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This paper considers the problem of testing against stochastic trend and seasonality in the
presence of structural breaks and unit roots at frequencies other than those directly under test,
which we term unattended breaks and unattended unit roots respectively. We show that under
unattended breaks the true size of the Kwiatkowski HW DO� (1992) [KPSS] test at frequency zero
and the Canova and Hansen (1995) [CH] test at the seasonal frequencies fall well below the
nominal level under the null with an associated, often very dramatic, loss of power under the
alternative. We demonstrate that a simple modi¿cation of the statistics can recover the usual
limiting distribution appropriate to the case where there are no breaks, provided unit roots
do not exist at any of the unattended frequencies. Where unattended unit roots occur we show
that the above statistics converge in probability to zero under the null. However, computing the
KPSS and CH statistics after pre-¿ltering the data is simultaneously ef¿cacious against both
unattended breaks and unattended unit roots, in the sense that the statistics retain their usual
pivotal limiting null distributions appropriate to the case where neither occurs. The case where
breaks may potentially occur at all frequencies is also discussed. The practical relevance of
the theoretical contribution of the paper is illustrated through a number of empirical examples.

JEL classi¿cation: C12, C22.
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In a recent paper Canova and Hansen (1995) [CH] have developed score-based tests

of the null hypothesis of deterministic seasonality against the alternative of unit roots at

some or all of the seasonal, but not zero, spectral frequencies. Their tests are similar in

spirit to the those against a zero frequency unit root proposed in Kwiatkowski HW DO� (1992)

[KPSS]. The statistics upon which these tests are based retain pivotal Cramér-von Mises

limiting null distributions under mixing and seasonally heteroskedastic errors YLD the use of

a non-parametric heteroskedasticity and autocorrelation consistent (HAC) covariance matrix

estimator. More recently, Taylor (2003a) has amalgamated these cases to develop score-based

tests against seasonal and/or zero frequency unit roots.

The above VWDWLRQDULW\ tests can also be derived from the general theory on parameter

stability testing in regression models of Nyblom (1989) and Hansen (1992). We provide a

review of these testing procedures in Section 2. Speci¿cally, in the context of a regression of

the time series variable of interest on a set of zero and seasonal frequency spectral indicator

variables, we consider testing the null hypothesis of ¿xed parameters against the alternative

that (at least one of) the parameters on a given subset, say @�, of the spectral indicators evolve

as random walks, such that the process admits unit root behaviour at (at least one of) those

spectral frequencies included in @�.

The testing procedures outlined in Section 2 are conducted under the maintained

hypothesis, say M� , that the regressors associated with those spectral frequencies not included

in @� must have ¿xed coef¿cients. In this paper we focus attention on two particular

cases where M� is violated, both recognised in the literature to be of considerable practical

relevance. Firstly we consider the case of XQDWWHQGHG VWUXFWXUDO EUHDNV, where some or all

of the parameters on the spectral frequency regressors QRW included in @� display a structural

break at some known or unknown point in the sample. Secondly, we consider the case of

XQDWWHQGHG XQLW URRWV, originally highlighted in Hylleberg (1995) and further developed in

Taylor (2003b), where the process admits unit root behaviour at some or all of the spectral

frequencies not included in @�.

4 We thank Andrew Harvey and Cheng Hsiao for helpful comments on an ealier draft. The views ex-
pressed here are those of the authors and do not necessarily represent those of the Bank of Italy. Email:
busetti.fabio@insedia.interbusiness.it, R.Taylor@bham.ac.uk
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Since the work of Perron (1989) on US GNP, it has been known that a process which

is stochastically stationary about a deterministic component subject to structural breaks can

display properties very similar to a unit root process. Indeed, Perron (1989) demonstrates

that the conventional augmented Dickey-Fuller [ADF] tests cannot reject the unit root null

hypothesis, even asymptotically, where a broken trend exists. Although consistent against

stationary processes about a broken level, Perron (1989) shows that the power of the ADF

test is vastly reduced relative to the case where no break occurs. Perron (1989) proposes

modi¿cations of the ADF test constructed so as to be invariant to deterministic breaks at a

known point while Zivot and Andrews (1992), LQWHU DOLD, allow for an unknown break point.

More recently, Busetti and Harvey (2001) have considered the effects of level and trend breaks,

of the type discussed in Perron (1989), on the stationarity tests of KPSS. They show that failing

to account for these breaks renders the KPSS tests severely over-sized, while KPSS-type tests

which explicitly allow for (are invariant to) such breaks will require a different set of critical

values.

Empirical results in Ghysels (1990) suggest that seasonal level shifts are a common

phenomenon in quarterly US macroeconomic time series and argues that such shifts will have

non-trivial consequences on testing for seasonal unit roots. Accordingly, Ghysels (1994),

Smith and Otero (1997) and Franses and Vogelslang (1998), LQWHU DOLD, have extended the

work of Perron (1989) to the case of testing the null hypothesis of seasonal unit roots in series

which undergo seasonal dummy level shifts. Although the standard tests of the seasonal

unit root null hypothesis of Hylleberg HW DO� (1990) are shown to be consistent against

stochastically stationary processes which are subject to such shifts, their ¿nite sample power

is vastly reduced. Indeed, in allowing for seasonal dummy level shifts in quarterly real GDP

for fourteen countries, Franses and Vogelslang (1998) ¿nd considerably less evidence for

seasonal unit roots than from the standard tests. Busetti and Harvey (2003a) consider the

effects of structural breaks at the seasonal (but not zero) frequencies on the seasonal frequency

stationarity tests of CH. Paralleling the arguments in Busetti and Harvey (2001), they show

that the standard CH tests are over-sized in such cases and propose modi¿ed statistics which

are invariant to such breaks.

In Section 3 of this paper we derive representations for the limiting null distributions

of the statistics of Section 2 in cases where there are XQDWWHQGHG EUHDNV, but not unattended
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unit roots. We demonstrate that in such cases the true asymptotic size of the tests will fall

below the nominal level. This contrasts sharply with cases where some or all of the parameters

on the spectral frequency regressors included in @� display a structural break (we shall term

these DWWHQGHG VWUXFWXUDO EUHDNV in what follows), considered in Busetti and Harvey (2001,

2003a). Monte Carlo simulations reported in Section 5 demonstrate that the asymptotic theory

provides a useful approximation to the behaviour of the statistics in ¿nite-samples and that

the under-sizing phenomenon effects an associated, often very dramatic, loss of ¿nite sample

power under the alternative.

The assumption that only those spectral frequencies included in@� may display unit root

behaviour is clearly untenable in practice, since one cannot know which spectral frequencies

admit a unit root. If one did, one would of course have no need for unit root testing. Busetti

and Taylor (2002) and Taylor (2003b) demonstrate that the statistics against unit roots in @�

converge in probability to zero under the null in such cases. Although the tests based on these

statistics are consistent in such cases, their ¿nite sample power is vastly diminished relative

to the case where the maintained hypothesis holds� Taylor (2003b) provides considerable

numerical and empirical evidence to illustrate this point. Interestingly, this problem does not

arise with the tests of Hylleberg HW DO� (1990) since here one may test for the null hypothesis

of a unit root at a particular spectral frequency (or frequencies) whilst remaining ambivalent

as to the existence or otherwise of unit roots at those frequencies not under test.

From a practical perspective, the impact of unattended breaks and unattended unit roots

on the stationarity tests of Section 2 are just as important as those arising from attended breaks.

As noted above, the latter effect over-sized tests which diverge, even if there are no unit

roots in @�. Since these are tests of the null hypothesis of stationarity in @�, this is not an

unreasonable outcome: it draws the practitioner’s attention to non-stationary behaviour in @�.

However, care must still be taken since routine differencing in response to rejection of the

null will yield an over-differenced series if the non-stationarity is due to an attended break.

In contrast, unattended breaks and/or unattended unit roots at those frequencies not included

in @2 vastly diminish the likelihood that we can reject the null of stationarity when analysing

series with unit roots in @�. The modelling implications of failing to recognise and account

for such behaviour is well-known and further analysis of the data could only be expected to

yield spurious inferences.
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In light of these practical problems, we suggest a variety of remedial actions. In the case

where we have unattended structural breaks, but no unattended unit roots, we show in Section

3 that some simple modi¿cations, based on bias-correction, to the existing test statistics can

recover the usual limiting null distributions that pertain where there are no breaks. However,

where there are unattended unit roots we demonstrate in Section 4 that these statistics will

still converge in probability to zero under the null. Pre-¿ltering the data eliminates potential

unattended unit roots and has been shown to be highly effective by Taylor (2003b). We show

that pre-¿ltering simultaneously provides an ef¿cacious remedy for the problem of unattended

structural breaks. We therefore recommend the use of pre-¿ltering as a means of obtaining

robust tests in the presence of unattended breaks and/or unattended unit roots.

