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Abstract

For a class of long memory volatility models, we establish the asymptotic
distribution theory of the Gaussian estimator and the Lagrange multiplier
test. Both the case of estimation of martingale difference and ARMA levels
are considered. A Montecarlo exercise is presented to assess the small sample
properties of the Gaussian estimator and the Lagrange multiplier test. An
empirical application, using foreign exchange rates and stock index returns,
suggests the potential of these models to capture the dynamic features of the
data.
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1 Introduction∗

The importance of modelling volatility lies in the dependence of any financial
investment decision on the forecasts of asset risks and returns, formalized in
asset pricing theory following the Sharpe (1964) and Lintner (1965) capital
asset pricing model. Moreover, a deep understanding of the data generating
process underlying a time series is a compulsory step towards forecasting
it and, when dealing with financial assets, is crucial for a successful imple-
mentation of any option-pricing model. Indeed, since the introduction of the
autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982),
a great deal of research has focused on modelling the volatility of financial
asset returns as they feature very complicated dynamics, synthesized in a
number of well-known stylized facts, dynamic conditional heteroskedasticity
in particular. Estimation of these models is usually based on a maximum
likelihood estimator (MLE) approach, mainly using the assumption of Gaus-
sianity of rescaled innovations. This is easily implementable but derivation
of the statistical properties of MLE, pseudo MLE (PMLE) when the distri-
butional assumptions are violated, appears a very difficult task because of
the nonlinear feature of the model. Indeed, consistency and asymptotic nor-
mality have been established for the Gaussian PMLE of the basic ARCH(p)
model (see Weiss (1986)) and for the generalized ARCH(1, 1) (GARCH(1, 1))
only (see Lee and Hansen (1994) and Lumsdaine (1996)), despite the innu-
merable developments of ARCH-type volatility modelling. (See e.g. Bollerl-
sev, Chou, and Kroner (1992) or Bollerslev, Engle, and Nelson (1995) for
complete surveys.)

In this paper we consider an alternative way of modelling changing volatil-
ity by means of a family of nonlinear moving average (nonlinear MA) models,
introduced by Robinson and Zaffaroni (1997),

xt = µ + ut, t ∈ Z, (1)

with

ut = εtht−1, ht−1 = ρ +
∞∑
i=1

αiεt−i,

∞∑
i=1

α2
i < ∞, (2)

where the xt represent the observed time series and the εt the unobservable
independent identically distributed (i.i.d.) zero mean innovations. The con-
stant µ defines the (conditionally constant) first moment of the xt whereas
ρ and the αi characterize the memory of squares and higher-order statistical
properties, as discussed below. Robinson (2001) shows that for Gaussian εt

the nonlinear MA model (2) is nested within a large class of volatility mod-
els, which includes the standard stochastic volatility (SV) model of Taylor

∗Reprinted from Journal of Econometrics, copyright (2003), with permission from El-
sevier Science.
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(1986) and a simple case of the exponential GARCH (EGARCH) model of
Nelson (1991).

The main contribution of this paper is to establish the asymptotic sta-
tistical properties of the frequency domain Gaussian estimator in the sense
of Whittle (1962), for the nonlinear MA (1)-(2), employing the squares as
the observable. We focus on parameterizations for the model that allow long
memory autocorrelated squares. This choice is motivated on both theoretical
and empirical grounds. In fact, although not formally established, it is likely
that generalizations of previous work on Gaussian estimation and method-
of-moment estimation, along the lines of Robinson (1977,1978), would yield
asymptotically correct statistical inference for short memory parameteriza-
tions of the squares. On the other hand, relatively recent empirical research
on asset returns volatility suggests that the effect of shocks on the conditional
variance is very persistent though eventually absorbed with time (see Gallant,
Rossi, and Tauchen (1993)), ruling out integrated GARCH behaviour. That
is, sample autocorrelations in squared returns tend to decline very slowly in
contrast with the fast exponential decay implied by standard ARCH-type
models. This is, in turn, consistent with the notion of long memory when
theoretical autocovariances are not summable, or when, alternatively, the
power spectrum is unbounded at zero frequency.

With respect to ARCH-type models various alternatives have been pro-
posed to account for this aspect of asset returns dynamics. In order to
develop a test for no-ARCH Robinson (1991) introduced the ARCH(∞), a
possibly long memory generalized ARCH model. Baillie, Bollerslev, and
Mikkelsen (1996) considered a particular case of the ARCH(∞) denomi-
nated as fractionally integrated GARCH (FIGARCH), and proposed a time
domain Gaussian PMLE estimation approach. Note that ARCH(∞) is a
nonlinear autoregressive model and cannot be nested within the Robinson
(2001) class of nonlinear moving average models. Nelson (1991), introducing
the EGARCH, mentioned the possibility of long memory parameterizations
explicitly developed in Bollerlsev and Mikkelsen (1996, the fractionally in-
tegrated EGARCH). These long memory volatility models are characterized
by the lack of asymptotic distribution theory for the PMLE, as well as for
any other estimator, and the available asymptotic results for estimation of
short memory ARCH-type models and linear long memory processes are not
readily extendable.

By contrast, in this paper we provide a formal framework to assess whether
long memory volatility models represent a valid alternative to short memory
ones.

Making distributional assumptions on the innovations, the nonlinear MA
could be estimated by (exact) MLE. However, asymptotic properties of the
MLE would depend on invertibility of the model and the invertibility the-
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ory of linear processes is not immediately extendable to nonlinear cases, as
noted in Granger and Andersen (1978). Furthermore, for the nonlinear MA,
likelihood and scores would only be computable recursively and expensively,
which would render asymptotic theory of exact MLE extremely cumbersome
to establish. Moreover, given the dynamic structure of the model, the likeli-
hood necessarily depends on the initial conditions which will probably have
non-negligible effects in finite samples, especially within a long memory pa-
rameterization. More importantly, the asymptotic properties of the MLE
may not be robust with respect to deviations from the postulated distribu-
tional assumption, as often happens for nonlinear econometric models.

These arguments do not apply to the Gaussian estimator considered here,
partly owing to its frequency domain specification. We establish that the
Gaussian estimator is strongly

√
T -consistent with a normal asymptotic dis-

tribution, T denoting the sample size. This result does not follow directly
from the asymptotic results on ARCH estimation nor from the Gaussian esti-
mation theory for linear long memory models (see e.g. Giraitis and Surgailis
(1990), Hosoya (1997)), but depends upon a central limit theorem (CLT)
for quadratic forms in nonlinear long memory variates established in this
paper. Secondly, we develop a pseudo Gaussian Lagrange multiplier (LM)
testing procedure designed to detect dynamic conditional heteroskedasticity
that uses the nonlinear MA as a class of alternatives. Despite the long mem-
ory feature of these alternative hypotheses, the usual asymptotic chi-square
distribution is obtained under the null hypothesis of homoskedasticity.

The paper is organized as follows. In section 2 we briefly recall the low-
order statistical properties of nonlinear MA: memory, kurtosis and ‘leverage’
effect. Estimation of the model is discussed in section 3, where we intro-
duce the Gaussian estimator and the LM multiplier test and establish their
asymptotic statistical properties. The martingale difference assumption for
(demeaned) levels xt implied by (1) and (2) makes it possible to focus ex-
clusively on the volatility dynamics of the nonlinear MA model. However,
it represents at best an approximation for practical use of the model. A
finite-order autoregressive moving average (ARMA) model represents a sim-
ple yet appealing parameterization of the conditional mean of the observable
xt. In section 4, we present the asymptotic properties of the Whittle esti-
mator of the parameters of ARMA models with innovations ut described by
the nonlinear MA (2). Preliminary estimation of the nonlinear MA model
is not required. Next, we present the asymptotic properties of the Gaussian
estimator of the nonlinear MA based on the estimated ARMA residuals. Sec-
tion 5 reports the result of Montecarlo exercises to assess the small-sample
performance of the Gaussian estimator and of the LM test. In section 6
we present an empirical application based on observed time series of stock
index and foreign exchange rate returns. The nonlinear MA and its likely
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main competitor, the ARCH(∞), are compared in terms of goodness-of-fit
using the Gaussian estimator. Concluding remarks are in section 7. The
results are formally stated in theorems the proofs of which are reported in
the mathematical appendixes, together with a number of technical lemmas.

2 Low-order statistical properties of

the nonlinear moving average model

Let the innovation εt in (2) satisfy the following assumption.
Assumption A. The process {εt} is i.i.d. with E(ε4

t ) < ∞ and

E(εt) = 0,

E(ε2
t ) = σ2, 0 < σ2 < ∞ ,

E(ε3
t ) = 0.

Let κ denote the fourth-order cumulant of the εt, yielding E(ε4
t ) = κ + 3σ4.

We do not normalize the innovation variance σ2 to be equal to 1. More
importantly, we do not constrain the magnitude of the fourth moment and
of the fourth-order cumulant. Assumption A is satisfied, for instance, for
Student’s t εt with n degrees of freedom whenever n > 4. In this case κ =
n2B(5

2
, n−4

2
)/B(1

2
, n

2
) − 3( n

n−2
)2 with κ > 0 where B(·, ·) indicates the Beta

function. When the εt are Gaussian then κ = 0 whereas κ < 0 for εt uniformly
distributed over [−a, a] for some finite a > 0. Note that, in general, bounded
fourth moment and non degeneracy of the εt (0 < var(ε2

t ) < ∞) implies
κ > −2σ4. When Assumption A holds, the demeaned xt are martingale
difference but not independent as the squares yt = x2

t are autocorrelated (cf.
Robinson and Zaffaroni (1997)).

A frequency domain characterization of the memory properties of the xt

and the yt is central to the paper, in particular with respect to the estimation
part (cf. section 3). For this purpose, let α(λ) (−π ≤ λ < π) be the transfer
function of the sequence {αi}, implying

1

2π

∫ π

−π

α(ω)eiωudω = αu, u ≥ 1. (3)

Set
β(λ) = 2Re(α(λ)), −π ≤ λ < π, (4)

Re(·) denoting the real part of its argument and let fzz(λ) (−π ≤ λ < π)
be the power spectrum (when it exists) of a weakly stationary process {zt}.
Hereafter, set δab(u) =

∑∞
i=1 aibi+u (u = 0,±1, . . .) for any square summable

sequences {ai}, {bi}.
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Theorem 1 Under Assumption A, for −π ≤ ω < π,

fxx(ω) =
σ2

2π
(ρ2 + σ2δαα(0)),

fyy(ω) =
(2σ4 + κ)(ρ2 + σ2δαα(0))

(2π)2

∫ π

−π

β(λ)β(ω − λ)dλ +
4σ4ρ2µ

2π
β(ω)

+
2σ8

(2π)2

∫ π

−π

|α(λ)|2|α(ω − λ)|2 dλ +
4σ6µ

(2π)2

∫ π

−π

β(λ) |α(ω − λ)|2 dλ

+
4σ6ρ2

2π
|α(ω)|2 +

σ4κ

(2π)3

∫ π

−π

∫ π

−π

α(λ)α(θ)α(ω − θ)α(−ω − λ)dλdθ

+
νy

2π
,

where νy is a strictly positive constant.

Proof: see appendix A.
The power spectrum of the yt is a linear combination of convolutions of

the |α(ω)|2, β(ω), given the nonlinear transformation involved yt = x2
t (see

Hannan (1970, p.82)).
Alternatively, under Assumption A the yt have autocorrelation function

(ACF)

γyy(l) = 2σ8α2
|l|δαα(0) + 2σ8δ2

αα(l) + 4ρ2σ6δαα(l) + σ4κ(δαα(0)α2
|l| + δα2α2(l))

+4σ4µα|l|
[
ρ2 + σ2δαα(l)

]
+ 2ρ2σ6α2

|l| + νyδ(l, 0), l = 0,±1, ... (5)

where, henceforth we set γzu(l) = cov(zt, ut+l), l = 0,±1, . . . , for stationary
processes {zt, ut} and by δ(u, v) the Kronecker delta. Robinson and Zaffaroni
(1997), hereafter RZ, establish (5) for the case ρ = µ = 0. We skip details
for simplicity’s sake but, in the proof of Theorem 1, sketch the derivation of
(5) in the more general case here considered.

By (5) and square summability of the αi (see RZ), as l →∞,

γyy(l) ∼
{

2σ8δ2
αα(l), ρ = 0,

4ρ2σ6δαα(l), ρ 6= 0,
(6)

where ∼ denotes asymptotic equivalence: a(x) ∼ b(x) as x → x0 when
a(x)/b(x) → 1 as x → x0. When

αj ∼ k jd−1 as j →∞
with 0 < d < 1/2, 0 <| k |< ∞, the yt display an hyperbolically decaying
ACF, exhibiting long memory when ρ 6= 0 or for d > 1/4 when ρ = 0 (cf.
RZ, section 4). In particular, when ρ 6= 0

γyy(l) ∼ k l2d−1 as l →∞, (7)
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and both long memory and covariance stationarity are achieved for 0 < d <
1/2.

As a by-product of the nonlinearity, the nonlinear MA exhibits fatter tails
than the Gaussian case, thus matching another well-known stylized fact of
asset return dynamics, since Fama (1965). Under Assumption A, the model
kurtosis is

E(xt − µ)4

γ2
xx(0)

= 3 +
6

(ρ̄2 + δαα(0))2
(δ2

αα(0) + 2ρ̄2δαα(0))

+
κ̄

(ρ̄2 + δαα(0))2

(
ρ̄4 + 6ρ̄2δαα(0) + 3δ2

αα(0) + (3 + κ̄)δα2α2(0)
)
,

setting ρ̄ = ρ/σ, κ̄ = κ/σ4. The second term on the right-hand side expresses
the deviation from the Gaussian kurtosis case due to the nonlinearity of the
model whereas the third term depends on the fourth-order cumulant. It will
be zero only for κ = 0 but it can be arbitrarily large, depending on the tail
behaviour of the marginal distribution of the εt.

Since Black (1976), another feature of asset return empirical distributions
is the so-called ‘leverage’ effect, i.e. an asymmetric response of future (l-
period ahead) volatility to past and present shocks implied by a negative
value of cov(xt, yt+l). Insights into this dynamic asymmetry can be obtained
generalizing ht in (2) by

h̃t = ρ +
∞∑
i=1

αig(εt−i), (8)

where g(εt) = ϑεt + γ(|εt| −E |εt|) for some constant real ϑ, γ. The speci-
fication of the g(·) function, known as the ‘news impact curve’ in volatility
literature, was introduced by Nelson (1991). Under Assumption A, setting
(for simplicity) µ = 0 and E(εt|εt|) = 0, e.g. implied by symmetric εt, one
obtains for l > 0

cov(xt, yt+l) = 2σ4ϑαl

(
(σ2(ϑ2 + γ2)− γ2E2|εt|)δαα(l) + ρ2

)
.

It follows that the crucial (necessary) condition to account for the ‘leverage’
effect is ϑ 6= 0. The interplay of ϑ and γ would impart great flexibility in
modelling asymmetry expressed by shifts and rotations in the ‘news impact
curve’ (see e.g. Hentschel (1995)). We decided to focus on the particular yet
asymmetric case ht (cf. (2)), setting ϑ = 1, γ = 0 in h̃t. In fact, both the
non-differentiability of the absolute-value function in g(·) and the possibility
of leaving ϑ, γ unrestricted are likely to induce a great deal of technical
difficulties when establishing the asymptotics for the class of estimators con-
sidered in this paper (cf. section 3). The ‘leverage’ effect, at lag L, arises
whenever αL < 0 independently of the value of ρ. The nonlinear MA is also
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apt to display negative ‘simultaneous’ correlation between asset return and
asset volatility, as observed in Campbell and Hentschel (1990).

In contrast to nonlinear autoregressive models (e.g. ARCH-type mod-
els), derivation of the (low-order) statistical properties of the nonlinear MA
appears straightforward. Note, however, that this is not achieved by in-
troducing a second latent sequence of innovations, as for example for SV
models. Thus, the usual difficulties arising with the estimation and filtering
of SV models are avoided in our nonlinear MA framework. We now discuss
estimation and testing of the model.

3 Estimation and testing

3.1 Parameterization

Within this section, let us set µ = 0 for the sake of simplicity. The more
complicated case of observable xt with time-varying conditional mean will be
described in section 4. Let us introduce a sequence of functions αi(θ) (i ≥ 1)
of a p × 1 vector θ ∈ Θ ⊂ Rp. Within the set-up of the previous sections,
this implies introducing new functions α(λ; θ) and β(λ; θ) of the frequency
λ (−π ≤ λ < π) and θ. Replace α(λ) and β(λ) in fyy(λ) (cf. Theorem 1)
with α(λ; θ) and β(λ; θ). Recalling κ̄=κ/σ4, ρ̄2 =ρ2/σ2, set ψ = (κ̄, θ′)′ and
ρ̄2 = 1 for model identification. This yields fyy(λ; ψ, σ2) for ψ ∈ Ψ ⊂ Rp+1,
Ψ denoting the parameter space. It is convenient to express fyy(λ; ψ, σ2)
as σ8hy(λ; ψ) with hy(·; ψ) = fyy(·; ψ, 1) because, as shown below, rescaling
κ and ρ2 by suitable powers of σ2 allows factorizing and hence concentrat-
ing σ2 out. In the same way, replacing the αi with the αi(θ) in (5), we
define the sequence γyy(l; ψ, σ2), l = 0,±1, . . . , which can be re-written as
γyy(l; ψ, σ2) = σ8γ̄yy(l; ψ). Denoting by ψ0 the true value for ψ, with ψ0 ∈ Ψ,
it follows that, for any −π ≤ λ < π and l = 0,±1, ...,

fyy(λ) = σ8hy(λ; ψ0) = σ8hy(λ), γyy(l) = σ8γ̄yy(l; ψ0), αl = αl(θ0).

An example of a parsimonious parameterization, adopted in our empirical
application below (cf. section 6), is obtained by choosing the αi(θ) as the
MA(∞) coefficients of the autoregressive fractional moving average model of
order p, d, q (ARFIMA(p, d, q)) of Granger and Joyeux (1980), for integers
p, q ≥ 0 and real | d |< 1/2:

1 + α(L; θ) = (1− L)−d χ(L)

φ(L)
= (1− L)−d (1 + χ1L + · · ·+ χqL

q)

(1− φ1L− · · · − φpLp)
, (9)

setting θ = (χ1, . . . , χq, φ1, . . . , φp, d)′ and assuming that the polynomials in
the lag operator L (where xt−1 = Lxt), χ(L) and φ(L), have roots strictly
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outside the unit circle in the complex plane and never common. Remem-
bering that non-negativity constraints on the αi(θ) need not be imposed,
one can allow for cyclical behaviour in the αi(θ); e.g. by the standard re-
parameterization of the AR(p) coefficients, with p = 2, as φ1 = 2φ̃1cos(φ̃2), φ2 =
−φ̃2

1 with 0 ≤ φ̃1 < 1 and 0 ≤ φ̃2 ≤ π.

3.2 Limiting distribution theory of the Gaussian esti-
mator

The Gaussian estimator, originally proposed in RZ, is based on Whittle’s
function (see Whittle (1962)), i.e. the frequency domain approximation of
the Gaussian log likelihood, used as a measure of distance between the peri-
odogram of squared observations and the model spectral density fyy(λ; ψ, σ2).
In particular, setting λj = 2πj/T , we consider the following discrete version
of Whittle’s function

QT (σ2, ψ) =
1

T

T−1∑
j=1

[
ln(σ8hy(λj; ψ)) +

Iyy(λj)

σ8hy(λj; ψ)

]
, (10)

where Iyy(ω) defines the periodogram based on consecutive T observations
of the yt:

Iyy(ω) =
1

2πT

∣∣∣∣∣
T∑

t=1

(yt − ȳ)ei t ω

∣∣∣∣∣

2

, −π ≤ ω < π (11)

with ȳ = 1/T
∑T

t=1 yt. We skip the zero frequency in (10) due to mean
correction. Concentrating σ8 out yields

QT (ψ) = ln
(
σ̂8

T (ψ)
)

+
1

T

T−1∑
j=1

ln hy(λj; ψ) + 1 , (12)

setting

σ̂8
T (ψ) =

1

T

T−1∑
j=1

Iyy(λj)

hy(λj; ψ)
.

Set Ψ̄ equal to the compact closure of Ψ. The Gaussian estimator ψ̂T is
defined by

ψ̂T = argminψ∈Ψ̄QT (ψ) .

