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CONTEMPORANEOUS AGGREGATION OF GARCH PROCESSES
by Paolo Zaffaroni"

Abstract

In this paper we study the effect of contemporaneous aggregation of heterogeneous
GARCH processes as the cross-sectional size diverges to infinity. A complete statistical
characterization of the limit aggregate is provided under general assumptions on the form
and degree of heterogeneity of the micro GARCH processes. Implications on the memory
and on modelling issues of the limit portfolios are also developed. The key features which
characterize the results are the shape of the cross-sectional distribution of micro parameters,
their degree of cross-sectional dependence and the degree of cross-sectional dependence of
the rescaled innovations. These features provide a set of testable implications with respect to
the relationship between the micro and aggregate statistical properties.

JEL classification: C32, C43.
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1 Introduction

The autoregressive conditional heteroskedasticity (ARCH) model of Engle
(1982) and the generalized ARCH (GARCH) development of Bollerslev (1986)
represent the most popular approaches used to describe the conditional het-
eroskedasticity observed in many financial time series, within the class of
nonlinear time series models. The chief motivation underlying this popular-
ity is represented by their excellent widespread performance in fitting the
empirical distribution of financial asset returns, synthesized in a number of
well known stylized facts, see Bollerslev, Chou, and Kroner (1992).

Given that a large number of securities are traded in financial markets,
practical use of GARCH as models for asset returns has prompted the need
for analyzing the effect of contemporaneous aggregation (henceforth aggrega-
tion) of GARCH, in the sense of summing or averaging across assets. Nijman
and Sentana (1996) note that when GARCH models are fitted to returns on
individual stocks or to returns on two exchange rates, this implies a pre-
cise parametric structure for the return of the portfolio of those stocks, and
of the cross exchange rate respectively. In particular, Nijman and Sentana
show that the sum of a finite number of GARCH belongs to the class of weak
GARCH, defined by replacing the conditional expectation operator with the
linear projection operator within the definition of GARCH (see Drost and
Nijman (1993)). This has induced Meddahi and Renault (1996) to introduce
a more general class of volatility models which include both GARCH and
stochastic volatility (SV) models as particular cases, and establish the con-
ditions which ensure closeness under both temporal and contemporaneous
aggregation. These conditions are satisfied by weak GARCH but violated by
(strong) GARCH.

In general, it turns out that the number of parameters of the exact ag-
gregate model, based on n heterogeneous units, increases such as O(n), ex-
cept for particular cases of no-heterogeneity across parameters. For instance,
the sum of two GARCH(1, 1), with a different persistence parameter, yields
a weak GARCH(2,2), echoing well-known results on aggregation of linear
ARMA (Granger and Morris 1976). The same problem could arise when
modelling the return for individual assets. For instance, Ding and Granger
(1996) argue that a suitable volatility model should be viewed as the arith-
metic average of several heterogenous GARCH components, each character-
ized by a different degree of persistence of their conditional variance. Sec-
ond, according to certain models of speculative trading (see e.g. Tauchen



and Pitts (1983)), observed asset prices represent the arithmetic average of
traders reservation prices.

In this paper we propose a different approach, based on these considera-
tions. Given the aggregate

1 n
Xn,t = ﬁ ;.’Eiﬂg, t c Z, (1)

of n heterogeneous z;,;, each parameterized as a GARCH, we characterize
the asymptotic statistical properties of X, ; as n — oo. Therefore, this
paper complements the finite n results of Nijman and Sentana (1996) and of
Meddahi and Renault (1996), when focusing on GARCH.

The asymptotic limit as n — oo (in a suitable norm) of the aggregate X, ;,
henceforth the limit aggregate, provides a valid approximation to the exact
aggregate model. We establish the statistical properties of the limit aggre-
gate, under various assumptions on the form and degree of heterogeneity of
the z;;. For a sufficiently strong degree of cross-correlation between the z;,
the limit aggregate maintains the GARCH nonlinearity, uncorrelated levels
and correlated squares, conveying the basic features of a volatility model.
The coefficients of the limit aggregate have a semiparametric specification
which could be parsimoniously parameterized and the model estimated by
pseudo-maximum likelihood. As a by-product, a test for heterogeneity of the
micro parameters is obtained.

The limit aggregate could be used for forecasting volatility and, possibly,
employed as the basis for developing a model for pricing derivative securities
with stochastic volatility. This would be empirically relevant given that the
large majority of derivative contracts traded worldwide, such as options and
futures on stock and interest rate indexes, is based on an aggregate as the un-
derlying asset (such as e.g. the Standard & Poor’s 500 index or the London
Inter Bank Offer Rate). Alternatively, when considering single asset returns,
both the heterogeneous volatility components and the equilibrium interpre-
tations requires a large yet unknown n, and establishing the limit aggregate
is instrumental when testing specific intra-day trading models (Tauchen and
Pitts (1983) consider the case of homoskedasticity). Such equilibrium models
are coupled with the so-called mixture of distribution hypothesis, whereby for
the ¢-th asset the daily return is given by Z,Ilzl Z;y,, summing the intra-day
equilibrium return z;,. The sum is dictated by the mixing random variable
(r.v.) I which expresses the number of news occurring during the day. It



should be noticed, though, that the daily return so defined represents a tem-
poral aggregation of the process {x;;}, at random instants, and cannot be
formally interpreted as the outcome of contemporaneous aggregation, in the
sense of (1).

The characterization of the asymptotic properties of X, ;, as a by-product,
permits to address other, relevant, issues that induce interest for aggregation
of GARCH.

Since Ding, Granger, and Engle (1993), relatively recent empirical re-
search shows that the effect of shocks to the conditional variance of asset
returns is very persistent but is eventually absorbed as time passes, consis-
tent with the notion of long memory when theoretical autocovariances are
not summable. Several long memory volatility models have been proposed
to account for this recent stylized fact of asset return dynamics (see, among
others, Robinson (1991), Baillie, Bollerslev, and Mikkelsen (1996) and Robin-
son and Zaffaroni (1997) for ARCH-type models and Harvey (1998), Comte
and Renault (1998), Breidt, Crato, and de Lima P. (1998) and Robinson
and Zaffaroni (1998) for SV-type models) but its foundation is not yet well
understood.

It is well known that long memory can be obtained by aggregation of
heterogeneous ARMA processes, as noted in Robinson (1978) and developed
in Granger (1980). The results available for ARMA are not readily appli-
cable to a nonlinear time series framework except when ARMA or, more
generally, linear models represent a good approximation. This does not ap-
ply to GARCH as they exhibit correlated squares and uncorrelated levels
unlike linear processes. Indeed, in order to employ the linear aggregation
results in a GARCH(1, 1) setting, Ding and Granger (1996) consider a re-
cursive definition of the aggregate, different from X, ;. They show that,
under a Beta distributional assumption and a particular form of negative de-
pendence between the micro GARCH(1, 1) parameters, the limit conditional
variance is characterized by hyperbolically decaying coefficients, a necessary
condition for long memory. Recently, Leipus and Viano (1999) study the
asymptotic properties of the average of xit, where the z;; are ARCH(o0)
(see Robinson (1991)) with random coefficients. They show that long mem-
ory is ruled out under weak assumptions and that for GARCH(1,1) =;, the
limit of 1/n ) 7", 27, exhibits a summable yet hyperbolically decaying auto-
correlation function (ACF) under a set of assumptions analogous to Ding and
Granger (1996). We show that under no condition will the limit aggregate of
GARCH exhibit long memory squares as this is ruled out by the conditions

9



for covariance stationary levels of the limit aggregate. Moreover, except for a
particular case of negative cross-sectional dependence between micro param-
eters (examples of which are represented by Ding and Granger (1996) and
Leipus and Viano (1999)), which allows for hyperbolically decaying ACF,
the limit of Xfl’t will be characterized by an approximately exponentially
decaying ACF (imposing covariance stationarity).

Since the development of the arbitrage pricing theory (see Ross (1976)),
common shocks, represented by latent common factors, have played a key
role in asset pricing theory when facing a large number of assets, but there is
little doubt that idiosyncratic shocks are an important determinant of assets
dynamics. Suitable assumptions, typically expressed by uniform bounded-
ness of the eigenvalues of the idiosyncratic variance-covariance matrix (see
Chamberlain and Rothschild (1983)), however, allow neglecting idiosyncratic
shocks in arbitrarily large portfolios. This is a crucial prerequisite for any
method of estimation of the latent factors. GARCH factor models have
been increasingly popular in empirical finance since King, Sentana, and Wad-
hwani (1994). It is crucial to understand the conditions that ensure portfolio
full diversification of idiosyncratic-driven risk when GARCH are used to pa-
rameterize the idiosyncratic component of each asset so that Chamberlain
and Rothschild’s (1983) results could be applied. Assuming that X, ; repre-
sents the aggregate of the idiosyncratic component of the factor structure, it
turns out that the bounded eigenvalue condition could be relaxed although
bounded variance and independence of the z;; will not guarantee that X, ,
converges to its unconditional expectation in mean square. Formally, we show
the fastest possible rate at which the maximum eigenvalue could diverge to
infinity, consistent with the notion of factor structure. On the other hand,
for certain shapes of the cross-sectional distribution of the micro parameters,
still consistent with covariance stationary z;;, mean square convergence of
Xp, fails, in disagreement with the definition of factor structure.