In Section 6 we discuss two generalisations. The ¿rst allows for the case where there

are both unattended DQG attended deterministic structural breaks, while the second allows for

deterministic trending variables. The former is of considerable empirical importance because

seasonal level shifts, of the type discussed in the literature on tests of the null of seasonal unit

roots above, may potentially effect both attended and unattended breaks, and hence allow

for cases where structural breaks occur at all frequencies. The practical relevance of our

theoretical results is illustrated in Section 7 where we apply the existing tests against stochastic

trend and seasonality and the modi¿ed versions of these tests suggested in this paper to data

on U.K. marriages and U.K. (log) consumers’ expenditure on tobacco. In the case of UK

marriages we show that tests based on the appropriately modi¿ed statistics yield considerably

more evidence against stationarity than do the existing tests, while the (log) expenditure series

illustrates the case where both attended and unattended breaks occur. Section 8 concludes the

paper, while an Appendix contains proofs of our main results.
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�� 6FRUH�%DVHG 6WDWLRQDULW\ 7HVWV

Consider the scalar process +|, | ' �c � � � c A , observed with constant seasonal periodicity

r, generated according to the model

+| ' 7(�
|�
W
| n �|c �| � �UU(Efc j2�c(1)

where f 	 j2 	 4, and 7(| is an r-vector of conventional seasonal indicator (dummy)

variables with associated, potentially time-varying, parameter vector �W| .

Rather than work directly with the formulation given in (1), it will prove expedient in

what follows to adopt the following bijective reparameterization of (1) in terms of the spectral

indicator variables of Hannan HW DO� (1970)� that is,

+| ' ~ �|�| n �|c | ' �c � � � c A�(2)

In (2),~| '
�
5fc|c 5��c|c ���c 5

�
dr*2oc|

��
is an r-vector of spectral indicator variables� that is, 5fc| ' �c

5&c| ' EULt 2Z&|*rc t�? 2Z&|*r�� c & ' �c ���c rW, where rW ' r*2 � � if r is even or dr*2o if

r is odd, while 5r*2c| ' E���| if r is even. The ¿rst element of ~|, 5fc|, corresponds to the

zero frequency, bf � f, while the &th pair of spectral indicators, 5&c|, correspond to the &th

harmonic seasonal frequency, b& � 2Z&*r, & ' �c ���c rW. Where r is even, the last element of

~|, 5r*2c|, corresponds to the Nyquist frequency, br*2 � Z. The exact relationship between �|

and �W| is given by �| ' -3��W| , where the full rank Er� r� matrix - ' E~�c � � � c ~r��.

Consider now the partition of ~| into E~ ��|c~
�
2|�

� where ~�|c ~2| are disjoint sub-vectors

(containing regressors corresponding to disjoint frequencies, but with no particular ordering)

of dimension r� and r2 respectively, such that r� n r2 ' r� Let

@� '
�
&�c � ' �c 2c ���c ?�c G 5&� c| belongs to ~�|

�
be the set of indices of the spectral indicator variables corresponding to the frequencies

included in ~�|c � ' �c 2� Using this partition we re-write (2), with an obvious notation, as

+| ' ~ ��|��| n ~ �2|�2| n �|�(3)
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We specify the parameters on ~�| to evolve as a (possibly degenerate) vector random walk�

that is,

��| ' ��c|3� n #|c #| � �UU(Efc j2(W
��(4)

where (W
� ' j2#(�, (� a non-null diagonal positive semi-de¿nite matrix of dimension

Er� � r��. We assume that the initial value ��f is ¿xed, with no loss of generality. We also

assume that #| and �| are mutually orthogonal.

In this paper our attention focuses on testing the null hypothesis Mf G j2# ' f against

the alternative M� G j2# : f in (3)-(4). As demonstrated in, LQWHU DOLD, CH under M�, i+|j

admits unit roots at those spectral frequencies associated with the non-zero diagonal elements

of (�. However, the statistical properties of tests of Mf against M� will depend crucially on

the speci¿cation of �2|, and it is an exploration of this issue which provides the focus for this

paper. In the remainder of this Section we follow the implicit assumption adopted in CH, KPSS

and Taylor (2003a) that �2| ' �2f, a ¿xed r2-vector of coef¿cients, for all |. This assumption

constitutes the maintained hypothesis, M� , discussed in Section 1. Recall that M� imposes

the condition that the regressors associated with those spectral frequencies not included in @�

must have ¿xed coef¿cients, regardless of the behaviour of the coef¿cient vector ��|. If both

Mf and M� hold the entire parameter vector �| is ¿xed and we have what will be termed the

QXOO PRGHO

+| ' ~ ��|��f n ~ �2|�2f n �|c | ' �c ���c A ((5)

that is, i+|j is a stochastically stationary process around ¿xed (deterministic) seasonal effects.

In Section 3 we consider the effects on the tests of Section 2 when we allow some

or all of the elements of �2| to display a deterministic structural break at some known or

unknown point in the sample. In Section 4 we subsequently consider the case where �2|

follows a random walk. In Section 6.1 we will also discuss the case where deterministic

structural breaks may occur in any of the elements of �|, not just in �2|, thereby allowing for

the interesting case where structural breaks may occur at all frequencies. Indeed, notice that

deterministic structural breaks in the seasonal dummy parameter vector �W| of (1) will effect

structural breaks in either ��| or �2|, or both.

Denote by e|, | ' �c ���c Ac the Ordinary Least Squares (OLS) residuals from regressing

+| on~| and denote by ej2 their sample variance, ej2 ' A3�
SA

|'� e
2
| . As demonstrated in Taylor



13

(2003a), a locally most powerful invariant (LMPI) test of Mf G j
2
# ' f against M� G j

2
# : f in

(3)-(4), with M� maintained, rejects for large values of the statistic

/ '
[
&MV�

7/& �
[
&MV�

3EC�&
[A

|'�
Ao@Se

�[|

�'�
5&c�e�

[|

�'�
5�&c�e�

�
A 2ej2

4FD c(6)

where �& ' � if & ' f or & ' r*2, �& ' 2 otherwise. Under Mf, / weakly converges to

the right member of (9) below, and is �REA � under M�� see Taylor (2003a). Furthermore, it is

not dif¿cult to show that the statistic / of (6) for testing against all of the spectral frequencies

identi¿ed by ~�| is precisely the sum of the individual LMPI statistics 7/& for testing at each

of these frequencies in turn. As we shall see below, this additive property also holds on the

asymptotic null distributions of the tests.

If we weaken the assumptions on i�|j to allow for the possibility of weak dependence

and heterogeneity, we will require a non-parametrically modi¿ed version of / in order to

obtain a statistic with a pivotal limiting null distribution. Speci¿c (mixing) conditions on

i�|j in this case are quite involved� full details are given in Taylor (2003a) and are not

repeated here. We denote by l� the “long run variance” of the process ~�|�|c i.e. l� �

,�6A<"A3�.
�
E
SA

|'� ~�|�|�E
SA

|'� ~�|�|��
�
c � ' �c 2c and assume that l� is positive de¿nite.

Then from CH and Taylor (2003a), the modi¿ed statistic is given by

O ' A32Ao@Se

%
	l3��

A[
|'�

#
|[

�'�

~��e�

$#
|[

�'�

~ ���e�

$&
c(7)

where, following CH, we have de¿ned the HAC estimator of l� as

	l� '
A3�[

�'3An�

&E�*7A �	K�E��c(8)

where &E�� is a kernel function and 	K�E�� ' A3�
SA

|'�n� ~
�
�|e|e|3�~

�
�c|3� is the estimator of

the autocovariance of ~�|�| at lag ��

For r ' �, O of (7) is the #> statistic of KPSS (Equation (13), p.165). Furthermore, for r

even and ~�| ' E���|, O coincides with the OZ statistic of CH (Equation (17), p.6). Moreover,

for ~�| ' 5&c|, & ' �c ���c rW, O is the statistic OZ&*r of CH (Equation (17), p.6), while if ~�|



14

contains all but the ¿rst element of ~| (i.e. ~2| ' �), thenO coincides withOs of CH (Equation

(15), p.5).

Suitable choices for the kernel &E�� may be found in, LQWHU DOLD, Andrews (1991, p.821),

while setting the bandwidth parameter 7A such that 7A $ 4 and 7A *A �*2 $ f ensures that

	l� $
R l� under both the null and local alternatives� see Elliott and Stock (1994). Under the

above conditions, Taylor (2003a) establishes the result that under Mf G j
2
# ' f

O ,

] �

f

�r�Eo�
��r�Eo�_oc(9)

where “,” denotes weak convergence and �r�Eo� is a r�-dimensional standard Brownian

bridge process. The right member of (9) is a Cramér-von Mises distribution with r� degrees

of freedom� see Harvey (2001) for further discussion on the Cramér-von Mises family of

distributions. In what follows we will denote this distribution by ��� Er��, upper tail critical

values from which, for � � r� � �2, are provided in Table 1 of CH (page 5).

