10.983 10.094| 11.905 8.170 7.677 | 8.840 5454 4387 | 7903 4.776 3.644 | 3.514 2.026 1.488 |53.565 36.381 32.084

GE-FR-IT-SP K=1 1.807 1.617 1.386 | 3.006 1.796 1.363 | 2.598 1.631 1.293 | 2.377 1570 1328 | 1.737 1.140 0.938 | 0.609 0.386 0.315|12.134 8.140 6.623
K=2 0.741 0.568 0.512 | 0.558 0.372 0.320 | 0.702 0.465 0.388 | 0.978 0.598 0.466 | 0.703 0.489 0.430 | 0.238 0.148 0.119 | 3.920 2.641 2.235

K=3 0.143 0.121 0.119 | 0.121 0.089 0.087 | 0.264 0.168 0.136 | 0.215 0.143 0.122 ] 0.178 0.129 0.115 ] 0.081 0.053 0.045| 1.001 0.703 0.623

Table 3.B. Results of the tests for prefiltered data. Shaded figures indicate rejection at 5% significance level.




standard prefiltered

m=3 m=6 m=9 m=12 m=15 m=3 m=6 m=9 m=12 m=15

1202 0.741 0.546 0.436 0.366 [ 1.378 0.799 0.571 0451 0.378

GE-FR 0.427 0.256 0.188 0.150 0.127 | 0.469 0.273 0.196 0.156 0.132

0.663 0406 0.301 0.244 0.209 | 0.735 0.430 0.311 0.249 0.212

GET 0.208 0.135 0.103 0.085 0.074 | 0.243 0.144 0.105 0.085 0.074

1.152 0.697 0.508 0.405 0.341 [ 1.308 0.759 0.543 0.429 0.360

GE-SP 0.442 0.264 0.192 0.154 0.130 | 0.478 0.279 0.200 0.159 0.134

1.041 0.642 0475 0.381 0.323 [ 1.102 0.643 0.463 0.367 0.310

FRAT 0.230 0.149 0.114 0.095 0.083 | 0.255 0.151 0.111 0.090 0.079

0.942 0.602 0454 0371 0318 1.191 0.698 0.506 0.405 0.343

FR-SP 0.288 0.204 0.163 0.138 0.123 | 0.437 0.261 0.192 0.157 0.135

1.146 0.715 0.532 0.429 0.364 | 1.266 0.739 0.531 0422 0.355

IT-SP 0.235 0.152 0.116 0.097 0.084 | 0.267 0.158 0.116 0.095 0.082

1.635 1.015 0.750 0.602 0.508 [ 1.804 1.050 0.753 0.596 0.500
0.634 0.390 0.290 0.235 0.201 [ 0.709 0.415 0.300 0.241 0.206
0.207 0.133 0.102 0.084 0.073 | 0.240 0.142 0.104 0.084 0.073

GE-FR-IT

1290 0.806 0.607 0.497 0.430 ( 1.504 0.881 0.638 0.512 0.438
0.510 0.321 0.245 0.204 0.181 | 0.589 0.349 0.257 0.210 0.184
0.055 0.048 0.046 0.045 0.046 | 0.095 0.061 0.049 0.045 0.045

GE-FR-SP

1446 0.928 0.705 0.577 0.497 | 1.726 1.014 0.735 0.589 0.500
0.534 0365 0.287 0.241 0.212 | 0.709 0.421 0.310 0.252 0.217
0.203 0.132 0.100 0.083 0.073 | 0.237 0.140 0.103 0.084 0.073

FR-IT-SP

1.742 1.076 0.799 0.647 0.555 | 1.903 1.112 0.802 0.641 0.545
0.697 0438 0.334 0.278 0.247 | 0.797 0.472 0.347 0.284 0.249
0.241 0.164 0.132 0.115 0.107 | 0.299 0.180 0.136 0.115 0.105
0.031 0.029 0.029 0.030 0.033 | 0.059 0.038 0.032 0.031 0.032

GE-FR-IT-SP

XXXXXXXXXXXX?XXXXXXXXXXKX
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Table 4. Results of the Nyblom-Harvey test (at frequency zero). Shaded figures indicate rejection at 5% significance level.
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Fig. 1. Logarithm of the index of Industrial Production for Germany, France, Italy
and Spain. 1985M1-2001M12. Source: Eurostat.
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