The plan of the paper is as follows. In section 2 we focus on aggrega-
tion of ARCH(1). Definitions and assumptions are introduced in section 2.1.
Sections 2.2 and 2.3 focus on independent and common rescaled innovations
respectively. Section 3 presents a number of generalizations, including aggre-
gation of GARCH(p, ¢), and discusses at lengths the memory implications.
Section 4 describes the implications of these results for dynamic GARCH
factor models. Concluding remarks are in section 5. All results are formally
stated in theorems and the proofs reported in appendix.

10



2 Aggregation of ARCH(1)

In this section we focus on ARCH(1) micro heterogeneous units z;;, when
both the parameters and the rescaled innovations are potentially varying
across units

Tit = Zit Oit, 1€ N, T € Z, (2)

with
2 _ 2
Oip = Wi + %5, 4, Q.5 (3)

where a.s. means almost surely. We assume that the a; and the w; are
independent and identically distributed (i.i.d.) draws from a bivariate distri-
bution with support included in ]Ri. It should be noted that a; and w; are
in general cross-sectionally dependent for i=j. The case of no-heterogeneity
across parameters, e.g. «; = «, represents a simple particular case of our
setting and will not be discussed.

Assuming random coefficients represents a particularly suitable way to
describe heterogeneity across an arbitrary large number units. Despite the
interpretation of the z;; as returns for assets with random pay-off, note that
random coefficients do not represent an additional source of risk. In fact, w;
and «; are once and for all drawn when asset 7 is originally priced, and could
be consistently estimated using a span of data of the return for the ¢-th asset.

2.1 Definitions and assumptions

A key ingredient of the impact of aggregation is represented by the type of
cross-sectional dependence of the rescaled innovation z;,. We will consider
two cases. In one the z;; are perfectly independent across units, expressing
a source of time-varying heterogeneity, and, in the other they are perfectly
correlated across units. For the sake of clarity, we will write z;;, = €;; and
zi+ = U in the two cases. We assume throughout this paper that ¢;; and u,,
called respectively the idiosyncratic the common rescaled innovation, satisfy
the following assumption I without stating this explicitly.

Assumption I

(i) The u; are i.i.d. acrosst € Z and the €;4 are i.i.d. acrosst € Z and i € N,
satisfying E(u) = Eei) = 0,0 < B w|") = E(| e [') = pir < 00, (r =
1,2,4) and py = Elog ef’t = Elogu? is well defined.

(i) The {uy, €4} and the {w;, a;} are mutually independent.
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Remarks.

(a) We will mostly focus on the case when puy = 1 and py = 3 which are
the usual normalizations considered for estimation of GARCH. Indeed, these
normalizations will be made for simplicity’s sake and can be relaxed in most
circumstances without harm. Also, generalizing I to allow for heterogeneity
across moments of the idiosyncratic innovation such as E(|€;;|") = 1) has
no substantial impact.

(b) The i.i.d.-ness assumption implies that the micro processes are strong

GARCH (Drost and Nijman 1993, Definition 1).

Henceforth ~ denotes asymptotic equivalence: a(z) ~ b(x), as © — xy,
when a(z)/b(xz) — 1, and ¢, C' bounded positive constants (not always the
same). Given real 7,7 with 0 < 7,17 < oo, we assume that the ARCH(1)
coefficients satisfy the following.

Assumption II(v)

(i) The w; are i.i.d. with 0 < w; almost surely and E(w?) < oo for any i € N.
(i) The «; are i.i.d. with absolutely continuous distribution in the interval
[0,7), depending upon the real parameter b, (b, > —1), whose density, de-
noted by B(-;b,) behaves

B(ay;by) ~ C (v — o), ;=T (4)

Remarks.

(a) Part (i7) describes a mild semiparametric specification of the density
function of the «;, only imposing its behaviour in a neighbourhood of . The
constraint b, > —1 is the obvious integrability condition. Indeed, it can be
alternatively expressed as

B(ai; by) = D(a) (v — )",

for any integrable function D(-) defined on [0, v] with D(a) ~ C, as « — v~
An extremely wide variety of parametric specifications B(-;8) for§ € © C RP
is allowed for by (4).

(b) (4) could be generalized to

1

Ty

B(ai;by) ~ C (7 — )" L ); (5)

where L(-) denotes a slowly varying function, defined by L(tx)/L(t) — 1
as t — oo for any x > 0 (see Zygmund (1977)). Qualitatively, considering
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(5) has no consequence on the results and thus, for simplicity’s sake, we will
assume throughout this paper that L(-) = 1.

(c) Nelson (1990) shows that the probabilistic properties of GARCH(1,1)
crucially depend on whether (for an arbitrary unit i) w; is greater or equal
to zero. (i) rules out the possibility that o7, = 0 almost surely for all units
satisfying w; = 0.

(d) We are focusing, by and large, on the case v < 1, implying covariance
stationary w;;. This is much stronger than considering strictly stationary
xit, defined by o; ePloa(z) < 1 (Nelson 1990, Theorem 2), which reduces to
a; < 2€" for Gaussian z;;, (E = 0.577... is the Euler constant). We will
comment only briefly on the possibility of a;; > 1. In fact, this might induce
explosive behaviour for the limit aggregate, e.g. in terms of conditional
moments, hiding relevant implications of the aggregation mechanism.

Assumption ITI(n)
The w; and «; satisfy

wi = W; | 1= ppey |7, (6)
for an 1.4.d. sequence W;, mutually independent from the «;, with 0 < @;
almost surely and E(0?) < oo for any i € N.

Remarks.

(a) Case n = 0 implies that the w; and the «; are mutually independent.
When 1 > 0, we impose negative cross-sectional dependence between the w;
and the «;. The case of (local) positive dependence as well as of negative
dependence, with the w; having support bounded away from zero, will not
be discussed, as the same results obtained for case n = 0 apply.

(b) Assumption I11 (1) could be substantially weakened to

E(wi | ai) ~c |1 = poa;|", oy — 7,

without specifying the degree of dependence when «; is well below v, but we
consider (6) for simplicity’s sake.

(c) Case 1 = 1 represents a typical reparameterization used when considering
univariate ARCH models for estimation. It implies, when psa; < 1, that
E,(27,) is independent from the ;. However, in a multivariate framework
such as ours, it has strong implications for the aggregation mechanism as, in
general, does the degree of cross-sectional dependence across parameters.

We will denote, for clarity’s sake, the aggregate (1) by ¥X,,; in the id-
iosyncratic case (z;; = €;;) and by YX,,, in the common case (z;; = u).
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Note that no distinction needs to be made between stock and flow variables
unlike the temporal aggregation case, see Drost and Nijman (1993).

Some of the results of this paper (such as the behaviour of the conditional
variance of X, ;) are stated as exact rates of convergence or divergence as n,
the cross-sectional dimension, grows. Therefore, we do not approximate sums
(averages) with integrals but formally establish the rate at which the statistic
of interest grows with n. This implies that the results are not linked to the
definition of the aggregate as an arithmetic mean (cf. definition of X, ;) but
they apply to the sum " | z;, or to any other affine transformation such
as ¢, + d, X, for given deterministic sequences {c,,d,, n € N}. Dealing
with exact rates is often a necessity as, say, the unconditional variance of
X, could be unbounded, although X, ; converges to zero (in a suitable
norm). Other results (e.g. asymptotic distribution) necessarily requires an
appropriate normalization (such as d, = y/n). These results would still
provide a useful approximation when different normalizations are imposed
by the problem at hand.

From now on, we will denote the conditional expectation and conditional
variance operators, given the GARCH coefficients, by FE,(-) and var,(-) re-
spectively. —,, —, and —4 denote convergence in probability, in 7th mean,
and convergence in the sense of the finite-dimensional distribution, respec-
tively.

