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TESTING AGAINST STOCHASTIC TREND AND SEASONALITY IN THE
PRESENCE OF UNATTENDED BREAKS AND UNIT ROOTS

by Fabio Busetti* and A. M. Robert Taylor**

Abstract

Thispaper considersthe problem of testing against stochastic trend and seasonality in the
presence of structural breaks and unit roots at frequencies other than those directly under test,
which we term unattended breaks and unattended unit roots respectively. We show that under
unattended breaks the true size of the Kwiatkowski ef al. (1992) [KPSS] test at frequency zero
and the Canova and Hansen (1995) [CH] test at the seasonal frequencies fall well below the
nominal level under the null with an associated, often very dramatic, loss of power under the
alternative. We demonstrate that a simple modification of the statistics can recover the usua
limiting distribution appropriate to the case where there are no breaks, provided unit roots
do not exist at any of the unattended frequencies. Where unattended unit roots occur we show
that the above statistics converge in probability to zero under the null. However, computing the
KPSS and CH statistics after pre-filtering the data is simultaneously efficacious against both
unattended breaks and unattended unit roots, in the sense that the statistics retain their usual
pivotal limiting null distributions appropriate to the case where neither occurs. The case where
breaks may potentially occur at all frequencies is also discussed. The practical relevance of
the theoretical contribution of the paper isillustrated through a number of empirical examples.

JEL classification: C12, C22.
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1. Introduction?®

In a recent paper Canova and Hansen (1995) [CH] have developed score-based tests
of the null hypothesis of deterministic seasonality against the aternative of unit roots at
some or all of the seasonal, but not zero, spectral frequencies. Their tests are similar in
spirit to the those against a zero frequency unit root proposed in Kwiatkowski ez al. (1992)
[KPSS]. The statistics upon which these tests are based retain pivotal Cramér-von Mises
limiting null distributions under mixing and seasonally heteroskedastic errors via the use of
a non-parametric heteroskedasticity and autocorrelation consistent (HAC) covariance matrix
estimator. More recently, Taylor (2003a) has amalgamated these cases to develop score-based
tests against seasonal and/or zero frequency unit roots.

The above stationarity tests can also be derived from the genera theory on parameter
stability testing in regression models of Nyblom (1989) and Hansen (1992). We provide a
review of these testing procedures in Section 2. Specifically, in the context of aregression of
the time series variable of interest on a set of zero and seasonal frequency spectral indicator
variables, we consider testing the null hypothesis of fixed parameters against the aternative
that (at least one of) the parameters on a given subset, say 34, of the spectral indicators evolve
as random walks, such that the process admits unit root behaviour at (at least one of) those

spectral frequenciesincluded in .

The testing procedures outlined in Section 2 are conducted under the maintained
hypothesis, say H,, that the regressors associated with those spectral frequencies not included
in & must have fixed coefficients. In this paper we focus attention on two particular
cases where H,, is violated, both recognised in the literature to be of considerable practical
relevance. Firstly we consider the case of unattended structural breaks, where some or all
of the parameters on the spectral frequency regressors not included in 4 display a structural
break at some known or unknown point in the sample. Secondly, we consider the case of
unattended unit roots, originaly highlighted in Hylleberg (1995) and further developed in
Taylor (2003b), where the process admits unit root behaviour at some or all of the spectral
frequencies not included in .

1 We thank Andrew Harvey and Cheng Hsiao for helpful comments on an ealier draft. The views ex-
pressed here are those of the authors and do not necessarily represent those of the Bank of Itay. Email:
busetti .fabio@insedia.interbusiness.it, R.Taylor@bham.ac.uk



Since the work of Perron (1989) on US GNP, it has been known that a process which
Is stochastically stationary about a deterministic component subject to structural breaks can
display properties very similar to a unit root process. Indeed, Perron (1989) demonstrates
that the conventional augmented Dickey-Fuller [ADF] tests cannot reject the unit root null
hypothesis, even asymptotically, where a broken trend exists. Although consistent against
stationary processes about a broken level, Perron (1989) shows that the power of the ADF
test is vastly reduced relative to the case where no break occurs. Perron (1989) proposes
modifications of the ADF test constructed so as to be invariant to deterministic breaks at a
known point while Zivot and Andrews (1992), inter alia, alow for an unknown break point.
More recently, Busetti and Harvey (2001) have considered the effects of level and trend breaks,
of thetypediscussed in Perron (1989), on the stationarity tests of KPSS. They show that failing
to account for these breaks renders the K PSS tests severely over-sized, while KPSS-type tests
which explicitly allow for (are invariant to) such breaks will require a different set of critical

values.

Empirical results in Ghysels (1990) suggest that seasonal level shifts are a common
phenomenon in quarterly US macroeconomic time series and argues that such shiftswill have
non-trivial consequences on testing for seasona unit roots. Accordingly, Ghysels (1994),
Smith and Otero (1997) and Franses and Vogelslang (1998), inter alia, have extended the
work of Perron (1989) to the case of testing the null hypothesis of seasonal unit rootsin series
which undergo seasonal dummy level shifts. Although the standard tests of the seasonal
unit root null hypothesis of Hylleberg er al. (1990) are shown to be consistent against
stochastically stationary processes which are subject to such shifts, their finite sample power
Is vastly reduced. Indeed, in allowing for seasonal dummy level shiftsin quarterly real GDP
for fourteen countries, Franses and Vogelslang (1998) find considerably less evidence for
seasonal unit roots than from the standard tests. Busetti and Harvey (2003a) consider the
effects of structural breaks at the seasonal (but not zero) frequencies on the seasonal frequency
stationarity tests of CH. Paralleling the arguments in Busetti and Harvey (2001), they show
that the standard CH tests are over-sized in such cases and propose modified statistics which
are invariant to such breaks.

In Section 3 of this paper we derive representations for the limiting null distributions
of the statistics of Section 2 in cases where there are unattended breaks, but not unattended



unit roots. We demonstrate that in such cases the true asymptotic size of the tests will fall
below the nominal level. This contrasts sharply with cases where some or all of the parameters
on the spectral frequency regressors included in & display a structural break (we shall term
these attended structural breaks in what follows), considered in Busetti and Harvey (2001,
2003a). Monte Carlo simulations reported in Section 5 demonstrate that the asymptotic theory
provides a useful approximation to the behaviour of the statistics in finite-samples and that
the under-sizing phenomenon effects an associated, often very dramatic, loss of finite sample
power under the alternative.

The assumption that only those spectral frequenciesincluded in &y may display unit root
behaviour is clearly untenable in practice, since one cannot know which spectral frequencies
admit a unit root. If one did, one would of course have no need for unit root testing. Busetti
and Taylor (2002) and Taylor (2003b) demonstrate that the statistics against unit roots in &
converge in probability to zero under the null in such cases. Although the tests based on these
statistics are consistent in such cases, their finite sample power is vastly diminished relative
to the case where the maintained hypothesis holds;, Taylor (2003b) provides considerable
numerical and empirical evidence to illustrate this point. Interestingly, this problem does not
arise with the tests of Hylleberg ez al. (1990) since here one may test for the null hypothesis
of a unit root at a particular spectral frequency (or frequencies) whilst remaining ambivalent
asto the existence or otherwise of unit roots at those frequencies not under test.

From a practical perspective, the impact of unattended breaks and unattended unit roots
on the stationarity tests of Section 2 are just asimportant asthose arising from attended breaks.
As noted above, the latter effect over-sized tests which diverge, even if there are no unit
roots in ;. Since these are tests of the null hypothesis of stationarity in <4, thisis not an
unreasonable outcome: it draws the practitioner’s attention to non-stationary behaviour in .
However, care must still be taken since routine differencing in response to rejection of the
null will yield an over-differenced series if the non-stationarity is due to an attended break.
In contrast, unattended breaks and/or unattended unit roots at those frequencies not included
in &9 vastly diminish the likelihood that we can reject the null of stationarity when analysing
series with unit roots in ;. The modelling implications of failing to recognise and account
for such behaviour is well-known and further analysis of the data could only be expected to

yield spurious inferences.
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In light of these practical problems, we suggest avariety of remedial actions. In the case
where we have unattended structural breaks, but no unattended unit roots, we show in Section
3 that some simple modifications, based on bias-correction, to the existing test statistics can
recover the usual limiting null distributions that pertain where there are no breaks. However,
where there are unattended unit roots we demonstrate in Section 4 that these statistics will
still converge in probability to zero under the null. Pre-filtering the data eliminates potential
unattended unit roots and has been shown to be highly effective by Taylor (2003b). We show
that pre-filtering ssimultaneously provides an efficacious remedy for the problem of unattended
structural breaks. We therefore recommend the use of pre-filtering as a means of obtaining
robust testsin the presence of unattended breaks and/or unattended unit roots.