The main motivation for employing Whittle’s function is that it natu-
rally takes into account the asymptotic behaviour of the ACF of the yt, as
the sample size goes to infinity. Therefore we expect it to be very sensitive
to the degree of dependence of the process in a second-order sense. Indeed,
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in a semiparametric framework Robinson (1995a) showed how the most ef-
ficient (semiparametric) estimator of the memory parameter is obtained via
a local Gaussian log likelihood. Moreover, Whittle’s function does not de-
pend on initial conditions and its computation and asymptotic behaviour
is independent from the invertibility of the model. On the other hand, the
Gaussian estimator requires knowledge of the precise functional form of the
model spectral density (cf. Theorem 1). Moreover, independently of the
distributional assumption made on the εt, the yt can never be Gaussian by
construction and thus the Gaussian estimator can never achieve asymptotic
efficiency in contrast to MLE.

One cannot implement the Gaussian estimator by employing the levels xt

as the observable. In this case, parameter non-identification arises because
the xt display a perfectly flat power spectrum (cf. Theorem 1). In principle,
different instantaneous transformations may be considered but, using the
squares yt = x2

t as the observable represents the simplest feasible approach.
This estimation approach can be extended considering a multivariate ver-

sion. Let us take the bivariate process zt = (xt, yt) as the observable. Under
the presumption that the zt are jointly Gaussian, one obtains the ‘bivariate’
Gaussian estimator by minimizing the ‘bivariate’ Whittle’s function. Us-
ing this ‘bivariate’ Gaussian estimator one achieves a certain efficiency gain
with respect to the (univariate) Gaussian estimator (see Zaffaroni (1997)).
Within an ARCH-type setting, Meddahi and Renault (1997) show that using
a time domain ‘bivariate’ Gaussian PMLE, based on the correct specification
of the first and second conditional moment of the observable, one achieves
the generalized method of moment efficiency bound in the sense of Chamber-
lain (1987). This suggests that a similar result might hold for the ‘bivariate’
Gaussian estimator. However, in this paper we will focus only on the asymp-
totics of the (univariate) Gaussian estimator and leave the analysis of the
multivariate Gaussian estimator, and the related efficiency issue, to future
research.

In order to establish the asymptotic properties of the Gaussian estimator
ψ̂T we introduce the following assumptions. Let k,K denote arbitrary con-
stants, possibly varying in each context. They might depend on ψ, so that
e.g. k = k(ψ), but for the sake of simplicity we will not make this explicit.

Assumptions B. Let ψ0 be an interior point of Ψ̄. For any θ, θ∗ ∈ Θ:

B1 αj(θ) ∼ kjd(θ)−1 , 0 <| k |< ∞ , as j →∞,

where the function d : Θ → (0,
1

2
) is continuous.

B2 | αj(θ)− αj+1(θ) |≤ k
|αj(θ) |

j
, ∀j > J , some J < ∞ , 0 < k < ∞.
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B3
∂αj(θ)

∂θi

∼ k′i L (j)jd(θ)−1 , 0 <|k′i |< ∞ , as j →∞, for i = 1, 2, ..., p.

B4

∣∣∣∣
∂αj(θ)

∂θi

− ∂αj+1(θ)

∂θi

∣∣∣∣ ≤
k′

j

∣∣∣∣
∂αj(θ)

∂θi

∣∣∣∣ ,

∀j > J ′, some J ′ < ∞ , 0 < k′ < ∞, for i = 1, 2, ..., p.

B5
∂2αj(θ)

∂θi1∂θi2

∼ k′′i1,i2
Li1(j) Li2(j) jd(θ)−1, 0 <|k′′i1,i2

|< ∞, as j →∞,

for i1, i2 = 1, 2, ..., p.

B6

∣∣∣∣
∂2αj(θ)

∂θi1∂θi2

− ∂2αj+1(θ)

∂θi1∂θi2

∣∣∣∣ ≤
k′′

j

∣∣∣∣
∂2αj(θ)

∂θi1∂θi2

∣∣∣∣ , ∀j > J ′′

, some J ′′ < ∞, 0 < k′′ < ∞ , for i1, i2 = 1, 2, ..., p.

B7 αj(θ) 6= αj(θ
∗),∀j > J ′′′, some J ′′′ < ∞ and θ 6= θ∗.

B8 There are 2(p + 1) coefficients αui
(θ) and

∂αui
(θ)/∂θ (i = 1, . . . , p + 1) such that ∂γ̄yy(uj; ψ)/∂ψ (j = 1, . . . , q),

with q ≥ p + 1, are linearly independent vectors,

where L(j), Li1(j), Li2(j), j = 1, 2, ... are either constant or equal to ln(j)
and J, J ′, J ′′, J ′′′ are equal to some finite integers.

Remarks B. (a) Assumption B1 defines the αi(θ) to behave asymptotically
as the MA coefficients of stationary ARFIMA(p, d, q), with real 0 < d < 1/2
and integers p, q. The imposing of an exact rate in B1, rather than an
upper bound, plays a crucial role in the asymptotic results, e.g. together
with B7 it guarantees identification of the model. Assumption B2 implies
that the sequence {αi(θ)} converges to zero smoothly enough or, more for-
mally, that it is quasi monotonically convergent to zero (see Yong (1974, p.
2)). Thus, besides determining the behaviour near the zero frequency of the
fyy(λ; ψ, σ2), B2 imposes a Lipschitz condition (see Zygmund (1977, p. 42))
on the model spectrum in the interval (0, π]. Assumptions B3, B4 and B5, B6

impart the same degree of smoothness as B1 and B2 to ∂fyy(λ; ψ, σ2)/∂ψ and
to ∂2fyy(λ; ψ, σ2)/∂ψ∂ψ′ respectively. Assumptions B5, B6 are needed in or-
der to establish the CLT of the Gaussian estimator, imposing the required
degree of smoothness to the Hessian. B7 represents an identification con-
dition. Assumption B8 guarantees that the Hessian is nonsingular and it
is a rather mild identification condition, ruling out over-parameterizations.
B8 is based on the short run behaviour of the αi(θ) and derivative of, in
contrast to B3 which implies that the ∂αu(θ)/∂θ are, as u →∞ , asymptoti-
cally linearly dependent. We are not assuming, for the sake of simplicity, the
possibility of slowly varying factors in the definition of the αi(θ) but they
can nevertheless arise as a by-product (expressed by the logarithm function
ln(·)) when differentiating. Finally, note that nowhere are non-negativity
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constraints imposed. This implies a great deal of flexibility when considering
finite-parameterization the αi(θ) compatible with Assumptions B.
(b) Time domain regularity assumptions, such as Assumptions B, are not
common in the long memory parametric (see Fox and Taqqu (1986), Dahlhaus
(1989), Giraitis and Surgailis (1990), Hosoya (1997) among others) and semi-
nonparametric literature, with the exception of Robinson (1994a). Indeed,
regularity conditions are usually expressed in terms of a certain degree of
smoothness in the model power spectrum.(Fox and Taqqu (1986, remark at
p.529) acknowledge that, in certain cases, Tauberian theorems can be ap-
plied to obtain the asymptotic behaviour of the Fourier coefficients of the
model power spectrum and its derivatives.) However, whereas in a semi-
nonparametric framework those assumptions represent a natural choice, they
may not be as well motivated in a parametric framework. In fact, it might
be very difficult in general, within a specific nonlinear parameterization, to
check that the model power spectra driven by this parameterization satisfy
such frequency domain assumptions. In our nonlinear parametric frame-
work the statistical properties of the model are completely determined by
the behaviour of the unobservables εt and of the coefficients αi(θ). Therefore
it seems natural to impose regularity conditions as stated by Assumptions
B above. These conditions appear very easy to check. We show that the
MA coefficients of ARFIMA(p, d, q) do satisfy Assumptions B, representing
a simple yet feasible parameterization of the model (cf. appendix E).

The asymptotic properties, consistency and asymptotic normality, of the
Gaussian estimators ψ̂ and σ̂2

T (ψ̂T ) follow.

Theorem 2 Under Assumptions A,B1, B2, B3, B4, B7, as T →∞,

ψ̂T →a.s. ψ0,

σ̂2
T (ψ̂T ) →a.s. σ2,

where →a.s. denotes convergence almost surely (a.s.).

Proof: see appendix B.2.

We need to reinforce Assumption A as follows.

Assumption A’. The εt satisfy Assumption A with Eε8
t < ∞ and zero

cumulants of order s = 5, ..., 8.

Theorem 3 Under Assumptions A′, B, as T →∞,

T
1
2 (ψ̂T − ψ0) →d Np+1

(
0,M−1V M−1

)
,
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where

M(ψ) =
1

2π

∫ π

−π

N(λ; ψ)N(λ; ψ)′dλ,

with

N(λ; ψ) =
∂ ln hy(λ; ψ)

∂ψ
−

[
1

2π

∫ π

−π

∂ ln hy(ω; ψ)

∂ψ
dω

]
,

and

V (ψ) =
1

π

∫ π

−π

g(ω; ψ)g(ω; ψ)′h2
y(ω)dω

+
1

2π

∫ π

−π

∫ π

−π

g(ω1; ψ)g(ω2; ψ)′Qyyy(−ω1, ω2,−ω2)dω1dω2 ,

with g(λ; ψ) = ∂
∂ψ

h−1
y (λ; ψ), M = M(ψ0), V = V (ψ0) and Qyyy(., ., .) =

Qyyy(., ., .)/σ
16, Qyyy(., ., .) denoting the trispectrum of the yt (the Fourier

transform of the fourth-order cumulants of the yt), →d denotes convergence
in distribution and Nq(·, ·) a q-dimensional normal r.v.

Proof; see appendix B.3.
Remarks 2 and 3.(a) The important aspect of Assumption A′ is that it
imposes the strong i.i.d. property on the εt, imparting strict stationarity and
ergodicity to the yt. Zero restrictions on cumulants are made for simplicity’s
sake but play no substantial role in the proofs and the results of Theorem 2
and Theorem 3 are unchanged with constant cumulants and a bounded eighth
moment.
(b) A strong law of large number (LLN) for ψ̂T and σ̂2

T (ψ̂T ) is obtained adapt-
ing the Hannan (1973) approach although, unlike the scalar-valued Gaussian
and linear long memory case (see e.g. Fox and Taqqu (1986), Dahlhaus
(1989), Giraitis and Surgailis (1990)), we cannot employ Hannan (1973) di-
rectly. In fact, as a by-product of the nonlinearity, the model features a
non-standard parameterization in the sense that fyy(λ; ψ, σ2) does not seem
to be factored, unlike the linearly regular process case (see Hannan (1970,
Chapter II-5)). In fact, although the Wold representation theorem implies
that fyy(λ) can be written, under Assumption A, as

fyy(λ) =
τ

2π
| 1 +

∞∑
j=1

βje
ijλ |2, −π ≤ λ < π, (13)

the determination of the βj and τ as closed-form, functionally independent,
functions of the αi and σ2, κ, ρ2, µ, appears very difficult, practically un-
feasible. Robinson (1978) discusses several cases where the spectral density
of the observable is not easily factored and provides the asymptotics of the
Gaussian estimator for those cases without assuming linearity. However, only
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short memory specifications of the nonlinear MA might be covered in that
framework as strong smoothness assumptions on the model spectrum are im-
posed, ruling out long memory.
(c) The theoretical result, on which Theorem 3 is based, is a CLT for quadratic
forms in the yt, a non-Gaussian and nonlinear sequence with long memory,
which the statistical literature on Gaussian estimation for linear long mem-
ory processes does not cover. Limit laws for quadratic form in scalar-valued
long memory Gaussian and linear processes are in Fox and Taqqu (1987)
and Giraitis and Surgailis (1990), respectively. The former uses Gaussian-
ity in an essential way, employing the exact expression for the cumulants
of a quadratic form in Gaussian variates (see Grenander and Szegö (1958))
whereas the latter, though relaxing the Gaussianity assumption, exploits the
simple structure of the spectrum and trispectrum of a linear process (cf.
(13)). More recently Heyde and Gay (1993) and Hosoya (1997) have de-
veloped CLT for vector-valued linear non-Gaussian processes under weaker
conditions on the innovations, the latter also allowing for non-standard con-
ditions and non-factorization in the model spectral density. However, those
results are ultimately based on some martingale approximation, making a
basic use of the maintained structure of linearity and imposing some form
of mixing condition on the linear innovations, stronger than the white-noise
property implied by the Wold representation. Our method of proof, instead,
takes explicitly into account the nonlinear structure of the model and con-
sists in approximating the quadratic form in the yt (embedded in Whittle’s
function) with another quadratic form, asymptotically equivalent to the for-
mer, for which a CLT follows using standard results. In order to establish
this approximation we use certain results of the asymptotic behaviour of the
trace of Toeplitz matrices (see Fox and Taqqu (1987)).
(d) The relevance of Theorem 3 stems from two reasons. First, the long
memory feature of the squares yt might have generated ‘per se’ non-standard
asymptotic distribution such as nonlinear functionals of fractional Brownian
motion (see Taqqu (1975)), or a rate of convergence depending on the degree
of memory of the process, as for the case of the sample mean of T consec-
utive observations of a long memory process. Instead, using the Gaussian
estimator standard asymptotic inference can be made on the nonlinear MA
such as Wald-type tests. This is due to the typical compensation effect of
Whittle’s function which smoothes the possible lack of square integrability of
fyy(λ). Second, and more importantly, only for a limited number of volatility
models the asymptotic properties of certain estimators (usually the Gaussian
PMLE) have been established (see Weiss (1986) for ARCH(p) and Lee and
Hansen (1994), Lumsdaine (1996) GARCH(1, 1)). Long memory parameter-
izations are always excluded. This lack of results in fact characterizes all
long memory volatility models, including SV models. The only exception is
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Breidt, Crato, and deLima (1998) who establish consistency of the Gaussian
estimator for the long memory SV model of Harvey (1998), exploiting the
linearity of ln yt for long memory SV xt.
(e) As a simple case of Robinson (2001), (7) generalizes to

cov (g(εt ht−1), g(εt+u ht+u−1)) ∼ k u2d−1 as u →∞,

for Gaussian εt and any arbitrary function g(·) satisfying Eg2(εt ht−1) < ∞
and E ht−1 g(εt ht−1) 6= 0, with g(x y) either equal to g(x)g(y) or g(x)+ g(y).
Particular cases are g(t) =| t |α, α > 0 and g(t) = ln t2. Therefore, for non-
linear MA the yt, the | xt | and the ln yt have precisely the same degree of
long memory. As ln yt is defined over the entire real line and thus closer to
a Gaussian variate than yt, it would probably be more efficient to estimate
the memory parameter d by fitting the spectral density of the ln yt rather
than fyy(λ). Moreover, Wright (2000) indicates that, when the levels xt are
conditionally leptokurtic, a non-negligible small sample negative bias arises
systematically when estimating semiparametrically the memory parameter d
using the yt as the observables, compared with the case when the |xt | or the
ln yt are used. Although in principle other instantaneous transformations of
nonlinear MA xt could be used besides yt = x2

t , the Gaussian estimator re-
quires knowledge of the precise functional form of the model spectral density
for the transformed data. This task appears cumbersome, if not practically
unfeasible, to be derived for the |xt | and the ln yt of nonlinear MA.

3.3 Testing long memory dynamic heteroskedasticity

When limiting the attention to short memory specification of the model,
any LM test for ARCH effects that is asymptotically equivalent to Engle
(1982) test provides an efficient way to detect short memory conditional het-
eroskedasticity. In this section we introduce a family of LM tests specifically
designed to have good power against long memory dynamic conditional het-
eroskedastic alternatives. The test statistics introduced here are developed
assuming that under the alternative hypothesis the observable is described by
the nonlinear MA. Nonparametric (see e.g. Lo (1991)) and semiparametric
approaches (see e.g. Robinson (1994b,1995a,1995b)) can still be applied but
with the usual low performance in terms of power. In a parametric frame-
work the LM tests of Robinson (1991) can be considered but they are derived
under ARCH-type alternatives. The test we propose follows the approach of
Robinson (1991) but, by construction, it has more local asymptotic power
when the alternative is represented by the nonlinear MA. This is, obviously,
particularly important when fitting the nonlinear MA to the data. The fol-
lowing assumptions concerning both the αi(θ) and the εt are needed.
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Assumptions C.

C1 The coefficients {αi(θ)} are invertible functions of a p× 1 vector θ
such that αi(θ) = 0 (i ≥ 1) if and only if θ = 0. The partial derivatives
of αi(θ) are square summable for θ = 0 where we set τi(θ) = ∂

∂θ
αi(θ)

with τi = τi(0).

C2 The matrix Γ =
∑∞

i=1 τiτ
′
i is invertible.

C3 ρ2 = 1.

Assumption D. The process {εt} behaves as a Gaussian noise sequence up
to the eighth moment.

We define the null hypothesis as

H0 : αi(0) = 0, i ≥ 1,

so that under H0 both the xt and the yt are not autocorrelated.
Assumption C1 guarantees that the null hypothesis can be equivalently

characterized in terms of the αi(θ) or, alternatively, in terms of θ. Hence we
can write H0 : θ = 0. Assumptions C2 and C3 are minimal identification
conditions. In fact, xt = µ + ρεt under H0 implying var(xt) = ρ2σ2 and ρ is
not identified under H0. Finally, note that nowhere in Assumption D did we
assume the εt to be an i.i.d. sequence.

Departures from H0 do not necessarily display long memory, but express
behaviours for the αi(θ) with at least a finite number of them non-zero,
including any short memory parameterization. Note that any sequence αi(θ)
satisfying Assumption C1, C2 is compatible with both H0 and Assumptions
B.

Setting w = µ2/σ2, the parameterized model is described by the parame-
ter vector (w, σ2, θ′)′. The LM test statistic for testing H0 is (cf. appendix D):

Φ = φ′φ, (14)

with

φ = φT−1(σ̂
2, ŵ) = (T e(ŵ) σ̂2 ΓT−1)

− 1
2

T−1∑
i=1

τi ηi(σ̂
2, ŵ), (15)

setting

ηi(σ
2, w) =

T∑
t=1+i

(xt−i − x̄) Xt(σ
2, w),

Xt(σ
2, w) =

(
(
yt

σ2
− w − 1)

(
(
yt

σ2
− w − 1)

(1 + w)

(1 + 2w)
+ 1

)
− 2(1 + w)

)
,
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and e(w) = 9+(65+150w3+338w2+280w)/(1+2w)2, ΓT =
∑T

i=1 τiτ
′
i where

σ̂2 = 1
T

∑T
t=1(xt − x̄)2, x̄ = 1

T

∑T
i=1 xi, ŵ = x̄2/σ̂2. One can use Γ instead of

ΓT if the former has a closed-form expression. As a discrete convolution is
involved, we can make use of the Fast Fourier Transform (FFT) with the
usual computational gain. Indeed, a frequency domain version of the LM
test can be computed:

Φ̃ = φ̃′φ̃ , (16)

with

φ̃ = (T e(ŵ)σ̂2ΓT )−
1
2

1

T

T−1, ∗∑
a=0

τ̃(ωa)x̃(ωa)X̃(−ωa) ,

setting X̃(ω) =
∑T−1

a=0 Xa+1(σ̂2, ŵ)eiaω, x̃(ω) =
∑T−1

a=0 (xa+1 − x̄)eiaω,
τ̃(ω) =

∑∞
a=0 τa+1e

iaω, with
∑∗ meaning that the summation excludes values

of ωa for which τ̃(ωa) is unbounded. The matrix Γ can now be expressed
as Γ = 1

4π

∫ π

−π
τ̃(ω)τ̃ ′(−ω)dω , which, in turn, can be approximated by its

Riemann sum. Thus

Theorem 4 Under the null hypothesis H0 and Assumptions C and D,

Φ →d χ2
p as T →∞,

where χ2
p denotes a central chi-square r.v. with p degrees of freedom.