2.2 Idiosyncratic innovations

Within this section, we assume that po =1, py = 3 and v < 1. The aggregate

n

1
E
Xn,t = ﬁ E €it0it,

i=1
is given by a sum of purely idiosyncratic components with af’t given in (3).
Simple calculation yields

n

1 w;
Varn(EXn’t) = Z (7)

1—q;
i=1 ¢

Theorem 1 Assume [I(7y) and IT1(n). As n — oo:
Set n = 0.
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(t)When v < 1, uniformly in b,,
Varn(EXn,t) — 0, a.s.

(ii)) When v =1,
if by > 0, then a positive constant C' exists such that a.s.

Varn(EXn’t) ~Cn 1
if by = 0, then a positive constant C exists such that a.s.
Varn(EXn,t) ~ Cn 'logn;
if by <0, setting 6 = by + 1, a.s.
Varn(EXn’t) ~ 2 Ss,

with S5 > 0(0 < 6 < 1) a.s., where S5(0 < § < 2) denotes a d-stable r.v.
with zero location parameter *.

When n =1, (i) applies for any v <1 and any b,.

Remarks.

(a) Let us consider the case of independent w; and «a; (n = 0). When
by > —1/2, one gets the usual result by which #X,,, converges to zero in
mean-square as n tends to infinity. However, for b; < —1/2 we obtain the
rather striking result that the variance of EXn,t tends to infinity at rate ns—2
a.s., violating the usual result on the vanishing importance of idiosyncratic
risk at the aggregate level.

(b) When —1/2 < b; < 0, the unconditional second moment of the aggregate
is infinite even though ”X,, ; goes to zero in mean-square. Therefore, mis-
leading information would have been obtained when looking at unconditional
moments rather than considering exact rates of conditional moments.

(c) When «; = « for any i, that is, when one allows only for time-varying
heterogeneity through the €, ,, it easily follows that X, ; — 0 in mean-square
for any v < 1.

*Using Samorodnitsky and Tagqu (1994) notation, Sy refers to Ss(o, 3,0) for real pa-
rameters o > 0 (scale parameter) and —1 < 8 < 1 (skewness parameter). We leave the
values for o, 8 unspecified and make them explicit only when needed.
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(d) When v > 1, including the case of micro IGARCH(1), var,(*X,,,) is
unbounded and Theorem 1 does not apply. These cases are briefly discussed
in section 3.

(e) When n = 1, PX,, , converges to zero in mean-square as n tends to infinity
for any v and any shape of the distribution of a;. We could easily extend
the results to the case of an arbitrary non-negative n (see Lemma 1 in the
appendix) but, for clarity’s sake, we focus only on the case of 7 equal to zero
and one.

The PX,, , are martingale differences for any n whereas, due to the ARCH
nonlinearity, the squared aggregate process

n

1
E E 2 §
Yn,t = ( X?’L,t) = - 6i,t€j,tai,t0j,t7
n

ij=1

will exhibit non trivial memory properties. As shown by Engle (1982),
bounded fourth moment for the micro ARCH(1) processes requires 3a? be
smaller than 1. However, when the «; are bounded below 1/\/5, the EXn’t
converge to zero in mean-square for any value of b, by Theorem 1. Thus, by
Slutsky’s theorem, the ¥V}, ; converge to zero in probability, implying that
looking at the memory properties of the squared aggregate is irrelevant. We
summarize this result as follows.

Corollary The covariance stationarity condition for ®Y, , (v < 1/v/3) im-
plies that
BY, s — 0,

as n — 00, uniformly in b..

To investigate the effect of relaxing v < 1/v/3, we study the asymptotic
distribution of the X, ;, using the suitable normalization suggested by The-
orem 1. Given the possibility of asymptotic nonstationarity, one can also
look at the behaviour of the aggregate of the truncated processes, obtained
setting ;s =0 (i =1,...,n) for all s <0:

Tit = €404 t,

with



yielding
n,t — n 4 - R
1=

(8) is equivalent to the conditional model of Nelson (1990, eq. (6)) with the
initial distribution of &7, equal to the Dirac mass at zero. Let us set its
conditional variance equal to

n

- - 1 1—at
Vin = n EXn = 5 { .
: vary,( t) — ;w e

Theorem 2 Assume [I(7y) and IT11(n). As n — oo:
Set n = 0.
(i) When v < 1, uniformly in b,, or when v =1, with by > 0,

\/ﬁ EXn,t —d 52(t)a

where the So(t) are uncorrelated and distributed like a normal r.v. N(0,V)
with V= E(w/(1 — a)).
(11) When v =1, with by <0,

Vi Xy 4 Solt), 9)

where the Sy(t) are uncorrelated and distributed like a normal r.v. N(0,V;)
with V; ~ et™ as t — oo.
Assume further po < 0 and E[maxys; []*_, €, ] < oo foranyt € z,i€N.
Then

n'TE T X —q Ss(t), (10)

setting 0 = 2(by + 1), where the Ss(t) are distributed like a J-stable r.v.
(0<0<2).

When n =1, (i) applies for any v <1 and any b,.

Remarks.

(a) This result has sound implications. When the micro processes are mu-
tually independent, the (suitably normalized) aggregate will converge to a
d-stable process, Gaussian in the stationary case (b; > 0). Hence, the ARCH
parametric structure characterizing the micro processes is lost through ag-
gregation as the limit aggregate is not a volatility model. This is caused
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simply by the combination of (2) which imposes uncorrelatedness, and the
independence of the ¢;; (and of the ;) which permits the standard central
limit theorem (henceforth CLT) for i.i.d. variates. Indeed, the result still
holds also when the €;; or the a; are cross-sectionally correlated, as long as
the degree of dependence is not too strong so that the CLT applies.

The limit process satisfies FS;5(t) Ss(v) = 0 for any ¢t # v and any 0 <
§ < 2, although note that E(S;(¢))? is unbounded for § < 2. When § = 2,
this implies independence of Sy(t) and Sz(v) when ¢ # v whereas this is not
guaranteed when § < 2.
(b) In the nonstationary case (by < 0), we have illustrated the asymptotic
distribution of both the non-truncated ”X,, ; and truncated aggregate Ef(n,t
as n goes to infinity. Interestingly, these results can be viewed as sequential

limits of the truncated aggregate Ef(n,t normalized by \/‘T/t’n, as t and then
n go to infinity and vice versa. See Phillips and Moon (1999, Appendix
B(1)) for the probability arguments necessary for sequential asymptotics.
Theorem 2 shows that only in the stationary case will the limit distribution
and the rate of convergence be the same. On the contrary, when b; < 0, both
the rate and the asymptotic distribution will depend on the order at which
n and t go to infinity.

In fact, consider first the case where ¢ and then n go to infinity. Ef(n’t
converges in distribution to X, ; and th converges a.s. to (7) as t — oc.
Therefore, letting first ¢ go to infinity, one obtains precisely the left hand
side of (10), the non-truncated normalized aggregate, except for the random
denominator, of order nﬁ_l, by Theorem 1. Finally, by letting n — oo, the
limit distribution will be S(;(t)/\/STg when b; < 0 (recall that the Ss, defined

in Theorem 1, are positive a.s., unlike S;(¢)), combining (10) and Theorem 1.

Let us now consider the other type of sequential limit, letting first n and
then ¢ go to infinity. When b; < 0, the first limit yields, in distribution,
Sy(t)// V4, equal to the right hand side of (9) but with \/V; in the denomina-
tor. Then, writing Sy([rt])/v/V;, for any 0 < r < 1, and letting t — oo, one
easily obtains a sequence of 1.vs, calling them Sy(r) (0 < 7 < 1), normally
distributed N (0,7 %) and mutually independent for any r # 7’

Phillips and Moon (1999), in a general multi-index framework, discuss
the relation between sequential and joint limit and establish conditions under
which they give equivalent results. The stationary case, b; > 0, represents a
particular example of those results whereas the nonstationary case, by < 0,
represents a situation where their conditions do not apply and, in fact, the
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outcome of sequential asymptotics will depend on the order at which n and
t go to infinity. (Taqqu, Willinger, and Sherman (1997) provides another
example where the equivalence between sequential and joint limits fail.)

(c) There is a strong analogy of Theorem 2 with certain results of temporal
aggregation of GARCH. When the x; are univariate ARCH(1), given by
(2) and (3) for non-random w; = w, a; = « and setting €;; = € (assume
they satisfy I with uy = 1), Diebold (1988) shows that .., z,/VT —4
N(0,w/(1—a)), as T — oo, when a < 1. This result could be generalized to
the case of a > 1, exploiting recent findings on the strong mixing property
and regular variation of the distribution of z; (see Davis and Mikosch (1998)).
Let § satisfy the equation E(au2)% =1 (see Davis and Mikosch (1998, Table
1)), yielding § > 2 when o <1 and 0 < § < 2 when 1 < a < exp(—Eloge?).
Then, setting ¢’ = minlé, 2], ZZ;I xt/Téi’ converges in distribution to a ¢'-
stable r.v., as T'— oo (Diebold (1988) results is re-obtained for §' = 2).