In Section 6 we discuss two generalisations. The first allows for the case where there
are both unattended and attended deterministic structural breaks, while the second allows for
deterministic trending variables. The former is of considerable empirical importance because
seasonal level shifts, of the type discussed in the literature on tests of the null of seasonal unit
roots above, may potentially effect both attended and unattended breaks, and hence allow
for cases where structural breaks occur at al frequencies. The practical relevance of our
theoretical resultsisillustrated in Section 7 where we apply the existing tests against stochastic
trend and seasonality and the modified versions of these tests suggested in this paper to data
on U.K. marriages and U.K. (log) consumers expenditure on tobacco. In the case of UK
marriages we show that tests based on the appropriately modified statistics yield considerably
more evidence against stationarity than do the existing tests, while the (log) expenditure series
illustrates the case where both attended and unattended breaks occur. Section 8 concludes the
paper, while an Appendix contains proofs of our main results.
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2. Score-Based Stationarity Tests

Consider the scalar processy,,t = 1,..., T, observed with constant seasonal periodicity
s, generated according to the model

(1) yt:D;t/Y:_l_ut? utNN]]D(Ou O_2>7

where 0 < 0% < oo, and Dy is an s-vector of conventional seasonal indicator (dummy)
variables with associated, potentialy time-varying, parameter vector ;.

Rather than work directly with the formulation given in (1), it will prove expedient in
what follows to adopt the following bijective reparameterization of (1) in terms of the spectral
indicator variables of Hannan ez al. (1970); that is,

2 Y= Zyy, +ug, t=1,...,T.

In(2), 7; = (zo,t, 2y gy z{s /m)/ Isan s-vector of spectral indicator variables, that is, 2o = 1,
2y = (cos2mkt/s, sin 2wkt /s)' | k = 1,...,s*, where s* = s/2 — 1 if s iseven or [s/2] if
s isodd, while zy/5, = (—1)" if s is even. The first element of Z;, zo,, corresponds to the
zero frequency, Ao = 0, while the kth pair of spectral indicators, z; ¢, correspond to the kth
harmonic seasonal frequency, \r = 27k /s, k = 1,..., s*. Where s is even, the last element of
Zs, Zs2,0, COrresponds to the Nyquist frequency, A, = 7. The exact relationship between ,
and ~; isgiven by v, = R~ 'y}, wherethe full rank (s x s) matrix R = (Z1,..., 7).

Consider now the partition of 7, into (7},, 73,)" where Zy;, Z,, are digoint sub-vectors
(containing regressors corresponding to digjoint frequencies, but with no particular ordering)
of dimension s; and s, respectively, suchthat s; 4+ s = s. Let

Si = {kfj, j = 1, 2, ceey T4y 0 ij,t belongStO Zzt}

be the set of indices of the spectral indicator variables corresponding to the frequencies
included in Z;;, i = 1, 2. Using this partition we re-write (2), with an obvious notation, as

(3) Y = Ziﬂlt + Zét%t + Ug.
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We specify the parameters on 7, to evolve as a (possibly degenerate) vector random walk;
that is,

(4) Yie = Vie1 T M e~ NIID(O, o?D7)

where D} = U%Dl, Dy a non-null diagonal positive semi-definite matrix of dimension
(s1 X s1). We assume that the initial value v, is fixed, with no loss of generality. We also
assume that n, and u, are mutually orthogonal.

In this paper our attention focuses on testing the null hypothesis Hj, : 037 = 0 against
the alternative 71y : o7 > 0in (3)-(4). As demonstrated in, inter alia, CH under Hy, {y}
admits unit roots at those spectral frequencies associated with the non-zero diagonal elements
of D,. However, the statistical properties of tests of H, against H; will depend crucially on
the specification of v,,, and it is an exploration of this issue which provides the focus for this
paper. In the remainder of this Section wefollow the implicit assumption adopted in CH, KPSS
and Taylor (2003a) that v, = 49, afixed so-vector of coefficients, for all ¢. This assumption
constitutes the maintained hypothesis, H,, discussed in Section 1. Recall that H,, imposes
the condition that the regressors associated with those spectral frequencies not included in 4
must have fixed coefficients, regardless of the behaviour of the coefficient vector ~,,. If both
Hy and H,, hold the entire parameter vector +, is fixed and we have what will be termed the

null model
©) Yo = 2110 + Logveo Fue, t=1,..7T;
that is, {7, } isastochastically stationary process around fixed (deterministic) seasonal effects.

In Section 3 we consider the effects on the tests of Section 2 when we alow some
or al of the elements of ~,, to display a deterministic structural break at some known or
unknown point in the sample. In Section 4 we subsequently consider the case where ~,,
follows a random walk. In Section 6.1 we will also discuss the case where deterministic
structural breaks may occur in any of the elements of ~,, not just in ,,, thereby allowing for
the interesting case where structural breaks may occur at all frequencies. Indeed, notice that
deterministic structural breaks in the seasonal dummy parameter vector ~y; of (1) will effect
structural breaksin either v,, or v,,, or both.

Denoteby ¢;,t = 1,..., T, the Ordinary Least Squares (OLS) residuals from regressing
y; on 7, and denote by 5 their samplevariance, 3> = 7' 3.1 | 2. Asdemonstratedin Taylor
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(2003a), alocally most powerful invariant (LMPI) test of H, : 0% = 0 against Hy : 0% > 0in
(3)-(4), with H,; maintained, rejectsfor large values of the statistic

© o= am=Y [mee ZTA Dy i |

ke ke v

T t

where hy, = 1if k = 0ork = s/2, hy = 2 otherwise. Under Hy, w weakly converges to
the right member of (9) below, and is O,(T") under H;; see Taylor (2003a). Furthermore, it is
not difficult to show that the statistic w of (6) for testing against all of the spectral frequencies
identified by 7. is precisely the sum of the individual LMPI statistics @;, for testing at each
of these frequenciesin turn. As we shall see below, this additive property aso holds on the
asymptotic null distributions of the tests.

If we weaken the assumptions on {u,} to allow for the possibility of weak dependence
and heterogeneity, we will require a non-parametrically modified version of w in order to
obtain a statistic with a pivotal limiting null distribution. Specific (mixing) conditions on
{u:} in this case are quite involved; full details are given in Taylor (2003a) and are not
repeated here. We denote by Q2; the “long run variance” of the process Z;.u;, i.e. €; =
limep oo T ((zt Ziw) (ST Zivuy)' ) i = 1,2, and assumethat 2, is positive definite.
Then from CH and Taylor (2003a), the modified statistic is given by

T t t
Ot ; (2; Zliez‘) (2; Zii@')

where, following CH, we have defined the HAC estimator of {2, as

() L =T *Trace

I

®) Z (4/Sr)T (4

where k(-) is akernel function and T'y(j) = 7' S i1 Zueter— 7 4 ; is the estimator of

the autocovariance of Z,,u, at lag j.

Fors =1, £ of (7) isthen,, statistic of KPSS (Equation (13), p.165). Furthermore, for s
evenand 7, = (—1)*, £ coincideswith the £, statistic of CH (Equation (17), p.6). Moreover,
for Zi, = 214, k = 1,...,5%, L isthe statistic L, of CH (Equation (17), p.6), whileif Z;,
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containsall but thefirst element of Z, (i.e. Z,; = 1), then £ coincideswith £, of CH (Equation
(15), p.9).

Suitable choices for the kernel k(-) may be found in, inter alia, Andrews (1991, p.821),
while setting the bandwidth parameter Sy such that S — oo and Sy /T2 — 0 ensures that
Q, —* Q, under both the null and local alternatives, see Elliott and Stock (1994). Under the
above conditions, Taylor (2003a) establishes the result that under Hy : 037 =0

9 L = /OBSI(T)/BSI(T)dT,

where “=-" denotes weak convergence and B;, (r) is a s;-dimensional standard Brownian
bridge process. The right member of (9) is a Cramér-von Mises distribution with s; degrees
of freedom; see Harvey (2001) for further discussion on the Cramér-von Mises family of
distributions. In what follows we will denote this distribution by Cv M (s;), upper tail critica
values from which, for 1 < s; < 12, areprovided in Table 1 of CH (page 5).