If we supplant the mixing conditions above by the assumption that i�|j is a linear

process, then l� is a diagonal matrix containing the spectral generating function of �|, denoted

as }Eb�c evaluated at each of the frequencies b&c & 5 @�. To be precise, we assume that

�| ' �Eu�"|, i"|j a MD sequence satisfying the conditions in Stock (1994, p. 2745), and

�Eu� � � n
S"

�'� ��u
� a polynomial in u, the conventional lag operator, u&+| � +|3&,

& ' fc �c ���, satisfying: (i) �Ei Ti	�2Z&*rj� 9' f, for all & 5 @�, and (ii)
S"

�'� �m��m 	4.2

The ¿rst condition rules out a zero in the spectrum of i�|j at any of the frequencies included

in @�, while the second ensures that poles do not exist in the spectrum of i�|j. A leading case

which satis¿es the above conditions is the class of ¿nite-order stationary and invertible ARMA

processes. Following Busetti and Harvey (2003a) we also consider the following alternative

non-parametrically modi¿ed statistic

O '
[
&MV�

O& �
[
&MV�

3EC�&
[A

|'�
Ao@Se

�[|

�'�
5&c�e�

[|

�'�
5�&c�e�

�
A 2e}Eb&�

4FD c(10)

5 Equivalent conditions must also hold in the mixing case. However, it should be noted that the possibility
of periodic heteroscedasticity, allowed under the mixing conditions, is not permitted.
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where �& is de¿ned below (6), e}Eb&� '
SA3�

�'3An� &E�*7A �e�eE�� ULtb&�c and e�eE�� '

A3�
SA

|'�n� e|e|3� is the sample autocovariance of the OLS residuals at lag �� Notice that

O and O of (7) coincide if r� ' �. The statistic O is intuitively appealing since, unlike O, it

retains the additivity property of /. Under the linear process conditions on i�|j, together with

the conditions on &E�� and 7A stated below (8), O has the usual ���Er�� limiting distribution

of (9) under Mf. Under M�, O and O are both �REA*7A �� see, LQWHU DOLD, CH, KPSS, Taylor

(2003a) and Busetti and Harvey (2003a). Finally we note that while / is an exact LMPI test of

Mf G j
2
# ' f against M� G j

2
# : f in (3)-(4), neither O nor O are locally optimal in any formal

sense, even asymptotically.

�� 7HVWLQJ ZLWK 8QDWWHQGHG 6WUXFWXUDO %UHDNV

Thus far we have assumed that �2| of (3) is a ¿xed r2-vector of parameters. Suppose

now that the process i+|j is generated by (3)-(4) but that �2| is generated according to

�2| ' E�2f n w_|Ek�� c(11)

where _|Ek� ' � E| � dAkoc k 5 Efc ��� is an indicator variable reÀecting the occurrence of a

deterministic structural break, and w is an r2-vector of coef¿cients. It is clear that (11) violates

M� because, unless w ' f, �2| is not ¿xed for all |. Notice that the end cases of k ' f

and k ' � are excluded since these would not yield a within-sample break in the coef¿cient

vector �2|. In Section 6.1 we will subsequently discuss the case where deterministic breaks

may occur in both �2| and ��|.

The DGP (3)-(4)-(11) displays potentially non-stationary stochastic seasonality at the

frequencies corresponding to ~�|, exactly as in Section 2, but now also displays deterministic

seasonality with a level shift in the seasonal pattern at period dkA o at the frequencies

corresponding to ~2|. Observe that the zero frequency regressor 5fc| ' � can be in either

~�| or ~2|. Moreover, the components in the vector of level shifts w ' Ew�c ���c wr2�
� need not be

equal and may contain zeros, so that not all frequencies in ~2| need show a break. Moreover,

if w ' f, �2| ' �2f, and so the test based on / of (6) is a LMPI test for Mf G j
2
# ' f against

M� G j2# : f.

Consider now the case where w 9' f, such that M� is violated, and we compute the

statistic / of (6) without taking into account the occurrence of a level shift� that is, there is an
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unattended structural break. In this case the test based on / is not LMPI and the asymptotic

distribution of / under Mf is no longer of the form given in (9). Indeed, as we now show in

Proposition 1, it is equal to the right member of (9) multiplied by the factor 6Ekc wc j2�, which

arises from an asymptotic bias in the estimator ej2 of j2� Consequently, the pivotal limiting

distribution in (9) can be retained by bias-correcting / as we shall do in Section 3.1, making

use of the work on breakpoint estimation by Bai (1994, 1997).

Proposition 1 /HW +| EH JHQHUDWHG E\ ������� DQG ����� 7KHQ� XQGHU Mf G j
2
# ' fc

/ , 6Ekc wc j2�

] �

f

�r�Eo�
��r�Eo�_oc(12)

ZKHUH �r�Eo� LV DV GH¿QHG DERYH� DQG

6Ekc wc j2� ' E� n KEkc w�*j2�3�c(13)

KEkc w� ' *�4
A<"

A3�
A[
|'�

E_|Ek�� k�2 E~ �2|w�
2
�(14)

5HPDUN �: Notice from (14) that the asymptotic bias in ej2, KEkc w�, and hence 6Ekc wc j2�,

are symmetric in k. Consequently, the representation in (12) for k and that for 7k � E� � k�

coincide. Where w ' f, the case of no unattended breaks, KEkc f� ' f and hence (12) reduces

to the right member of (9), as should be expected.

5HPDUN �: As an example of KEkc w�, consider the case where either ~2| ' � or ~2| ' E���|.

Here the bias is given by KEkc w� ' kE�� k�w2�

The asymptotic bias, KEkc w�, is strictly positive whenever w 9' f, and correspondingly,

6Ekc wc j2� will therefore always be less than unity. This will clearly yield an undersized

test� cf. (9). Notice therefore that unattended breaks in the parameters associated with the

spectral regressors in @2 have the opposite effects from unattended breaks in the parameters

associated with @�. In the latter case Busetti and Harvey (2001, 2003a) show that tests against

unit roots in @� are RYHU�VL]HG. As a simple illustration of Proposition 1, consider the case

of a model with two seasons (r ' 2), ~| ' E�c E���|�
�, where ~�| ' E���|, corresponds to

frequency Z, and ~2| ' � corresponds to the zero frequency. Suppose that, as a particular

case of (11), a shift in �2|, equal to the standard deviation of the errors, occurs in the middle

of the sample, so that 6Ef�Dc jc j2� ' f�H. In this case if /, the test against a unit root at
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frequency Z, is run at the nominal (asymptotic) DI level, it would display a true asymptotic

size of �hi���E�� � f�eS�*f�Hj � 2�DI.3 In the same example, but with w ' 2j the

true asymptotic size would be �hi��� E�� � f�eS�*f�Dj � f�eI� Deviations below the

nominal level clearly increase as w is increased. Notice that the same results also apply if we

interchange ~�| and ~2|� that is, the case where we are testing against a zero frequency unit

root in the presence of an unattended break at frequency Z.

Now consider the case of testing against a unit root at frequency zero in a quarterly model

(r ' e). In this case ~�| ' �, corresponds to the zero frequency, and ~2| ' E5��c|c E���|��,

where 5�c| ' EULtZ|*2c t�?Z|*2��, corresponds to the seasonal frequencies. Suppose that

there is a neglected break of size w ' EwWc wWc wW��j at the seasonal frequencies. Table 3.1 gives

the asymptotic biases and true asymptotic size for the test against a zero frequency unit root,

/, run at the nominal DI level, for various values of the break fraction k and break magnitudes

wW.

As in the preceding example, we see that the true asymptotic size of / deviates further

below the nominal level as the break magnitude wW increases, other things being equal.

Moreover, the tabulated results clearly demonstrate that the degree of size distortion is the

worse the closer is the break date to the middle of the sample. Recall from Remark 1 that

6Ekc wc j2� is symmetric in k.

6 The asymptotic 8( level upper tail critical value from the FyP+4, distribution is 0.463.
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Table 3.1: Asymptotic Bias and Size of /

KEkc w� 6Ekc wc j2� |o�e r�5e
k ' �*H 0.219 0.821 �f2b

wW ' � k ' �*e 0.375 0.727 �f�b
k ' �*2 0.500 0.667 �f��
k ' �*H 0.875 0.533 �ffe

wW ' 2 k ' �*e 1.500 0.400 �ff�
k ' �*2 2.000 0.333 �fff
k ' �*H 3.500 0.222 �fff

wW ' e k ' �*e 6.000 0.143 �fff
k ' �*2 8.000 0.111 �fff

If we switch ~�| and ~2| in the quarterly example considered above, so that our object

is to test against unit root behaviour at some or all of the seasonal frequencies, and we have

a neglected shift at frequency zero, the true asymptotic size of a test run at the nominal DI

level4 is obtained from the ���E�� distribution as �hE���E�� � ��f�f*6Ekc wc j2��c where

6Ekc wc j2� ' �*E�nkE��k�w2*j2�� For example, if k ' �*H and w ' j, the true asymptotic

size for a nominal DI level test is approximately 2�DIc while if k ' �*2 this drops to ��HI.