2.3 Common innovations

In this section the aggregate will be denoted by
U n
v nt = — Oit-
n 4
=1

Due to the dependence between o0;, and o0;;, induced by the u,,

1 n
Varn(UXn,t) 2 Z By (0i405.4), (11)

ij=1

whose behaviour is described as follows. We assume ps = 1, gy = 3 and
v < 1 unless we specify differently.

Theorem 3 Assume [I(7y) and IT1(n). As n — oo:
Set n = 0.
(i) When ~ < 1, uniformly in b, for some constant C,

varn(UXn,t) —C, a.s.

(11) When v =1,
if by > —1/2, a.s.
var, (Y X, ;) ~ C;
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if by = —1/2, then positive constants ¢, C' exist such that a.s.
c(logn) < var,(YX,,) < C (logn)?
if by < —1/2, setting § = —(by +1)/by, a.s.
var, (Y X, ;) ~ ns=! Ss,

with Ss > 0(0 <0 < 1) a.s.
When n =1, (i) applies for any v <1 and any b,.

Remarks.
(a) The variance of the Y X,, , is always bounded away from zero for any values

of b,. However, when b; < —1/2, the variance explodes asymptotically, at
2b1 41
exactly the same rate as for the variance of the £X,, ;, equal to n”~ e

(b) The asymptotic distribution of the aggregate Y X,, ; is not degenerate even
in the stationary case. This suggests looking at the asymptotic behaviour
of the square aggregate VY, ; = (VX, ;)% Recall that for v < 1/4/3 each
micro ARCH(1) has bounded fourth moment. By using arguments similar
to Theorem 3, it turns out that the the limit of UXnyt has bounded fourth
moment when v < 1/v/3 or v = 1/v/3, b, > —3/4. In contrast, the limit
aggregate exhibits unbounded kurtosis when v = 1/v/3 with b, < —3/4.
Thus, the distribution of the limit aggregate could exhibit fatter tails than
the ones of the distribution of the micro ARCH(1) processes.

We now characterize the asymptotic distribution of the VX, ;. Set, for

any real k,
n ~
o =E[l(1 - )| of], o= E[&f].

Let us relax the assumption that pus =1, uy =3 and v < 1.

Theorem 4 For any n € N, there exist processes {X, ,, Xn4t € Z} such

that

n,t?

yn,t] < UXM <max[X, ,, X, a.s., (12)

min[ X Xots

n,t1

satisfying the following.
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(1) Assume 11 () and I11(n) and set 6 = b, + n/2.
Asn — oo, when max[fy%ul,vm] <1 or max[fﬁul,yug] =1,b,+n>1,

1
2

00 k

Xt =1 Xy = wy PL (Z o5 Hu?—j> (13)
k=0 j=1
00 k

G (z o 11 |utj|) | )
k=0 j=1

(ii) For any real positive v, X, , and X, are bounded (in modulus) a.s.,
strictly stationary and ergodic when yet® <1, uniformly in b,. When el =
1, it is required that 6 > —1/2 and 6 > 0 for X,, , and X, ; respectively.

(i1i) The asymptotic covariance stationarity conditions of X Yn’t and
YX,., for levels and squares, coincide (c¢f. Theorem 3 and second remark).
Moreover, for the limit squares, when \/pyy < 1 or when \/ugy = 1,9 >
—3/4, as h — oo,

COU(KU Xﬂ»h) ~C (:U’Q,Y)h f'y,\/lﬂfl;é(h)a COU(YM Yt-l-h) ~ CI (/‘LQ,Y)h ffy,\//ﬂfl;ﬁ(h)a

settin
J h—2(b+1) < ’YI
bl I (15)

f%’Y/;b(h) - { h_Q(b‘i'l)(]_ + h_(26+1))’ ¥ = ’yl.

Remarks.

(a) We have characterized the limit of the ‘envelope’ processes X, and X,
which appears relatively tractable, rather than looking directly at the limit
of the UXnyt. The ‘envelope’ seems sufficiently tight as X, and X, share the
same covariance stationarity condition up to the fourth order, as well as the
strict stationarity condition for nearly all circumstances. In contrast, the
limit of YX,,;, has a very cumbersome expression, as stochastic expansion
arguments (e.g. Hermite expansions for Gaussian u;) must necessarily be
used. This would make uneasy practical use, as e.g. for estimation of the
limit aggregate.

(b) By means of the results developed in this paper, the exact asymptotic
properties of 1/n 3 " x?’t can be easily characterized without using enve-
lope arguments nor stochastic expansions, in contrast to the aggregate U X,, ;.
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However, it would represent a poor approximation for the square of the ag-
gregate, UXﬁ’t, as for instance they are characterized by different stationarity
conditions.

(c) The strong degree of cross-sectional dependence of the z;;, induced by
the u;, implies that standard CLTs fail, so that the limit distribution of the
aggregate is not Gaussian. In fact, both X, and X, are uncorrelated but
not independent, displaying dynamic conditional heteroskedasticity. Note
that strict stationarity of the micro ARCH(1) (cf. remark (d) of I1(7y)) does
not always guarantee that the limit aggregate is well defined. In fact, when
veto =1, the limit aggregate could be unbounded with probability one for a
sufficiently dense distribution of the a; near v =1/et0 > 1.

(d) In contrast to the case of aggregation of GARCH processes for finite n,
considered in Nijman and Sentana (1996), it turns out that the asymptotic
limit of the aggregate will not belong to the class of weak GARCH. In fact,
under I1(~) and I11(n),

b ~ ¢k k_(b7+"/2+1), k — oo, (16)

(cf. (32) in the appendix). Thus, the ¢ cannot be obtained by expanding the
ratio of finite order polynomials in the lag operator L such as a(L)/b(L) =
(I+aL+...4+a,L%)/(1+bL+...+0b,LP) for given integers p,q > 0 and
constants ai,...,aq, b1,...,b, where a(L),b(L) have roots outside the unit
circle in the complex plane (see definitions 1,2 and 3 in Drost and Nijman
(1993) for strong, semi-strong and weak GARCH). Note that the orders (p
and ¢) of a(L) and b(L) can be arbitrarily large and yet their ratio be of
finite order. However, the meaning of (16) is stronger implying that the
(multivariate) Markovian structure of GARCH is lost by aggregation, as
n — oc.

(e) By suitably parameterizing the ¢y, say ¢, = ¢(0) for some p x 1 vector
0, we can easily estimate the models induced by (13) and (14) by a pseudo
maximum-likelihood approach as follows. Consider X,. Given a sample
X = (X4, ..., Xp)' of data with sample size T, set us = 1 and

Usg =0, s<0,
_ Xy
Uy - )
Z
_ Xo
Uz - )




X3
oy (146303 + Gi0)3)

<
w
I
=

and

Setting u = (uq,..,ur) and given the Jacobian

det[aXl Hat’l,
t=1

det[A] indicating the determinant of a square matrix A, the conditional log
likelihood can be easily obtained, e.g. for Gaussian uy,

X2
logpdf (X) = ——log (2m) Zlog oy —

o2
tlt

Therefore, by substituting o, with 5;(), one gets the maximum likelihood
estimator (MLE) of (p%,a) and, more generally, the pseudo MLE if the u;
are not Gaussian. A formal development is beyond the focus of this paper
but, under suitable regularity conditions, the MLE will be characterized by
the usual asymptotic properties.

(f) When parameterizing the ¢, one can allow ¢g, ¢ and ¢, to be free pa-
rameters, letting ¢ = ¢x(0) only for £ > 3. This implies that one can
perform a test of heterogeneity of the a; by means of estimation of the limit
aggregate model based on aggregate data. In fact, a; = a under the hypoth-
esis of no-heterogeneity implying

Po $2 = ¢1, (17)

which can be easily verified using estimated values of ¢g, ¢; and ¢5. Note that
when 1 = 0, then ¢y = 1 yielding var(a;) = ¢ — ¢?, zero when (17) holds.
This test represents an extension of Lewbel (1994) test for heterogeneity of
micro ARMA.
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(g) The limit processes X,, X, differ from all the ARCH-type long memory
volatility models introduced in the relevant literature, in particular from the
ARCH(oco) of Robinson (1991). Moreover, imposing covariance stationary
squares (y < 1/y/pg and b ;-1 > —3/4), implies short memory for the limit
process, with an near-exponentially decaying autocovariance function (ACF).
The reason is that, for ARCH(1), the set of parameter values consistent
with bounded fourth moment, a;,/p4 < 1, is strictly smaller than the set of
parameter values consistent with bounded second moment, a;uo < 1, given
that p1o < \/f14 (the u? are not degenerate). Relaxing the constraint py = 3
is irrelevant. In fact, setting ps = 1 permits v = 1, but then the ACF,
evaluated at lag h, of the limit aggregate is O(ub) as h — oo, where py < 1.
Note that the degree of cross-sectional dependence between the a; and the
w; is irrelevant for the memory properties of the squared limit aggregate.