If we supplant the mixing conditions above by the assumption that {u,} is a linear
process, then €2, isadiagonal matrix containing the spectral generating function of «,, denoted
as g(\), evaluated at each of the frequencies A\, k¥ € <. To be precise, we assume that
uy = Y(L)e, {e:} a MD sequence satisfying the conditions in Stock (1994, p. 2745), and
Y(L) = 1+ 37, ¢, apolynomial in L, the conventional lag operator, Lfy, = y; s,
k=0,1,.., stisfying: (i) ¢ (exp{=i2nk/s}) # 0, for dl k € Sy, and (i) 3277, ;| < 0o
The first condition rules out a zero in the spectrum of {u,} at any of the frequencies included
in &1, while the second ensures that poles do not exist in the spectrum of {«,}. A leading case
which satisfies the above conditionsisthe class of finite-order stationary and invertible ARMA
processes. Following Busetti and Harvey (2003a) we also consider the following alternative
non-parametrically modified statistic

T

t t
S T N PP ML VDD DL
T2g(Ar) )

keSS ke

2 Equivalent conditions must also hold in the mixing case. However, it should be noted that the possibility
of periodic heteroscedasticity, allowed under the mixing conditions, is not permitted.
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where y is defined below (6), G(\r) = ;7\ k(5/S1)7.(d) cos Aed, and 7.(j) =
Tt ZtT:jH eeq—; 1S the sample autocovariance of the OLS residuals at lag j. Notice that
L and £ of (7) coincide if s; = 1. The statistic £ is intuitively appealing since, unlike £, it
retains the additivity property of w. Under the linear process conditions on {u, }, together with
the conditionson k(-) and Sy stated below (8), £ has the usual Cv M (s;) limiting distribution
of (9) under Hy. Under H,, £ and £ are both O,(T'/Sr); see, inter alia, CH, KPSS, Taylor
(2003a) and Busetti and Harvey (2003a). Finally we note that whilew isan exact LMPI test of
Hy : 0% = 0 against Hy : 0% > 0in(3)-(4), neither £ nor £ arelocally optimal in any formal
sense, even asymptotically.

3. Testing with Unattended Structural Breaks

Thus far we have assumed that ~,, of (3) is afixed sy-vector of parameters. Suppose
now that the process {v; } is generated by (3)-(4) but that v, is generated according to

(11) Yor = (Yoo + 0di(ar))

whered,(a) = 1 (¢t < [Taf, o € (0,1)) isan indicator variable reflecting the occurrence of a
deterministic structural break, and ¢ is an sy-vector of coefficients. It isclear that (11) violates
Hy, because, unless § = 0, v, is not fixed for al ¢. Notice that the end cases of a« = 0
and o = 1 are excluded since these would not yield a within-sample break in the coefficient
vector v,,. In Section 6.1 we will subsequently discuss the case where deterministic breaks
may occur in both ,, and ~y,,.

The DGP (3)-(4)-(11) displays potentialy non-stationary stochastic seasonality at the
frequencies corresponding to 7., exactly as in Section 2, but now also displays deterministic
seasonality with a level shift in the seasonal pattern at period [1'] a the frequencies
corresponding to Z,;. Observe that the zero frequency regressor 2o, = 1 can be in either
77 OF Zy:. Moreover, the componentsin the vector of level shiftsg = (64, ..., 6,,) need not be
equal and may contain zeros, so that not all frequenciesin Z,; need show a break. Moreover,
if & = 0, vy, = 720, and so the test based on w of (6) isaLMP test for Hy : 0% = 0 against

H130'37>0.

Consider now the case where 8 # 0, such that H,, is violated, and we compute the
statistic w of (6) without taking into account the occurrence of alevel shift; that is, thereisan
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unattended structural break. In this case the test based on w is not LMPI and the asymptotic
distribution of w under H, is no longer of the form givenin (9). Indeed, as we now show in
Proposition 1, it isequal to the right member of (9) multiplied by thefactor m(«, 6, o), which
arises from an asymptotic bias in the estimator 5> of . Consequently, the pivotal limiting
distribution in (9) can be retained by bias-correcting w as we shall do in Section 3.1, making
use of the work on breakpoint estimation by Bai (1994, 1997).

Proposition 1 Let y, be generated by (3),(4) and (11). Then, under H, : 0%7 =0,
1
(12 w = ma,0, 02)/ B, () Bg, (r)dr,
0

where Bs, (1) is as defined above, and

(13) m(a,0,0%) = (1+b(a,0)/c®) !,
(14 Hoo) = lim T3 (di(a) — o) (Z0)°.

t=1

Remark 1: Notice from (14) that the asymptotic bias in 5°, b(c, 6), and hence m(a, 6, 02),
are symmetric in .. Consequently, the representation in (12) for o and that for & = (1 — «)
coincide. Where 6 = 0, the case of no unattended breaks, b(«, 0) = 0 and hence (12) reduces
to the right member of (9), as should be expected.

Remark 2: As an example of b(«, 6), consider the case where either 7y, = 1 or Zy, = (—1)".
Herethe biasisgiven by b(«, 0) = a(1 — «)6”.

The asymptotic bias, b(«, ), is strictly positive whenever ¢ # 0, and correspondingly,
m(a,0,0%) will therefore always be less than unity. This will clearly yield an undersized
test; cf. (9). Notice therefore that unattended breaks in the parameters associated with the
spectral regressors in Sy have the opposite effects from unattended breaks in the parameters
associated with &. In the latter case Busetti and Harvey (2001, 2003a) show that tests against
unit roots in ¥, are over-sized. As a smple illustration of Proposition 1, consider the case
of amodel with two seasons (s = 2), Z; = (1,(—1)!)’, where Z;; = (—1)?, corresponds to
frequency 7, and 75, = 1 corresponds to the zero frequency. Suppose that, as a particular
case of (11), a shift in ~,,, equal to the standard deviation of the errors, occurs in the middle
of the sample, so that m(0.5,0,0?) = 0.8. In this case if w, the test against a unit root at
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frequency 7, isrun at the nomina (asymptotic) 5% level, it would display a true asymptotic
size of Pr{CvM(1) > 0.463/0.8} ~ 2.5%.% In the same example, but with 6 = 20 the
true asymptotic size would be Pr{CvM (1) > 0.463/0.5} ~ 0.4%. Deviations below the
nominal level clearly increase as ¢ isincreased. Notice that the same results also apply if we
interchange 7, and Z,; that is, the case where we are testing against a zero frequency unit
root in the presence of an unattended break at frequency .

Now consider the case of testing against aunit root at frequency zeroin aquarterly model
(s = 4). Inthis case Z;, = 1, corresponds to the zero frequency, and Zy, = (z;,, (—1)"),
where 21, = (cos7t/2, sinwt/2)’, corresponds to the seasonal frequencies. Suppose that
there isaneglected bresk of sized = (6*,6",0")'o at the seasonal frequencies. Table 3.1 gives
the asymptotic biases and true asymptotic size for the test against a zero frequency unit root,
w, run at thenominal 5% level, for various values of the break fraction o and break magnitudes
0*.

As in the preceding example, we see that the true asymptotic size of w deviates further
below the nominal level as the break magnitude ¢* increases, other things being equal.
Moreover, the tabulated results clearly demonstrate that the degree of size distortion is the
worse the closer is the break date to the middle of the sample. Recall from Remark 1 that

m(c,0,0%) issymmetricin c.

3 The asymptotic 5% level upper tail critical value from the Cv M (1) distribution is 0.463.
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Table 3.1: Asymptotic Bias and Size of w

b(a,0) m(a,0,0%) truesize

a=1/8 0219 0821 029
0"=1 a=1/4 0375 0727 019
a=1/2 0500  0.667 013
a=1/8 0875 0533 004
=2 a=1/4 1500  0.400 001
a=1/2 2000 0333 000
a=1/8 3500 0222 000
0" =4 a=1/4 6.000  0.143 000
a=1/2 8000 0111 000

If we switch 7;, and 7,5, in the quarterly example considered above, so that our object
IS to test against unit root behaviour at some or all of the seasonal frequencies, and we have
a neglected shift at frequency zero, the true asymptotic size of a test run at the nomina 5%
level* is obtained from the Cv M (3) distribution as Pr(Cv M (3) > 1.010/m(«, 0, 0?)), where
m(a,0,0%) =1/(1+a(l—a)0?/o?). For example, if o = 1/8 and § = o, thetrue asymptotic
size for anomina 5% level test is approximately 2.5%, while if o = 1/2 this dropsto 1.8%.
A tabulation of asymptotic sizes and biases for arange of values of « and @ in this case is not
provided here, as the patterns are qualitatively similar to those seen in Table 3.1. Full details
can be obtained from the authors, on request.

3.1 Bias-Corrected Tests

The biasin the asymptotic null distribution of w detailed in Proposition 1 may be easily
corrected and this can be done in a number of ways which we detail below. Each modification
is shown to deliver a statistic with the usual pivotal Cv M (s,) limiting distribution under H, :

2 _
Jn—O.