Proof: see appendix D.
Remarks 4. (a) A standard asymptotic distribution is obtained though the
test has been designed for possibly long memory alternatives.
(b) The two test statistics Φ and Φ̃ are asymptotically equivalent, given that
Φ− Φ̃ = op(1), so Theorem 4 applies to Φ̃ as well.
(c) From a computational point of view, calculating Φ involves no more than
a few summations and the inversion of a matrix of dimension p × p (θ is
of dimension p × 1) and thus not a function of T . The LM ARCH test of
Engle (1982), instead, requires inverting a matrix of dimension r × r, with
r being the number of lags considered. It follows that taking into account
the behaviour at long lags, for example in order to capture long memory
behaviour, makes the LM ARCH test unfeasible.
(d) The statistic Φ is based on the Gaussian log likelihood, so it is in fact
a Gaussian pseudo LM test. Unlike the estimation part, the time domain
Gaussian log likelihood is used as the objective function. In fact, under H0

the model is trivially invertible given that xt = µ + εt.
(e) Theorem 4 effectively establishes that φ is converging in distribution to
a multivariate standard normal so that, when p = 1, a one-sided test of H0

against the alternative (say) θ > 0 can be performed with the usual gain in
power (cf. Robinson (1991)).
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(f) The obvious, mild condition for consistency of Φ is
∑∞

i=1 τiE(ηi) 6= 0 when
H0 is false.

In terms of the assumptions made, D imposes a relatively stringent struc-
ture on the moments of the unobservable εt. For this reason we propose a
robustified LM test statistic, which has the same asymptotic distribution un-
der H0 as the Φ statistic, but allowing a great deal of heterogeneity in the
εt. Details are reported in appendix D.1.

4 ARMA with nonlinear MA innovations

To relax the hypothesis of conditionally constant first moment of the levels
xt we extend (1) to

xt =
∞∑

j=0

βjut−j, β0 = 1,
∞∑

j=0

β2
j < ∞, t ∈ Z, (17)

with nonlinear MA innovations ut described by (2). With no loss of generality,
E(xt) = 0 under (17) and Assumption A.

For parametric estimation of the βj, a flexible and computationally con-
venient parameterization is provided by the ARMA(r, q) model, whereby

xt = ω1,0xt−1 + ω2,0xt−2 + ... + ωr,0xt−r + ut + ξ1,0ut−1 + .. + ξq,0ut−q, (18)

yielding βj = βj(ζ0) with ζ0 = (ω′0, ξ
′
0)
′ for constant coefficients

ω0 = (ω1,0, ..., ωr,0)
′, ξ0 = (ξ1,0, ..., ξq,0)

′, such that the polynomials Ω0(z) =
1− ω1,0 z − ...ωr,0 zr and Ξ0(z) = 1 + ξ1,0z + ...ξq,0z

q satisfy

Ξ0(z)Ω0(z) 6= 0, |z |≤ 1, (19)

implying (17). Clearly β(L; ζ0) =
∑∞

i=0 βi(ζ0)L
i = Ξ0(L)/Ω0(L).

Model (18) with (2) could be estimated by a two-stage approach. In the
first stage, one estimates the conditional mean ARMA parameters ζ0. Given
the martingale difference property of the innovations ut and γuu(0) < ∞,
implied by Assumption A, the observable xt have spectral density now equal
to

fxx(λ) =
γuu(0)

2π

| Ξ0(e
iλ) |2

| Ω0(eiλ) |2 =
γuu(0)

2π
px(λ; ζ0), −π ≤ λ < π. (20)

Given (20) the mean parameters could be estimated by the Whittle estimator
ζ̂, defined by

ζ̂T = argminζ∈Z̄ PT (ζ), (21)
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setting

PT (ζ) =
2π

T

T−1∑
j=1

Ixx(λj)

px(λj; ζ)
,

where px(λ; ζ) =|β(eiλ; ζ) |2 defines the parametrized model spectrum for the
xt (up to a constant of proportionality), Z = {ζ ∈ Rr+q | Ω(z)Ξ(z) 6= 0
for |z |≤ 1 and
Ω(z), Ξ(z) have no common roots }, Z̄ defines the compact closure of Z,
and

Iab(λ) =
1

2πT

T∑
t,s=1

(at − ā)(bs − b̄)e−i (t−s) λ, −π ≤ λ < π

for any sequences {at}, {bt}. Likewise, we define the cross-spectrum (when
it exists)

fab(λ) =
1

2π

∞∑
u=−∞

cov(at, bt+u)e
iλu, −π ≤ λ < π.

The asymptotic properties of ζ̂T follows.

Theorem 5 Under Assumption A, for ζ0 being an interior point of Z̄, as
T →∞,

ζ̂T →a.s. ζ0,

and
T

1
2 (ζ̂T − ζ0) →d Nr+q

(
0, F−1GF−1

)
,

where

F (ζ) =
1

2π

∫ π

−π

b(λ; ζ) b(λ; ζ)′dλ, (22)

G(ζ) = 2F (ζ) +
1

π

∫ π

−π

∫ π

−π

b(ω1; ζ)b(ω2; ζ)′
fu2u2(ω1 + ω2)

γ2
uu(0)

dω1dω2 (23)

and

b(λ; ζ) =
∂

∂ζ
ln px(λ; ζ) (24)

with F = F (ζ0), G = G(ζ0), b(λ) = b(λ; ζ0) and fu2u2(λ) defines the power
spectrum of the u2

t .

Proof: see appendix C.
Remarks 5. (a) Expression (23) gives the general form of the matrix G(ζ)
whenever one considers Whittle estimation of ARMA(r, q) allowing for con-
ditionally heteroskedastic innovations ut with bounded fourth moment. This
includes not only nonlinear MA but also, for example GARCH (imposing
bounded fourth moment). (23) simplifies to G(ζ) = 2F (ζ) when the ut are
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independent or, more generally, conditionally homoskedastic.
(b) The expression for the power spectrum of the u2

t , fu2u2(λ) enters into
the definition of G. The exact expression for fu2u2(λ) is given in Theorem 1
(setting µ = 0 in fyy(λ)). However, note that a consistent estimate of G does
not require the knowledge of this expression and can be obtained replacing
fu2u2(λ) with Iu2u2(λ) and adapting Taniguchi (1982).
(c) PT (ζ̂T ) represents a strongly consistent estimator of γuu(0) but, although
γuu(0) = σ4(ρ̄2 + δαα(0)), this cannot be used to identify and thus estimate
the nonlinear MA parameters, as previously noted.
(d) When assuming q = 0, for AR(p) xt, the Whittle estimator of ζ0 = ω0

becomes the Yule-Walker estimator, which has a closed-form expression and
is asymptotically equivalent to the least squares estimator (see Brockwell and
Davis (1987, section 8.1)).

Given (19) the AR(∞) representation of the xt follows:

xt −
∞∑

j=1

πj(ζ0)xt−j = ut,

with 1 −∑∞
j=1 πj(ζ0)L

j = Ω0(L)/Ξ0(L), from which one gets the estimated
residuals as

ût = xt −
t−1∑
j=1

π(ζ̂T )xt−j, t = 1, ..., T,

where
∑b

i=a ci = 0 for a > b for any sequence {ci}. Other methods of esti-
mation of the residuals can be used such as the Kalman filter (see Brockwell
and Davis (1987, section 12.2)).

Given the ût one then estimates the nonlinear MA parameters ψ = (κ̄, θ′)′

with the Gaussian estimator, replacing the yt with the û2
t in section 3. Let

Q̃T (ψ) = ln
(
σ̃8

T (ψ)
)

+
1

T

T−1∑
j=1

ln hy(λj; ψ) + 1 , (25)

setting

σ̃8
T (ψ) =

1

T

T−1∑
j=1

Iû2û2(λj)

hy(λj; ψ)
.

The Gaussian estimator ψ̃T , based on the estimated residuals ût, is defined
by

ψ̃T = argminψ∈Ψ̄Q̃T (ψ) .

It turns out that ψ̃T is still (strongly)
√

T -consistent and asymptotically
normally distributed, although with a different, larger asymptotic variance-
covariance matrix from the one of ψ̂T (stated in Theorem 3).
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Theorem 6 Under the same assumptions made in Theorem 3, as T →∞,

ψ̃T →a.s. ψ0,

and
T

1
2 (ψ̃T − ψ0) →d Np+1

(
0,M−1UM−1

)
,

where
U(ψ) = V (ψ) + H(ψ)F−1GF−1H(ψ)′, U = U(ψ0),

setting

H(ψ) =
2

πσ8

∫ π

−π

g(λ; ψ)Re(fu2 uv′(λ))dλ

with the (r + q)-vector valued random variables vt =
∑∞

j=1 ϑjxt−j, ϑj(ζ) =
∂πj(ζ)/∂ζ, ϑj = ϑj(ζ0) (j ≥ 1), and with M,V and g(λ; ψ) defined in Theo-
rem 3 and F, G defined in Theorem 5.

Proof: see appendix C.
Remarks 6. (a) The shape of the asymptotic variance-covariance matrix of
ψ̃T shows that there is an efficiency loss when estimating the residuals com-
pared with the case when the levels xt are martingale difference themselves.
(b) A more efficient estimation method is based on joint estimation of ζ0 and
ψ0, such as by using the bivariate Gaussian estimation approach mentioned
in section 3.2. The two-stage procedure here proposed, though, appears
very appealing computationally compared with practical use of the bivariate
Gaussian estimator. Moreover, as discussed above, full efficiency can never
be attained by the bivariate Gaussian estimator either. Finally, having estab-
lished the asymptotics for the univariate Gaussian estimator, the incremental
mathematical achievement for the bivariate Gaussian estimator will not be
significant.
(c) The result can be easily extended to the case of exogenous regressors such
as xt = β′zt + β(L, ζ0)ut under suitable regularity conditions on the zt (see
Hannan (1973, section 4)).
(d) Using ζ̂T and ψ̃T a consistent estimate of U can be obtained, replac-
ing fu2 uv′(λ) with Iu2 uv̂′(λ), setting v̂t =

∑t−1
j=1 ϑj(ζ̂T )xt−j, and adapting

Taniguchi (1982).

5 Montecarlo experiments

We have performed a relatively extensive Montecarlo exercise to assess the
small sample performance of the Gaussian estimator and of the LM test. We
have considered both the case of martingale difference and ARMA observ-
ables. In the latter case, we have also reported the Montecarlo results of
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the first-stage estimation of ARMA parameters. We consider the following
exact, up to the second moment, simulation approach. First, we simulate
T +1 innovations εt (0 ≤ t ≤ T ) as i.i.d. draw from a Student’s t distribution
with n degrees of freedom, variance 1 and fourth-order cumulant κ̄. Normally
distributed εt are obtained when n = ∞ (κ̄ = 0). Recall that θ = (φ′, χ′, d)′

and ζ = (ω′, ξ′)′. T defines sample size. Then we construct the sequence
ut (1 ≤ t ≤ T ) as

ut = εt

(
σρ̄ +

√
δt(θ)ε0 +

t−1∑
j=1

αj(θ)εt−j

)
, 1 ≤ t ≤ T,

setting

δt(θ) =

{ ∑∞
j=1 α2

j (θ), t = 1,

δt−1(θ)− α2
t−1(θ), t ≥ 2.

When considering the simple case of martingale difference levels (ζ = 0) then
set xt = ut (1 ≤ t ≤ T ) otherwise

xt =
√

ηt(ζ)u1 +
t−2∑
j=0

βj(ζ)ut−j, 1 ≤ t ≤ T,

setting

ηt(ζ) =

{ ∑∞
j=0 β2

j (ζ), t = 1,

ηt−1(ζ)− β2
t−2(ζ), t ≥ 2.

Throughout the exercise we always consider 1000 replications and sample
size T equal to 1024, 2048, 4096.

At first we assess the performance of the Gaussian estimator assuming
martingale difference levels xt = ut. We focus on the following parameteri-
zation:

α(L; θ) =
(1− L)−d

(1− φ1L)
, 0 < d < 1/2, |φ1 |< 1, (26)

yielding ψ = (κ̄, φ1, d), with κ̄ ∈ {0, 1.5, 3.0} (n equal to infinity, 8 and 6
respectively), φ1 ∈ {−0.8, −0.4, 0.4, 0.8} and d ∈ {0.15, 0.25, 0.45}. We set
ρ2 = 1, σ2 = 1, µ = 0. Tables 1.1, 1.2 and 1.3 reports the sample mean and
its standard deviation of the estimates across the 1000 replications.

The results show that for all parameters increasing sample size improves
remarkably the results in terms of bias reduction and accuracy. There is,
though, a marked difference in the accuracy of the estimates of κ̄ compared
with the other parameters φ1, d. This is probably a consequence of the fact
that the Gaussian estimator is not a likelihood-method and, therefore, infor-
mation on the conditional distribution of the xt (unconditional distribution
of the εt) enters only indirectly into Whittle’s function, through κ̄. This con-
trasts with likelihood-methods, such as PMLE, which by construction take
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directly into account the conditional distribution of the xt. Estimates of d
frequently exhibit a negative bias increasing in absolute value with κ̄. This
agrees with the finding of Wright (2000) in a semiparametric setting (cf. re-
mark (e) to Theorem 3). Although estimation of κ̄ should potentially reduce
this problem, the simulations show often that a significant bias arises. More-
over, estimates of d exhibit a greater accuracy compared with estimates of
φ1. However, the Gaussian estimator shows a good performance with respect
to the well-known difficulty of disentangling the effect of the long memory
parameter from pure autoregressive parameters in estimation of parametric
long memory models. Tables 3.1 and 3.2 report the empirical frequencies for
confidence intervals at 95%, based on estimates of the parameter d and their
asymptotic standard errors, for parameterization (26). The results show a
sizeble improvement, as the sample size increases, for medium and large val-
ues of d. In contrast, no substancial improvement is obtained for small values
of d. The results tend to worsen for large values of κ̄, especially for d greater
than 0.15.

Next, we consider the case of AR(1) levels, xt = ω1xt−1 +ut with |ω1 |< 1,
and the nonlinear MA coefficients still given by (26), following the approach
indicated in section 4. Thus ζ = ω1 and ψ = (κ̄, φ1, d), where ω1 = 0.5,
ψ1 ∈ {−0.4, 0.4} and d ∈ {0.15, 0.25, 0.45}. The results are presented in
Tables 2.1, 2.1 and 2.3. The conditional mean parameter ω1 appears much
more precisely estimated compared with the conditional variance parameters
ψ. The efficiency loss emerging when estimating ψ in the second stage, based
on estimated residuals, does not appear too serious in most cases. Again,
estimates of κ̄ are more imprecise compared with other parameter’ estimates.
For all parameters bias reduction and accuracy improve as T increases.

Finally, Table 4 presents evidence of the small-sample performance, both
in terms of size and power, of the LM test Φ of section 3.3. The data are
simulated as described above, with Gaussian εt, and

α(L; θ) = (1− L)−d, 0 < d < 1/2.

This yields τi = 1/i (cf. Assumption C) and Γ = π2/6 (cf. Robinson (1991)).
Good power arises for moderate and large values of d but it is poor when
d = 0.1. Moreover, the power decreases when d is very close to 1/2, in the
proximity of the non-stationary region, possibly the effect of imposing the
boundary condition. Overall, the results improve markedly as T increases.

6 Empirical application

In this section we assess the performance of the nonlinear MA to fit time series
of observed asset returns using the Gaussian estimator. The results are com-
pared with the performance of its most natural competitor, the ARCH(∞)
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of Robinson (1991):

xt = ν + εtσt, t ∈ Z, (27)

σ2
t = τ +

∞∑
j=1

ψjyt−j, a.s.,

∞∑
j=1

ψj < ∞, (28)

where τ, ψj ≥ 0 (j ≥ 1) and the εt satisfy Assumption A.
Various stationarity conditions and memory properties of ARCH(∞) are

discussed in RZ, Giraitis, Kokoska, and Leipus (1998) and Zaffaroni (2000).
In particular, long memory is ruled out when Ex2

t < ∞. Imposing Ey2
t < ∞,

the spectral density for ARCH(∞) yt can be factored exhibiting a repre-
sentation (13), in contrast to nonlinear MA. The (necessary and sufficient)
condition for covariance stationarity of ARCH(∞) yt is (using the notation
of section 2):

0 ≤ Σ =
2σ4τ 2

Ψ2(1)

(
1− 2σ4

∞∑
u=−∞

δψψ(u)(δγγ(u) + γu)

)−1

< ∞, (29)

setting Ψ(L) = 1− σ2
∑∞

i=1 ψiL
i, Γ(L) = 1 +

∑∞
i=1 γiL

i = Ψ(L)−1 and κ = 0
(see Zaffaroni (2000, Theorem 4)). When (29) holds, ARCH(∞) yt have a
well-defined power spectrum:

fyy(λ) =
Σ

2π
|Ψ(eiλ) |−2, −π ≤ λ < π. (30)

By finite-parameterizing the ψi, inference on ARCH(∞) can be performed
using the Gaussian estimator of section 3.2. Giraitis and Robinson (1998)
establish consistency and asymptotic normality of the Gaussian estimator
of ARCH(∞). Given our emphasis on long memory parameterizations, we
consider the following parsimonious specification for the ψi:

1−
∞∑

j=1

ψj(θ)L
j = (1− L)d φ(L)

χ(L)
= (1− L)d (1− φ1L− .− φpL

p)

(1 + χ1L + . + χqLq)
, (31)

where θ = (χ1, ., χq, φ1, ., φp, d)′, with d > 0 and, hereafter, we assume that
φ(L), χ(L) have all zeros outside the unit circle on the complex plane. (These
stationarity and invertibility conditions can be easily imposed using the map-
ping between the ARMA coefficients and the partial autocorrelation function
(see Monahan (1984)).) Subsequently, one gets Σ(θ) from (29) replacing the
ψi with the ψi(θ) and

Ψ(L; θ) = 1− σ2

∞∑
j=1

ψj(θ)L
j. (32)
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Condition (29) and parameterization (31) require σ2 < 1/2 (cf. Zaffaroni
(2000, Remark 4.4)). We set σ2 = 0.4.

In analogy to (31) the following parameterization is considered for the
nonlinear MA (cf. (9)):

1 + α(L; θ) = (1− L)−d χ(L)

φ(L)
= (1− L)−d (1 + χ1L + . + χqL

q)

(1− φ1L− .− φpLp)
. (33)

Estimation of the nonlinear MA requires |d |< 1/2 and the invertibility condi-
tions on φ(L), χ(L). In addition to these conditions, estimation of ARCH(∞)
with parameterization (31) requires also ψi(θ) ≥ 0 (i ≥ 1) and Σ(θ) < ∞.
These conditions impose severe nonlinear restrictions on θ and are computa-
tionally very demanding.

We consider seven time series, three stock indexes returns (S&P 500,
FTSE All, FTSE 100) and four foreign exchange rates returns (Yen/US Dol-
lar spot and 1 month forward, US Dollar/Pound spot and 1 month forward).
The data are daily, from 1 January 1985 to 1 June 1998, with 3,500 obser-
vations (source: Datastream). Returns are calculated as xt = ln(Pt/Pt−1)
where Pt denotes the speculative price of the asset. The ACF for the data in
levels and in squares are plotted in Figure 1 for lags 1−300. For all the time
series the graphs clearly indicate a marked difference between the ACF in the
levels (first and third row) and the ACF in the squares (second and fourth
row), the latter exhibiting an approximate hyperbolic behaviour as the lag
increases. Table 5.1 reports the results for the LM test Φ, based on τi = 1/i
and Γ = π2/6 (cf. Robinson (1991)). As suggested by the graphs, Φ is al-
ways highly significant for all but the Yen/US Dollar spot series, which is not
significant at 1%, providing strong indications of dynamic heteroskedasticity
in the data.

As a preliminary exercise, we estimate semiparametrically the parame-
ter of long memory using the local Gaussian estimator of Robinson (1995b).
The results, in Table 5.2, clearly support the hypothesis of long memory in
squared returns for all the series. Next, the nonlinear MA and ARCH(∞)
are estimated by the Gaussian estimator. The second and third row of Ta-
ble 5.2 report the estimates of d for ARCH(∞) and nonlinear MA respec-
tively. (Asymptotic standard errors use the estimates of the trispectrum
integral proposed by Taniguchi (1982) with a Fejer window.) For the non-
linear MA we also report, in square brackets, the estimates of the parameter
κ̄, the fourth-order cumulant of the standartized residuals. For easy refer-
ence, the estimates of the other parameters are not reported. The reported
estimates correspond to the parameterization (values of p and q) that yields
the best performance (with significant parameters estimates), expressed by
the degree of white-noisiness of the estimated residuals in levels and squares
based on Milhøj (1981) approach.
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For all the observed time series of returns there is clear evidence that
shocks to conditional volatility do decay with time, but very slowly, in agree-
ment with previous empirical studies (see Ding, Granger, and Engle (1993)
and Baillie, Bollerslev, and Mikkelsen (1996) among others). Estimates of κ̄
show a substancial degree of leptokurtosis, especially for the stock indexes
return data. This could explain the smaller values obtained for the semi-
parametricestimates of d (see Wright (2000)). Estimating κ̄ freely rather
than equating it a priori to zero should instead attenuate the effect of the
negative bias for the nonlinear MA estimates of d.