A tabulation of asymptotic sizes and biases for a range of values of k and w in this case is not

provided here, as the patterns are qualitatively similar to those seen in Table 3.1. Full details

can be obtained from the authors, on request.

3.1 %LDV�&RUUHFWHG 7HVWV

The bias in the asymptotic null distribution of / detailed in Proposition 1 may be easily

corrected and this can be done in a number of ways which we detail below. Each modi¿cation

is shown to deliver a statistic with the usual pivotal ��� Er�� limiting distribution under Mf G

j2# ' f.

Consider ¿rst the case where there is a structural break at an unknown point in the

sample, kf 5 Efc ��� An asymptotically unbiased estimator of the error variance is obtained

by minimizing the sum of squared residuals over all the possible break dates. Speci¿cally, let

e|Ek� denote the OLS residuals from the ¿tted regression

	+| ' ~ ��| e�� n ~ �2|e�2 n _|Ek�~
�
2|
	wc(15)

7 The 8( level upper tail asymptotic critical value from the FyP+6, distribution is 1.010.
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and let ej2Ek� ' A3�
SA

|'� e|Ek�
2 be the sample variance of the residuals. Denote by kW the

argument that minimizes this variance� that is, kW ' @h} �?u
k
ej2Ek�.

In the appendix it is shown that, underMf G j
2
# ' fc ej2EkW� is an asymptotically unbiased

estimator of j2� Indeed, for the case ~2| ' �, Bai (1994, 1997) shows that, under Mf, kW is

a VXSHUFRQVLVWHQW estimator of kfc in the sense that it converges to the true value at rate A�

Consequently, and noting the asymptotic invariance of the numerator of / of (6) to the level

shift (see the proof of Proposition 1 in the Appendix), an obvious modi¿ed version of / whose

limiting null distribution is ���Er�� is given by

/W ' A32
[
&MV�

�&

[A

|'�
Ao@Se

�[|

�'�
5&c�e�

[|

�'�
5�&c�e�

�
ej2EkW� c(16)

which is obtained by replacing in (6) the biased estimator of the error variance ej2 by ej2EkW��
Notice that in (16) the correction is made only to the denominator of the statistic. One

might then conjecture that a test with superior ¿nite sample properties under level shifts could

be obtained by modifying the numerator of (16) in a similar fashion to the denominator.

Precisely, rather than use the OLS residuals e|, | ' �c ���c A , as in / and /W, one could compute

the partial sums involved in the numerator using the residuals e|EkW�, as de¿ned above. This

suggests the statistic

/WW ' A32
[
&MV�

�&

[A

|'�
Ao@Se

�[|

�'�
5&c�e�EkW�

[|

�'�
5�&c�e�Ek

W�
�

ej2EkW� �(17)

Consider now the case where the true breakpoint kf is NQRZQ. In this scenario the

best option would be to compute (17) with kW replaced by kf( we denote this statistic by

/f� Adapting the results of Busetti and Harvey (2003a), it is easy to show that /f is a LMPI

test statistic for Mf G j2# ' f against M� G j2# : f, and that its limiting null distribution is

���Er��.

Finally, if no break occurs, both /W and /WW remain asymptotically unbiased and

consistent tests� this follows since adding extra regressors asymptotically uncorrelated with

~�| has no effect on the limiting behaviour of the statistics� cf. Busetti and Harvey (2003a).

The following proposition summarizes the foregoing results.
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Proposition 2 8QGHU WKH QXOO K\SRWKHVLVMf G j
2
# ' f� UHJDUGOHVV RI WKH H[LVWHQFH RU WLPLQJ RI

D EUHDNSRLQW� L�H� LUUHVSHFWLYH RI WKH YDOXHV RI w DQG k� WKH DV\PSWRWLF GLVWULEXWLRQV RI /Wc /WW

DUH ��� Er���

5HPDUN �: The same result will clearly apply to the modi¿ed statistics /f, provided kf is

indeed the true break date.

5HPDUN �: Under the ¿xed alternative, the statistics /c /fc /
W and /WW all diverge at rate A�

Notice that identi¿cation of the breakpoint in the coef¿cients of ~2| is unimportant in this case,

as the result is driven by the random walk alternative in the coef¿cients of ~�|�

Under either the mixing or linear process assumptions on i�|j outlined in Section 2,

the non-parametrically modi¿ed statistics O of (7) and O of (10) respectively can be corrected

along similar lines as suggested above for /. This simply amounts to replacing el� of (7) ande}Eb&� of ("") with el�Ek
W� and e}Eb&(kW� respectively, constructed using the OLS residuals

e|Ek
W�, as detailed above. We will denote these statistics with an obvious notation as OW,

OWW, O
W

and O
WW

. The corresponding test statistics derived when the breakpoint is known will

be denoted Of and Of. The limiting properties of these statistics are as given above for the

corresponding bias-corrected variants of /.

3.2 7HVWV EDVHG RQ 3UH�¿OWHUHG 'DWD

The bias-corrected tests of Section 3.1 ¿nessed the problem of unattended structural

breaks by explicitly modelling the breaks. In the case of a known break date a LMPI test

can be constructed. Where the break date is unknown, the now standard approach used in

time-series econometrics of estimating across all possible break dates and optimising over the

resulting sequence was proposed. However, rather than attempting to model the breaks, one

might also attack the problem by transforming the data in such a way as to annihilate possible

level shifts. This can be achieved simply by running our stability tests on pre-¿ltered data.

Consider the differencing ¿lter, u2, which reduces, by one, the order of integration at

all of the spectral frequencies identi¿ed by @2. As an example, if r ' e with ~�| ' � and

~2| ' EULtZ|*2c t�? Z|*2c E���|��, as in Table 1 above, then u2 � E� n u�E� n u2� '

E� n un u2 n u��. We will denote by s the order of this ¿lter� in the above example, s ' �.
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Notice thatu2 � {r*u�, whereu� reduces, by one, the order of integration at each frequency

identi¿ed by @�, and {r � E�� ur�.

Now consider SUH�¿OWHULQJ the process i+|j generated by (3)-(4)-(11) by u2, so that

u2+| ' u2~
�
�|��| nu2~

�
2|�2| n �Q| c(18)

| ' � n sc � � � c A , where �Q| � u2�|. The application of u2 to ~2|�2| translates the level

shift in the series i+|j into at most s outliers in the series iu2+|j. For example, suppose

~2| ' �, so that ~ �2|�2| ' �2f n w_|Ek�, where �2f and w are scalar constants. In such a case

u2~
�
2|�2| ' E� � u�E�2f n w_|Ek��, from which it is clear that u2~

�
2|�2| ' f for all values of

|, except at | ' dAko n � where u2~
�
2|�2| ' �w. Although the term ~ ��|��| of (4) has been

transformed to u2~
�
�|��| in (18), those regressors in ~�| identi¿ed with a particular spectral

frequency span an identical space to the corresponding regressors inu2~�|. Consequently, we

may treatu2~
�
�|��| exactly as if it were ~ ��|��| in constructing tests against unit root behaviour

at any of the spectral frequencies identi¿ed by ~�|.

Unfortunately, we cannot apply the statistic / of (6) to the pre-¿ltered data and

maintain the usual ��� Er�� limiting distribution under Mf G j2# ' f. This is because, for

/ to have a ���Er�� limiting distribution, the error process in the null regression must

be serially uncorrelated under Mf. It is clear from (18) that i�Q| j is a moving average

process of order s , ��Es�. Notice that i�Q| j is strictly non-invertible at each of the

spectral frequencies identi¿ed by @2 but not at those identi¿ed by @�� that is, lQ� �

,�6A<"A
3�.

�
E
SA

|'s ~�|�
Q
| �E
SA

|'s ~�|�
Q
| �

�
�

is positive de¿nite. Consequently, we may

consider the non-parametrically modi¿ed statistic

OQ ' A32Ao@Se

%elQ� 3� A[
|'s

#
|[

�'s

~��e
Q
�

$#
|[

�'s

~ ���e
Q
�

$&
c(19)

where eQ| , | ' sc � � � c A are the OLS residuals from the regression of u2+| on ~|, and elQ� is

as de¿ned in (8), replacing e| by eQ| in the expression for 	K�E��. Similarly, O of (10) may be

modi¿ed in an obvious way to produce the corresponding statistic O
Q
�

As discussed above, the application of u2 to ~2|�2| transforms the level shift into at

most s outliers. Asymptotically, these are singletons. Consequently, they have no effect on

the limiting distribution of OQ of (19). It is then straightforward to show that asymptotically,
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under Mf, OQ and O
Q

behave exactly as O and O of Section 2, under the mixing and linear

process assumptions, respectively, placed on i�|j, and hence i�Q| j.

In Section 5 we give Monte Carlo evidence into the ¿nite sample properties of the

modi¿ed statistics developed in this Section. Our results suggest that, for the sample sizes

typically seen in practical applications of these statistics, the proposed corrections perform

well in practice. In cases where there are no unattended unit roots, the bias-corrected statistic

/WW seems, overall, to present the best option in cases where the true break date is unknown,

although the non-parametrically modi¿ed tests based on the pre-¿ltered data perform almost

as well and have the added advantage that they are also robust to serially correlated errors and

unattended unit roots, the latter issue discussed further in the next section.