Consider first the case where there is a structural break at an unknown point in the
sample, oy € (0,1). An asymptotically unbiased estimator of the error variance is obtained
by minimizing the sum of squared residuals over al the possible break dates. Specificaly, let
e:(«v) denote the OL S residuals from the fitted regression

(15) U = Zit’YAl + Zéﬁ2 + dt(oz)Z;té,

4 The5% level upper tail asymptotic critica value from the Cv M (3) distribution is 1.010.
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and let 5%(a) = T-' 37 e;()? be the sample variance of the residuals. Denote by o* the

argument that minimizes this variance; that is, a* = arg inf 5°(a).

Inthe appendix itisshown that, under 1, : 0% = 0, 6% (a*) isan asymptotically unbiased
estimator of 2. Indeed, for the case Z,; = 1, Bai (1994, 1997) shows that, under I, o* is
a superconsistent estimator of ag, in the sense that it converges to the true value at rate 7.
Consequently, and noting the asymptotic invariance of the numerator of w of (6) to the level
shift (see the proof of Proposition 1 in the Appendix), an obvious modified version of w whose
limiting null distribution is Cv M (s1) is given by
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which is obtained by replacing in (6) the biased estimator of the error variance 5> by 5 (a*).

Notice that in (16) the correction is made only to the denominator of the statistic. One
might then conjecture that atest with superior finite sample properties under level shifts could
be obtained by modifying the numerator of (16) in a similar fashion to the denominator.
Precisely, rather than usethe OLSresidualse,, t = 1,...,T, asinw and w*, one could compute
the partial sums involved in the numerator using the residuals e;(«*), as defined above. This
suggests the statistic

T ¢ ¢
(17) W =T Z h 1 Trace (ijl 2 €5 (a”) ijl z}v’jej(a*))
pr— k —
ke UQ(Q*)

Consider now the case where the true breakpoint «q is known. In this scenario the
best option would be to compute (17) with o* replaced by «q; we denote this statistic by
wp. Adapting the results of Busetti and Harvey (2003a), it is easy to show that w, isaLMPI
test statistic for Hy : 0% = 0 against H; : ¢, > 0, and that its limiting null distribution is
CvM((sy).

Finally, if no break occurs, both w* and w** remain asymptotically unbiased and
consistent tests; this follows since adding extra regressors asymptotically uncorrelated with
71 has no effect on the limiting behaviour of the statistics, cf. Busetti and Harvey (2003a).

The following proposition summarizes the foregoing results.
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Proposition 2  Under the null hypothesis Hy : 0%7 = 0, regardless of the existence or timing of
a breakpoint, i.e. irrespective of the values of 0 and «, the asymptoftic distributions of w*, w**

are CuM (sy).

Remark 3: The same result will clearly apply to the modified statistics wg, provided «y iS
indeed the true break date.

Remark 4: Under the fixed alternative, the statistics w, wq, w* and w** al diverge at rate 7.
Notice that identification of the breakpoint in the coefficients of 75, isunimportant in this case,
asthe result is driven by the random walk alternative in the coefficients of 7,.

Under either the mixing or linear process assumptions on {;} outlined in Section 2,
the non-parametrically modified statistics £ of (7) and £ of (10) respectively can be corrected
along similar lines as suggested above for w. This simply amounts to replacing Q, of (7) and
g(Ax) of (22) with ﬁl(a*) and g(\x; o*) respectively, constructed using the OLS residuals
e:(a*), as detailed above. We will denote these statistics with an obvious notation as £*,
£, L and £~. The corresponding test statistics derived when the breakpoint is known will
be denoted £, and £,. The limiting properties of these statistics are as given above for the
corresponding bias-corrected variants of w.

3.2 Tlests based on Pre-filtered Data

The bias-corrected tests of Section 3.1 finessed the problem of unattended structural
breaks by explicitly modelling the breaks. In the case of a known bresk date a LMPI test
can be constructed. Where the break date is unknown, the now standard approach used in
time-series econometrics of estimating across all possible break dates and optimising over the
resulting sequence was proposed. However, rather than attempting to model the breaks, one
might also attack the problem by transforming the datain such away asto annihilate possible
level shifts. This can be achieved simply by running our stability tests on pre-filtered data.

Consider the differencing filter, V5, which reduces, by one, the order of integration at
all of the spectral frequencies identified by . As an example, if s = 4 with 73, = 1 and
Zot = (cosmt/2, sinwt/2, (—1)'), asin Table 1 above, then V, = (1 + L)(1 + L?) =
(1+ L+ L* + L?). Wewill denote by f the order of thisfilter; in the above example, f = 3.
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Noticethat Vo, = A;/V1, where V; reduces, by one, the order of integration at each frequency
identified by ¥, and A, = (1 — L*).

Now consider pre-filtering the process {y; } generated by (3)-(4)-(11) by V5, so that
(18) Vaye = VaZiyie + VaZy o + 1y

t=1+f,...,T, where vy’ = Vyu,. The application of V, to 75, translates the level
shift in the series {y,} into a most f outliers in the series {Vy,}. For example, suppose
Zor = 1, sothat Z,vy, = 799 + 0di(), Where v,, and ¢ are scalar constants. In such a case
Vo Zhvor = (1 — L) (7799 + 0de()), fromwhich it is clear that V,7),v,, = 0 for al values of
t,exceptatt = [Ta] + 1 where Vy7Z},v,, = —0. Although the term Z},~y,, of (4) has been
transformed to V,7/,7v,, in (18), those regressors in 7y, identified with a particular spectral
frequency span an identical space to the corresponding regressorsin V7. Consequently, we
may treat Vo 7],v,, exactly asif it were Z1,~,, in constructing tests against unit root behaviour
at any of the spectral frequenciesidentified by 7;,.

Unfortunately, we cannot apply the statistic w of (6) to the pre-filtered data and
maintain the usual CvM (s;) limiting distribution under 7, : 0% = 0. Thisis because, for
w to have a CuM(sy) limiting distribution, the error process in the null regression must
be serially uncorrelated under Hy. It is clear from (18) that {u,”} is a moving average
process of order f, MA(f). Notice that {«} is strictly non-invertible at each of the
spectral frequencies identified by <, but not at those identified by <; that is, QY =
limr_ooT'E ((Zf:f Zyewy (e Znuy )’) is positive definite. Consequently, we may
consider the non-parametrically modified statistic

T t t
67 1y ( z) (z z;-ey)] |
t=f \i=f i=f

whereey, t = f,..., T are the OLS residuals from the regression of V5, on 7, and ﬁlv IS

(29 £V =T *Trace

as defined in (8), replacing e, by e in the expression for I'; (). Similarly, £ of (10) may be
modified in an obvious way to produce the corresponding statistic .

As discussed above, the application of V, to 7y, transforms the level shift into at
most f outliers. Asymptotically, these are singletons. Consequently, they have no effect on
the limiting distribution of £V of (19). It is then straightforward to show that asymptotically,
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under Ho, £¥ and ' behave exactly as £ and £ of Section 2, under the mixing and linear

process assumptions, respectively, placed on {«,}, and hence {u;"}.

In Section 5 we give Monte Carlo evidence into the finite sample properties of the
modified statistics developed in this Section. Our results suggest that, for the sample sizes
typicaly seen in practica applications of these statistics, the proposed corrections perform
well in practice. In cases where there are no unattended unit roots, the bias-corrected statistic
w** seems, overal, to present the best option in cases where the true break date is unknown,
although the non-parametrically modified tests based on the pre-filtered data perform amost
aswell and have the added advantage that they are also robust to serialy correlated errors and
unattended unit roots, the latter issue discussed further in the next section.

4. Unattended Unit Roots

In this section we consider the case where the process {v.} is generated by (3)-(4) but
where ~y,, now follows the vector random walk process,

(20) Yot = 72,2&71 + Kt, l= 17 "'7T7

Yq0 fixed, with s, ~ NIID(0, 02Dj}), independent of «, and n,, and where D} = 02 Ds, D,
anon-null diagonal positive semi-definite matrix of dimension (s, X s3).

As with the case of the unattended structural break model of Section 3, it is clear that,
unless o2 = 0, (20) violates the maintained hypothesis, H,;. Specificaly, the DGP (3)-(4)-
(20) can display unit root behaviour at any of the spectral frequencies, regardless of whether
the associated spectral indicator variable belongs to &; or 8. Thisis an important empirical
Issue since in practice one cannot know which of the spectral frequencies admit a unit root.
In Busetti and Taylor (2002) and Taylor (2003b) it is demonstrated that if v, is generated by
(3)-(4)-(20) with o2 > 0 then under H, : 0% = 0,w of (6) isO, (T ') while £ of (7) and £ of
(10) are O, ((T'S)*). Consequently, each of these statistics convergesin probability to zero
under Hy when there are unattended unit roots. In the following proposition we show that the
sameresult istrue for the bias-corrected statistics of Section 3.1.