A formal analysis of the goodness-of-fit performance of the two competing
models is carried out based on the estimated residuals. The results are re-
ported in Table 5.3, within columns two and five. Milhøj (1981) test statistic
is calculated under the hypothesis that the power spectrum of the residuals,
in levels and squares, is constant at all frequencies, viz. that the residuals
and the residuals squared are white-noise. Under the hypothesis of correct
model specification Milhøj (1981) test statistic converges in probability to
1/π = 0.318... Moreover, the last two columns of Table 5.3 report the values
of the test statistic using the raw data, respectively in the levels and the
squares, providing a benchmark for the results of the fitted models reported
in the first four columns. The results of Table 5.3 indicate a better relative
performance of the nonlinear MA in terms of goodness-of-fit with respect to
ARCH(∞) for all but the stock index S&P 500 and the foreign exchange rate
US Dollar/Pound spot data, where the latter model appears superior.

The different performance of the two models is probably caused by the
severe parameter restrictions on ARCH(∞), in particular Σ(θ) < ∞. For
instance, when d = q = 0, p = 1 and σ2 = 1 (the ARCH(1)), the latter
restriction delivers the well-known condition 0 ≤ φ1 < 1/

√
3. Hence, (29)

rules out a lot of possible behaviours for the model ACF. This contrasts with
the nonlinear MA case, where this condition is not required and, indeed, one
can freely allow −1 < φ1 < 1 when d = q = 0, p = 1.

All the computations and the optimizations are based on Gauss and For-
tran codes using an IBM RS 6000 and the NAG library optimization routine
E04UCF.(All the codes are available on request from the author.) In terms of
computational burden, the nonlinear MA involves calculations of the convo-
lutions in the model power spectrum (cf. Theorem 1) whereas for ARCH(∞)
the burden comes from imposing non-negativity of the ψj(θ) and bounded-
ness of Σ(θ). Therefore, despite the apparently simpler expression for the
power spectrum of ARCH(∞) (cf. (30)), estimation of the nonlinear MA
appears computationally straightforward.
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7 Conclusions

In this paper we consider the family of nonlinear MA models introduced by
Robinson and Zaffaroni (1997) and show that, for a long memory specifica-
tion, inference of the model can be performed by a frequency domain Gaus-
sian estimator and by a Gaussian pseudo LM test for dynamic conditional
heteroskedasticity, establishing the related asymptotic distribution theory.
Finally, we have analyzed the effect of allowing for a time-varying condi-
tional mean for the observables when parameterized by stationary ARMA.
An interesting development would be a multivariate extension of the nonlin-
ear MA and related inference by a multivariate Gaussian estimator. Further
research is needed to accomplish these goals.

A Second-order properties

Proof of Theorem 1.(i) The xt − µ are square integrable martingale dif-
ference, by Assumption A, thus displaying a constant power spectrum. The
result follows by simple calculations.
(ii) The ACF of the yt, under Assumption A and µ = ρ = 0 was originally
given in RZ, section 4. Let us relax Assumption A setting µ3 = E(ε3

t ). For
integers a, b, c such that a > b ≥ c, set ha,(b,c) = ρ +

∑a−c
k=a−b αkεt+a−k. Then,

for any l > 0 (without loss of generality),

γyy(l) = (i) + (ii) + (iii) + (iv),

where

(i) = cov(ε2
t h

2
0,(−1,−∞), ε

2
t+lh

2
l,(l−1,−∞)),

(ii) = cov(2µεth0,(−1,−∞), 2µεt+lhl,(l−1,−∞)),

(iii) = cov(ε2
t h

2
0,(−1,−∞), 2µεt+lhl,(l−1,−∞)),

(iv) = cov(2µεth0,(−1,−∞), ε
2
t+lh

2
l,(l−1,−∞)).

Applying the cumulant’ theorem (see Leonov and Shiryaev (1959)) to each
term and with simple but tedious calculations, for any l = 0,±1, . . .,

γyy(l) = δαα(0)(κσ4 + 2σ8)α2
|l| + 4ρ2σ6δαα(l) + σ4κδα2α2(l) + 2σ8δ2

αα(l)

+2σ2µα|l|
[
ρα|l|µ3 + 2ρ2σ2 + 2σ4δαα(l)

]
+ ρ2(κσ2 + 2σ6)α2

|l|
+2µ2

3α|l|δα2α(l) + µ3

[
2ρσ4δαα2(l) + 4ρσ4α|l|δαα(l) + 2ρ3σ2α|l|

+2ρσ4α|l|δαα(0) + 2ρσ4δα2α(l) + δ(l, 0)νy ,

(35)
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where

νy = (κ + 2σ4)
(
(ρ2 + σ2δαα(0))2 + 2σ2δαα(0)(2ρ2 + σ2δαα(0))

)

+κ
(
4µ3ρδα2α(0) + (κ + 2σ4)δα2α2(0)

)

+4µ3µ
[
ρ3 + 3ρσ2δαα(0) + µ3δα2α(0)

]
+ 4ρσ4µ3δα2α(0).

Turning to the power spectrum evaluation, under Assumption A, using (3)
and (4) and setting k1 = σ2(κ + 2σ4)(ρ2 + σ2δαα(0)) + σ4κδαα(0), k2 =
2σ8, k3 = 4σ6µ, k4 = 4σ6ρ2, k5 = 4σ4ρ2µ, k6 = σ4κ, yields

γyy(l) =
k1

(2π)2

∫ π

−π

∫ π

−π

β(ω)β(λ)eiωleiλldωdλ

+
k2

(2π)2

∫ π

−π

| α(ω) |2| α(λ) |2 eiωleiλldωdλ

+
k3

(2π)2

∫ π

−π

∫ π

−π

β(λ) | α(ω) |2 eiωleiλldωdλ

+
k4

2π

∫ π

−π

| α(λ) |2 eiλldλ +
k5

2π

∫ π

−π

β(λ)eiλldλ

+
k6

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

α(−ω−λ−µ)α(λ)α(µ)α(ω)eil(ω+λ)dωdλdµ.

Then make the change of variable from ω to ν = ω + λ and equate the
integrand with respect to ν to fyy(ν)eilν . ¤

B Asymptotic properties of the Gaussian es-

timator: martingale difference levels

B.1 Lemmata

In this section we will establish a number of properties for the nonlinear
MA model (needed for the LLN and the CLT results) mainly in terms of
the behaviour of the model spectral densities fyy(λ; ψ, σ2) and its deriva-
tives. In turn, these are implied by establishing certain asymptotic features
of the αi(θ) and their convolution. We recall that ∼ denotes asymptotic
equivalence, 1A denotes the indicator function, δ(u, v) the Kronecker delta
so that δ(u, v) = 1u=v, tr(.) the trace operator and ‖ . ‖ the Euclidean norm.
Constants will be denoted k (not always the same) although these will, in
general, be a function of the parameter (k = k(θ)) but we will not write this
explicitly.
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Lemma 1 Under Assumption B1, for some integer m,n with m,n ≥ 0 and
m + n ≥ 2, as l →∞,

∞∑
j=1

αm
j (θ) αn

j+l(θ) ∼ k(ln(d(θ)−1) + l(n+m)(d(θ)−1)+1) ,

for some constant k.

Proof. As l →∞,
∑∞

j=1 αm
j (θ) αn

j+l(θ) =
∑l

j=1 αm
j (θ) αn

j+l(θ) +
∑∞

j=l+1 αm
j (θ) αn

j+l(θ)

∼ k (ln(d(θ)−1)
∑l

j=1 αm
j (θ) +

∑∞
j=l+1 α

(m+n)
j (θ)) ∼ k(ln(d(θ)−1) + l(m+n)(d(θ)−1)+1).¤

Lemma 2 Let {pj , j = 0,±1 . . .} and {qj , j = 0,±1 . . .} be two square
summable sequences satisfying, for rj ∈ {pj, qj},

(a) | rj − rj+1 | ≤ |rj | k/j, all j > J, some 0 < k, J < ∞,

(b) rj → 0, as j → ∞.

Then, the product sequence and the convolution sequence, defined by
mu = puqu, nu =

∑∞
i=−∞ piqi+u, satisfy (a) and (b). Note that condition

(a) is stronger than quasi monotonic convergence to zero (QMC), implying
bounded variation as well (Yong 1974, section I.1).

Proof. Let us start from the product sequence mj. From mj+1 − mj =
pj+1(qj+1 − qj) + qj(pj+1 − pj) = (i) + (ii). From the assumptions made one
obtains, for some 0 < k, k′, J < ∞ and all j > J ,
|(i)|≤ k/j |pj+1 qj|, |(ii)|≤ k′ 1/j |pj qj+1|, so that as j → ∞,
|mj − mj+1 |= O(|mj | /j). For the convolution, as j → ∞, nj+1 − nj =∑∞

i=−∞ pi(qi+j+1 − qi+j)
=

∑
|i|≤j pi(qi+j+1 − qi+j) +

∑
|i|>j pi(qi+j+1 − qi+j) = (iii) + (iv) .

Then, as j →∞,
|(iii)|= O(| ∑|i|≤j(piqi+j)/(i + j) |) = O(|qj| /j

∑
|i|≤j | pi |),

|(iv)|= O(| ∑|i|>j pi(qi+1 − qi) |) = O(1/j
∑

|i|>j | piqi |). ¤

Lemma 3 Let the δαα(l; θ) be given by replacing the αi with the αi(θ) in
δαα(l). By Assumptions B1, B2, the following sequences are QMC:
δαα(l; θ), δ2

αα(l; θ), α2
|l|(θ), α|l|(θ)δαα(l; θ), l = ±1, . . .

Assuming further B3, B4 the following are QMC:
∂

∂θi
δ2
αα(l; θ), i = 1, 2, .., p, l = ±1, . . .

Assuming further B5, B6, the following are QMC:
∂2

∂θi1
∂θi2

δ2
αα(l; θ), i1, i2 = 1, 2, .., p, l = ±1, . . .

Proof. The result follows by the direct use of Lemma 2 in each of the
sequences obtained as products or convolutions of the αj(θ) and their deriva-
tives. ¤
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Lemma 4 Assume A, B1, B2. For any ψ ∈ Ψ̄, for constant 0 < k < ∞,

fyy(λ; ψ, σ2) ∼ k | λ |−2d(θ) as λ → 0+.

Let k be a constant 0 <| k |< ∞, varying in each sentence below and let L(·)
be either constant or equal to ln(·). Assume further B3, B4. For j = 1, . . . , p,,
as λ → 0+ ,

∂
∂θj

fyy(λ; ψ, σ2) ∼ k L( 1
|λ|) | λ |−2d(θ),

∂
∂κ̄

fyy(λ; ψ, σ2) ∼ k.

Assume further B5, B6 and let Li(·) be either constant or equal to ln(·). For
i1, i2 = 1, . . . , p, as λ → 0+ ,

∂2

∂θi1
∂θi2

fyy(λ; ψ, σ2) ∼ k Li1(
1
|λ|) Li2(

1
|λ|) | λ |−2d(θ),

∂2

∂κ̄∂θi
fyy(λ; ψ, σ2) ∼ k.

Proof. Let us focus on the model spectrum, which we write as

fyy(ν; ψ, σ2) = f1(ν) + f2(ν) + f3(ν) + f4(ν) +
νy(ψ, σ2)

2π
,

with

f1(ν) = k1(ψ,σ2)
2π

∑∞
l=−∞ α2

|l|(θ)e
iνl, f2(ν) = k2(ψ,σ2)

2π

∑∞
l=−∞ δ2

αα(l; θ)eiνl,

f3(ν) = k3(ψ,σ2)
2π

∑∞
l=−∞ δαα(l; θ)eiνl, f4(ν) = k4(ψ,σ2)

2π

∑∞
l=−∞ δα2α2(l)(θ)eiνl,

where the k1(., .), k2(., .), k3(., .), k4(., .) and νy(., .) can be easily derived from
the proof of Theorem 1 with the αi replaced by the αi(θ). By Lemma 1 and
Assumption B1 it follows that the dominating term is f4(.). Finally, apply
Yong (1974, Theorem III-14). The proofs for the first and second derivative
of the model spectrum follow along the same lines, where L(·), Li1(·), Li2(·)
indicate either a constant or ln(·). ¤

Lemma 5 Under Assumptions A,B1, B2, fyy(λ; ψ, σ2) is continuous for all
ψ and λ such that λ 6= 0. Further assuming B3, B4, the same applies to

∂
∂ψi

fyy(λ; ψ, σ2) (i = 1, 2, .., p+1). Further assuming B5, B6, the same applies

to ∂2

∂ψi1
ψi2

fyy(λ; ψ, σ2) (i1, i2 = 1, 2, .., p + 1).

Proof. Application of Robinson (1994a, Lemma 8) yields the results. Note
that for the derivatives of fyy(λ; ψ, σ2) a slowly varying function appears, so
that in fact an approximate Lipschitz continuity condition holds. ¤

Lemma 6 Under Assumptions A, B1, for any 0 ≤ λ ≤ π,

inf
ψ∈Ψ̄

fyy(λ; ψ, σ2) ≥ δ > 0,

for some δ independent from ψ.
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Proof. For λ → 0+ the result comes directly from Lemma 4. We will then
consider the case 0 < λ ≤ π. The result follows decomposing fyy(λ; ψ, σ2) as
the sum of a non-negative function of λ and of a strictly positive quantity,
constant in λ. In fact, from the nonlinear structure of the process yt, the
model ACF exhibits a discontinuity (a positive jump) at lag u = 0. Given
that σ2 > 0, we need to show that hy(λ; ψ) is strictly positive. From Theo-
rem 1, for any l > 0 (with no loss of generality),

γ̄yy(l; ψ) = 2(δ2
αα(l; θ)− δα2α2(l; θ)) + 4δαα(l; θ) + (κ̄ + 2)δα2α2(l; θ)

+(2 + κ̄)α2
l (θ)(δαα(0; θ) + 1), (36)

and, by simple manipulation,

γ̄yy(0; ψ) = γ̃yy(0; ψ) + δ(ψ),

setting

δ(ψ) = (2 + κ̄)
(
4δαα(0; θ) + 2(δ2

αα(0; θ)− δα2α2(0; θ))
)

+ (2 + κ̄)2δα2α2(0; θ),

and

γ̃yy(0; ψ) = 2(δ2
αα(0; θ)− δα2α2(0; θ)) + 4δαα(0; θ) + (κ̄ + 2)δα2α2(0; θ)

+(2 + κ̄)(1 + δαα(0; θ))2. (37)

Define another sequence γ̃yy(l; ψ) such that γ̃yy(l; ψ) = γ̄yy(l; ψ) (l 6= 0) with
γ̃yy(0; ψ) defined as above. We need to show only that γ̃yy(l; ψ) (l = 0,±1, . . .)
behaves as an autocovariance function by its positive (semi) definiteness and
so its Fourier transform is non-negative (see Rozanov (1963, Theorem 5.1)).
This property of the γ̃yy(l; ψ) is inherited from the γ̄yy(l; ψ) once we show
|γ̃yy(l; ψ)|≤ γ̃yy(0; ψ) (l = 0,±1, . . .). However, this easily follows comparing
(36) and (37) term by term. Hence, the Fourier transform of the sequence
γ̃yy(l; ψ) differs from hy(λ; ψ) by δ(ψ), which is strictly positive for any κ̄ >
−2, d(θ) > 0. Finally, set δ = infψ∈Ψ̄ δ(ψ). ¤

B.2 Consistency

In the following three lemmas we will establish the conditions required in
order to be able to apply Hannan (1973, Theorem 1). The other two lemmas
which follow, used in the proof of Theorem 2, represent the usual steps to
establish consistency for M-estimators.

Lemma 7 Under Assumption A the process yt is bounded almost surely,
ergodic and strictly stationary.
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Proof. We adapt the proof of Nelson (1991, Theorem 2.1). Using Billingsley
(1986, Theorem 22.6), the ht, and thus the yt, are finite a.s. given the square
summability of the αi and the independence and finite variance of the εt,
stated in Assumption A. Ergodicity and strict stationarity follows by Stout
(1974, Theorem 3.5.8). ¤

Lemma 8 Under Assumptions A the process yt is purely non-deterministic.

Proof. We need to show that (see Hannan (1970))

∫ π

−π

ln fyy(ω; ψ, σ2)dω > −∞ .

From | ln fyy(ω; ψ, σ2) |≤ max
(|fyy(ω; ψ, σ2)− 1 |, |1− f−1

yy (ω; ψ, σ2) |) , the
result follows by stationarity of the yt and continuity of f−1

yy (λ; ψ, σ2) by
Lemma 6. ¤

Lemma 9 Under Assumptions A,B1, B2, B3, B4, B7, for any ψ, ψ∗ ∈ Ψ̄ we
obtain hy(λ; ψ) 6= hy(λ; ψ∗), for any −π ≤ λ < π, whenever ψ 6= ψ∗.

Proof. Let us choose two vectors of parameters ψ, ψ∗ such that for some
(p + 1) × 1 vector of constants η 6= 0 we can write ψ = ψ∗ + η. Let us
start, contradicting the conclusion of the Lemma, assuming that for some
−π ≤ λ < π, hy(λ; ψ) = hy(λ; ψ∗). We will see that the condition ψ 6= ψ∗

will contradict the hypothesis of the Lemma. By using the fact that the ACF
uniquely identifies the power spectrum, it follows that γ̄yy(u; ψ) = γ̄yy(u; ψ∗),
for any u = ±1, . . .. In particular, by the mean value theorem, considering
the u1, ..., up+1 of Assumption B8, this implies




γ̄yy(u1; ψ)
...

γ̄yy(up+1; ψ)


 =




γ̄yy(u1; ψ)
...

γ̄yy(up+1; ψ)


 +




∂γ̄yy(u1;ψ̃)

∂ψ′
...

∂γ̄yy(up+1;ψ̃)

∂ψ′


 (ψ − ψ∗)

where ψ̃ is such that ψ̃ = ψ+R(ψ∗−ψ) with R being (p+1)× (p+1) matrix
satisfying ‖ ψ̃ − ψ ‖≤‖ ψ∗ − ψ ‖ . However, by Assumption B8, this holds
only for ψ = ψ∗. ¤

Lemma 10
(i) Under Assumptions A,B1, B2, uniformly in ψ ∈ Ψ̄,

lim
T→∞

QT (ψ) = Q(ψ) a.s.,

with

Q(ψ) = ln

(
σ8

2π

∫ π

−π

hy(λ)

hy(λ; ψ)
dλ

)
+

1

2π

∫ π

−π

ln hy(λ; ψ) + 1.
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(ii) Under Assumptions B1, B2, B7, for any ψ ∈ Ψ̄,

Q(ψ) ≥ Q(ψ0) = ln(σ8) +
1

2π

∫ π

−π

ln hy(λ) + 1,

so that the minimum is attained for ψ = ψ0.
Proof. All the convergences below hold as T →∞. (i) For the first stochas-
tic term on the right hand side of QT (ψ) (see 12)), the result follows directly
from Hannan (1973, Lemma 1) and continuity of the logarithmic function.
Let us consider the second non-stochastic term. Let jε be an integer such
that 1

T
2πjε → ε > 0 for an arbitrary 0 < ε < 1/2. Also let m be an integer

such that 1
m

+ m
T
→ 0 so that we can always take 2πm/T < ε for T large

enough. For hy(λ; ψ) being an even function of λ, one need only consider

1

T

[T/2]∑
j=1

ln hy(λj; ψ) = (a) + (b) + (c),

with

(a) =
1

T

[T/2]∑
j=jε+1

ln hy(λj; ψ), (b) =
1

T

jε∑
j=m

ln hy(λj; ψ), (c) =
1

T

m−1∑
j=1

ln hy (λj; ψ).

By the continuity of the spectrum away from the zero frequency

(a) →
∫ π

ε
ln hy(λ; ψ)dλ

2π
.

Secondly, from 1− 1/X ≤ ln X ≤ X − 1 for X > 0, one obtains (c) = o(1) .