�� 8QDWWHQGHG 8QLW 5RRWV

In this section we consider the case where the process i+|j is generated by (3)-(4) but

where �2| now follows the vector random walk process,

�2| ' �2c|3� n V|c | ' �c ���c Ac(20)

�2f ¿xed, with V| � �UU(Efc j2(W
2�, independent of �| and #|, and where (W

2 ' j2V(2, (2

a non-null diagonal positive semi-de¿nite matrix of dimension Er2 � r2�.

As with the case of the unattended structural break model of Section 3, it is clear that,

unless j2V ' f, (20) violates the maintained hypothesis, M� . Speci¿cally, the DGP (3)-(4)-

(20) can display unit root behaviour at DQ\ of the spectral frequencies, regardless of whether

the associated spectral indicator variable belongs to @� or @2. This is an important empirical

issue since in practice one cannot know which of the spectral frequencies admit a unit root.

In Busetti and Taylor (2002) and Taylor (2003b) it is demonstrated that if +| is generated by

(3)-(4)-(20) with j2V : f then under Mf G j
2
# ' f, / of (6) is �REA

3�� while O of (7) and O of

(10) are �REEA7A �
3��. Consequently, each of these statistics converges in probability to zero

under Mf when there are unattended unit roots. In the following proposition we show that the

same result is true for the bias-corrected statistics of Section 3.1.

Proposition 3 /HW +| EH JHQHUDWHG E\ ������������ ZLWK j2V : f� 7KHQ� XQGHUMf G j2# ' fc /W�

/WW DQG /f DUH DOO RI�REA3��� ZKLOH OW� OWW� Of O
W
� O

WW
DQG Of DUH RI�REEA7A �3���
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5HPDUN �: Although the bias-corrected statistics of Section 3.1 were shown to be robust

with respect to unattended structural breaks, the results of Proposition 3 show that in the

presence of unattended unit roots at any spectral frequency associated with ~2|� that is, where

j2V : f, they will converge in probability to zero, under Mf G j
2
# ' f. This occurs because the

variance estimators used in constructing these statistics, as do those used in the test statistics

of section 2, diverge, albeit at differing rates when j2V : f. Indeed, as is demonstrated in the

Appendix, exactly the same result holds if �2| contains a mixture of random walk elements and

determinstically breaking elements, provided at least one of its elements evolves as a random

walk.

However, the pre-¿ltered statistic OQ of (19) (all of what follows also applies to O
Q

)

discussed in Section 3.2 to combat the problem of unattended level shifts is also simultaneously

a curative against unattended unit roots� indeed it has been originally suggested in Taylor

(2003b) for this purpose. Recall that the pre-¿lter u2 is such that it reduces, by one, the

order of integration at all of the spectral frequencies identi¿ed by @2. It is therefore clear

that the ¿ltered series iu2+|j will not admit unit root behaviour at any of the frequencies

identi¿ed with @2. When i+|j is generated according to (3)-(4)-(20) the error process in (18)

isu2~ �2|�2|nu2�|, which we denote by �QW| , which is clearly an��Es � process. The process

i�QW| j is strictly non-invertible at all of the spectral frequencies identi¿ed by @2 if j2V ' f,

while, if j2V : f, i�QW| j will be strictly non-invertible at those frequencies associated with zero

diagonal elements in (2� cf. Harvey (1989,pp.54-70) for rigorous discussion on this point. As

in Section 3.2, the serial correlation in the error process precludes the use of / of (6). However,

we may directly apply the pre-¿ltered statistic OQ of (19) since the matrix lQW� , the long run

variance of ~�|�QW| , is positive de¿nite.

The results from Sections 3.2 and above demonstrate that the pre-¿ltered statistic OQ of

(19) retains the usual ��� Er�� limiting distribution of (9) under Mf, even if some subset of

the parameters on the spectral frequency regressors in @2 display HLWKHU level shifts or evolve

as random walks. This in contrast to the bias-corrected statistics /W, /WW, /f, OW, OWW, Of

O
W
, O

WW
and Of of Section 3.1, which all converge in probability to zero in the presence of

unattended unit roots. The pre-¿ltered statistics therefore appear particularly appealing from a

practical point of view.
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�� 1XPHULFDO 5HVXOWV

In this section we use Monte Carlo simulations methods to investigate the ¿nite sample

properties of the foregoing tests against unit roots in @� in cases where the parameters

associated with those spectral regressors not included in @� display deterministic structural

breaks. All experiments were programmed using the random number generator of the matrix

programming language Ox 2.20 of Doornik (1998), over Dfc fff Monte Carlo replications. All

tests were run at the nominal DI asymptotic level, although other choices of the nominal level

did not alter the results qualitatively.

Speci¿cally, we now investigate the ¿nite sample properties of the tests based on the

non-bias-corrected statistic /, the bias-corrected statistics /Wc /WW and /f, and the statistic

based on pre-¿ltered data, OQ, against data generated by (3)-(4)-(11). In the context of this

DGP we considered a range of possible breakpoint magnitudes wc breakpoint locations k and

signal-to-noise ratios j #. We considered samples of size A ' �ff and A ' 2ff observations.

In the context of quarterly time series data, we have focused attention on two cases

which we consider to be of most relevance for applied workers, each of which subsequently

arises in the empirical examples of Section 6: (i) testing against a unit root at frequency zero

when there is a break equal to w ' EwWc wWc wW��j at the seasonal frequencies� (ii) testing jointly

against unit root behaviour at the seasonal frequencies when there is a break equal to wWj in

the underlying level of the process. Other scenarios are clearly possible, for example the case

where breaks may occur at all frequencies. We will discuss such possibilities further in Section

6.1. Simulation results for the bias-corrected tests are summarised in Tables 5.1a and 5.1b for

case (i), and Tables 5.2a and 5.2b for case (ii). Corresponding results for the tests based on

pre-¿ltered data are reported in Table 5.3a for case (i) and Table 5.3b for case (ii). For the

non-parametric test on pre-¿ltered data, OQ, we have followed the recommendation given on

page 12 of CH and used a Newey and West (1987) HAC estimator employing a Bartlett kernel

with lag truncation 7A ' �cec Dc S for the case of the zero frequency test and 7A ' fc �c 2c �

for the test against stochastic seasonality. Results for the tests based on pre-¿ltered data are

reported only for A ' �ff. Results for A ' 2ff are omitted as they parallel the progression

from A ' �ff to A ' 2ff seen in the bias-corrected tests� that is, power under the alternative

is improved and rejection frequencies under the null are much closer to nominal levels. These

results are available from the authors on request.
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Consider ¿rst Table 5.1a, which reports results for case (i) above with A ' �ff. The

columns labelled j # ' f contain the empirical rejection frequencies (empirical size) of the

tests, using the asymptotic DI critical values, under the null hypothesis of a constant level�

Mf G j2# ' f. In the ¿rst row where wW ' f, the maintained hypothesis M� holds and

there is no break in the seasonal, while for the remaining rows M� is violated by a variety of

seasonal level shifts. In the absence of a break, wW ' f, the results in Table 5.1a demonstrate

that the ¿nite sample rejection frequency of / under Mf is slightly above that predicted by

the asymptotic theory. As shown in Proposition 1, the presence of a level shift biases the

asymptotic null distribution of / below the nominal level. In ¿nite samples the bias in /

appears to be slightly smaller than that predicted by Proposition 1, although this is somewhat

artifactual given the slight over-sizing seen for wW ' f. As an example, for wW ' � and

k ' �*2 the empirical rejection frequency under Mf for a sample of 100 observations is seen

from Table 5.1a to be 1.62%, while the asymptotic size in this case is approximately 1.3%,

the latter obtained from the tables of the ���E�� distribution, and reported in Table 3.1. The

bias-corrected statistics /Wc /WW and /f all seem to work quite well in practice. Where the true

breakpoint is known, /f generally outperforms the other bias-corrected tests and is unaffected

by the value of wW, as should be expected given that it is a LMPI test in this scenario. Where the

true breakpoint is unknown, /WW seems to be preferable to /W, at least in terms of their relative

properties under Mf. Interestingly, in all but the case of a massive shift in the seasonal pattern

(e.g. 8 times the standard deviation of the error, unlikely to remain unnoticed in the data),

knowledge of the existence and the timing of the break does not seem to provide any great

advantage in terms of the properties of the tests under Mf. Indeed, where wW ' f�H both /W

and /WW are seen to be rather over-sized. This appears to be a small sample effect, attributable

to the estimation of wW in (15), since these distortions are vastly diminished for A ' 2ff� cf.

Table 5.1b.