3 Generalizations

3.1 Aggregation of GARCH

Relevant implications arise with respect of the memory properties of the
squares of the limit aggregate when considering GARCH(p,¢) with p >
0. These implications are ruled out by ARCH(1) and, more generally, by
ARCH(q) structure.

We now discuss aggregation of micro GARCH(1,1). Let

Tit = ZitOity, 1 EN, T €L,

0l = Wi+ 0xy | + fior_y, a.s. (18)
Given real 0 < @, /3 < oo, assume that the a;, f3;, w; satisfy the following

assumptions, replacing I1(y) and I11(n).

Assumption IV(a, 3)

(i) The w; are i.i.d. with 0 < w; almost surely and E(w?) < oo for any i € N.
(ii) The o; and the [3; are mutually independent for any i,j € N.

(11i) The o; and the [3; are i.i.d. with absolutely continuous distribution in
the interval [0, &) and [0, B), respectively, depending upon the real parameters
ba,cs > —1, whose densities behave,

B(ag bg) ~ C(a— )", a; = a, (19)
B(Bi;c5) ~C(B—B:)%, Bi— B . (20)
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Assumption V(7))
The w;, o and [; satisfy

wi =w; | 1 — pacyy — B |, (21)

for ani.i.d. sequence W;, mutually independent from the o; and B;, with 0 < &;
almost surely and F(&}) < oo for any i € N.

Remarks.
(a) Set

T = (O!i -+ BZ), (22)
v, = (CYZ' + 5;)2 + 2&? = 7'('2-2 + 2&?. (23)

It turns out the statistical properties of the aggregate in levels X, ;, and
squares Xi’t, could be characterized by the shape of the cross-sectional dis-
tribution of the 7; (the so-called ‘persistence’ parameter) and of the v;, re-

spectively. In particular, for finite n, covariance stationary levels requires
T =P+ pa <1,
and covariance stationary squares
7= (B+ ho@)’ + (g — p)a® < 1.

Asymptotic covariance stationarity, as n — oo, will also require that the dis-
tribution of the 7; and the v; be not too dense around 7 and ¥ respectively.
(b) Mutual independence between the a; and the (; is assumed for simplic-
ity’s sake. Below, the implications of cross-sectional dependence are explored.

Based on these assumptions, the results of section 2 could be generalized
to the case of aggregation of GARCH(1,1). Details are skipped for easy
exposition and we only develop the more delicate extension of Theorem 4.

Theorem 5 For any n € N, there exist processes {Ymt, X
that

t € 7} such

n,t’

min[Yn,taimt]SUXn,tSmaX[Yn,tain,t]a a.s.

satisfying the following.
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(i) Assume IV (&, f3) and V(n) and set § = min[bs, c5] + n/2.
As n — oo, when max [d%,ul + B%,@,uz + B} <1,

Xn’t —1 Xta Xn,t —1 Xt-

When max [@%ul + B2, Qs + B] = 1, min[ba, cz]+n > 1 is needed (see (45)
and (46) in the appendiz for the definition of {X,, X;,t € Z}).
(ii) For any real positive &, 3, X, and X; are bounded (in modulus) a.s.,

strictly stationary and ergodic when (ae'?)z + f2 <1lor (ae?)s + f2 =
1,0 >0, for X; and when ae's +08<1or ae's +5=1,6>-1/2, for X,.

(i1i) The asymptotic covariance stationarity conditions are the following. For
Xy T®<lorm=1,0>-1/2, forlevels and v < 1 or v =1, § > —3/4,
— 1 _
for squares. For X, ,, ™' = d%,ug + ﬁ% <lorm=1,0>—1/2, for levels
S
and V' = d%ui + ﬂ% <lorv=1,6>—-3/4, for squares.
For the limit squares, under those conditions,
0 < cov(XF, X7,,) < C7" for5(h),
0 < cov(X;, Xipp) < C' 7" for 1.5(h),
as h — oo, with f,.,(h) defined in (15).

Remark. Formal analysis of aggregation of heterogeneous higher order
GARCH(p, q) gets more elaborate. Reparameterizing GARCH(p, ¢) as GARCH(m, m),
for m = mazxlp, q], yields

m
ol =wi+ Z(ai’kzit,k + Bik)0ry gy .5
k=1
It follows that the limit levels could be characterized by looking at the cross-
sectional distribution of the m; = > (v, ;j + ;) and for the squares by the

j=1
cross-sectional distribution of the v; = 377", (77, + 207 ).

Having developed the effect of aggregation for GARCH(1, 1), it is useful
to compare certain aspects of our results with previous related ones. Let
us first summarize the findings of Ding and Granger (1996) and Leipus and
Viano (1999).
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Ding and Granger (1996) consider

3 o
XnD’tG = U,t (Z wiTZ?,t)’ Z U)i = ]_,
i=1 i=1
2 2 DG 2 2
Tit =0 (1—a;— )+ O‘i(Xn,tq) + BiTi,th

where p; = 1 and o? is a constant parameter. Assume that I holds. Note
that X" differ from X, in (1) and, moreover, that the 77, are not univariate
GARCH(1, 1), given by (18). This special structure allows Ding and Granger
to apply Granger (1980) linear aggregation results, suggesting that, as n —
00, Y wT}, converge (in some norm) to a special case of Robinson (1991)
ARCH(oc), with hyperbolically decaying coefficients. It is assumed that the
B; have a Beta distribution, over [0, 1], and that «; = o (1 — ;), where the
a; are independent from the f; and have an unspecified distribution. Note
that E(a; | i) = E(o)(1 — f3;), a case of perfect negative cross-sectional
dependence.
Leipus and Viano (1999) study the asymptotic behaviour of

1 n
LV _ 2
Yn,t - E L5 t5
i=1

where the z;, are random coefficients ARCH(c0), and establish a sufficient
condition for covariance stationarity of the limit that rules out long memory,
in the sense of imposing absolute summability of the ACF. Moreover, they
provide an example with GARCH(1,1) x;,; (cf. (18)) where the ACF of the
limit of ¥;1) is hyperbolically decaying. They assume o; = f;(1 — ;) and
a Beta parametric distributional assumption for the ; over [0, 1]. Note how
this implies another case of perfect negative cross-sectional dependence, given
by E(c; | Bi) = Bi(1 — B;), very similar to Ding and Granger (1996).

From a methodological point of view, we have shown that analyzing the
effect of aggregation of GARCH is a different mathematical problem than
aggregation of ARMA and the extension is not straightforward. The adopted
definition of the aggregate represents a crucial aspect. With this respect, the
definition used by Leipus and Viano (1999) is closer to our definition than
the one used by Ding and Granger (1996), although Y;"" differs from X7,
for two important reasons, independently from the specification of the z;;.
In fact, given

X2, =A+B,
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n n
1 1
_ 2 — ey
A = = El Ty, B= = E Ti 1Tt
1=

ij=1

i#j
V') equals A/n, involving only the sum of the squares. B involves the
double products. Therefore, the limit of ¥,/}" provides only an approximation
to the squares of the limit aggregate X7, as, specifically, ¥;/}" converges to
zero in first mean, under the condition for covariance stationary Xﬁ,t (cf.
Theorem 5-(iii)). Secondly, the double products term B represent precisely
the key ingredient in order to evaluate the effect of the degree of cross-
sectional dependence of the rescaled innovations z;;. In fact, when z;; = €4,
term B is asymptotically negligible whereas for z;; = u, term B defines the
behaviour of the limit aggregate and term A is negligible (or at most of the
same order of magnitude in the nonstationary case, see Theorem 1-(iii) and
3-(iii)).

With respect to the memory properties, Ding and Granger (1996) and
Leipus and Viano (1999) obtain precisely the same type of results, an hyper-
bolic decaying yet summable ACF for the limit squares (by summability of
the ACF, formally, this is not long memory although practically there could
be little difference.). This is not surprising as they share a set of crucial
assumptions. We recall that this result regarding the memory of the squared
limit aggregate is not explicit in Ding and Granger (1996) but it follows con-
sidering recent findings on the memory of ARCH(00), where summability of
the ACF of squares is obtained when imposing covariance stationary squares
(see Giraitis, Kokoska, and Leipus (1998)).