Proposition 3 Let y; be generated by (3)-(4)-(20) with 0. > 0. Then, under Hy : 03, = 0, w*,

w** and wq are all of O, (T 1Y), while L*, L**, Lo L', L and Lo are of O,((TSr) ™).
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Remark 5: Although the bias-corrected statistics of Section 3.1 were shown to be robust
with respect to unattended structural breaks, the results of Proposition 3 show that in the
presence of unattended unit roots at any spectral frequency associated with 7,,; that is, where
a2 > 0, they will converge in probability to zero, under /7, : 0 = 0. This occurs because the
variance estimators used in constructing these statistics, as do those used in the test statistics
of section 2, diverge, albeit at differing rates when o2 > 0. Indeed, as is demonstrated in the
Appendix, exactly the same result holdsif ,, contains a mixture of random walk elementsand
determinstically breaking elements, provided at least one of its elements evolves as a random
walk.

However, the pre-filtered statistic £V of (19) (al of what follows also applies to ZV)
discussed in Section 3.2 to combat the problem of unattended level shiftsisalso simultaneously
a curative against unattended unit roots; indeed it has been originally suggested in Taylor
(2003b) for this purpose. Recall that the pre-filter V, is such that it reduces, by one, the
order of integration at al of the spectral frequencies identified by . It is therefore clear
that the filtered series {Vsy:} will not admit unit root behaviour at any of the frequencies
identified with &, When {v,} is generated according to (3)-(4)-(20) the error processin (18)
ISV Zb,v9,+ Vaue, which we denote by " *, which is clearly an M A( f) process. The process
{u*} is strictly non-invertible at all of the spectral frequencies identified by S, if 02 = 0,
while, if 02 > 0, {u”*} will bestrictly non-invertible at those frequencies associated with zero
diagonal elementsin Ds; cf. Harvey (1989,pp.54-70) for rigorous discussion on this point. As
in Section 3.2, the serial correlation in the error process precludes the use of w of (6). However,
we may directly apply the pre-filtered statistic £V of (19) since the matrix Q}*, the long run
variance of Z,,u, *, is positive definite.

The results from Sections 3.2 and above demonstrate that the pre-filtered statistic £V of
(19) retains the usual C'vM (1) limiting distribution of (9) under Hy, even if some subset of
the parameters on the spectral frequency regressors in o display either level shifts or evolve
as random walks. This in contrast to the bias-corrected statistics w*, w**, wq, L*, L**, Ly
L', £ and L, of Section 3.1, which al converge in probability to zero in the presence of
unattended unit roots. The pre-filtered statistics therefore appear particularly appealing from a
practical point of view.
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5. Numerical Results

In this section we use Monte Carlo simulations methods to investigate the finite sample
properties of the foregoing tests against unit roots in ¥y in cases where the parameters
associated with those spectral regressors not included in ¥, display deterministic structural
breaks. All experiments were programmed using the random number generator of the matrix
programming language Ox 2.20 of Doornik (1998), over 50, 000 Monte Carlo replications. All
tests were run at the nominal 5% asymptotic level, although other choices of the nominal level
did not alter the results qualitatively.

Specifically, we now investigate the finite sample properties of the tests based on the
non-bias-corrected statistic w, the bias-corrected statistics w*, w** and wq, and the statistic
based on pre-filtered data, £V, againgt data generated by (3)-(4)-(11). In the context of this
DGP we considered a range of possible breakpoint magnitudes ¢, breakpoint locations « and
signal-to-noise ratios o ,,. We considered samples of size 7’ = 100 and /" = 200 observations.

In the context of quarterly time series data, we have focused attention on two cases
which we consider to be of most relevance for applied workers, each of which subsequently
arises in the empirical examples of Section 6: (i) testing against a unit root at frequency zero
when thereisabreak equal to § = (6*,6",0")' o at the seasonal frequencies; (ii) testing jointly
against unit root behaviour at the seasonal frequencies when there is a break equal to 6% in
the underlying level of the process. Other scenarios are clearly possible, for example the case
where breaks may occur at all frequencies. Wewill discuss such possibilities further in Section
6.1. Simulation results for the bias-corrected tests are summarised in Tables 5.1aand 5.1b for
case (i), and Tables 5.2a and 5.2b for case (ii). Corresponding results for the tests based on
pre-filtered data are reported in Table 5.3a for case (i) and Table 5.3b for case (ii). For the
non-parametric test on pre-filtered data, £V, we have followed the recommendation given on
page 12 of CH and used a Newey and West (1987) HAC estimator employing a Bartlett kernel
with lag truncation S+ = 3,4, 5,6 for the case of the zero frequency test and S = 0,1,2,3
for the test against stochastic seasonality. Results for the tests based on pre-filtered data are
reported only for 7" = 100. Resultsfor T" = 200 are omitted as they parallel the progression
fromT = 100 to 7" = 200 seen in the bias-corrected tests, that is, power under the alternative
Isimproved and rejection frequencies under the null are much closer to nominal levels. These
results are available from the authors on request.
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Consider first Table 5.1a, which reports results for case (i) above with 7" = 100. The
columns labelled o, = 0 contain the empirical rejection frequencies (empirical size) of the
tests, using the asymptotic 5% critical values, under the null hypothesis of a constant level;
Hy : 0% = 0. Inthe first row where 0" = 0, the maintained hypothesis 77,, holds and
there is no break in the seasonal, while for the remaining rows H;, isviolated by a variety of
seasonal level shifts. In the absence of a break, 6* = 0, the results in Table 5.1a demonstrate
that the finite sample regjection frequency of w under H, is slightly above that predicted by
the asymptotic theory. As shown in Proposition 1, the presence of a level shift biases the
asymptotic null distribution of w below the nomina level. In finite samples the bias in w
appears to be dightly smaller than that predicted by Proposition 1, although this is somewhat
artifactual given the dight over-sizing seen for * = 0. As an example, for 6* = 1 and
a = 1/2 the empirical rejection frequency under H, for a sample of 100 observationsis seen
from Table 5.1a to be 1.62%, while the asymptotic size in this case is approximately 1.3%,
the latter obtained from the tables of the Cv M (1) distribution, and reported in Table 3.1. The
bias-corrected statisticsw*, w** and wq al seem to work quite well in practice. Where the true
breakpoint is known, wy generally outperforms the other bias-corrected tests and is unaffected
by the value of 6*, as should be expected giventhat it isaLMPI test in this scenario. Where the
true breakpoint is unknown, w** seemsto be preferable to w*, at least in terms of their relative
propertiesunder Hy. Interestingly, in al but the case of a massive shift in the seasonal pattern
(e.g. 8 times the standard deviation of the error, unlikely to remain unnoticed in the data),
knowledge of the existence and the timing of the break does not seem to provide any great
advantage in terms of the properties of the tests under H,. Indeed, where 6* = 0.8 both w*
and w** are seen to be rather over-sized. This appears to be a small sample effect, attributable
to the estimation of 6* in (15), since these distortions are vastly diminished for 7" = 200; cf.
Table 5.1b.

All three bias-corrected tests appear to display quite reasonable power® properties under
H - 037 > 0. In cases where the 8, o« combination does not yield an over-sized bias-corrected
test, power is largely comparable, for a given value of o, with that of the LMPI statistic w
when 6" = 0. Where the bias-corrected tests were over-sized, one sees correspondingly higher
power and that should of course be borne in mind when assessing the results in the Tables.

5 Strictly speaking, what is reported is not finite sample power because the tests are constructed using the
asymptatic, rather than exact, 5% critical values.
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Notice, however, that, as predicted by Remark 4, this effect is wiped out as o, increases, and
has all but vanished for o, = 0.5. The three bias-corrected tests display very smilar power
properties under Hy, again remaining close to that observed for these tests in the absence of a
seasonal shift. In contrast, the power of the biased test w depends very heavily on the values
of 0" and o, even for large values of o,,. For example, where o,, = 0.1 and no break occurs,
w has power of 59.44%, but this falls below 0.00 % for * = 0.8, « = 0.5. Notice that, as
predicted by Proposition 1, theloss of power inw becomes more pronounced as the breakpoint
approaches the middle of the sample; that is, as « approaches0.5.

The results for case (i) and T = 200 are displayed in Table 5.1b. The power of all
of the bias-corrected tests is improved, relative to 7" = 100, as would be expected from the
asymptotic theory in Section 3. Moreover, the properties of the bias-corrected tests under
the null are much closer to the nominal level than for 7" = 100. In turn the effect of ¢, «
on the power of the bias-corrected tests is further diminished, with little or no impact seen
for o, > 0.05. When 6" < 4 it appears that all of the bias-corrected tests display power
comparable with that appropriate for the LMPI test in the absence of shifts. The finite sample
size of the biased test w also gives a closer match with the asymptotic size obtained from the
quantiles of the CvM (1) distribution, reported in Table 3.1. The effects of 8, « on the power
of w are aso diminished relative to 7" = 100, but remain considerable.