All three bias-corrected tests appear to display quite reasonable power5 properties under

M� G j2# : f. In cases where the wc k combination does not yield an over-sized bias-corrected

test, power is largely comparable, for a given value of j #, with that of the LMPI statistic /

when wW ' f. Where the bias-corrected tests were over-sized, one sees correspondingly higher

power and that should of course be borne in mind when assessing the results in the Tables.

8 Strictly speaking, what is reported is not ¿nite sample power because the tests are constructed using the
asymptotic, rather than exact, 8( critical values.
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Notice, however, that, as predicted by Remark 4, this effect is wiped out as j # increases, and

has all but vanished for j # ' f�D. The three bias-corrected tests display very similar power

properties under M�, again remaining close to that observed for these tests in the absence of a

seasonal shift. In contrast, the power of the biased test / depends very heavily on the values

of wW and k, even for large values of j #. For example, where j # ' f�� and no break occurs,

/ has power of 59.44%, but this falls below 0.00 % for wW ' f�H, k ' f�D. Notice that, as

predicted by Proposition 1, the loss of power in / becomes more pronounced as the breakpoint

approaches the middle of the sample� that is, as k approaches f�D.

The results for case (i) and A ' 2ff are displayed in Table 5.1b. The power of all

of the bias-corrected tests is improved, relative to A ' �ff, as would be expected from the

asymptotic theory in Section 3. Moreover, the properties of the bias-corrected tests under

the null are much closer to the nominal level than for A ' �ff. In turn the effect of wc k

on the power of the bias-corrected tests is further diminished, with little or no impact seen

for j # � f�fD. When wW � e it appears that all of the bias-corrected tests display power

comparable with that appropriate for the LMPI test in the absence of shifts. The ¿nite sample

size of the biased test / also gives a closer match with the asymptotic size obtained from the

quantiles of the ���E�� distribution, reported in Table 3.1. The effects of wc k on the power

of / are also diminished relative to A ' �ff, but remain considerable.

Tables 5.2a and 5.2b contain the results for the case of testing against unit roots at

the seasonal frequencies when there is a break in the underlying level of the process. The

properties of the tests are broadly in line with those seen for case (i) in Tables 5.1a and 5.1b.

For A ' �ff, however, the bias-corrected tests display less reliable size properties for wW � e.

Interestingly, /W outperforms /WW for k ' �*H and k ' �*2c with this pattern being reversed

when k ' �*e. As with case (i), these ¿nite-sample effects are much diminished when A is

increased to 2ff. Notice that, for a given value of j #, the empirical powers observed in Tables

5.2a-5.2b are generally higher than the corresponding entries in Tables 5.1a-5.1b. This is due to

the fact that under the alternative hypothesis there are two non-stationary cycles at the seasonal

frequencies, as opposed to the previous case where only one non-stationary component was

present under the alternative.

Consider now the properties of the pre-¿ltered test OQ for case (i), or pre-¿ltered KPSS

test, reported in Table 5.3a for A ' �ff. The Monte Carlo results here are directly comparable
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with those in Table 5.1a, as the same set of random numbers (and, hence, the same arti¿cially

generated observations) were used. It clearly emerges that the outcome of the pre-¿ltered test

is largely unaffected by the existence, location or magnitude of a structural break. The size of

the pre-¿ltered test clearly depends on the lag truncation parameter, 7A . For smaller values

of 7A the test is rather over-sized� this is expected given that the error term is now an ��E��

process� see Section 3.2. However, for 7A � e the pre-¿ltered test displays size properties

which are largely comparable with those of the bias-corrected tests /W and /WW, yet avoids the

rather bad over-sizing problem noted above for those tests when wW ' H. For 7A ' S, the

size properties of the pre-¿ltered test are largely comparable with those of the test based on

knowledge of the true breakpoint, /f, regardless of wW. Other things being equal, test power

declines as 7A is increased, again as would be expected. In practice all of the tests will need

to correct for serially correlated innovations and so this observation will not be con¿ned to the

pre-¿ltered tests. However, as with /f, the power of the pre-¿ltered test for a given value of

7A is little affected by the values of wW and k.

The results for case (ii), the CH test applied to data pre-¿ltered by u2 � E� � u�, are

reported in Table 5.3b for A ' �ff. In this case, pre-¿ltering the data appears to have very

little effect on the properties of the test. The size of the pre-¿ltered test in this case is very

close to the nominal level, even for 7A ' �, with power only slightly below that of the LMPI

test /f� For example, when j# ' f��c wW ' 2c k ' �*2 and 7A ' �c the power of OQ is

77.23% against 80.41% for /f. Increasing 7A tends, other things being equal, to reduce the

empirical rejection frequency of the pre-¿ltered test as would be expected.

Although not reported here we also investigated the effects of unattended unit roots on

the ¿nite sample properties of the bias-corrected tests, /W, /WW and /f of Section 3.1. Under

Mf G j2# ' f all of the tests were severely under-sized with an associated dramatic loss of

power under M� G j2# : f, relative to the results reported in Tables 5.1a-5.2b. Similar patterns

were observed for the OW, OWW, Of O
W
, O

WW
and Of tests, whose behaviour closely paralleled

those reported for the O test under unattended unit roots in Taylor (2003b). In contrast, the

pre-¿ltered tests, OQ and O
Q

, behaved very similarly to the results reported in Tables 5.3a and

5.3b.

To summarize, the reported simulation evidence has shown that in the case of unattended

structural breaks, by using the bias-corrected tests /Wc /WW even in ¿nite samples one can
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achieve almost the same size and power properties as the LMPI test /fc based on the

knowledge of the breakpoint, provided the magnitude of the break is not too large (wW � e),

and providing there are no unattended unit roots. Similar ¿ndings apply to the test OQ, based

on pre-¿ltered data, which has the added advantage of simultaneously proving an effective

remedy for the problem of unattended unit roots. Pre-¿ltering was found to be particularly

effective when testing against non-stationarity at the seasonal frequencies, where the pre-¿lter

is the simple ¿rst difference operator. We therefore recommend the use of pre-¿ltering as a

means of obtaining robust tests in the presence of unattended breaks and/or unattended unit

roots.

�� *HQHUDOLVDWLRQV

6.1 $WWHQGHG DQG 8QDWWHQGHG 6WUXFWXUDO %UHDNV

As explained in Busetti and Harvey (2001, 2003a), the KPSS and CH stationarity tests

of Section 2 are likely to be severely oversized if there are (attended) structural breaks in the

parameters associated with @�. Indeed, it is known from the work of Nyblom (1989) that these

statistics will diverge in such cases. Where the breakpoint is known and all attended breaks

occur at the same point in the sample, Busetti and Harvey (2001, 2003a) demonstrate that

constructing the KPSS and CH statistics as in Section 2 but replacing e|, | ' �c ���c A , by the

OLS residuals from the regression of +| on ~| and _|Ek�~�|, where _|Ek� is as de¿ned below

(11), renders these statistics exact invariant to the attended breaks, with a further modi¿cation

employed to remove the dependence of the limiting null distribution of the statistics on the

break location. However, these modi¿cations change the limiting null distribution of the

statistics from ���Er�� to ���E2r��� see Busetti and Harvey (2001, 2003a) for full details.

In what follows, we will refer generically to the tests based on the modi¿ed statistics of Busetti

and Harvey (2001, 2003a) as BH tests. When the breakpoint is not known Busetti and Harvey

(2003b) suggest estimating the break by minimizing, over all possible break-dates, the error

variance from the regression of +| on ~| and _|Ek�~�|, and then use the resulting estimate,

	k say, in constructing the BH statistic. Notice that this parallels our construction of bias-

corrected tests in Section 3.1.

It is straightforward to show that the BH tests outlined above will suffer from the

problems of unattended breaks and unattended unit roots in exactly the same way as did

the tests of Section 2� that is, under Mf G j2# ' f they will be under-sized in the presence
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of unattended breaks and will converge in probability to zero under unattended unit roots.

However, running the BH tests on appropriately pre-¿ltered data, in exactly the same way as

was proposed in Sections 3.2 and 4 in the context of the tests of Section 2, will simultaneously

treat the problems of both attended and unattended breaks (including the possibility of breaks

at all frequencies) and will also be robust against unattended unit roots. If there are no

unattended unit roots and both the attended and unattended breaks occur at the same point

in the sample, an alternative strategy is to compute the BH statistic using the residuals from

the regression of +| on ~| and _|Ek�~|, where k may be known or estimated. The ��� E2r��

limiting null distribution remains appropriate under each of these approaches. However, the

BH tests based on pre-¿ltering have a further advantage in that they will also be robust to cases

where the attended and unattended breaks are located in different points in the sample.

6.2 7UHQGLQJ 9DULDEOHV

The inclusion of a full set of spectral time trends ~�|| at the frequencies b 5 @� has the

effect of changing the asymptotic null distributions of the statistics presented in the previous

sections from standard Cramér-von Mises distributions into second level Cramér-von Mises

distributions with r� degrees of freedom� again see Harvey (2001) for representations of these

distributions. Appropriate critical values are tabulated in Taylor (2003a) and Nyblom and

Harvey (2000). In particular, an unattended structural break will imply the same asymptotic

bias factor 6Ekc wc j2� as in Proposition 1 but applied to this new distribution� again the bias

will disappear if the bias-corrected statistics of Section 3.1 or the pre-¿ltered statistic of Section

3.2 are adopted.