In fact (c)′ =
m

T
− 1

T

m−1∑
j=1

1

hy(λj; ψ)
≤ (c) ≤ −m

T
+

1

T

m−1∑
j=1

hy (λj; ψ) = (c)′′.

(c)′ = O(m
T

) = o(1) by the continuity of the inverse of the spectrum, and
(c)′′ = O((λm)2δ) = o(1) by Robinson (1994b, Lemma 4) where because of
B1 we can always choose δ > 0 such that supψ∈Ψ̄ d(θ) < 1/2− δ < 1/2. For
(b) one obtains

| (b)− 1

2π

∫ ε

0

ln hy(ω; ψ)dω |≤| (b)′ | + | (b)′′ |,

with

(b)′ =

(
1

T

jε∑
j=m

ln hy(λj; ψ)− 1

2π

∫ ε

λm

ln hy(λ; ψ)dλ

)
,

(b)′′ =
1

2π

∫ λm

0

ln hy(λ; ψ)dλ = O(λm ln (λm)).
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In turn

| (b)′ | ≤ | ln (hy(λm; ψ))

T
| + 1

2π
|

(jε)−1∑
j=m

∫ λj+1

λj

ln (
hy(λj+1; ψ)

hy(λ; ψ)
)dλ |

= | (b.1)′ | + | (b.2)′ |,

and | (b.1)′ |= O(ln T /T ). Finally, from

2π

T
− λ2

j+1 − λ2
j

2λj+1

≤
∫ λj+1

λj

ln(
λj+1

λ
)dλ ≤ λj+1 ln(

λj+1

λj

)− 2π

T

one gets π
T (j+1)

≤ ∫ λj+1

λj
ln(

λj+1

λ
)dλ ≤ 2π

Tj
yielding | (b.2)′′ |= O(ln jε/T ),

where all the bounds do not depend on ψ, by the compactness assumption
made on the parameter space.
(ii) ψ0 is the unique minimizer of Q(ψ), given the identification condition, by
which hy(λ; ψ) 6= hy(λ; ψ0) (−π < λ ≤ π) whenever ψ 6= ψ0 (cf. Lemma 9).
Therefore

Q(ψ) = log(σ8) + log

(
1

2π

∫ π

−π

hy(λ)

hy(λ; ψ)
dλ

)
+

1

2π

∫ π

−π

loghy(λ; ψ)dλ + 1

= log(σ8) +
1

2π

∫ π

−π

loghy(λ)dλ + 1

+log

(
1

2π

∫ π

−π

hy(λ)

hy(λ; ψ)
dλ

)
− 1

2π

∫ π

−π

log

(
hy(λ)

hy(λ; ψ)

)
dλ

= Q(ψ0)

+log

(
1

2π

∫ π

−π

hy(λ)

hy(λ; ψ)
dλ

)
− 1

2π

∫ π

−π

log

(
hy(λ)

hy(λ; ψ)

)
dλ ≥ Q(ψ0),

using Jensen’s inequality for integrals (see Hardy, Littlewood, and Polya
(1964)). ¤

Proof of Theorem 2. By Lemmas 7-10 and Hannan (1973, Lemma 1),
strong consistency follows by Hannan (1973, Theorem 1). ¤

We exploited the ergodicity property for the a.s. convergence of the sam-
ple autocovariance. Alternatively, one could use the fourth-order cumu-
lant expression for the yt in order to derive the convergence in probabil-
ity of the sample covariances of yt. In fact, one obtains that as T → ∞
var(c(u)) = O(T 2d−1), where c(u), u = 0,±1, . . . denote the sample autoco-
variances made of (y1, . . . , yT )′ (cf. Zaffaroni (1997)).
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B.3 Asymptotic distribution

A number of technical lemmas follow, which allow us to establish the CLT
for the score and the convergence of the Hessian. In particular, we establish
that the quadratic form 1

2π

∫ π

−π
g(λ; ψ0)Iyy(λ)dλ, opportunely normalized, is

asymptotically normal. This will be derived by studying the asymptotic be-
haviour of its cumulants of order two and four. The approach here considered
is similar to Giraitis and Surgailis (1990, Theorem 1) although there the anal-
ysis is based on looking at the power spectrum and trispectrum (the Fourier
transform of the fourth-order cumulant) given their simple structure. In our
context we need to develop the analysis in terms of the cumulants because,
unlike the linear process case of Giraitis and Surgailis (1990), the trispec-
trum of the nonlinear MA has a very complicated expression (cf. Zaffaroni
(1997)).

Lemma 11 Under Assumptions A,B1, B2, B3, B4, B5, B6,
∫ π

−π
ln hy(ω, ψ)dω

can be differentiated twice under the integral operator for any ψ ∈ Ψ̄.
Proof. We follow Fox and Taqqu (1986) and skip the second differentia-
tion case for simplicity. Denoting the j-th unit vector in Rp+1 by ej, write
1
ε

(∫ π

−π
ln hy(ω; ψ + ejε)dω − ∫ π

−π
ln hy(ω; ψ)dω

)
=

1
ε

∫ π

−π
(ln hy(ω; ψ + ejε)dω − ln hy(ω; ψ)) dω for some arbitrary ε > 0. Thus

by the mean value theorem the last integral, ignoring constant terms, is
bounded by

∫ π

−π

| ω |2(dl−du)−δ dω < ∞,

where dl = infθ∈Θd(θ), du = supθ∈Θd(θ), given (dl − du) > −1/2 , where δ
can be taken as arbitrarily small. Use of the dominated convergence theorem
concludes. ¤
Lemma 12
(i) Under Assumptions A,B1, B2, B7, the Fourier coefficients of h−1

y (λ; ψ) (π ≤
λ < π) are QMC.
(ii) Let g̃ψ(u; ψ) (u = 0,±1, ...) be the Fourier coefficients of

g(λ; ψ) =
∂

∂ψ
h−1

y (λ; ψ).

Under Assumptions A,B1, B2, B3, B4, B7, for any ψ ∈ Ψ̄ and constant
0 <| k |< ∞ (varying in each sentence below) the g̃ψ(u; ψ) form a vector
QMC sequence and, as u →∞,

g̃θi
(u; ψ) ∼ k L(|u |) |u |−1−2d(θ),

g̃κ̄(u; ψ) ∼ k |u |−2−6d(θ),

for i = 1, .., p, where the L(·) are either equal to 1 or ln(·).
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Proof. (i) The continuity and thus the integrability of the inverse of the
spectrum yields the convergence to zero of its Fourier coefficients by the
Riemann-Lebesgue Theorem. Then the Lipschitz condition (Lemma 5) al-
lows us to use Zygmund (1977, Theorem 4.7-(i) p.46) and so to bound the
Fourier coefficients of h−1

y (λ; ψ) as
∫ π

−π
h−1

y (λ; ψ)eiλudλ = O(| u |−k) for some
0 < k < 1. By using Yong (1974, Lemma I-1, p.4) the result follows.
(ii) The function g(λ; ψ) is given by the product of h−2

y (λ; ψ) times− ∂
∂ψ

hy(λ; ψ).

Thus, each g̃ψi
(u; ψ) is equivalent to the convolution of two series of QMC

coefficients by Lemma 3 and part (i) of this Lemma, and therefore it is QMC
itself by Lemma 2. By Yong (1974, Theorem III-33-(ii)) and Lemma 4 the
asymptotic relations for the Fourier coefficients follow. ¤

Lemma 13 Under Assumptions A′, B, as T →∞ ,

T
1
2

(
1

2π

∫ π

−π

g(λ; ψ0) (Iyy(λ)− EIyy(λ)) dλ

)
→d Np+1(0, V̄ ),

for some positive semi definite matrix V̄ .

Proof. All the convergences below hold as T →∞. We establish the result
in two steps. In the first we approximate 1

2π

∫ π

−π
g(λ; ψ0)Iyy(λ)dλ by another

quadratic form such that they share the same asymptotic distribution. Then,
we establish the asymptotic distribution of this second quadratic form, adapt-
ing standard limit laws. By Fox and Taqqu (1987, Lemma 8.1), substitution
of ȳ with E(yt) in the periodogram is (asymptotically) equivalent. Setting
g̃ψ(u) = g̃ψ(u; ψ0) (u = 0,±1, ...) and choosing an integer 0 < M < ∞, define

QT =
∑T

t,s=1 g̃ψ(| t− s |)ŷtŷs with ŷt = yt − E(yt),

ST =
∑T

t,s=1 g̃ψ(| t− s |)ŷ(M)
t ŷ

(M)
s with ŷ

(M)
t = y

(M)
t − E(y

(M)
t ),

and
yt = ε2

t (ρ +
∑∞

i=1 αiεt−i)
2, E(yt) = σ2(ρ2 + σ2

∑∞
i=1 α2

i ),

y
(M)
t = ε2

t (ρ +
∑M

i=1 αiεt−i)
2, E(y

(M)
t ) = σ2(ρ2 + σ2

∑M
i=1 α2

i ).

Rather than establishing var(QT − ST ) = o(T ) we will obtain the slightly
weaker condition: var(QT − ST ) = O(η(M) T ) where 0 < η(M) < ∞ and
η(M) ↓ 0 as M →∞. Then

ŷtŷs − ŷ
(M)
t ŷ

(M)
s =

(
yt − E(yt)− y

(M)
t + E(y

(M)
t )

)
(ys − E(ys))

+
(
y

(M)
t − E(y

(M)
t )

)(
ys − E(yt)− y

(M)
s + E(y

(M)
t )

)
,

yt − y
(M)
t = ε2

t

(
(ρ + wt−1)

2−(ρ + w
(M)
t−1 )2

)

= ε2
t

(
w2

t−1−(w
(M)
t−1 )2+2ρ(wt−1−w

(M)
t−1 )

)

= ε2
t (2ρ

∑∞
i=M αiεt−i + (

∑∞
i=M αiεt−i)(

∑∞
i=1 ᾱiεt−i)) ,
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where

ᾱi =

{
αi, i ≥ M,
2αi, i < M.

Thus setting zt =
(
yt − y

(M)
t − E(yt) + E(y

(M)
t )

)
we get ŷtŷs − ŷ

(M)
t ŷ

(M)
s =

ztŷs + ŷ
(M)
t zs, yielding

var(QT − ST ) = (38.1) + (38.2) + (38.3), (38)

with

(38.1) = var(
T∑

t,s=1

g̃ψ(t− s)ŷtzs), (38.2) = var(
T∑

t,s=1

g̃ψ(t− s)ŷ
(M)
t zs),

(38.3) = 2 cov

(
T∑

t1,s1=1

g̃ψ(t1 − s1)ŷt1zs1 ,

T∑
t2,s2=1

g̃ψ(t2 − s2)ŷ
(M)
t2 zs2

)
.

By the cumulant’ theorem (see Brillinger (1975)), denoting by ck(a1, · · · , ak)
the k-th order cumulant in possibly k different arguments a1, ..., ak, the first
term of (38) is equivalent to

(38.1) = (a) + (b) + (c),

(a) =
T∑

t1,s1,t2,s2=1

g̃ψi
(t1 − s1) g̃ψj

(t2 − s2)c2(ŷt1 , ŷt2)c2(zs1 , zs2),

(b) =
T∑

t1,s1,t2,s2=1

g̃ψi
(t1 − s1) g̃ψj

(t2 − s2)c2(ŷt1 , zs2)c2(ŷt2 , zs1),

(c) =
T∑

t1,s1,t2,s2=1

g̃ψi
(t1 − s1) g̃ψj

(t2 − s2)c4(ŷt1 , ŷt2 , zs1 , zs2),

for i, j = 1, ..., p+1. It can be shown that term (38.2) has the same asymptotic
behaviour as term (38.1) and both, by Schwarz inequality, determine the
behaviour of the covariance term (38.3). Therefore we will develop case
(38.1) only. Let us evaluate each of these components. Starting with term
(a) above write zt = At + Bt with

At = 2ρε2
t (

∞∑
i=M

αiεt−i), Bt = ε2
t (

∞∑
i=M

αiεt−i)(
∞∑
i=1

ᾱiεt−i),

and ŷt = Ct + Dt + Et with

Ct = ρ2ε2
t , Dt = 2ρε2

t

∞∑
i=1

αiεt−i, Et = ε2
t

∞∑
i,j=1

αjαiεt−jεt−i.
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Note that each of the At, Bt, Dt, Et is made by products of terms with at least
one having mean zero, e.g. At = 2ρε2

t (
∑∞

i=M αiεt−i) and E(
∑∞

i=M αiεt−i) = 0.
Thus we get

c2(zs1 , zs2) =c2(As1 , As2)+ c2(Bs1 , Bs2)+ c2(As1 , Bs2)+ c2(Bs1 , As2), (39)

c2(ŷt1 , ŷt2) =c2(Ct1 , Ct2)+ c2(Ct1 , Dt2)+ c2(Ct1 , Et2) (40)

+c2(Dt1 , Ct2) + c2(Dt1 , Dt2)+ c2(Dt1 , Et2)

+c2(Et1 , Ct2)+ c2(Et1 , Dt2) + c2(Et1 , Et2).

Obviously there are fewer terms to be evaluated, given that indexes can
always be interchanged. Let us set for integers j, u

γj,(u) =
∞∑
i=j

αiαi+u, γ(u) = γ1,(u), γj = γj,(0), γ = γ1,(0) = γ(0),

δj,(u) =
∞∑
i=j

α2
i α

2
i+u, δ(u) = δ1,(u), δj = δj,(0), δ = δ1,(0) = δ(0).

Note that in terms of the previous definition (cf. section 2) γ(u) = δαα(u) but
we use the newer notation for simplicity. Starting from c2(zs1 , zs2), using the
cumulant’ theorem and setting s = s2 − s1 with s ≥ 0

c2(As1 , As2) =

{
(3σ4 + κ)γM,(s), s > 0,
0, s = 0,

c2(As1 , Bs2) = c2(Bs1 , As2) = 0,

c2(Bs1 , Bs2) =





σ4κ(α2
s1s≥MγM + δM,(s))+

σ8
(
γ(s)γM,(s)+γM,(s)(1s<MγM−s,(s)+1s≥MγM,(s))

)
,

s > 0,

(κ + 2σ4)σ4γ2
M + (κ + 3σ4)(σ4γ2

M + κδM), s = 0.

c2(Cs1 , Cs2) =

{
ρ4(κ + 2σ4), s = 0,
0, s > 0,

c2(Cs1 , Ds2) = c2(Ds1 , Cs2) = c2(Ds1 , Es2) = c2(Es1 , Ds2) = 0,

c2(Cs1 , Es2) =

{
σ2(κ + 3σ4), s = 0,
σ2(κ + 2σ4)α2

s, s > 0,

c2(Ds1 , Ds2) =

{
σ2(κ + 3σ4)γ, s = 0,
σ6γ(s), s > 0,

c2(Es1 , Cs2) =

{
σ2(κ + 3σ4)γ, s = 0,
0, s > 0,

c2(Es1 , Es2) =

{
σ4[(κ + 2σ4)γα2

s + κδ(s) + 2σ4γ2
(s)], s > 0,

σ4[(κ + 2σ4)γ + κδ + 2σ4γ2)], s = 0,

For case (b) we no longer have symmetry so we need to take t > s, t = s, t < s
separately, obtaining

c2(At, Cs) = 0 for any t, s,
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c2(At, Ds) =

{
0, t 6= s,
σ2(κ + 3σ4)γM , t = s,

c2(At, Es) = 0 for any t, s,

c2(Bt, Cs) =

{
0, t 6= s,
σ2(κ + 3σ4)γM , t = s,

c2(Bt, Ds) = 0 for any t, s,

c2(Bt, Es) =





σ4(γ(κ + 2σ4)α2
t−s1t−s≥M+

κδM−(t−s)+1,(t−s) + 2σ4γM−(t−s)+1,(t−s)γ(t−s)),
t > s,

σ2((κ + 2σ4)(γ + γM) + σ2(κδM + 2σ4γγM), t = s,
σ4

(
(κ + 2σ4)γMα2

s−t + κδM,(s−t) + 2σ4γM,(s−t)γ(s−t)

)
, s > t.

As s →∞, assuming M < s, writing
∑∞

i=M =
∑s

i=M +
∑∞

i=s+1 yields

|γM,(s)|= O(sd−1(sd + Md) + s2d−1) = O(s2d−1+δM−δ), (41)

for some arbitrary constant δ > 0. Likewise, when s < M

|γM,(s)|= O(
∞∑

i=M

α2
i ) = O(M−δs2d−1+δ),

where 0 < η(M) = M−δ < ∞ can be made arbitrarily small when M gets
arbitrarily large. The same bound applies for δM(s). Finally, apply Fox and
Taqqu (1987, Theorem 1-(a)), with (using their notation) p = 2, α = 2d, β =
−2d = −α, yielding 2(α + β) = 0 < 1. Thus (a) = O(η(M) T ), (b) =
O(η(M) T ).

To evaluate the asymptotic behaviour of the cumulant expression (c) in
(38.1) we need to focus on the following possibilities, setting t = t1 = t2 when
t1 = t2 and s = s1 = s2 when s1 = s2 where, by symmetry, we can always
take t1 ≤ t2 and s1 ≤ s2:

t = s, t < s, t > s, t < s1 < s2, s < t1 < t2,
t = s1 < s2, s = t1 < t2, s1 < t < s2, t1 < s < t2, s1 < t = s2,
t1 < s = t2, s1 < s2 < t, t1 < t2 < s, t1 < t2 < s1 < s2, s1 < s2 < t1 < t2,
t1 < s1 < t2 < s2, s1 < t1 < s2 < t2, t1 < t2 = s1 < s2, s1 < s2 = t1 < t2, t1 = s1 < t2 < s2,
s1 = t1 < s2 < t2, s1 < t1 < t2 < s2, t1 < s1 < s2 < t2, s1 < t1 < t2 = s2, t1 < s1 < s2 = t2,
t1 = s1 < t2 = s2.

We consider the first few cases, given that the same argument will carry
through in all cases. We need to evaluate the following fourth-order cumu-
lants:

c4(x, x′, y, y′), with x, x′ ∈ {At, Bs}, y, y′ ∈ {Cr, Du, Ev}, t, s, r, u, v = 1, . . . , T

Considering the product expression for At, Bt, Ct, Dt, Et, note that when the
number of factors involved is odd the cumulant vanishes by E(εt) = 0. For
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example, the cumulant c4(At, As, Dr, Ev) involves 2 + 2 + 3 + 4 = 11 factors
and thus is equal to zero. For the non-zero terms we need to evaluate the
cumulant directly.
Case s = t:
c4(At, At, Ct, Ct) = (c4(ε

2
t , ε

2
t , ε

2
t , ε

2
t ) + 2(c2(ε

2
t , ε

2
t ))

2 + 3σ2c3(ε
2
t , ε

2
t , ε

2
t )) σ2γM ,

so that | c4(At, At, Ct, Ct) |≤ K | γM |, where the constant K involves
terms such as σ2, κ and their power. Let us denote by Kj, j = 1, 2, . . . some
constants, (different from time to time) that, like K, might involve terms
such as σ2, κ, γ, δ and their powers. Then

c4(At, At, Ct, Et) = (K1 γ2
M + K2δM), c4(At, At, Dt, Dt) = (K1 γ2

M + K2δM),
c4(At, At, Et, Et) = (K1 γ2

M + K2δM + K3γM + K4γM δM),
c4(At, Bt, Ct, Dt) = (K1 γ2

M + K2δM + K3γM),
c4(At, Bt, Dt, Et) = (K1 γ2

M + K2δM + K3γM),
c4(Bt, Bt, Ct, Ct) = (K1 γ2

M + K2δM),
c4(Bt, Bt, Ct, Et) = (K1 γ2

M + K2δM + K3γM),
c4(Bt, Bt, Dt, Dt) = (K1 γ2

M + K2δM + K3γM),
c4(Bt, Bt, Et, Et) = (K1 γ2

M + K2δM + K3γM),

and for large M

| c4(At, At, Ct, Et) |≤ K | δM |, | c4(At, At, Dt, Dt) |≤ K | δM |,
| c4(At, At, Et, Et) |≤ K | γM |, | c4(At, Bt, Ct, Dt) |≤ K | γM |,
| c4(At, Bt, Dt, Et) |≤ K | γM |, | c4(Bt, Bt, Ct, Ct) |≤ K | δM |,
| c4(Bt, Bt, Ct, Et) |≤ K | γM |, | c4(Bt, Bt, Dt, Dt) |≤ K | γM |,
| c4(Bt, Bt, Et, Et) |≤ K | γM | .
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Case s > t:

c4(At, At, Cs, Es) =
(
K1 α2

s−tγM + K2α
2
s−tγM,(s−t) + K3δM,(s−t)

)
,

c4(At, At, Es, Es) =
(
K1 α4

s−tγM + K2α
2
s−tγ

2
M,(s−t) + K3α

2
s−tδM,(s−t)

+K4γM,(s−t)δM,(s−t) + K5γM + K6γ
2
M,(s−t) + K7δM,(s−t)

)
,

c4(At, Bt, Cs, Ds) =
(
K1 δM,(s−t) + K2γMγM,(s−t) + K3γM,(s−t)

)
,

c4(At, Bt, Ds, Es) =
(
K1 α2

s−tδM,(s−t) + K2α
2
s−tγM,(s−t)γ(s−t) + K3α

2
s−tγMγ(s−t)

+K4γM,(s−t)δM,(s−t) + K5γ(s−t)δM,(s−t) + K6δM,(s−t)

+K7δ(s−t)γM + K8γMγM,(s−t) + K9γ
2
M,(s−t)γ(s−t)

)
,

c4(Bt, Bt, Cs, Es) =
(
K1 δM + K2γ

2
M + K3δM,(s−t) + K4γ

2
M,(s−t)

)
,

c4(Bt, Bt, Ds, Ds) =
(
K1 δM + K2γ

2
M + K3δM,(s−t) + K4γ

2
M,(s−t)

)
,

c4(Bt, Bt, Es, Es) =
(
α4

s−t(K1δM + K2γ
2
M + K3γM) + α2

s−t(K4δ(s−t)γM

+K5δM,(s−t)γM + K6δM,(s−t)γM,(s−t) + K7δM,(s−t)γ(s−t))
+K8γM,(s−t)γM + K9γM + K10δM + K11γ

2
M + K12γ

2
M,(s−t)

+K13δM,(s−t) + K14γMγ(s−t)γM,(s−t)

+K15γMδM,(s−t)+K16γMδM,(s−t)γM,(s−t)

+K17γMδ(s−t)+K18γMγ2
(s−t)).