The key aspect, defining the degree of memory of the limit squared ag-
gregate, is represented by the degree of cross-sectional dependence between
the «; and the ;. To make this clear, it is useful to compare the covariance
stationarity conditions for levels and squares of GARCH(1,1) x;, in turn
equal to

i + B < 1,a.s., (24)

for levels and to
(qiptg + Bi)* + @i (g — p3) < 1, a.s., (25)

for squares. Given pu3 < p4 (u? are not degenerate), then (25) is strictly
stronger than (24), for independent «;, 3; and, more generally, for any shape
of the cross-sectional dependence such that F(«; | 5;) ~ C, with C > 0, as
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3 — B~. This certainly includes the case of positive dependence or even neg-
ative dependence as long as the marginal distribution of the a; has support
[c, @) for some ¢ > 0.

Set n = 0 for simplicity’s sake. Imposing covariance stationary squares
(cf. part (iii) of Theorem 5), the asymptotic behaviour of the ACF of limit
aggregate square (X7, say) is given by [E?Ti%P, as u — oo. Now, replace
IV (a, B)-(ii) with

Eoi| ) ~ c(B—B)°s Bi— B (26)

for some 6 > 1. Ding and Granger (1996) and Leipus and Viano (1999)
assumption represents a particular case of (26).

Under (26), the left hand side of (24) and (25) goes to 3~ and to 32,
respectively, as 3; — B~. Moreover, 3 = 1 is allowed for so that (25) will
not be strictly stronger than (24) anymore. Under these conditions the m;
will have support [0,1) or, equivalently, 7 = 1. This leads to E(n}) ~
ertu~ () = cu= (%t as u — oo, yielding an hyperbolically decaying ACF
of the limit square aggregate, cu~ 2"V as u — oo. Summability of the
ACF follows from the covariance stationarity condition for levels, ¢z > —1/2,
equal to 2(cz +1) > 1. This condition is in general weaker but certainly not
stronger than the covariance stationarity conditions for squares. Therefore,
long memory for the squared limit aggregate is ruled out, independently from
the shape of the joint cross-sectional distribution of the micro parameters.
This type of result is not new to ARCH-type models. In fact for ARCH(oc)
also the covariance stationarity condition for levels rules out long memory
squares (see Zaffaroni (1999, Theorem 5)).

Note that for the opposite case of negative dependence, E(f; | a) ~
cla—a;), as a; — a~, (25) will still be strictly stronger than (24), given that
p2 < g, implying an exponentially decaying ACF. This is not a surprising
outcome, as the z;; behave in this case (locally) like an ARCH(1), for which
the case hyperbolical decaying ACF was ruled out.

3.2 Further extensions

(a) We have so far considered only aggregation of covariance stationary units.
However, this is much more restrictive than imposing only strictly stationary
units (cf. remark (d) of 171(7y)). Aggregation of IGARCH is an important
and particular case, where the m; will have a degenerate distribution at 1.
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Let us focus on micro ARCH(1). Although case v > 1 does not appear
to be empirically relevant (see e.g. Bollerslev, Chou, and Kroner (1992)),
our framework can easily account for such a possibility. It is obvious that
now one needs to evaluate conditional moments, not only with respect to
the GARCH coefficients but also with respect to past rescaled innovations,
considering the truncated aggregates EX'n,t, UX'n,t. For example, focusing on
the idiosyncratic case, one obtains that as t,n — oo, under I1(v), I11(0)
(skipping details for simplicity’s sake)

vary (" Xn) ~ ' (c (log Log(n ¢21))

o=

n3/2 te n

4—b/2+1/2 b )

Note that, irrespective of the value of b,, Ef(n’t converges to zero in mean-
square as t/n — oo suggesting that the usual result arises when n is large
compared with ¢. A fixed ¢ is an important particular case. When n ~ ctt++!
and v = 1, the results of Theorem 1 are re-obtained. On the other hand,
when v > 1, the rate of divergence is exponential with respect to the time
dimension. Parallel results can be obtained for the common innovations case.
(b) We can allow for cross-correlation across units not only through a common
rescaled innovation but also by assuming dependence across the «;. Indeed,
the limit laws on which this paper is based, have been extended to the case
of stationary dependent sequences satisfying some form of mixing condition
(see references in Samorodnitsky and Taqqu (1994, p.575)) and are therefore
fairly easily adaptable to our framework. We acknowledge that, in this case,
a problem of interpretation arises by adapting the time series meaning of
dependence to a cross-sectional framework.

(c) Analogous results would be obtained when a number m (m < n) of units
exhibits different properties from I7(7), e.g. IGARCH(1), as long as these
units are bounded a.s. and 1/m + m/n — 0 as. for n — oo, meaning
that they make a degenerate fraction of units. In this case, the properties
of the limit aggregate will be entirely determined by the non-degenerate
fraction of units x;,, whose properties are defined by the shape of the cross-
sectional distribution of the parameters dictated by II(y). The case of a
non-degenerate fraction of units, not characterized by II(vy), or which are
not uniformly bounded a.s. will not be discussed but it can nonetheless be
accounted for by a suitable generalization of our framework.
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4 Application: aggregation of conditionally
heteroskedastic factor models

This framework can be used to evaluate the impact of aggregation of the
components of conditionally heteroskedastic factor models:

Tip = Binfig + Biofor + ..+ Bix ey +wiy, 1 =1,..,n, (27)

where fy = (fi4, ..., frt)' is a vector of K (n > K) unobserved common fac-
tors, the f;; (j =1, .., K) are the associated factor loadings and the w;; (i =
1,..,n) indicate idiosyncratic r.vs, orthogonal to the f;,(j = 1,..,K). In
particular, consider a situation where a large number of assets exist, so that
n is arbitrarily large, and our random coefficients framework applies. The
portfolio, made by 1/nth of each asset, would then be

% Z Bife + % Z Wi,
i=1 i=1

setting 3; = (Bi1, -, Bix)"-

For wy = (wyy,...,wy,)" assume Ey j(wy) = 0, By (w,w)) = Iy and
Et—l(ft) = 0, Et—l(ft ftl) = At with Et_l(wt ft’) = 0, Et—l(') denoting the
expectation operator conditionally on {fs, z;s,s < t,i € N}. The time varia-
tion of A; and I'; motivates the denomination of conditionally heteroskedastic
factor model. Sentana (1998) shows that several multivariate volatility mod-
els are described by (27), such as the latent factor model with ARCH factors
of Diebold and Nerlove (1989) and the factor GARCH model of Engle (1987).

Depending on whether the w;; are assumed conditionally mutually or-
thogonal (diagonal T';) or mildly correlated (non-diagonal T';) across units,
(27) is referred to as a conditional exact or approximate K factor struc-
ture (see Hansen and Richard (1987)), generalizing the definition of factor
structure introduced by Chamberlain and Rothschild (1983).

Consider the case when the idiosyncratic component have a ARCH(1)
parameterization:

Wy ¢ = 2,104t 1€ N,t € Z,

2 . o2
Oit =W+ Wy, a.s.

Setting z;; = €;; or, alternatively, 2; ; = u;, suggests that a conditional exact
or approximate K factor structure for the the x;, could be obtained.
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In Chamberlain and Rothschild (1983) the maximum degree of cross-
sectional dependence allowed for the w;, is expressed by boundedness of the
maximum eigenvalue of E(T';), uniformly in n. This clearly collapses

limp e mazx var(w;,;) < oo,

1=1,..,n

when I'; is diagonal, in turn when z;; = €;;. Although this is a sufficient

condition for
n

1
= var(w;¢) — 0, n — oo, (28)
i=1
it could be substantially relaxed. In fact, in our random coefficient frame-
work, the equivalent condition to (28) would then be (consider case puy = 1
and n = 0)

n
1 w;

— — 0, a.s., n— oc.
n ‘11—0414
1=

Under II(7), this certainly holds when v < 1. However, when v = 1,
one then needs b, > —1/2. Note that for v < 1 or v = 1, by > 0, then
var(wi;) = E(1%5) < oo whereas var(w;,) is unbounded for —1/2 < b, < 0.
The former situation expresses the bounded eigenvalue condition whereas the

latter describes the case where maximum eigenvalue, maz;—,_nw;/(1—«;), of

E,(T;) could go to infinity although not too quickly, diverging at rate nbllﬁ
(cf. Theorem 1).