Tables 5.2a and 5.2b contain the results for the case of testing against unit roots at
the seasonal frequencies when there is a break in the underlying level of the process. The
properties of the tests are broadly in line with those seen for case (i) in Tables 5.1a and 5.1h.
For 7" = 100, however, the bias-corrected tests display less reliable size properties for 6* > 4.
Interestingly, w* outperformsw** for o = 1/8 and a = 1/2, with this pattern being reversed
when o = 1/4. Aswith case (i), these finite-sample effects are much diminished when 7" is
increased to 200. Notice that, for agiven value of o ,,, the empirical powers observed in Tables
5.2a-5.2b are generally higher than the corresponding entriesin Tables5.1a-5.1b. Thisisdueto
the fact that under the alternative hypothesis there are two non-stationary cycles at the seasonal
frequencies, as opposed to the previous case where only one non-stationary component was
present under the aternative.

Consider now the properties of the pre-filtered test £V for case (i), or pre-filtered KPSS
test, reported in Table 5.3afor 7" = 100. The Monte Carlo results here are directly comparable
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with those in Table 5.1a, as the same set of random numbers (and, hence, the same artificially
generated observations) were used. It clearly emerges that the outcome of the pre-filtered test
is largely unaffected by the existence, location or magnitude of a structural break. The size of
the pre-filtered test clearly depends on the lag truncation parameter, Sr. For smaller values
of S the test israther over-sized; thisis expected given that the error term is now an M A(3)
process, see Section 3.2. However, for Sy > 4 the pre-filtered test displays size properties
which are largely comparable with those of the bias-corrected testsw* and w**, yet avoids the
rather bad over-sizing problem noted above for those tests when 6* = 8. For Sy = 6, the
Size properties of the pre-filtered test are largely comparable with those of the test based on
knowledge of the true breakpoint, wq, regardiess of 6*. Other things being equal, test power
declines as St isincreased, again as would be expected. In practice al of the tests will need
to correct for serially correlated innovations and so this observation will not be confined to the
pre-filtered tests. However, as with wg, the power of the pre-filtered test for a given value of
St islittle affected by the values of 6* and «.

The results for case (ii), the CH test applied to data pre-filtered by V, = (1 — L), are
reported in Table 5.3b for 7" = 100. In this case, pre-filtering the data appears to have very
little effect on the properties of the test. The size of the pre-filtered test in this case is very
close to the nominal level, even for Sy = 1, with power only slightly below that of the LMPI
test wo. For example, when o, = 0.1, 0" = 2, « = 1/2 and S = 1, the power of LV is
77.23% against 80.41% for wy. Increasing St tends, other things being equal, to reduce the
empirical rejection frequency of the pre-filtered test as would be expected.

Although not reported here we also investigated the effects of unattended unit roots on
the finite sample properties of the bias-corrected tests, w*, w** and wq of Section 3.1. Under
Hy : 037 = 0 al of the tests were severely under-sized with an associated dramatic loss of
power under H; : 037 > 0, relative to the results reported in Tables 5.1a-5.2b. Similar patterns
were observed for the £*, £**, Lo £, L and L, tests, whose behaviour closely paralleled
those reported for the £ test under unattended unit roots in Taylor (2003b). In contrast, the
pre-filtered tests, £V and ZV, behaved very similarly to the results reported in Tables 5.3aand

5.3b.

To summarize, the reported simulation evidence has shown that in the case of unattended
structural breaks, by using the bias-corrected tests w*, w** even in finite samples one can
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achieve amost the same size and power properties as the LMPI test wq, based on the
knowledge of the breakpoint, provided the magnitude of the break is not too large (6* > 4),
and providing there are no unattended unit roots. Similar findings apply to the test £V, based
on pre-filtered data, which has the added advantage of simultaneously proving an effective
remedy for the problem of unattended unit roots. Pre-filtering was found to be particularly
effective when testing against non-stationarity at the seasonal frequencies, where the pre-filter
Is the simple first difference operator. We therefore recommend the use of pre-filtering as a
means of obtaining robust tests in the presence of unattended breaks and/or unattended unit
roots.

6. Generalisations

6.1 Attended and Unattended Structural Breaks

As explained in Busetti and Harvey (2001, 2003a), the KPSS and CH stationarity tests
of Section 2 are likely to be severely oversized if there are (attended) structural breaks in the
parameters associated with . Indeed, it isknown from the work of Nyblom (1989) that these
statistics will diverge in such cases. Where the breakpoint is known and all attended breaks
occur at the same point in the sample, Busetti and Harvey (2001, 2003a) demonstrate that
constructing the KPSS and CH statistics as in Section 2 but replacing e, t = 1,...,T", by the
OL S residuals from the regression of y, on 7, and d.(«) 71, where d,(«) is as defined below
(11), renders these statistics exact invariant to the attended breaks, with a further modification
employed to remove the dependence of the limiting null distribution of the statistics on the
break location. However, these modifications change the limiting null distribution of the
statistics from C'vM (s1) to CvM (2s4); see Busetti and Harvey (2001, 200338) for full details.
In what follows, wewill refer generically to the tests based on the modified statistics of Busetti
and Harvey (2001, 2003a) as BH tests. When the breakpoint is not known Busetti and Harvey
(2003b) suggest estimating the break by minimizing, over all possible break-dates, the error
variance from the regression of y, on 7Z; and d,(«) Z1,, and then use the resulting estimate,
& say, in constructing the BH statistic. Notice that this parallels our construction of bias-
corrected testsin Section 3.1.

It is straightforward to show that the BH tests outlined above will suffer from the
problems of unattended breaks and unattended unit roots in exactly the same way as did
the tests of Section 2; that is, under Hy : 0% = 0 they will be under-sized in the presence
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of unattended breaks and will converge in probability to zero under unattended unit roots.
However, running the BH tests on appropriately pre-filtered data, in exactly the same way as
was proposed in Sections 3.2 and 4 in the context of the tests of Section 2, will simultaneoudly
treat the problems of both attended and unattended breaks (including the possibility of breaks
at al frequencies) and will also be robust against unattended unit roots. If there are no
unattended unit roots and both the attended and unattended breaks occur at the same point
in the sample, an aternative strategy is to compute the BH statistic using the residuals from
the regression of ¥, on 7, and d;(«) Z;, where o may be known or estimated. The Cv M (2s1)
limiting null distribution remains appropriate under each of these approaches. However, the
BH tests based on pre-filtering have afurther advantage in that they will also be robust to cases
where the attended and unattended breaks are located in different points in the sample.

6.2 Trending Variables

Theinclusion of afull set of spectral time trends ;¢ at the frequencies A € <, hasthe
effect of changing the asymptotic null distributions of the statistics presented in the previous
sections from standard Cramér-von Mises distributions into second level Cramér-von Mises
distributions with s; degrees of freedom; again see Harvey (2001) for representations of these
distributions. Appropriate critical values are tabulated in Taylor (2003a) and Nyblom and
Harvey (2000). In particular, an unattended structural break will imply the same asymptotic
bias factor m(«, 6, 0*) asin Proposition 1 but applied to this new distribution; again the bias
will disappear if the bias-corrected statistics of Section 3.1 or the pre-filtered statistic of Section
3.2 are adopted.

Busetti and Harvey (2003a) and Taylor (2003a) have shown that amodelled time trend at
frequency zero does not affect the asymptotic null distribution of the CH statistic for stochastic
seasonality. By extending their argument to our framework, it follows that modelled time
trends at the frequencies A € &, will have no effect under the maintained hypothesis H ;.
However, the presence of a neglected level shift in this case will change the bias term derived
in Proposition 1, but again the same asymptotic critical values will apply for the appropriate
bias-corrected and pre-filtered tests. Note that not only will the pre-filtered test statistics of
Section 3.2 be asymptotically unaffected by the presence of spectra time trends and level
shifts at the frequencies A € 3, but as pre-filtering reduces spectral time trends to spectral
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indicators, the spectral trends need not be included in the regression model for the pre-filtered
data. Finally, a neglected dope change at the frequencies A € <, can be dealt with either by
computing bias-corrected statistics in the same spirit of Section 3.1 or by double pre-filtering,
I.e. by applying the operator V, of Section 3.2 twice.

7. Empirical Examples

As a first example we consider testing at frequency zero for a well-known series
characterized by a structural break in the seasonal patterns. Figure 7.1 shows the quarterly,
seasonally unadjusted, series of marriages registered in the UK from 195801 to 1982g4; the
source of the data is the U.K. Monthly Digest of Statistics. As emphasised in Busetti and
Harvey (2003a), there is a structural break in the seasonal pattern in this series, occurring in
the first quarter of 1969. Thisis seen very clearly in Figure 7.1 and was due to a change in
U.K. taxation laws, which effected a switch from winter marriages to marriages in the spring

quarter.