So, given that as u →∞, αm
u = o(γ(u)), m ≥ 1 and δ(u) = o(γ(u)), one obtains

as (s− t) →∞ and for large M

| c4(At, At, Cs, Es) |≤ Kα2
s−t | γM,(s−t) |, | c4(At, At, Es, Es) |≤ K | γM |,

| c4(At, Bt, Cs, Ds) |≤ K | γM,(s−t) |, | c4(At, Bt, Ds, Es) |≤ K | δM,(s−t) |,
| c4(Bt, Bt, Cs, Es) |≤ K | δM |, | c4(Bt, Bt, Ds, Ds) |≤ K | δM |,
| c4(Bt, Bt, Es, Es) |≤ K | γM | .

The other cases follow along the same lines, so that by (41) and applying
Fox and Taqqu (1987, Theorem 1 a)) (c) = O(η(M) T ), concluding the main
part of the proof. Finally, given that ST is a quadratic form in M -dependent
variates and thus φ-mixing with arbitrarily fast decreasing mixing coefficient,
Ibragimov and Linnik (1971, Theorem 18.5.2) applies. ¤

Lemma 14 Under Assumptions A,B1, B2, B3, B4, B5, B6, as T →∞,

MT (ψ) =
∂2

∂ψ∂ψ′
QT (ψ) →a.s. M(ψ),

uniformly in ψ ∈ Ψ̄.

Proof. All the convergences below hold as T → ∞. MT (ψ) = (a) + (b) +
(c) + (d),
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with

(a) = 1/

(
1

T

∑
j

Iyy(λj)

hy(λj; ψ)

)
1

T

∑
j

∂2

∂ψ∂ψ′
h−1

y (λj; ψ)Iyy(λj),

(b) =−1/

(
1

T

∑
j

Iyy(λj)

hy(λj; ψ)

)2(
1

T

∑
j

∂

∂ψ
h−1

y (λj; ψ)Iyy(λj)

)

×
(

1

T

∑
j

∂

∂ψ′
h−1

y (λj; ψ)Iyy(λj)

)
,

(c) =
1

T

∑
j

∂

∂ψ
h−1

y (λj; ψ)
∂

∂ψ′
hy(λj; ψ),

(d) =
1

T

∑
j

h−1
y (λj; ψ)

∂2

∂ψ∂ψ′
hy(λj; ψ),

where the index j in the summations ranges over 1 ≤ j ≤ T −1. Now, for (a)
and (b) by Lemma 5 and following the argument of Hannan (1973, Lemma
1)

(a) →a.s.
1�R π

−π

hy(λ)

hy(λ;ψ)
dλ
� (∫ π

−π
∂2

∂ψ∂ψ′h
−1
y (λ; ψ) hy(λ)dλ

)
,

(b) →a.s − 1�R π
−π

hy(λ)

hy(λ;ψ)

�2

(∫ π

−π
g(λ; ψ)hy(λ)dλ

)(∫ π

−π
g′(λ; ψ)hy(λ)dλ

)
.

The last two terms, (c) and (d), though not stochastic, need further attention
owing to the behaviour near zero frequency of the model power spectrum. We
consider the proof for (c) only, the result being valid for (d) as well given that
they display the same behaviour in the neighborhood of the zero frequency
(cf. Lemma 4). Following the proof of Lemma 10, let us consider

1

T

|T/2|∑
j=1

∂h−1
y (λj; ψ)

∂ψ

∂hy(λj; ψ)

∂ψ′
=

1

T

m−1∑
j=1

∂h−1
y (λj; ψ)

∂ψ

∂hy(λj; ψ)

∂ψ′

+
1

T

jε∑
j=m

∂h−1
y (λj; ψ)

∂ψ

∂hy(λj; ψ)

∂ψ′
+

1

T

|T/2|∑
j=jε+1

∂hy(λj; ψ)−1

∂ψ

∂hy(λj; ψ)

∂ψ′

= (c.1) + (c.2) + (c.3).

By Lemma 5

(c.3) → 1

2π

∫ π

ε

∂hy(λ; ψ)−1

∂ψ

∂hy(λ; ψ)

∂ψ′
dλ.

For any i, j = 1, 2, . . . , (p + 1), by Lemma 4, as λ → 0+,

| ∂h−1
y (λ; ψ)

∂ψi

∂hy(λ; ψ)

∂ψj

|= O(ln2(
1

λ
)),
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yielding | (c.1) |= O(
∑m−1

j=1 ln2(λj)/T ) = O(ln2(λm)λm) = o(1). Finally con-
sider

|(c.2) |≤|(c.2)′ | + |(c.2)′′ |,
setting

(c.2)′ =

∑jε

j=m ln2(λj)

T
−

∫ ε

λm
ln2(λ)dλ

2π
, (c.2)′′ =

∫ λm

0

ln2(λ)dλ.

By solving the integral | (c.2)′′ |= O(λm ln2(λm)) = o(1) and | (c.2)′ |= o(1)
given

|(c.2)′ |≤| ln
2(λm)

T
| + 1

2π

jε−1∑
j=m

∫ λj+1

λj

|(ln2(λj+1) − ln2(λ)
) | dλ,

and bounding the second term on the right hand side above as

|
jε−1∑
j=m

∫ λj+1

λj

(
ln2(λj+1) − ln2(λ)

)
dλ |≤| 2π

T

jε−1∑
j=m

(
ln2(λj+1) − ln2(λj)

) |

=
2π

T
| (ln2(λjε−1)− ln2(λm)

) |= 2π

T
| (ln(jε/m) ln(λjε+m−1)) |= O(

ln (jε)

T
),

where all the bounds are independent of ψ. ¤

Lemma 15 Assume A′, B1, B2, B3, B4.
(i) Setting g(λ) = g(λ; ψ0),

lim
T→∞

T var

(
1

2π

∫ π

−π

g(λ)Iyy(λ)dλ

)

=
1

π

∫ π

−π

g(ω)g′(ω)f 2
yy(ω)dω

+
1

2π

∫ π

−π

∫ π

−π

g(ω1)g
′(ω2)Qyyy(−ω1, ω2,−ω2)dω1dω2.

(ii) As T →∞

E

(
1

σ82π

∫ π

−π

g(λ)Iyy(λ)dλ +
1

2π

∫ π

−π

∂

∂ψ
ln hy(λ)dλ

)
= o(T− 1

2 ). (42)

Proof. (i) Given the non-Gaussianity of the process, one obtains the two
covariance terms and the fourth-order cumulant term:

var(
1

2π

∫ π

−π

g(λ)Iyy(λ)dλ) = (a) + (b),
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(a) =
1

T 2(2π)2

T∑
t1,s1,t2,s2

=1

g̃ψ(t1 − s1)g̃
′
ψ(t2 − s2)

× (γyy(t1 − s2)γyy(t2 − s1)+γyy(t1 − t2)γyy(s2 − s1)),

(b) =
1

T 2(2π)2

T∑
t1,s1,t2,s2

=1

g̃ψ(t1 − s1)g̃
′
ψ(t2 − s2)cumyyy(s1 − t1, t2 − t1, s2 − t1),

where cumyyy(., ., .) denotes the fourth order cumulant of yt. With respect
to (a) the result follows by Fox and Taqqu (1987, Theorem 1-(i)), setting
α = −β and with respect to (b) by adapting Hosoya (1993, Lemma A4.2)
with simple yet tedious calculations.
(ii) From

∫ π

−π
w(λ; ψ)dλ = − ∫ π

−π
g(λ; ψ)hy(λ; ψ)dλ, by Parseval relation and

re-arranging terms, the left hand side of (42) is equal to

−2

( ∞∑
u=T−1

g̃ψ(u) γyy(u) +
T−1∑
u=1

u

T
g̃ψ(u)γyy(u)

)
∼ k L(T ) T−1 as T →∞,

using (7) and Lemma 12-(ii) where |L(T )|= O(ln(T )). ¤
Proof of Theorem 3. Assuming that the true value ψ0 lies in the interior
of Ψ and given the consistency of ψ̂T , by Lemma 11 and using the Delta
method

∂QT (ψ̂T )

∂ψ
= 0 =

∂QT (ψ0)

∂ψ
+

∂2QT (ψ̃)

∂ψ∂ψ′
(ψ̂T − ψ0),

where ψ̃ is such that ψ̃ = ψ0 + R(ψ̂T − ψ0) with R being (p + 1) × (p + 1)
matrix such that ‖ ψ̃ − ψ0 ‖≤‖ ψ̂T − ψ0 ‖ . The result follows combining
Lemmas 11-15, yielding for T →∞

MT (ψ) →a.s. M(ψ) , uniformly for ψ ∈ Ψ̄,

T
1
2
∂QT (ψ0)

∂ψ
→d Np+1(0, V ). ¤

C Asymptotic properties of the Gaussian es-

timator: ARMA levels

In this section we show how to adapt the results in appendixes B.2 and B.3 for
estimation of the nonlinear MA parameters ψ, using the squared estimated
residuals obtained from preliminary estimation of the ARMA parameters ζ.

At first, we need to establish the asymptotic properties of the Whittle
estimator of the ARMA parameters.
Proof of Theorem 5. This follows adapting Hannan (1973) (see also Brock-
well and Davis (1987, section 10.8) for more details). For 1 + δαα(0) > 0 and
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under Assumption A, the ut are white noise not degenerate, and the strong
consistency proof of Hannan (1973, Theorem 1) applies. For the asymptotic
distribution one gets:

[
−∂2PT (ζ̃)

∂ζ∂ζ ′

]
T

1
2 (ζ̂T − ζ0) = T

1
2
∂PT (ζ0)

∂ζ
,

for T sufficiently large such that the matrix in square brackets is nonsingular,
where ζ̃ satisfies ‖ ζ̃ − ζ0 ‖≤‖ ζ̂T − ζ0 ‖ .

All the convergences below hold as T → ∞. By the same arguments of
Hannan (1973, Lemma 1) and simple manipulations

∂2PT (ζ̃)

∂ζ∂ζ ′
→a.s γuu(0) F,

with F defined in (22). Next, we need to show that

T
1
2
∂PT (ζ0)

∂ζ
→d Nr+q(0, γ

2
uu(0) G),

with G defined in (23). Exploiting the martingale difference property of the
ut (see Hannan (1973, Lemma 5)) we just need to establish the CLT for

2π

T
1
2

T−1∑
j=1

Iuu(λj)b(λj),

where b(λ) is defined in (24). The ut are not conditionally homoskedastic,
violating (6) of Hannan (1973)). However, by a truncation argument precisely

along the lines of Lemma 13, we approximate the ut with u
(N)
t = εt(ρ +∑N

j=1 αjεt−j) for some integer N < ∞. By the N -dependence of the u
(N)
t

2π

T
1
2

T−1∑
j=1

Iu(N)u(N)(λj)b(λj) →d Nr+q(0, V̄ ),

for some positive semi definite matrix V̄ = V̄ (N) and, with simple yet tedious
calculations,

var

(
2π

T
1
2

T−1∑
j=1

(Iu(N)u(N)(λj)− Iuu(λj))b(λj)

)
= O(η(N)),

for some function 0 < η(N) < ∞ with η(N) ↓ 0 as N → ∞. Note, though,
that the special structure (2) of the ut implies a form of the asymptotic
variance-covariance matrix of the ζ̂T that is different from the conditionally
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homoskedastic case of Hannan (1973). In fact, setting
b̃ζ(u) = 1/2π

∫ π

−π
b(λ)e−iuλdλ (u = 0,±1, ...),

var

(
2π

T
1
2

T−1∑
j=1

Iuu(λj)b(λj)

)

=
1

T

∞∑

h1,h2=−∞
b̃ζ(h1)b̃ζ(h2)

′
T−|h1|∑
s1=1

T−|h2|∑
s2=1

E(us1us1+h1us2us2+h2) + o(1)

= 2
T−1∑

h=−T+1

b̃ζ(h)b̃ζ(h)′(1− | h |
T

)E(u2
su

2
s+h) + o(1)

= 2γ2
uu(0)

T−1∑

h=−T+1

(1− | h |
T

)b̃ζ(h)b̃ζ(h)′

+2
T−1∑

h=−T+1

(1− | h |
T

)b̃ζ(h)b̃ζ(h)′γu2u2(h) + o(1),

given that the contribution of E(us1us1+h1us2us2+h2) is non zero only for cases
s1 = s2, h1 = h2 and s1 = s2 + h2, s2 = s1 + h1 using 1/2π

∫ π

−π
b(λ)dλ =

b̃ζ(0) = 0 (vector of zeros) and b̃ζ(−h) = b̃ζ(h). The last equality above is
obtained writing E(u2

su
2
s+h) = γ2

uu(0) + γu2u2(h). The standard case of inde-
pendent ut, or more generally with conditional homoskedasticity is obtained
when γu2u2(u) = 0 for u 6= 0.

Thus,

var

(
2π

T
1
2

T−1∑
j=1

Iuu(λj)b(λj)

)
→ 2γ2

uu(0)
∞∑

h=−∞
b̃ζ(h)b̃ζ(h)′

+2
∞∑

h=−∞
b̃ζ(h)b̃ζ(h)′γu2u2(h)

=
γ2

uu(0)

π

∫ π

−π

b(λ)b(λ)′dλ +
1

π

∫ π

−π

∫ π

−π

fu2u2(λ1)b(λ2)b(λ1 − λ2)
′dλ1dλ2. ¤

Proof of Theorem 6. All the limits below are taken for T → ∞. For
consistency, we just need to show that

sup
ψ∈Ψ̄

| QT (ψ)− Q̃T (ψ) |→a.s 0, (43)

so that Theorem 2 applies. For this purpose, given the smoothness of the
πj(ζ) and using the mean value theorem

ût = ut +
t−1∑
j=1

(πj(ζ0)− πj(ζ̂T ))xt−j +
∞∑
j=t

πj(ζ0)xt−j
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= ut + (ζ0 − ζ̂T )′ṽt + Bt,

setting ṽt =
∑t−1

j=1 ϑj(ζ̃)xt−j, for some ζ̃ satisfying ‖ ζ̃− ζ0 ‖≤‖ ζ̂T − ζ0 ‖, and
Bt =

∑∞
j=0 πj+t(ζ0)x−j. Thus

û2
t = u2

t +((ζ0− ζ̂T )′ṽt)
2 +B2

t +2ut(ζ0− ζ̂T )′ṽt +2Bt(ζ0− ζ̂T )′ṽt +2utBt. (44)

By Theorem 5, (44) and |Bt|= O(at), t → ∞ a.s. for some 0 < a < 1 one
gets

Iû2û2(λ) = Iu2u2(λ)+(ζ0−ζ̂T )′4Re(Iu2 uṽ(λ))+o(T− 1
2 )RT (λ) a.s., −π ≤ λ < π,

(45)
for some real random variable RT (λ) (−π ≤ λ < π), function of the ut, Bt

and ṽt (1 ≤ t ≤ T ) satisfying, by the same arguments of Hannan (1973,
Lemma 1),

2π

T

T−1∑
j=1

RT (λ) →a.s.

∫ π

−π

R(λ)dλ,

for some real integrable (by Assumption A′) function R(λ). Likewise,

4

T

T−1∑
j=1

Re(Iu2 uṽ(λj)) →a.s.
2

π

∫ π

−π

Re(fu2 uv(λ))dλ,

with a finite limit (by Assumption A′), where we recall that, given λj = 2π/T ,

Iu2 uṽ(λj) =
1

2πT

T−1∑
t,s=1

u2
t usṽse

i(t−s)λj , 1 ≤ j ≤ T − 1.

Using ln(1 + a/b) ≤ a/b for any positive a, b, and (45), Lemma 6 and the
consistency part of Theorem 5 then

| QT (ψ)− Q̃T (ψ) |

≤ |ζ0 − ζ̂T |′
σ̂8

T (ψ)

4

T

T−1∑
j=1

|Re(Iu2 uṽ(λj)) |
hy(λj; ψ)

+
o(|ζ0−ζ̂T |′)

σ̂8
T (ψ)

1
T

∑T−1
j=1 |RT (λj) |
hy(λj; ψ)

≤ 1

δ σ̂8
T (ψ)

o

(
4

T

T−1∑
j=1

|Re(Iu2 uṽ(λj)) | + 1

T

T−1∑
j=1

|RT (λj) |
)

a.s.,

where the term in square brackets does not depend on ψ and
infψ∈Ψ̄ σ̂8

T (ψ) > 0, given supψ∈Ψ̄ hy(λ; Ψ) < ∞ for 0 < λ ≤ π by Lemma 5.
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For the asymptotic distribution result we just need to look at the asymp-
totic distribution of the normalized score evaluated at ψ0, which satisfies

T
1
2
∂Q̃T (ψ0)

∂ψ

=
σ̂8

T (ψ0)

σ̃8
T (ψ0)

T
1
2
∂QT (ψ0)

∂ψ

+
1

σ̃8
T (ψ0)

4

T

T−1∑
j=1

g(λj; ψ0)Re(Iu2 uṽ′(λj)) T
1
2 (ζ0 − ζ̂T ) + o(1) a.s.

by (45). Given that

4

T

T−1∑
j=1

g(λj; ψ0)Re(Iu2 uṽ′(λj)) →a.s. H(ψ0),
σ̂8

T (ψ0)

σ̃8
T (ψ0)

→a.s. 1,

the normalized score is asymptotically equivalent to

T
1
2
∂QT (ψ0)

∂ψ
+ H(ψ0) T

1
2 (ζ0 − ζ̂T ) + o(1), a.s.

By Theorem 3 and 5 then

T
1
2
∂QT (ψ0)

∂ψ
→d Np+1(0, V + H(ψ0)F

−1GF−1H(ψ0)
′ + H(ψ0)Z + Z ′H(ψ0)

′),

setting

Z = lim
T→∞

T cov

(
(ζ0 − ζ̂T ),

∂QT (ψ0)

∂ψ′

)
.

It turns out that Z = 0 under Assumption A′. In fact, we just need to look
at

T cov

(
1

T

T−1∑
j1=1

Iuu(λj1)b(λj1),
1

T

T−1∑
j2=1

Iu2u2(λj2)g(λj2)
′
)

=
1

T

T∑
t1,t2,s1,s2=1

b̃ζ(t1 − t2)g̃
′
ψ(s1 − s2)cov(ut1ut2 , u

2
s1

u2
s2

) + o(1).