Busetti and Harvey (2003a) and Taylor (2003a) have shown that a modelled time trend at

frequency zero does not affect the asymptotic null distribution of the CH statistic for stochastic

seasonality. By extending their argument to our framework, it follows that modelled time

trends at the frequencies b 5 @2 will have no effect under the maintained hypothesis M� .

However, the presence of a neglected level shift in this case will change the bias term derived

in Proposition 1, but again the same asymptotic critical values will apply for the appropriate

bias-corrected and pre-¿ltered tests. Note that not only will the pre-¿ltered test statistics of

Section 3.2 be asymptotically unaffected by the presence of spectral time trends and level

shifts at the frequencies b 5 @2, but as pre-¿ltering reduces spectral time trends to spectral
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indicators, the spectral trends need not be included in the regression model for the pre-¿ltered

data. Finally, a neglected slope change at the frequencies b 5 @2 can be dealt with either by

computing bias-corrected statistics in the same spirit of Section 3.1 or by double pre-¿ltering,

i.e. by applying the operator u2 of Section 3.2 twice.

�� (PSLULFDO ([DPSOHV

As a ¿rst example we consider testing at frequency zero for a well-known series

characterized by a structural break in the seasonal patterns. Figure 7.1 shows the quarterly,

seasonally unadjusted, series of marriages registered in the UK from 1958q1 to 1982q4� the

source of the data is the U.K. Monthly Digest of Statistics. As emphasised in Busetti and

Harvey (2003a), there is a structural break in the seasonal pattern in this series, occurring in

the ¿rst quarter of 1969. This is seen very clearly in Figure 7.1 and was due to a change in

U.K. taxation laws, which effected a switch from winter marriages to marriages in the spring

quarter.

Busetti and Harvey (2003a) considered testing against stochastic seasonality for this

series, taking the known seasonal break into account. They found some evidence for non-

stationary stochastic seasonality. In the context of this paper we are interested in testing against

stochastic non-stationarity at frequency zero, given that there may be a seasonal structural

break and/or non-stationary seasonal cycles present in the data. Regressing the ¿rst difference

of the series on the complete set of spectral indicators and the break dummies at the seasonal

frequencies yielded a regression standard error ej ' H��2c a long run variance estimate,

computed using the ¿rst 8 residual autocovariances, eju-EH� ' .�bS and a break magnitudeew ' E��b�2Dc��f��ec 2��Sb��cwith associated |-ratios E��S�bSc�e�e�c ����S��. The structural

break then appears suf¿ciently big to affect the behaviour of the test at frequency zero if

computed without either bias-correcting or pre-¿ltering the data by u2 � E� n un u2 n u��.
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Table 7.1: Tests at frequency zero for UK marriages

SA =0 SA =1 SA =2 SA =3 SA =4 SA =5 SA =8 10% 5% 1%

O 0.534 0.523 0.577 0.569 0.428 0.364 0.279 0.347 0.463 0.739

Of 1.608 1.037 0.758 0.598 0.488 0.413 0.294 0.347 0.463 0.739

OW 1.535 0.989 0.731 0.577 0.472 0.399 0.285 0.347 0.463 0.739

OWW 1.600 1.031 0.762 0.601 0.492 0.416 0.297 0.347 0.463 0.739

OQ 2.349 1.212 0.823 0.628 0.511 0.434 0.280 0.347 0.463 0.739

Setting @� ' ifj, Table 7.1 reports the values taken by the KPSS-type statistic O and

the modi¿cations thereof proposed in Section 3: Ofc O
Wc OWW and OQ. These statistics were

constructed using the OLS residuals from the regression of the data on ~|. As in Section

5.2, we have used a Newey and West (1987) HAC estimator with a Bartlett kernel with lag

truncation parameter 7A . The 10%, 5%, 1% asymptotic critical values appropriate for each

reported test are provided in the last three columns of Table 7.1.

Given the empirical results in Busetti and Harvey (2003a) and the simulation results

of Section 5 one would anticipate that the KPSS-type statistic O will provide less signi¿cant

outcomes than bias-corrected and pre-¿ltered versions of O. From the ¿rst row of Table 7.1

we observe that the null hypothesis of stationarity around ¿xed seasonal effects is not rejected

using the O statistic at the 1% signi¿cance level for any value of 7A and not rejected at the 5%

level for 7A � e. On the other hand, the non-parametric bias-corrected statistic Of, which uses

knowledge of the breakpoint in the seasonal, rejects the null at the 5 % level for all 7A � e

and at the 1 % level for 7A � 2. The same inferences are drawn using the OWW statistic which

does not assume knowledge or existence of the breakpoint. The OW statistic behaves similarly

but rejects the null only at the 5 % level for 7A ' 2. The pre-¿ltered statistic OQ also provides

stronger evidence than O against the null hypothesis� here a value of 7A � � needs to be

chosen as pre-¿ltering, in this case, would turn an otherwise white noise error into an MA(3)

process. Overall, the bias-corrected and pre-¿ltered statistics yield more signi¿cant outcomes

than the KPSS-type statistic, O.

As a second example, which entails testing at the seasonal frequencies, consider Figure

7.2 which graphs the logarithm of real quarterly seasonally unadjusted U.K. consumers’

expenditure on tobacco goods for the period 1975q1 1996q1, the data obtained from the U.K.

O.N.S. macroeconomic database. Fitting the Basic Structural Model (BSM) of Harvey (1989,
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p.47) to these data yielded the following values of the hyperparameters6 (standard deviations

of the level, slope, seasonal and irregular components respectively): ��eHc f�f2c f��Sc fc each

multiplied by �f32. Notice, in particular that the hyperparameter associated with the level is

approximately four times as large as that associated with the seasonal component. The Box-

Ljung statistic with 9 lags and 6 degrees of freedom, 'Ebc S�c was 7.39, with R-value 0.29. The

extracted seasonal component is depicted in Figure 7.3. It is quite clear from both Figures 7.3

and 7.2 that the seasonal pattern in the data is not ¿xed through time. In particular, there is a

clear structural break in the seasonal pattern around 1980-1981.

Table 7.2 reports the values taken by the pre-¿ltered CH-type seasonal stability statistics,

OQ and O
Q

, together with the corresponding BH-type statistics, denoted by EK and EK,

discussed in Section 6.1. The former allow for unattended unit roots and unattended breaks,

while the latter also control for the possibility of attended breaks. It is clear from Figures

7.2 and 7.3 that attended breaks will be an important issue in this application. By setting

@� ' i�c 2j, we have considered joint tests against non-stationary stochastic seasonality at

either the harmonic seasonal frequency, b� � Z*2, or the Nyquist frequency, b2 � Z, or both.

We also report the corresponding individual frequency tests against unit roots at the harmonic

and Nyquist frequencies which obtain on setting @� ' i�j and @� ' i2j, repectively.

9 Imposing the restriction of a ¿xed slope did not alter the estimates of the remaining hyperparameters.
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Table 7.2: Tests at the seasonal frequencies for tobacco expenditure

V� 7A ' f 7A ' � 7A ' 2 7A ' � 7A ' D 7A ' H �fI DI �I

t�c 2� nQ 1.941 1.551 1.411 1.377 0.973 0.783 0.846 1.010 1.350

n
Q

3.672 3.194 3.091 2.940 2.020 1.553 0.846 1.010 1.350

�GQ 2.015 2.038 2.031 2.001 1.857 1.870 1.490 1.680 2.120

�G
Q

2.011 1.972 1.946 1.928 1.887 1.904 1.490 1.680 2.120

t�� nQ 3.270 2.145 1.547 1.295 0.949 0.722 0.610 0.749 1.070

n
Q

3.324 3.324 2.343 2.041 1.485 1.093 0.610 0.749 1.070

�GQ 0.898 0.904 0.841 0.795 0.747 0.779 1.070 1.240 1.600

�G
Q

0.951 0.951 0.887 0.858 0.814 0.845 1.070 1.240 1.600

t2� nQ 3.279 1.841 1.263 0.981 0.697 0.509 0.347 0.463 0.739

�GQ 1.198 1.211 1.008 0.919 0.799 0.717 0.610 0.749 1.070

The above statistics were constructed using the OLS residuals from the regression of the

appropriately pre-¿ltered data on ~|.7 In the case of the joint seasonal statistic the appropriate

pre-¿lter is u2 � E� � u�, since @2 ' ifj. For @� ' i�j, u2 � E� � u2� while

u2 � E� � u�E� n u2� for @� ' i2j. Graphs of the three pre-¿ltered series are provided

in Figures 7.4-7.6. Again we have used a Newey and West (1987) HAC estimator with a

Bartlett kernel and lag truncation parameter 7A . The 10%, 5%, 1% asymptotic critical values

appropriate for each reported test are provided in the last three columns of Table 7.2. Due to

the sizeable random walk component estimated in the BSM, we will only consider pre-¿ltered

tests against seasonal unit roots in this application. The bias-corrected tests of Section 3.1 are

clearly inappropriate.