Busetti and Harvey (2003a) considered testing against stochastic seasonality for this
series, taking the known seasona break into account. They found some evidence for non-
stationary stochastic seasonality. In the context of this paper we are interested in testing against
stochastic non-stationarity at frequency zero, given that there may be a seasona structural
break and/or non-stationary seasonal cycles present in the data. Regressing the first difference
of the series on the complete set of spectral indicators and the break dummies at the seasonal
frequencies yielded a regression standard error ¢ = 8.12, a long run variance estimate,
computed using the first 8 residual autocovariances, o.z(8) = 7.96 and a break magnitude
0 = (—39.25,—10.34,21.69)’, with associated ¢-ratios (—16.96, —4.41, 13.16)". Thestructural
break then appears sufficiently big to affect the behaviour of the test at frequency zero if
computed without either bias-correcting or pre-filtering thedataby Vo = (1 + L + L? + L?).
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Table 7.1: Tests at frequency zero for UK marriages

Sr=0 Spr=1 Spr=2 S7=3 Sy=4 SP=5 Sp=8 | 10% 5% 1%
L 0534 0523 0577 0569 0428 0364 0279 | 0347 0463 0739
Lo 1608 1037 0758 0598 048 0413 0294 | 0347 0463 0.739
L* 1535 0989 0731 0577 0472 0399 0285 | 0347 0463 0.739
L** 1600 1031 0762 0601 0492 0416 0297 | 0347 0463 0.739
cY 2349 1212 0823 0628 0511 0434 0280 | 0347 0463 0739

Setting &4 = {0}, Table 7.1 reports the values taken by the KPSS-type statistic £ and
the modifications thereof proposed in Section 3: £y, £*, £** and £V. These statistics were
constructed using the OLS residuals from the regression of the data on ;. As in Section
5.2, we have used a Newey and West (1987) HAC estimator with a Bartlett kernel with lag
truncation parameter Sp. The 10%, 5%, 1% asymptotic critical values appropriate for each
reported test are provided in the last three columns of Table 7.1.

Given the empirical results in Busetti and Harvey (2003a) and the ssimulation results
of Section 5 one would anticipate that the KPSS-type statistic £ will provide less significant
outcomes than bias-corrected and pre-filtered versions of £. From the first row of Table 7.1
we observe that the null hypothesis of stationarity around fixed seasonal effectsis not rejected
using the £ statistic at the 1% significance level for any value of S and not rejected at the 5%
level for S > 4. On the other hand, the non-parametric bias-corrected statistic £, which uses
knowledge of the breakpoint in the seasonal, rejects the null at the 5 % level for all Sy < 4
and at the 1 % level for St < 2. The same inferences are drawn using the £** statistic which
does not assume knowledge or existence of the breakpoint. The £* statistic behaves smilarly
but rejectsthe null only at the 5 % level for S = 2. The pre-filtered statistic £V also provides
stronger evidence than £ against the null hypothesis; here a value of S > 3 needs to be
chosen as pre-filtering, in this case, would turn an otherwise white noise error into an MA(3)
process. Overall, the bias-corrected and pre-filtered statistics yield more significant outcomes
than the KPSS-type statistic, £.

As a second example, which entails testing at the seasonal frequencies, consider Figure
7.2 which graphs the logarithm of real quarterly seasonally unadjusted U.K. consumers
expenditure on tobacco goods for the period 197591 199641, the data obtained from the U.K.
O.N.S. macroeconomic database. Fitting the Basic Structural Model (BSM) of Harvey (1989,
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p.47) to these data yielded the following values of the hyperparameters® (standard deviations
of the level, slope, seasonal and irregular components respectively): 1.48, 0.02, 0.36, 0, each
multiplied by 10~2. Notice, in particular that the hyperparameter associated with the level is
approximately four times as large as that associated with the seasonal component. The Box-
Ljung statistic with 9 lags and 6 degrees of freedom, Q(9, 6), was 7.39, with p-value 0.29. The
extracted seasonal component is depicted in Figure 7.3. It is quite clear from both Figures 7.3
and 7.2 that the seasonal pattern in the data is not fixed through time. In particular, thereisa
clear structura break in the seasonal pattern around 1980-1981.

Table 7.2 reports the values taken by the pre-filtered CH-type seasonal stability statistics,
£¥ and £, together with the corresponding BH-type statistics, denoted by BH and BH,
discussed in Section 6.1. The former allow for unattended unit roots and unattended breaks,
while the latter also control for the possibility of attended breaks. It is clear from Figures
7.2 and 7.3 that attended breaks will be an important issue in this application. By setting
Iy = {1, 2}, we have considered joint tests against non-stationary stochastic seasonality at
either the harmonic seasonal frequency, A; = /2, or the Nyquist frequency, A\, = T, or both.
We also report the corresponding individual frequency tests against unit roots at the harmonic
and Nyquist frequencies which obtain on setting 34 = {1} and & = {2}, repectively.

6 Imposing the restriction of afixed slope did not alter the estimates of the remaining hyperparameters.
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Table 7.2: Tests at the seasonal frequencies for tobacco expenditure

1 Spr=0 Sr=1 St =2 S =3 St =5 ST =8 10% 5% 1%
{1,2} vV 1941 1.551 1411 1377 0.973 0.783 0846 1010 1.350
Zv 3.672 3.194 3.001 2.940 2.020 1.553 0846 1010 1.350
BHY 2,015 2.038 2.031 2.001 1.857 1.870 1490 1680 2120
Wv 2011 1.972 1.946 1.928 1.887 1.904 1490 1680 2120
{1} vV 3.270 2.145 1.547 1.295 0.949 0.722 0.610 0.749 1.070
Zv 3324 3.324 2.343 2.041 1.485 1.093 0.610 0749 1.070
BHY 0.898 0.904 0.841 0.795 0.747 0.779 1070 1240 1.600
Wv 0.951 0.951 0.887 0.858 0.814 0.845 1.070 1240 1.600
{2} vV 3.279 1841 1.263 0.981 0.697 0.509 0.347 0463 0.739
BHY 1.198 1211 1.008 0.919 0.799 0.717 0.610 0.749 1.070

The above statistics were constructed using the OL S residuals from the regression of the
appropriately pre-filtered dataon Z;.” In the case of the joint seasonal statistic the appropriate
prefilter is Vo = (1 — L), since S, = {0}. For & = {1}, Vo = (1 — L?) while
Vo = (1 — L)(1 + L?) for &; = {2}. Graphs of the three pre-filtered series are provided
in Figures 7.4-7.6. Again we have used a Newey and West (1987) HAC estimator with a
Bartlett kernel and lag truncation parameter S. The 10%, 5%, 1% asymptotic critical values
appropriate for each reported test are provided in the last three columns of Table 7.2. Dueto
the sizeable random walk component estimated in the BSM, we will only consider pre-filtered
tests against seasonal unit roots in this application. The bias-corrected tests of Section 3.1 are
clearly inappropriate.

The pre-filtered CH-type statistics reported in Table 7.2, which do not allow for attended
breaks at the seasonal frequencies, all provide a consistent body of evidence against the null:
there isonly one case reported where the null cannot be rejected at the 10 % level, and in most
cases the null can be rejected at the 1 % level. In the case of the joint seasonal tests and the
tests against unit root behaviour at the harmonic seasonal frequency, the evidence from the
L’ datigtics are stronger that from the £V statistic. Overall, application of the pre-filtered
CH tests strongly indicates the presence of non-stationary behaviour at both the harmonic and

Nyquist seasonal frequencies.

7 The reported statistics were constructed from a regression without a linear time trend since, as was noted
in Section 6.2, the filter V, will remove a linear time trend from the data. Although not reported here, we aso
computed the pre-filtered tests with an unnecessary time trend fitted. This yielded much less evidence against the
null, reflecting the usual argument on the reduction of the power of tests in the presence of additional nuisance
parameters.



The BH-type statistics, BH and BH, reported in Table 7.2 allow usto investigate whether
the evidence found against seasonal stability provided by the £V and L’ satisticsin the series
of (log) tobacco expenditure is attributable to seasonal unit root behaviour or purely to the
deterministic break in the seasonal pattern. In computing these series we took the breakpoint
as unknown. In each case the breakpoint was estimated as discussed in Section 6.1, and was
identified at 198004 for the joint test and at 19811 and 198093 for the tests at frequencies
/2 and 7, respectively.