To summarize, although w;/(1 — ;) < oo a.s., this is not sufficient to
ensure that idiosyncratic risk is fully diversifiable when trading a possibly
infinite number of assets. Moreover, the aggregate of the idiosyncratic com-
ponent will be described by a stable model, Gaussian in the stationary case
or when the number of assets is much larger than sample size, and not a
proper volatility model (c¢f. Theorem 2). This is particularly important when
considering exact zero factor structures, when there are no common factors
(K = 0). These results must be born in mind when using statistical inference
methods on such nonlinear factor models based on a large cross-section, such
as when extracting the common component (factors). This is because the
crucial assumption of a vanishing importance of the idiosyncratic part of the
portfolio might fail.

When z,; = u; the w;, are correlated across units with E(w;w;¢) =
poE(0;40;,). Now the degree of cross-sectional dependence is too strong as
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one cannot fully diversify the risk induced by the w; 4, viz. var(1/n " w;;) >
¢ > 0, for any n (cf. Theorem 3). Hence, although setting z; ; = u; delivers an
interesting case of a factor model with cross-sectional correlated idiosyncratic
risk, this rules out the case of (conditional) approximate factor models.

5 Concluding remarks

The asymptotic properties of the aggregate X, ;, as n goes to infinity, are
fully characterized by the shape of the cross-sectional distribution of micro
parameters, by their degree of cross-sectional dependence and by the degree
of cross-sectional dependence of the rescaled innovations.

Only for a sufficient degree of cross-sectional dependence of the rescaled
innovations will the limit aggregate maintain the GARCH nonlinearity, un-
correlatedness in levels and dependence in squares. In this case, the model
can be parameterized and estimated by pseudo-maximum likelihood. A test
for heterogeneity is proposed. When the rescaled innovations are independent
across units, the limit aggregate will not maintain the nonlinearity anymore,
exhibiting a stable asymptotic distribution.

Imposing bounded fourth moment of the limit aggregate rules out long
memory in its squares, in particular yielding an (approximately) exponen-
tially decaying ACF, for any shape of the cross-sectional distribution. When
considering aggregation of GARCH(p, ¢), with p > 1, however, although long
memory is still ruled out, one could obtain an hyperbolically decaying ACF of
the squared limit, under a restrictive form of negative cross-sectional depen
dence between the GARCH(p, ¢) parameters.

When the cross-sectional distribution of the micro parameters is still de-
fined over the covariance stationary region for z;; but is sufficiently dense
around their upper limit, then mean square convergence toward zero of the
limit aggregate fails even for i.i.d. x;;. An application of this result to ag-
gregation of conditionally heteroskedastic factor models is presented.

These aspects, related to the cross-sectional distribution of the parameters
and of the rescaled innovations, describe a rich set of testable implications
linking the statistical properties of the cross-section to the aggregate ones.
These implications could be verified empirically and subjected to hypothesis
testing, using a panel of data.

Long memory at the aggregate level is ruled out by the different restric-
tions imposed on the parameters space by the covariance stationary condition
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for levels and squares respectively. This represents an undesirable feature of
GARCH. In Zaffaroni (2001), the issue of inducing long memory squares by
aggregation is analyzed in a more general framework of models of changing
volatility, which include both ARCH-type and SV-type volatility models.
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Appendix

We should recall that ¢, C' denote arbitrary positive constants, always
bounded and not necessarily the same, the symbol ~ denotes asymptotic
equivalence and P(A), 14, respectively, the probability and the indicator
function of any event A. We first introduce two preliminary lemmas, then
present, the proof of the theorems.

Lemmata

We begin with the following lemma, proved in Lippi and Zaffaroni (1998,
Lemma 1), which adapts to our framework known results on convergence
of normed sums in 7.i.d. r.vs in the domain of attraction of a possibly non-
Gaussian stable distribution.

Lemma 1 Considern i.i.d. draws of a positive r.v. a with probability density
B(-;b) defined in the interval [0,v) for real v > 0 such that for a real b(—1

b< o), asa— 17,

1

(v —a)

B(a;b) ~ C (v — &)’ L( ); (29)

where L(-) denotes a slowly varying function. Set 6 = (b+ 1)/k. Then a.s.,
as n — oo,

(1) If2 < 6,

(2)[f1<5<2

nzl —041 (v—a)k
(8) If 6 =1,
1 — N
- Z o L(n) + L(n)S),
i=1
(4) If 0 < 6 < 1,
% . _a ( ) 1/6— IS
=1 L
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where L(n), L(n) are slowly varying functions. We recall that S5 (0 < § < 2)
defines a 0-stable r.v. with zero location parameter (cf. footnote 1), including
the case of the normal distribution (Sz). In case (4) S5 will be a totally skewed
to the right 6-stable r.v. with zero location parameter, implying Ss > 0 a.s.

Remark. When L(-) =1 then L(-) = 1 and L(-) = log().

Lemma 2 Under the assumptions of Lemma 1 with v =1, for any integer
p=1,2,.. and real k, as n — oo:

(i)

1 O 1 1
- ~ c= 1 — q;)P=Dbtp=1-k)
np Z (1= oyt ct n;( @)

11 5e0y0p=1

The boundedness condition is pb+ (p — k) > 0.
(11) When pb+ (p — k) > 0 for any integer u > 0 and r (0 < r < p) with
S=p-—r,asn— o0,

]_ n (l/il..OéiT (k)
Z — == g(m)(u), a.s.

where, as u — 00,

for 0 < ¢ < oo.

Proof. Cases v < 1 or v = 1, k < 0 are trivial. Let us focus on case
v =1, k> 0. We discuss case p = 2, as the other cases follow exactly along
the same lines. Set L(-) in (29) for simplicity’s sake.

(i) As n — oo,

1 1 1
— - 1—tb1— -tikdt< .S.
D Ty c/0< YL — agt) Hdt < o0 as.,

by (29). Using Gradshteyn and Ryzhik (1994, # 3.197-3), the integral of the
right hand side equals

B(1,b+1)F(k,1;2 4+ b; ), (30)
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where B(-,-) is the Beta function and 5 F} (-, -; -; -) denotes the hypergeometric
function (Gradshteyn and Ryzhik 1994, section 9.1). Hence, as a; =~ 1, by
Gradshteyn and Ryzhik (1994, # 9.122-1 and # 9.131-1)

(30) ~ (C 1b>k71 + Cllb:k,1l09(1 — Oéj) + C”lb<k,1(1 — Oéj)bJrlik) s

yielding, as n — o0,

n

1 1 1 —
— -~ Cc= 1—q b+1—k
n2 — (1 — aja;)* et n ;( @) ’

with a bounded limit when 2b +1 — & > —1. (ii) When r = 2 (s = 0), by
Gradshteyn and Ryzhik (1994, # 3.197-3 ), as n — oo,

n
1 a¥a?

n
J e c u
N—E “Bu+1,b4+1)9Fi(k,u+ 1;u+ 2+ b; o).
n2l]:1 (1 aza])k nZ:l az (u ’ )2 1( ’u ’u ’aZ)

Using the aforementioned results of Gradshteyn and Ryzhik (1994), as o; —
1,
oFi(k,u+Liu+24+bya;)  ~ Lpspoy oFi(k,u+Lu+2+0;1)
Flpcko1 (1= )" R (u+2—k+b,b+ 1;u+2+b;1),

the logarithmic term, arising when b = k — 1, being absorbed by the second
one. Simplifying terms yields, as n — oo,

n

1~ el el 1= R)D(u+1) Z )
n? ij=1 (1 - aio‘/]')k n F(U +2—-k+ b) — !
+lb<k—1 d z": al(1 — o)1k, (31)
noI 1

By Stirling’s formula (Brockwell and Davis 1987, p.522)
/ ub(s —u)? ~ C s 0D B oo, (32)
0
for b > —1 and 0 < s < co. Thus, under (29),

E(af) ~ ey k0 | 0. (33)

7
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It follows that the limit (as n — oo) of both terms on the right hand side of
(31) are asymptotically equivalent to u~ 2=k for 4 — 0o. We recall that
to impose stationarity 2b + 2 — k > 0.