Given that b̃ζ(0) = 0 the only non zero terms would be b̃ζ(t − s) g̃′ψ(t −
s)E(u3

t u
3
s) (1 ≤ t 6= s ≤ T ) and b̃ζ(t−s) g̃′ψ(0)E(u5

t us) (1 ≤ s < t ≤ T ). How-
ever, E(ε3

t ) = E(ε5
t ) = 0 by Assumption A′ yielding E(u3

t u
3
s) = E(u5

t us) = 0
for t 6= s. ¤
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D Asymptotic distribution of the LM test

under H0

In this section we derive the asymptotic distribution of the LM test statistics
Φ (cf. (14)) under H0. Finally, we will introduce a robustified LM test
statistic and show that it shares the same asymptotic distribution of Φ under
H0. By Assumption A

E(yt|Ft−1) = µ2 + σ2h2
t−1, var(yt|Ft−1) = 2

(
σ4h4

t−1 + 2 σ2µ2 h2
t−1

)
,

where Ft−1 expresses the sigma-algebra generated by the {εs , s ≤ t−1}. The
(time domain) log likelihood, under the pretence that the yt are Gaussian, is

Qtime
T (σ2, w, θ) = −T

2
ln(4π)− T ln(σ2)

−1

2
ln

(
T∏

t=1

2(h4
t−1(θ) + 2 w h2

t−1(θ))

)

− 1

4

T∑
t=1

(
yt

σ2
− w − h2

t−1(θ))
2/(h4

t−1(θ) + 2 w h2
t−1(θ)),

where w = µ2/σ2. Expression (14) follows readily by applying the LM prin-
ciple to Qtime

T (·, ·, ·). For an integer m with m < T set

φm =
1

(T e(w) σ2)
1
2

Γ
1
2
m

m∑
i=1

τi ηi,

obtained by substituting T − 1 with m and σ̂2, ŵ with σ2, w in φT−1(σ̂
2, ŵ)

(cf. (15)) and writing ηi = ηi(σ
2, w).

Proof of Theorem 4. This follows adapting the proof of Robinson (1991,

Theorem 2.1). Setting φ̄m = (T e(w) σ2)−
1
2 Γ−

1
2

∑m
i=1 τiη̄i, η̄i =

∑T
t=1 εt−i Xt ,

from E(Xtεt−i|Ft−1) = 0, for any i ≥ 1 it follows that E ‖ ∑m
i=1 τiη̃i ‖2=

O(m2) with η̃i = η̄i − ηi =
∑i

t=1 εt−i Xt , yielding φm − φ̄m = op(1). Un-
der H0 the covariance matrix of the score is block-diagonal with respect
to (σ2, w) on one hand and θ on the other, yielding the usual expression
for the LM test statistic (14). Note that by square summability of the τi,
limt→∞

∑∞
i=t τiτ

′
i = 0 , the objective function Qtime

T (·, ·, ·) and the conditional
objective function, obtained substituting the εt with the ε̄t = εt1t>0, yield
asymptotically equivalent scores. Further, from simple but tedious calcula-
tions, under H0

E

(
∂Qtime

T (σ2, w, 0)

∂θ

∂Qtime
T (σ2, w, 0)

∂θ′

)
=

e(w)

(1 + 2w)2
σ2ΓT−1 ,
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and E(X2
t | Ft−1) = e(w). Under Assumptions C, in particular C2 and D, a

martingale CLT (see Brown (1971)) applies, yielding, as T → ∞ and finite
m,

φ̄m →d Np(0, Ip).

Under H0, y2
t − E(y2

t ) and yt − E(yt) are stationary square integrable mar-

tingale differences and thus σ̂2 →p σ2 and ŵ →p w , as T → ∞ by Slutzky
lemma (→p denoting convergence in probability ), yielding

ηi(σ̂
2, ŵ)− ηi =

T∑
t=i+1

(
(xt−i − µ̂)Xt(σ̂

2, ŵ)− (xt−i − µ)Xt

)
= op(T

1
2 ) .

Finally from E(η̄i η̄i+j) = e(w) T σ2δ(0, j), i 6= 0 we get as m →∞

E ‖
T−1∑
i=m

τiη̄i ‖2≤ Te(w) σ2

∞∑
i=m

‖ τi ‖2= o(T )

and Bernstein’s Lemma (Hannan 1970, p.242) applies. ¤

D.1 The robustified LM test

We relax Assumption D as follows:
Assumptions D’.

D′
1 E(εt|Ft−1) = 0, E(ε2

t |Ft−1) = σ2, E[(ε2
t − σ2)ε2

t |Ft−1] = 2σ4 .

D′
2 E(ε16

1 ) < ∞ .

D′
3 For k, r ≥ 1

E(X1X1+iε1−kε
a
1−r) =





0 , a = 0 ,{
0 , i ≥ 1,
fk , i = 0, k = r ,

a = 1.

D′
4 infi≥1 E(X2

1 ε
2
1−i) > 0 .

D′
5

1
T

∑T
t=1 εt−iεt−jE(X2

t |Ft−1) →a.s. fiδ(i, j), as T →∞.

Assumptions D′ allow a great deal of heterogeneity in the εt. In fact we only
need the εt to have constant conditional moment up to the fourth order, the
trade off being the strict unconditional moment condition D′

2. Assumption
D′

3 expresses the minimal degree of stationarity required in the εt and As-
sumption D′

4 guarantees that the distribution of the score is non-singular
asymptotically. Assumption D′

5 is a mild ergodicity condition.
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The robustified test statistic is

ΦR = φ′RφR, (46)

with φR = (T Γ̂R)−
1
2

∑T−1
i=1 τiηi(σ̂2, ŵ) setting Γ̂R =

∑T−1
i=1 τiτ

′
i f̄i(σ

2, w),

f̄i(σ
2, w) = 1

T

∑T
t=i+1 X2

t (σ2, w)(xt−i − x̄)2. A frequency domain expression
can be readily obtained. The considerations made for Φ concerning the
computational gains are even more important for the ΦR statistic, owing to
the f̄i(σ

2, w). We now establish the asymptotic distribution of ΦR under H0.

Theorem 7 Under the null hypothesis H0 and Assumptions C and D′, as
T →∞,

ΦR →d χ2
p .

Proof. The proof closely follows that of Theorem 4 and therefore it will be
sketched only. The block-diagonality of the variance-covariance matrix of the
score and the substitution of the η̄i with ηi follow from Assumptions D′

1, D
′
2.

Then by Assumptions D′
1, D

′
3, D

′
5 we obtain that, as T →∞,

1

T
1
2

m∑
i=1

τiη̄i →d Np(0,
m∑

i=1

τiτifi) .

Assumption D′
4 guarantees that the matrix ΓR is invertible. Assumption D′

1

yields Xt −Xt(σ̂2, ŵ) = op(1) and thus, for fixed m and T →∞,∑m
i=1 τiτ

′
i(f̄i − f̄i(σ̂2, ŵ)) →p 0 , and

∑m
i=1 τiτ

′
i(f̄i − fi) →p 0 by D′

5 and

E|f̄i| = O(1), E|f̄i(σ̂2, ŵ)| = O(1) by D′
2. Thus, as m (and then T ) goes to

infinity,
T−1∑
i=m

τiτ
′
i(E|f̄i|+ E|f̄i(σ̂2, ŵ)|+ fi) →p 0.¤

E A feasible parameterization:

the ARFIMA(p, d, q) coefficients

In this section we show that the parameterization (9) employed in the em-
pirical application of section 6 satisfies Assumptions B. Let us start by
considering the case p = q = 0, d(θ) = θ , setting

ci(θ) =

{ ∏i
k=1

k−1+θ
k

, i ≥ 1 ,
1 , i = 0 ,

(47)

and αi(θ) = ci(θ), with α(λ) = (1 − eiλ)−θ (−π ≤ λ < π). Using Stirling’s
formula (Brockwell and Davis 1987, p.522), αi(θ) ∼ k iθ−1 , as i → ∞, and
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B1 holds. From (47) one gets αi(θ) − αi+1(θ) = αi(θ)
(

1−θ
i+1

)
and thus B2

is trivially satisfied. Concerning B3, ln αi(θ) =
∑i

k=1 ln ((k − 1 + θ)/k).

Differentiating yields ∂
∂θ

ln αi(θ) =
∑i

k=1 ln ( 1
k−1+θ

). As n → ∞,
∑n

k=1
1
k
∼

ln (n), yielding ∂
∂θ

αi(θ) ∼ k iθ−1 ln (i) as i →∞. Likewise from ∂
∂θ

ln αi(θ)−
∂
∂θ

ln αi+1(θ) = ln (i + θ) , as i →∞,

∂

∂θ
αi(θ)− ∂

∂θ
αi+1(θ) =

1− θ

i + θ

∂

∂θ
αi+1(θ) + αi(θ) ln (i + θ) ∼ kαi(θ) ln (i),

and thus B4 holds. By an identical argument it can be shown that Assump-
tions B5 and B6 are satisfied. Finally, regarding B7, imposing the condition
αi(θ) = αi(θ

∗), for any integer i ≥ 1 yields

(θi − (θ∗)i)ci + (θi−1 − (θ∗)i−1)ci−1 + . . . + (θ − θ∗)c1 = 0,

where the coefficients cj (j = 1, . . . , i) are positive functions of the integers
1, 2, . . . , i only. Hence the above condition is true if and only if θ = θ∗. B8

follows stacking ∂γ̄yy(u; ψ)/∂ψ, for u = 0, 1, 2, in a 3×3 matrix and showing,
by algebraic calculations, that it is nonsingular. These arguments can be
easily extended to the case p, q > 0, setting:

αi(θ) = φ1αi−1(θ) + .. + φpαi−p(θ) + ci(d) + χ1ci−1(d) + .. + χqci−q(d),

where θ = (χ1, .., χq, φ1, .., φp, d)′.
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Figure 1: Correlograms for stock index returns series, levels and squares (first
and second row), and foreign exchange rate returns, levels and squares (third
and fourth row).



Table 1.1
Sample size: 1024

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.0888 0.0216 κ̄ 0 -0.2370 0.0211 κ̄ 0 -0.0828 0.0242
φ1 -0.8 -0.7609 0.0030 φ1 -0.8 -0.7530 0.0030 φ1 -0.8 -0.7621 0.0039
d 0.15 0.1430 0.0043 d 0.25 0.1767 0.0045 d 0.45 0.3411 0.0045

κ̄ 0 -0.1695 0.0221 κ̄ 0 -0.1176 0.0247 κ̄ 0 0.0466 0.0258
φ1 -0.4 -0.3323 0.0065 φ1 -0.4 -0.3531 0.0064 φ1 -0.4 -0.2604 0.0097
d 0.15 0.0850 0.0023 d 0.25 0.2017 0.0031 d 0.45 0.4041 0.0030

κ̄ 0 -0.1752 0.0257 κ̄ 0 -0.1651 0.0247 κ̄ 0 0.2292 0.0237
φ1 0.4 0.3475 0.0100 φ1 0.4 0.3640 0.0106 φ1 0.4 0.3782 0.0123
d 0.15 0.0867 0.0027 d 0.25 0.1556 0.0045 d 0.45 0.3066 0.0050

κ̄ 0 0.0975 0.0242 κ̄ 0 0.0764 0.0232 κ̄ 0 0.1831 0.0212
φ1 0.8 0.7427 0.0054 φ1 0.8 0.7606 0.0060 φ1 0.8 0.7742 0.0073
d 0.15 0.1203 0.0038 d 0.25 0.1711 0.0045 d 0.45 0.33906 0.0047

κ̄ 1.5 1.5800 0.0586 κ̄ 1.5 1.0974 0.0568 κ̄ 1.5 1.5199 0.0648
φ1 -0.8 -0.7611 0.0042 φ1 -0.8 -0.7650 0.0041 φ1 -0.8 -0.7435 0.0063
d 0.15 0.1257 0.0046 d 0.25 0.1536 0.0048 d 0.45 0.3048 0.0054

κ̄ 1.5 1.3448 0.0603 κ̄ 1.5 0.8106 0.0596 κ̄ 1.5 1.3842 0.0638
φ1 -0.4 -0.3376 0.0067 φ1 -0.4 -0.3440 0.0070 φ1 -0.4 -0.2270 0.00110
d 0.15 0.0769 0.0025 d 0.25 0.1826 0.0033 d 0.45 0.3862 0.0037

κ̄ 1.5 1.0881 0.0679 κ̄ 1.5 0.9772 0.0635 κ̄ 1.5 1.5241 0.0638
φ1 0.4 0.3505 0.0111 φ1 0.4 0.4013 0.0091 φ1 0.4 0.4078 0.0120
d 0.15 0.0761 0.0027 d 0.25 0.1491 0.0041 d 0.45 0.2950 0.0053

κ̄ 1.5 1.4940 0.0634 κ̄ 1.5 1.4547 0.0585 κ̄ 1.5 1.6754 0.0525
φ1 0.8 0.7155 0.0068 φ1 0.8 0.7353 0.0074 φ1 0.8 0.7576 0.0085
d 0.15 0.1232 0.0036 d 0.25 0.1723 0.0042 d 0.45 0.3470 0.0046

κ̄ 3.0 2.8591 0.0951 κ̄ 3.0 2.4178 0.0975 κ̄ 3.0 2.7228 0.1042
φ1 -0.8 -0.7579 0.0046 φ1 -0.8 -0.7514 0.0047 φ1 -0.8 -0.7341 0.0067
d 0.15 0.1166 0.0044 d 0.25 0.1489 0.0050 d 0.45 0.2951 0.0056

κ̄ 3.0 2.8950 0.0927 κ̄ 3.0 2.3159 0.0927 κ̄ 3.0 2.2586 0.0987
φ1 -0.4 -0.3571 0.0069 φ1 -0.4 -0.3671 0.0081 φ1 -0.4 -0.2525 0.0108
d 0.15 0.0768 0.0026 d 0.25 0.1819 0.0039 d 0.45 0.3764 0.0040

κ̄ 3.0 1.9126 0.1070 κ̄ 3.0 2.0682 0.1054 κ̄ 3.0 2.4803 0.1031
φ1 0.4 0.3755 0.0091 φ1 0.4 0.4036 0.0095 φ1 0.4 0.4052 0.0123
d 0.15 0.0797 0.0032 d 0.25 0.1406 0.0043 d 0.45 0.2830 0.0053

κ̄ 3.0 2.4853 0.0975 κ̄ 3.0 2.5792 0.0942 κ̄ 3.0 2.4803 0.1031
φ1 0.8 0.7212 0.0067 φ1 0.8 0.7471 0.0067 φ1 0.8 0.7642 0.0075
d 0.15 0.1191 0.0033 d 0.25 0.1748 0.0043 d 0.45 0.3592 0.0044

Parameterization: α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 1.2
Sample size: 2048

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.0631 0.0197 κ̄ 0 -0.1923 0.0196 κ̄ 0 -0.0544 0.0214
φ1 -0.8 -0.7773 0.0021 φ1 -0.8 -0.7712 0.0019 φ1 -0.8 -0.7834 0.0041
d 0.15 0.1480 0.0038 d 0.25 0.1856 0.0041 d 0.45 0.3814 0.0041

κ̄ 0 -0.1467 0.0207 κ̄ 0 -0.1257 0.0251 κ̄ 0 -0.0665 0.0253
φ1 -0.4 -0.3445 0.0056 φ1 -0.4 -0.3481 0.0051 φ1 -0.4 -0.3109 0.0077
d 0.15 0.0943 0.0037 d 0.25 0.2186 0.0021 d 0.45 0.4161 0.0025

κ̄ 0 -0.2168 0.0246 κ̄ 0 -0.1452 0.0227 κ̄ 0 0.1079 0.0225
φ1 0.4 0.3695 0.0078 φ1 0.4 0.3797 0.0073 φ1 0.4 0.3706 0.0110
d 0.15 0.1086 0.0023 d 0.25 0.1933 0.0029 d 0.45 0.3475 0.0041

κ̄ 0 0.0902 0.0218 κ̄ 0 0.0425 0.0201 κ̄ 0 0.1061 0.0192
φ1 0.8 0.7663 0.0043 φ1 0.8 0.7737 0.0053 φ1 0.8 0.7814 0.0062
d 0.15 0.1227 0.0031 d 0.25 0.1774 0.0038 d 0.45 0.3591 0.0040

κ̄ 1.5 1.3265 0.0552 κ̄ 1.5 0.9625 0.0531 κ̄ 1.5 1.3491 0.0574
φ1 -0.8 -0.8069 0.0017 φ1 -0.8 -0.8004 0.0012 φ1 -0.8 -0.7812 0.0046
d 0.15 0.1227 0.0042 d 0.25 0.1834 0.0048 d 0.45 0.3364 0.0052

κ̄ 1.5 0.5476 0.0572 κ̄ 1.5 0.9651 0.0529 κ̄ 1.5 0.9345 0.0605
φ1 -0.4 -0.3693 0.0058 φ1 -0.4 -0.4258 0.0064 φ1 -0.4 -0.2744 0.0091
d 0.15 0.0931 0.0013 d 0.25 0.2421 0.0028 d 0.45 0.3959 0.0032

κ̄ 1.5 1.1763 0.0585 κ̄ 1.5 1.2395 0.0609 κ̄ 1.5 1.5391 0.0562
φ1 0.4 0.4382 0.0033 φ1 0.4 0.3733 0.0038 φ1 0.4 0.4323 0.0109
d 0.15 0.0889 0.0019 d 0.25 0.1929 0.0037 d 0.45 0.3321 0.0046

κ̄ 1.5 1.8294 0.0634 κ̄ 1.5 1.8599 0.0543 κ̄ 1.5 1.5616 0.0467
φ1 0.8 0.7208 0.0044 φ1 0.8 0.7485 0.0052 φ1 0.8 0.7514 0.0079
d 0.15 0.1442 0.0023 d 0.25 0.2197 0.0035 d 0.45 0.3547 0.0044

κ̄ 3.0 2.4782 0.0912 κ̄ 3.0 2.3934 0.0819 κ̄ 3.0 4.4638 0.0891
φ1 -0.8 -0.7718 0.0038 φ1 -0.8 -0.7962 0.0034 φ1 -0.8 -0.8681 0.0017
d 0.15 0.0779 0.0032 d 0.25 0.2183 0.0041 d 0.45 0.3928 0.0054

κ̄ 3.0 2.8291 0.0854 κ̄ 3.0 2.3934 0.0819 κ̄ 3.0 3.7839 0.0854
φ1 -0.4 -0.3908 0.0058 φ1 -0.4 -0.3735 0.0071 φ1 -0.4 -0.1072 0.0085
d 0.15 0.0955 0.0024 d 0.25 0.2288 0.0032 d 0.45 0.4651 0.0018

κ̄ 3.0 1.9903 0.1037 κ̄ 3.0 2.3729 0.0888 κ̄ 3.0 3.5272 0.0789
φ1 0.4 0.3965 0.0079 φ1 0.4 0.2303 0.0060 φ1 0.4 0.6246 0.0043
d 0.15 0.0903 0.0028 d 0.25 0.2844 0.0051 d 0.45 0.4095 0.0037

κ̄ 3.0 2.3209 0.0819 κ̄ 3.0 3.3355 0.0839 κ̄ 3.0 2.7774 0.0686
φ1 0.8 0.7189 0.0061 φ1 0.8 0.6375 0.0176 φ1 0.8 0.8411 0.0078
d 0.15 0.1236 0.0029 d 0.25 0.2702 0.0041 d 0.45 0.4423 0.0024

Parameterization: α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 1.3
Sample size: 4096

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.0119 0.0170 κ̄ 0 -0.1248 0.0176 κ̄ 0 0.0633 0.0183
φ1 -0.8 -0.7879 0.0013 φ1 -0.8 -0.7841 0.0013 φ1 -0.8 -0.7942 0.0017
d 0.15 0.1382 0.0032 d 0.25 0.1900 0.0037 d 0.45 0.4113 0.0031

κ̄ 0 -0.1712 0.0185 κ̄ 0 -0.0409 0.0242 κ̄ 0 -0.0547 0.0235
φ1 -0.4 -0.3747 0.0036 φ1 -0.4 -0.3783 0.0036 φ1 -0.4 -0.3017 0.0074
d 0.15 0.1081 0.0017 d 0.25 0.2376 0.0016 d 0.45 0.4252 0.0023