The joint BH-type test against unit roots at frequencies = and 7 /2 again provides
consistent evidence against the null of stochastic seasonal stationarity, allowing for seasonal
level shifts: both variants of thetest reject at the 5 % level for all values of Sy reported. Neither
variant of the BH-type test against unit roots at the harmonic seasonal frequency /2 is able
to reject the null, even at the 10% level, regardless of the value of Sr. In contrast, the BH-
type test against unit roots at frequency 7 points strongly towards seasonal unit root behaviour
at frequency 7, even on alowing for seasonal level shifts. Consequently, the tests which
explicitly alow for unattended unit roots and both attended and unattended breaks provide a
strong indication of unit root behaviour at the Nyquist frequency but no indication of unit root
behaviour at the harmonic seasonal frequency. In contrast, the standard tests would have led
the practitioner to conclude that unit roots were present at all of the seasonal frequencies.

8. Conclusions

In this paper we have investigated the effects of structural breaks on tests against
stochastic trend and seasonality. In contrast to the existing literature we have considered the
effectsof structural breaks at frequencies other than those being subject to stability testing. We
have shown that such breaks alter both the large sample and finite sample distributions of the
stationarity statistics, effecting a severe under-sizing problem in the tests with an associated,
often very dramatic, loss of power under the alternative. This effect coincideswith what isseen
when there are unattended unit roots, but isin contrast to the case where there is a structural
break at the frequencies under test, where an over-sizing problem occurs.

We have suggested two methods of modifying the stationarity tests to remove these
problems. The first, appropriate, for the case of structural breaks, involves bias-correcting
the original stability test. The second, effective against both structural breaks and unattended
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unit roots, is achieved by running the stability tests on pre-filtered data. Both are shown to
recover the usual limiting null distribution, appropriate to the case where there are no breaks
or unattended unit roots. We have reported simulation evidence suggestive that the corrected
statistics perform well in practice, adequately correcting test size under the null, without
sacrificing test power under the alternative. Applications of the original and modified tests to
data on U.K. marriages and U.K. consumers' expenditure on tobacco were considered. These
demonstrated the practical relevance of the problems discussed in this paper and the usefulness
of the remedial suggestions which we have made.



Appendix: proofs

Proof of Proposition 1: Let 7, 7, be the OLS estimators of the regression coefficients for
Zt, Z9 from (5). Using standard argumentsit is not difficult to show that, under H, : 037 =0,

17— Y0 0 a?Sit 0
T2<%—%o—a9>$N<<0><0 8,0 )

where S; = lim TS5 ZyZl,, i =1,2. Notethat Sy, S, are diagonal matrices with either
1or % on the main diagonal; precisely, they contain 1, ! for the element(s) corresponding to
the k-th spectral regressor.

Then we can show that the partial sum process § t ) Zy;e; converges weakly to a
J:
Brownian bridge, on scaling. Write the OLS residuals as

(21) er = uy + Zy0di(a) — Z1, (V1 — Y10) — Zae (Vo — Va0) -
Since ¥, — 74 — af and from the orthogonality relations between each pair of spectral

indicators we have from (21) that

[Tr] [Tr] [Tr]

_1 _1 _1
oS TR Zyer = 0 'S PTTEY Zyu — o 'S T 2028, TF (3 — o) + 0p(1)
t=1 t=1 t=1
(22) = WS1 (T) - TW51(1) = BS1(T)7

using the Functional Central Limit Theorem of Chan and Wei (1988). It then follows directly
from (22) and an application of the Continuous Mapping Theorem (CMT) that

T t t 1

(23) o 22 Z hs, ZTTCLC@ (Z 2k €5 Zz;ﬂ’jej> :>/ By, (1) B, (r)dr,
k€S, t=1 j=1 j=1 0

i.e. the numerator of the statistic w is asymptotically unaffected by the level shift.

The factor m(a,0,0?) in the asymptotic null distribution of w is due to a bias in
estimating o2. After taking the square of (21), it is easy to show that

5> L o 4+ bla,0),
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where
T

b(a,0) =lim T (dy() — ) (25,0)”.

T—o00
=1

The stated result then follows directly, using an application of the CMT.

Proof of Proposition 2: Let o € (0, 1) bethetrue breakpoint location parameter in the model
(3)-(11). Aswe want to compute regressions for the whole range of breakpoints, it is useful to
express the null model in terms of a breakpoint parameter «« not necessarily equal to the true

value:
(24) Yo = ZyVio+ ZoyYao + dt(a)Zéﬁ + uy,
(25) ui = (u+ (di(ao) — di(e)) Z5,0) .

Let e(a) be the OLS residuals from regression (24) and denote by &°(a) =
T-13°T  ei(a)? their sample variance. Note that (24) can be viewed as a regression with

o~

omitted variables. Then, it is a standard result that 5°(a) > &”(ap), and thus, under Hy :

0% =0, 5’ (a*) Eigf 5’ (a) L o2

Then we have that under 7, : 0 = 0 and for every o € (0, 1)

) (Tr]
(26) o 1S T2 Y Ayer(a) = By, (r);
t=1
this follows from extending the result of Busetti and Harvey (2003a) on the null distribution
of w in the presence of modelled breaksin the trend (i.e. at frequency zero) together with the
argument of Proposition 1 on the presence of neglected level shifts, which in this case would
correspond to the term (d;(cw) — di()) Z5,0.

It therefore follows directly from (26) and an application of the CMT that

T t t 1
o 22 Z hs, ZTTCLCG (Z 2r5€5() Z z;’jej(a)> :>/ Bg, () Bs, (r)dr = CvM(sy),
1 =1 =1 0

ke =
(27)
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independently of a.. Using the previous resultsfor 5*(*) and by applying the CMT, we obtain
that the right member of (27) is the asymptotic null distribution for both w* of (16) and w** of
7).

If no breakpoint actually occurs, under Hy, 52(a*) is still asymptotically unbiased and
thus, by the result of Busetti and Harvey (2003a), the limiting null distributions of w* and w**
are CvM(s;) asbefore.

Proof of Proposition 3: Under the conditions of Proposition 3, (24)-(25) is appropriate on
substituting u; in (24) by (u: + Z5, (V9 — Va0) + (de(ao) — di(v)) Z4,0). Again denote the
OL Sresiduals from (24) by e, (), which therefore satisfy

el(a) = up — Zit (Y1 — 710) — Zét (Y2 — Y20) Zét ( )
Zy

(28) = U+ dt(a0>Zét9 - dt<a>Zét9 - Zit @ ’710) (’Y ’72t>

where 7,, 4, and 6 denote the OL S estimators of the regression coefficients for Zy,, Z», and
di(or) Zo: respectively from (24). Routine algebra establishes the result that

(1]

(29) 018, T QZZRet ) = By, (1) + O,(1),

since, independently of o, T2 S 7, 70 (7 — ~y,) and T2 S 74, (dy () 25,6) are
both O,,(1) while 7-/2 211 7, (d, () Z4,8) = 0,(1). Notice that it was not necessary to
impose the condition that & = 0 in deriving (29); cf. Remark 5. Consequently,

(30)27 2 Z s, ZTTCLC@ (Z zr 565 (c )Zz;’jej(oz)> :>/0 Bs, (1) B, (r)dr + O,(1),

ke

i.e. the numerator of (6) remains O,(7?), but when appropriately scaled differs from the
CvM (sy) distribution by the presence of an additional O,(1) random variable. Using the
same development as in KPSS (p.168), it is straightforward to demonstrate that the long-run
variance estimators ﬁl(a) and g(\x; «) both diverge at rate O,(T'Sy) for al «, and hence for
o = a*, when o2 > 0, regardless of §. The OLS variance estimator 5*(«/) is a special case
of the long-run estimator g(0; ) for Sy = 0 and, hence, is O,(T") for al «. Consequently,
w* of (16) and w** of (17) are both O,(T1) while £*, £**, £ and £~ are al O,((T'Sy) ),
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their respective orders in probability differing through the respective divergence rates of the
variance estimators used in their construction.
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Figure 7.1: Number of Marriages (x1000) registered in UK, 1958Q1-1982Q4. Source: UK Monthly
Digest of Statistics.
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Figure 7.2: Logarithm of UK consumers’ expenditure on tobacco products, 1975Q1-1996Q1. Source:
UK ONS macroeconomic data-base.
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Figure 7.3: Extracted seasonal component from a Basic Structural Model (BSM) of the series of the
logarithm of UK expenditure on tobacco products.
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Figure 7.4: Logarithm of UK consumers’ expenditure on tobacco products prefiltered at frequency
zero (i.e. first differences).
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Figure 7.5: Logarithm of UK consumers’ expenditure on tobacco products prefiltered at the
frequencies zero and 7.
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Figure 7.6: Logarithm of UK consumers’ expenditure on tobacco products prefiltered at the
frequencies zero and 77/2.
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