The pre-¿ltered CH-type statistics reported in Table 7.2, which do not allow for attended

breaks at the seasonal frequencies, all provide a consistent body of evidence against the null:

there is only one case reported where the null cannot be rejected at the 10 % level, and in most

cases the null can be rejected at the 1 % level. In the case of the joint seasonal tests and the

tests against unit root behaviour at the harmonic seasonal frequency, the evidence from the

O
Q

statistics are stronger that from the OQ statistic. Overall, application of the pre-¿ltered

CH tests strongly indicates the presence of non-stationary behaviour at both the harmonic and

Nyquist seasonal frequencies.

: The reported statistics were constructed from a regression without a linear time trend since, as was noted
in Section 6.2, the ¿lter u5 will remove a linear time trend from the data. Although not reported here, we also
computed the pre-¿ltered tests with an unnecessary time trend ¿tted. This yielded much less evidence against the
null, reÀecting the usual argument on the reduction of the power of tests in the presence of additional nuisance
parameters.
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The BH-type statistics, EK and EK, reported in Table 7.2 allow us to investigate whether

the evidence found against seasonal stability provided by the OQ and O
Q

statistics in the series

of (log) tobacco expenditure is attributable to seasonal unit root behaviour or purely to the

deterministic break in the seasonal pattern. In computing these series we took the breakpoint

as unknown. In each case the breakpoint was estimated as discussed in Section 6.1, and was

identi¿ed at 1980q4 for the joint test and at 1981q1 and 1980q3 for the tests at frequencies

Z*2 and Z, respectively.

The joint BH-type test against unit roots at frequencies Z and Z*2 again provides

consistent evidence against the null of stochastic seasonal stationarity, allowing for seasonal

level shifts: both variants of the test reject at the 5 % level for all values of 7A reported. Neither

variant of the BH-type test against unit roots at the harmonic seasonal frequency Z*2 is able

to reject the null, even at the 10% level, regardless of the value of 7A . In contrast, the BH-

type test against unit roots at frequency Z points strongly towards seasonal unit root behaviour

at frequency Z, even on allowing for seasonal level shifts. Consequently, the tests which

explicitly allow for unattended unit roots and both attended and unattended breaks provide a

strong indication of unit root behaviour at the Nyquist frequency but no indication of unit root

behaviour at the harmonic seasonal frequency. In contrast, the standard tests would have led

the practitioner to conclude that unit roots were present at all of the seasonal frequencies.

�� &RQFOXVLRQV

In this paper we have investigated the effects of structural breaks on tests against

stochastic trend and seasonality. In contrast to the existing literature we have considered the

effects of structural breaks at frequencies RWKHU than those being subject to stability testing. We

have shown that such breaks alter both the large sample and ¿nite sample distributions of the

stationarity statistics, effecting a severe under-sizing problem in the tests with an associated,

often very dramatic, loss of power under the alternative. This effect coincides with what is seen

when there are unattended unit roots, but is in contrast to the case where there is a structural

break at the frequencies under test, where an over-sizing problem occurs.

We have suggested two methods of modifying the stationarity tests to remove these

problems. The ¿rst, appropriate, for the case of structural breaks, involves bias-correcting

the original stability test. The second, effective against both structural breaks and unattended
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unit roots, is achieved by running the stability tests on pre-¿ltered data. Both are shown to

recover the usual limiting null distribution, appropriate to the case where there are no breaks

or unattended unit roots. We have reported simulation evidence suggestive that the corrected

statistics perform well in practice, adequately correcting test size under the null, without

sacri¿cing test power under the alternative. Applications of the original and modi¿ed tests to

data on U.K. marriages and U.K. consumers’ expenditure on tobacco were considered. These

demonstrated the practical relevance of the problems discussed in this paper and the usefulness

of the remedial suggestions which we have made.
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3URRI RI 3URSRVLWLRQ �: Let e��c e�2 be the OLS estimators of the regression coef¿cients for

~�|c ~2| from (5). Using standard arguments it is not dif¿cult to show that, under Mf G j2# ' f,
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� e�� � ��fe�2 � �2f � kw
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|'� ~�|~ ��|c � ' �c 2� Note that 7�c 72 are diagonal matrices with either

� or �
2

on the main diagonal� precisely, they contain �3�& for the element(s) corresponding to

the &-th spectral regressor.

Then we can show that the partial sum process
[|

�'�
~��e� converges weakly to a

Brownian bridge, on scaling. Write the OLS residuals as

e| ' �| n ~ �2|w_|Ek�� ~ ��| Ee�� � ��f�� ~ �2| Ee�2 � �2f� �(21)

Since e�2 � �2f
R
$ kw and from the orthogonality relations between each pair of spectral

indicators we have from (21) that
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using the Functional Central Limit Theorem of Chan and Wei (1988). It then follows directly

from (22) and an application of the Continuous Mapping Theorem (CMT) that
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L�H� the numerator of the statistic / is asymptotically unaffected by the level shift.

The factor 6Ekc wc j2� in the asymptotic null distribution of / is due to a bias in

estimating j2� After taking the square of (21), it is easy to show that

ej2 R
$ j2 n KEkc w�c
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where

KEkc w� ' *�4
A<"

A3�
A[
|'�

E_|Ek�� k�2 E~ �2|w�
2
�

The stated result then follows directly, using an application of the CMT.

3URRI RI 3URSRVLWLRQ �: Let kf 5 Efc �� be the true breakpoint location parameter in the model

(3)-(11). As we want to compute regressions for the whole range of breakpoints, it is useful to

express the null model in terms of a breakpoint parameter k not necessarily equal to the true

value:

+| ' ~ ��|��f n ~ �2|�2f n _|Ek�~
�
2|w n �W| c(24)

�W| ' E�| n E_|Ekf�� _|Ek��~
�
2|w� �(25)

Let e|Ek� be the OLS residuals from regression (24) and denote by ej2Ek� '

A3�
SA

|'� e|Ek�
2 their sample variance. Note that (24) can be viewed as a regression with

omitted variables. Then, it is a standard result that ej2Ek� � ej2Ekf�c and thus, under Mf G

j2# ' fc ej2EkW� ��?u
k
ej2Ek� R

$ j2�

Then we have that under Mf G j
2
# ' f and for every k 5 Efc ��
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this follows from extending the result of Busetti and Harvey (2003a) on the null distribution

of / in the presence of modelled breaks in the trend (i.e. at frequency zero) together with the

argument of Proposition 1 on the presence of neglected level shifts, which in this case would

correspond to the term E_|Ekf�� _|Ek��~ �2|w�

It therefore follows directly from (26) and an application of the CMT that
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independently of k� Using the previous results for ej2EkW� and by applying the CMT, we obtain

that the right member of (27) is the asymptotic null distribution for both /W of (16) and /WW of

(17).

If no breakpoint actually occurs, under Mf, ej2EkW� is still asymptotically unbiased and

thus, by the result of Busetti and Harvey (2003a), the limiting null distributions of /W and /WW

are ���Er�� as before.

3URRI RI 3URSRVLWLRQ �: Under the conditions of Proposition 3, (24)-(25) is appropriate on

substituting �W| in (24) by E�| n ~ �2|E�2| � �2f� n E_|Ekf�� _|Ek��~ �2|w�. Again denote the

OLS residuals from (24) by e|Ek�, which therefore satisfy

e|Ek� ' �W| � ~ ��| Ee�� � ��f�� ~ �2| Ee�2 � �2f�� _|Ek�~
�
2|

�
	w � w

�
' �| n _|Ekf�~

�
2|w � _|Ek�~

�
2|
	w � ~ ��| Ee�� � ��f�� ~ �2| Ee�2 � �2|� c(28)

where e��c e�2 and 	w denote the OLS estimators of the regression coef¿cients for ~�|c ~2| and

_|Ek�~2| respectively from (24). Routine algebra establishes the result that
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impose the condition that w ' f in deriving (29)� cf. Remark 5. Consequently,
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i.e. the numerator of (6) remains �REA 2�, but when appropriately scaled differs from the

��� Er�� distribution by the presence of an additional �RE�� random variable. Using the

same development as in KPSS (p.168), it is straightforward to demonstrate that the long-run

variance estimators el�Ek� and e}Eb&(k� both diverge at rate �REA7A � for all k, and hence for

k ' kW, when j2V : f, regardless of w. The OLS variance estimator ej2Ek� is a special case

of the long-run estimator e}Ef(k� for 7A ' f and, hence, is �REA � for all k. Consequently,

/W of (16) and /WW of (17) are both �REA3�� while OW, OWW, O
W

and O
WW

are all �REEA7A �3��,
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their respective orders in probability differing through the respective divergence rates of the

variance estimators used in their construction.
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