κ̄ 0 -0.1888 0.0231 κ̄ 0 -0.2074 0.0202 κ̄ 0 0.2564 0.0166
φ1 0.4 0.3925 0.0046 φ1 0.4 0.4152 0.0052 φ1 0.4 0.4298 0.0039
d 0.15 0.1223 0.0017 d 0.25 0.2061 0.0023 d 0.45 0.4320 0.0024

κ̄ 0 0.0463 0.0187 κ̄ 0 0.1781 0.0155 κ̄ 0 0.2454 0.0163
φ1 0.8 0.7771 0.0037 φ1 0.8 0.8027 0.0029 φ1 0.8 0.8335 0.0039
d 0.15 0.1267 0.0027 d 0.25 0.2192 0.0039 d 0.45 0.4292 0.0023

κ̄ 1.5 1.6228 0.0484 κ̄ 1.5 1.3077 0.0472 κ̄ 1.5 1.5333 0.0512
φ1 -0.8 -0.7950 0.0022 φ1 -0.8 -0.7930 0.0021 φ1 -0.8 -0.7832 0.0022
d 0.15 0.1073 0.0035 d 0.25 0.1546 0.0042 d 0.45 0.3712 0.0044

κ̄ 1.5 1.3475 0.0484 κ̄ 1.5 1.2432 0.0501 κ̄ 1.5 1.5295 0.0531
φ1 -0.4 -0.3980 0.0044 φ1 -0.4 -0.3839 0.0058 φ1 -0.4 -0.3390 0.0065
d 0.15 0.1089 0.0021 d 0.25 0.2433 0.0029 d 0.45 0.3974 0.0029

κ̄ 1.5 0.8611 0.0587 κ̄ 1.5 1.9787 0.0564 κ̄ 1.5 1.0910 0.0559
φ1 0.4 0.4062 0.0059 φ1 0.4 0.4176 0.0062 φ1 0.4 0.3914 0.0103
d 0.15 0.1174 0.0027 d 0.25 0.1916 0.0036 d 0.45 0.3624 0.0035

κ̄ 1.5 1.3712 0.0487 κ̄ 1.5 1.4489 0.0454 κ̄ 1.5 1.7064 0.0413
φ1 0.8 0.7643 0.0044 φ1 0.8 0.7748 0.0051 φ1 0.8 0.7706 0.0067
d 0.15 0.1173 0.0026 d 0.25 0.1916 0.0036 d 0.45 0.3998 0.0034

κ̄ 3.0 2.9487 0.0810 κ̄ 3.0 4.4445 0.0761 κ̄ 3.0 4.7166 0.0843
φ1 -0.8 -0.7924 0.0032 φ1 -0.8 -0.8650 0.0010 φ1 -0.8 -0.8729 0.0014
d 0.15 0.0927 0.0034 d 0.25 0.1898 0.0055 d 0.45 0.4008 0.0054

κ̄ 3.0 2.8843 0.0755 κ̄ 3.0 1.9387 0.0886 κ̄ 3.0 2.5579 0.0751
φ1 -0.4 -0.4077 0.0046 φ1 -0.4 -0.3822 0.0065 φ1 -0.4 -0.3088 0.0074
d 0.15 0.1102 0.0025 d 0.25 0.2420 0.0027 d 0.45 0.3933 0.0034

κ̄ 3.0 1.5057 0.0924 κ̄ 3.0 1.9387 0.0886 κ̄ 3.0 2.5579 0.0852
φ1 0.4 0.4087 0.0062 φ1 0.4 0.4131 0.0069 φ1 0.4 0.3872 0.0099
d 0.15 0.0935 0.0024 d 0.25 0.1765 0.0032 d 0.45 0.3522 0.0042

κ̄ 3.0 2.5540 0.0774 κ̄ 3.0 2.4468 0.0751 κ̄ 3.0 2.9603 0.0722
φ1 0.8 0.7910 0.0027 φ1 0.8 0.7650 0.0057 φ1 0.8 0.7877 0.0061
d 0.15 0.1358 0.0041 d 0.25 0.1903 0.0035 d 0.45 0.4008 0.0033

Parameterization: α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 2.1
Sample size: 1024

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.2033 0.0226 κ̄ 0 -0.1382 0.0253 κ̄ 0 0.0178 0.0265
ω1 0.5 0.4982 0.0008 ω1 0.5 0.4967 0.0009 ω1 0.5 0.4933 0.0011
φ1 -0.4 -0.3303 0.0062 φ1 -0.4 -0.3367 0.0066 φ1 -0.4 -0.2526 0.0108
d 0.15 0.0876 0.0022 d 0.25 0.1978 0.0030 d 0.45 0.4013 0.0031

κ̄ 0 -0.1562 0.0252 κ̄ 0 -0.1577 0.0244 κ̄ 0 0.1490 0.0238
ω1 0.5 0.4921 0.0013 ω1 0.5 0.4934 0.0014 ω1 0.5 0.4901 0.0015
φ1 0.4 0.3383 0.0101 φ1 0.4 0.3756 0.0104 φ1 0.4 0.3659 0.0127
d 0.15 0.0942 0.0028 d 0.25 0.1587 0.0037 d 0.45 0.3132 0.0049

κ̄ 1.5 1.2053 0.0685 κ̄ 1.5 1.0502 0.0673 κ̄ 1.5 1.1679 0.0649
ω1 0.5 0.4978 0.0009 ω1 0.5 0.4919 0.0014 ω1 0.5 0.4966 0.0009
φ1 -0.4 -0.3429 0.0065 φ1 -0.4 -0.3546 0.0076 φ1 -0.4 -0.2573 0.0111
d 0.15 0.0810 0.0025 d 0.25 0.1846 0.0076 d 0.45 0.3804 0.0038

κ̄ 1.5 1.0502 0.0673 κ̄ 1.5 1.1679 0.0649 κ̄ 1.5 1.7450 0.0612
ω1 0.5 0.4919 0.0014 ω1 0.5 0.4921 0.0015 ω1 0.5 0.4911 0.0015
φ1 0.4 0.3428 0.0109 φ1 0.4 0.4102 0.0095 φ1 0.4 0.4011 0.0128
d 0.15 0.0812 0.0029 d 0.25 0.1484 0.0043 d 0.45 0.3076 0.0052

κ̄ 3.0 2.9649 0.0923 κ̄ 3.0 2.2467 0.0943 κ̄ 3.0 2.2600 0.0999
ω1 0.5 0.4974 0.0009 ω1 0.5 0.4973 0.0009 ω1 0.5 0.4933 0.0012
φ1 -0.4 -0.3479 0.0066 φ1 -0.4 -0.3573 0.0078 φ1 -0.4 -0.2527 0.0110
d 0.15 0.0787 0.0026 d 0.25 0.1785 0.0038 d 0.45 0.3715 0.0042

κ̄ 3.0 2.068 0.1059 κ̄ 3.0 2.3136 0.1038 κ̄ 3.0 2.7811 0.1029
ω1 0.5 0.4924 0.0014 ω1 0.5 0.4909 0.0015 ω1 0.5 0.4863 0.0015
φ1 0.4 0.3717 0.0103 φ1 0.4 0.4178 0.0093 φ1 0.4 0.4084 0.0165
d 0.15 0.0835 0.0031 d 0.25 0.1507 0.0044 d 0.45 0.32814 0.0054

Parameterization: β(L; ζ) = (1 ¡ ω1L)−1, α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 2.2
Sample size: 2048

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.1756 0.0209 κ̄ 0 -0.0888 0.0249 κ̄ 0 0.0532 0.0250
ω1 0.5 0.4992 0.0006 ω1 0.5 0.4984 0.0006 ω1 0.5 0.4966 0.0078
φ1 -0.4 -0.3514 0.0051 φ1 -0.4 -0.3602 0.0050 φ1 -0.4 -0.2756 0.0088
d 0.15 0.0981 0.0021 d 0.25 0.2238 0.0021 d 0.45 0.4172 0.0026

κ̄ 0 -0.1962 0.0238 κ̄ 0 -0.1733 0.0231 κ̄ 0 0.1029 0.0221
ω1 0.5 0.4973 0.0009 ω1 0.5 0.4964 0.0010 ω1 0.5 0.4937 0.0011
φ1 0.4 0.3857 0.0069 φ1 0.4 0.3916 0.0075 φ1 0.4 0.3410 0.0173
d 0.15 0.1056 0.0023 d 0.25 0.1883 0.0029 d 0.45 0.3485 0.0042

κ̄ 1.5 1.3419 0.0534 κ̄ 1.5 1.1364 0.0626 κ̄ 1.5 0.9927 0.0594
ω1 0.5 0.4979 0.0006 ω1 0.5 0.4935 0.0005 ω1 0.5 0.4976 0.0008
φ1 -0.4 -0.3649 0.0058 φ1 -0.4 -0.4146 0.0057 φ1 -0.4 -0.4967 0.0008
d 0.15 0.0929 0.0023 d 0.25 0.2296 0.0028 d 0.45 0.3940 0.0032

κ̄ 1.5 1.8963 0.0627 κ̄ 1.5 1.2007 0.0601 κ̄ 1.5 0.4973 0.0603
ω1 0.5 0.4986 0.0010 ω1 0.5 0.4968 0.0011 ω1 0.5 0.4917 0.0011
φ1 0.4 0.3922 0.0079 φ1 0.4 0.4229 0.0078 φ1 0.4 0.3787 0.0112
d 0.15 0.0895 0.0026 d 0.25 0.1773 0.0036 d 0.45 0.3195 0.0046

κ̄ 3.0 2.907 0.0873 κ̄ 3.0 2.3920 0.0817 κ̄ 3.0 2.1439 0.0930
ω1 0.5 0.4993 0.0007 ω1 0.5 0.4983 0.0006 ω1 0.5 0.4968 0.0009
φ1 -0.4 -0.3842 0.0059 φ1 -0.4 -0.3773 0.0069 φ1 -0.4 -0.2871 0.0092
d 0.15 0.0874 0.0024 d 0.25 0.2217 0.0032 d 0.45 0.3908 0.0036

κ̄ 3.0 1.9337 0.0992 κ̄ 3.0 2.1964 0.0982 κ̄ 3.0 2.5204 0.0921
ω1 0.5 0.4975 0.0010 ω1 0.5 0.4959 0.0011 ω1 0.5 0.4921 0.0012
φ1 0.4 0.3942 0.0077 φ1 0.4 0.4301 0.0078 φ1 0.4 0.4069 0.0112
d 0.15 0.0911 0.0027 d 0.25 0.1650 0.0040 d 0.45 0.3269 0.0048

Parameterization: β(L; ζ) = (1 ¡ ω1L)−1, α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 2.3
Sample size: 4096

Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev. Parameter Value Mean Std.Dev.

κ̄ 0 -0.1369 0.0201 κ̄ 0 -0.0866 0.0240 κ̄ 0 0.0110 0.0230
ω1 0.5 0.4998 0.0004 ω1 0.5 0.4998 0.0004 ω1 0.5 0.4983 0.0006
φ1 -0.4 -0.3729 0.0034 φ1 -0.4 -0.3708 0.0035 φ1 -0.4 -0.3084 0.0067
d 0.15 0.1100 0.0018 d 0.25 0.2338 0.0016 d 0.45 0.4275 0.0021

κ̄ 0 -0.1339 0.0231 κ̄ 0 -0.1312 0.0220 κ̄ 0 0.0785 0.0196
ω1 0.5 0.4975 0.0007 ω1 0.5 0.4979 0.0007 ω1 0.5 0.4986 0.0007
φ1 0.4 0.4090 0.0048 φ1 0.4 0.4048 0.0056 φ1 0.4 0.3543 0.0100
d 0.15 0.1197 0.0018 d 0.25 0.2106 0.0023 d 0.45 0.3865 0.0031

κ̄ 1.5 1.3602 0.0479 κ̄ 1.5 1.2867 0.0548 κ̄ 1.5 1.0698 0.0577
ω1 0.5 0.4992 0.0004 ω1 0.5 0.4999 0.0005 ω1 0.5 0.4967 0.0006
φ1 -0.4 -0.3882 0.0043 φ1 -0.4 -0.3820 0.0054 φ1 -0.4 -0.2854 0.0057
d 0.15 0.1091 0.0021 d 0.25 0.2419 0.0023 d 0.45 0.4037 0.0029

κ̄ 1.5 0.9725 0.0586 κ̄ 1.5 1.0288 0.0552 κ̄ 1.5 1.6044 0.0510
ω1 0.5 0.4979 0.0007 ω1 0.5 0.4975 0.0008 ω1 0.5 0.4933 0.0008
φ1 0.4 0.4065 0.0068 φ1 0.4 0.4163 0.0062 φ1 0.4 0.3665 0.0106
d 0.15 0.1037 0.0023 d 0.25 0.1891 0.0031 d 0.45 0.3676 0.0037

κ̄ 3.0 2.9792 0.0783 κ̄ 3.0 2.5281 0.0760 κ̄ 3.0 2.0276 0.0873
ω1 0.5 0.4997 0.0005 ω1 0.5 0.5001 0.0004 ω1 0.5 0.4978 0.0006
φ1 -0.4 -0.3991 0.0050 φ1 -0.4 -0.3721 0.0060 φ1 -0.4 -0.3144 0.0069
d 0.15 0.1066 0.0022 d 0.25 0.2349 0.0025 d 0.45 0.3976 0.0034

κ̄ 3.0 1.7137 0.0931 κ̄ 3.0 2.0497 0.0903 κ̄ 3.0 2.8007 0.0823
ω1 0.5 0.4978 0.0008 ω1 0.5 0.4970 0.0008 ω1 0.5 0.4965 0.0008
φ1 0.4 0.4094 0.0067 φ1 0.4 0.4086 0.0069 φ1 0.4 0.3943 0.0104
d 0.15 0.0954 0.0023 d 0.25 0.1801 0.0034 d 0.45 0.3673 0.0040

Parameterization: β(L; ζ) = (1 ¡ ω1L)−1, α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 3.1
Sample size: 1024

Parameter Value Probability Parameter Value Probability Parameter Value Probability

κ̄ = 0 φ1 = -0.8

d 0.15 0.957 d 0.25 1 d 0.45 0.860
κ̄ = 0 φ1 = -0.4

d 0.15 0.846 d 0.25 0.897 d 0.45 0.931
κ̄ = 0 φ1 = 0.4

d 0.15 0.987 d 0.25 0.770 d 0.45 0.834
κ̄ = 0 φ1 = 0.8

d 0.15 0.960 d 0.25 1 d 0.45 0.856
κ̄ = 1.5 φ1 = -0.8

d 0.15 0.936 d 0.25 1 d 0.45 0.879
κ̄ = 1.5 φ1 = -0.4

d 0.15 0.989 d 0.25 0.866 d 0.45 0.895
κ̄ = 1.5 φ1 = 0.4

d 0.15 0.982 d 0.25 0.970 d 0.45 0.824
κ̄ = 1.5 φ1 = 0.8

d 0.15 0.959 d 0.25 1 d 0.45 0.936
κ̄ = 3 φ1 = -0.8

d 0.15 0.943 d 0.25 1 d 0.45 0.739
κ̄ = 3 φ1 = -0.4

d 0.15 0.980 d 0.25 0.897 d 0.45 0.858
κ̄ = 3 φ1 = 0.4

d 0.15 0.972 d 0.25 1 d 0.45 0.773
κ̄ = 3 φ1 = 0.8

d 0.15 0.966 d 0.25 1 d 0.45 0.783
Parameterization: α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.

Theoretical probability: 0.95.



Table 3.2
Sample size: 4096

Parameter Value Probability Parameter Value Probability Parameter Value Probability

κ̄ = 0 φ1 = -0.8

d 0.15 0.985 d 0.25 0.861 d 0.45 0.950
κ̄ = 0 φ1 = -0.4

d 0.15 0.870 d 0.25 0.958 d 0.45 0.944
κ̄ = 0 φ1 = 0.4

d 0.15 0.917 d 0.25 0.943 d 0.45 0.933
κ̄ = 0 φ1 = 0.8

d 0.15 0.984 d 0.25 0.927 d 0.45 0.921
κ̄ = 1.5 φ1 = -0.8

d 0.15 0.973 d 0.25 0.980 d 0.45 0.930
κ̄ = 1.5 φ1 = -0.4

d 0.15 0.893 d 0.25 0.949 d 0.45 0.941
κ̄ = 1.5 φ1 = 0.4

d 0.15 0.903 d 0.25 0.921 d 0.45 0.863
κ̄ = 1.5 φ1 = 0.8

d 0.15 0.974 d 0.25 0.915 d 0.45 0.862
κ̄ = 3 φ1 = -0.8

d 0.15 0.974 d 0.25 0.973 d 0.45 0.873
κ̄ = 3 φ1 = -0.4

d 0.15 0.909 d 0.25 0.927 d 0.45 0.872
κ̄ = 1.5 φ1 = 0.4

d 0.15 0.971 d 0.25 0.892 d 0.45 0.840
κ̄ = 3 φ1 = 0.8

d 0.15 0.972 d 0.25 0.916 d 0.45 0.891
Parameterization: α(L; θ) = (1 ¡ L)−d(1 ¡ φ1L)−1. Design: ρ2 = 1, σ2 = 1, µ = 0.

Theoretical probability: 0.95.



Table 4: Empirical size and power of LM test Φ
power size

Values for d significance value significance value

10% 5% 1 % 10 % 5 % 1%

Sample size: 512
0.1 0.143 0.093 0.046 0.079 0.047 0.016
0.2 0.370 0.298 0.184 0.096 0.054 0.012
0.375 0.602 0.541 0.455 0.073 0.036 0.018
0.45 0.613 0.556 0.471 0.080 0.044 0.018
0.49 0.461 0.402 0.313 0.078 0.037 0.015

Sample size: 1024
0.1 0.184 0.124 0.066 0.082 0.052 0.014
0.2 0.424 0.343 0.214 0.084 0.041 0.009
0.375 0.692 0.647 0.541 0.094 0.045 0.010
0.45 0.673 0.625 0.534 0.092 0.048 0.016
0.49 0.529 0.475 0.380 0.095 0.056 0.017

Sample size: 2048
0.1 0.184 0.134 0.055 0.093 0.050 0.010
0.2 0.457 0.371 0.249 0.082 0.045 0.006
0.375 0.744 0.708 0.621 0.089 0.049 0.010
0.45 0.750 0.703 0.631 0.088 0.052 0.008
0.49 0.589 0.515 0.422 0.112 0.052 0.020
Parameterization: α(L; θ) = (1 ¡ L)−d. Design: ρ2 = 1, σ2 = 1, µ = 0.



Table 5.1: Empirical application of LM Φ test
S&P 500 FTSE All FTSE 100 Y en/$ spot Y en/$ for $/£ spot $/£ for

Φ 16460583 1440499 1229901 4.91 81.86 93.43 104.56

kurtosis 100.26 27.78 26.15 6.69 7.52 7.17 7.18

skewness -4.20 -1.72 -1.49 -0.35 -0.36 0.14 0.16
LM test statistic Φ, presented in first row, is asymptotically distributed like

central χ2
1 under the null hypothesis of homoskedasticity.

Table 5.2: Semiparametric and Gaussian estimates of d
S&P 500 FTSE All FTSE 100 Y en/$ spot Y en/$ 1mfor $/£ spot $/£ 1mfor

semiparametric 0.11 0.15 0.14 0.21 0.17 0.41 0.42

ARCH(∞) 0.33 0.35 0.37 0.32 0.24 0.54 0.56
(0.13) (0.15) (0.15) (0.05) (0.04) (0.09) (0.11)

nonlinear MA 0.35 0.36 0.43 0.30 0.26 0.41 0.42
(0.07) (0.09) (0.10) (0.07) (0.07) (0.10) (0.08)
[3.06] [3.13] [4.07] [3.58] [2.25] [1.74] [1.81]

Row 1: values of local Gaussian estimator (Robinson 1995a), with bandwidth m = 100

and no trimming. The asymptotic standard error is equal to 1/(2 m1/2) = 0.050.

Rows 2 and 3: values of Gaussian estimator pertinent to the values of p, q (0 · p, q · 4)

yielding best goodness-of-fit of estimated residuals. Initial values given by grid search and

semiparametric estimates of first row. Standard errors are in parentheses.

Estimates of κ̄ are reported in square brackets.
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