Finally, when r =1 (s = 1), as n — o0,

n u

1 " 1 ¢ 1 ¢
- b>k—1 b<k—1 ~
- ~ = E ol + E (1 —a;)™ % O
)k n ! n !
i=1

2
n 1 — o0
i,j=1 ( v =1

Main results
Proof of Theorem 1. When n = 0 apply Lemma 1 with £ = 1. When

n=1
(P X)) = =35, = 0(4) as. O
vary, nt) — 5 T — - S
ot n? & n

Proof of Theorem 2. Set n = 0. (i) Given the i.i.d.-ness of the wz;4,
the Lindeberg-Lévy CLT applies, as n — oo. In fact 1/n) " w;/(1 — a;)
converges to E (w;/(1 — «a;)) a.s., bounded when b; > 0. Moreover, for any
integer v > (0 and any n, easy calculations yield

n n
1 1
covp (— E Tigy —1 E Tigtu) = 0.
nz nz

where cou, (., .) denotes the covariance operator, conditioning on the w;, ; (i =
1,..,n).
(ii) For (9) we follow (i), where from (33), when b; < 0,

1_ ot t—1
E(i‘?t):‘/t:E<wi az>:P1 qucht—bl, i — 0.

’ I=a k=0
For (10), we must first show that the distribution of Uf’t belongs to the domain

of attraction of a §'-stable r.v., with & = (b; +1). Setting cx(t) = [[*_, €2

s=1 “i,t—s
and d,(t) = (Jna ey (1),

= E(P(do(t) /(1 = i) > u)), (34)



setting P.(.) equal to the probability distribution, conditioning upon the
€ir (i € Nt € Z). Next, by Dudley (1989, Theorem 8.3.5), with probability
one there exists a random integer K < oo such that for all £ > K

kpg

c(t)=0(e 2 ), a.s., (35)

implying that ¢ (t) — 0 a.s. for & — oo. Therefore, for some m, such that
m — 00,

P(0}y > u) = E(P(07, > u)) > E(P(dn(t)/(1 = ai) > ). (36)

Let us now consider the y; = 1/(1 — «;). We show that, under I1(vy),
the y; have distribution which belongs to the domain of attraction of a ¢'-
stable distribution, totally skewed to the right. In fact, denoting by f,(-) the
probability density function of the y;,

fy(w) =B —ub)u™ 1< u< oo,
with f,(u) ~ cu=(172) as u — co. Therefore, as u — oo
P(y; > u) ~ Cu~ O Py, < —u) =0, (37)

and

| et~ o,

0
and Feller (1966, Theorem IX.8.1) applies, yielding, for n — oo

n

Ly s, (38)

ns’ 11_(1/1

1=

where, using Samorodnitsky and Taqqu (1994) notation, Sy refers to Sy (o, 1,0)
with zero location parameter, skewness parameter equal to 1 (implying Sy >
0 a.s.) and scale parameter o = (C/D(;:)&L’ (with C' as in (37)) where

l1-a
Da — T'(2—a)cos(ma/2)’ a 7£ 1’
2/m, a=1,

(see Samorodnitsky and Taqqu (1994, Property 1.2.15 and eq.(1.2.9))).
(38) implies, under I7(y) and I11I(n), that the o7, also have distribution
which belongs to the domain of attraction of a ¢’-stable distribution, totally
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skewed to the right. In fact, from (34), by dominated convergence theorem
(P(-)<land F1=1< ), as u — 00,

P(Uzt > u) < E(P(do(t) /(1 — ;) >u)) ~cE [do(t)]‘y u?,

given E[dy(t)]” < [Edy(t)]" < oo, as §' < 1, by Jensen inequality. On the
other hand, for (36), setting m = m(u) and assuming that m goes to infinity
with u, as u — o0,

P(UZt >u) > E(P(dn(t) /(1 — ;) > u)) ~cE [dm(t)]y u = glu)u ",
for some positive function g(u) | 0 as u — oo. Therefore, by the arbitrariness
of g(u),

P(o}, > u) ~ cu™, u— oo,

c depending on both the distribution of the ¢;; and of the a;. Moreover, from
P(ait > u) = P(o;, > u%),

it follows that o;; belongs to the domain of attraction of a d-stable distri-
bution, totally skewed to the right, setting 6 = 2(b; + 1). Therefore, given
Tit = €404t

1 n

— in,t —q Ss(t), n — oo,

ne =1
where the Ss(t) have a d-stable marginal distribution with zero location pa-
rameter, skew parameter [ that depends on the symmetry (around zero)

of the ¢4, given by g = (P — Q)/(P + @) (see Feller (1966, eq.(8.4)) and
Samorodnitsky and Taqqu (1994, p.6)), setting

P = pE[G?,tlfi,t>0]
pEle) 1,50l + (1= p) E[(—€i)1e, <o)’

with p = P(e;; > 0), @ =1 — P, and scale parameter, o, defined by

P(x;y > u) ~ Ds _'2—50'6 =9
1—
P(x;y < —u) ~ Ds 5 50%_5,
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as u — 0o. When n =1, (i) applies.
Proof of Theorem 3. Set n = 0. By Schwarz inequality

(zmiajw H) |

a=0

1
0ii0j1 2 Wi W

N

<

and taking expectations

Varn(UXn,t) 2 i Z ((wl#)z

n? £

and, likewise,

<

Q

=

3

s

[N
/N
3|1Q
\'M:
—
RS
Q Sl
=
N—

n

When v = 1, apply Lemma 2 with p = 2, £ = 1 and then Lemma 1 with
k = —b,. Case n =1 easily follows. [J

Proof of Theorem 4. Using suitable versions of Minkowski’s inequality
(Hardy, Littlewood, and Polya 1964, Theorem 24 and 25), for any sequence

{aij,i=1,..., j=1,...,n} one obtains:
1 1
00 1 n ) 2 1 n 00 2 o0 1 n )
1.9 1
Z(g (ai;)2)" | < 52 doa | <D — 2 laig)z ). (39)
=0 j=1 j=1 \i=0 i=0 = j=1
yielding (12), where
1
00 1 n % k , 2
Xnt = U Z(ﬁzwi_aiz) Hut—j
_ Pl Lk
Xt = u —waaz?H|uH |
k=0 " i1 j=1



1
(i) Setting X, = (1/n >, w?af) and x, = E(X,), using a version of the law
of iterated logarithms (Stout 1974, Corollary 5.2.1): as n — oo

af) ( 1

N

Xa — Xa ™~

1

and given var? (w?a?) < B (wo

yields
By | Xy — Xy |
<
P%%
En | 7n,t - 7t |
< Z | X —xx |
k=0

loglog(nvar(w?af))):

2a —(by+n+1)
7

n

a.s.

b

loglogn 1 s  —B+nt) , 1
u’f=0<(7)2 ke (yim)t

k=0

(40)

TRy loglogn 1 ~—
()P = () s = 0 (PR Yk (g )t
k=0 ? ?

) , G.5.,

) ~c¢y*a” =, as a — oo by (33),

where the first inequality is obtained using (set X,, , = w0, , and X, = u;0,)

|
| X — Xy [=[ue

and
(xs)  (

Q’?L,t_g§| < |y |

Tt + [0 o ,0%¢0

(|ok,— o}

xe)® = (xe = xe) +2xe (X — xe)-

|)i

Thus, as n — o0, Xn’t —1 X, when fﬁ,ul < 1 and Yn,t —1 X, when Yo < 1.

1 . .. . .
When maz[y? pu1,vus] = 1, a sufficient condition for convergence in mean is

by +n>1.

(ii) We adapt the proof of Nelson (1990, Theorem 2). Applying (35) to (13)

and (14), it follows that

| X, <00, [Xi|< oo, as.

when ’)/6“70 < 1. When fye%o = 1 then boundedness is ensured when § >
0. Note that for X; one must use Elog |u; = po/2. Strict stationarity
and ergodicity follows using Stout (1974, Theorem 3.5.8) and Royden (1980,
Proposition 5 and Theorem 3), by the same arguments used in Nelson (1990,

p.329).
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(iii) We discuss only the memory properties of the limit squares, as the co-
variance stationarity conditions for levels and squares follow easily. Consider
X,. Set, for simplicity’s sake, @; = 1 with no harm. For integer u > 0,

2
cov(X7, X t—|—u E gzﬁ ngTcov Uy H“t j’ut—i—uHut-i—u 5

k,r=0

and, by means of the cumulants’ theorem (see Leonov and Shiryaev (1959))
one easily obtains

k T u—1
2 2 2 2 _ 2
CO’U(Ut Hutfja Upty HutJrufs) - E(H ut+ufs) X (41)
<’UG/I“ ut Hut J H ut+u s +E ut cov Hut 3 H ut+u s ) ’

s=u+1 s=u+1

taking 7 > u — 1 for otherwise the left hand side of (41) vanishes. Easy
calculations yields

cov(X7, X7,

= 13 (Z q%u’é) (Z Os ug) + b Z 0% ke (1 — 13*) (42
k=0

oo k—1 oo r—1
+M%ZZ¢ Orautlipts ™ + 415 ) Y LG plus ™. (43)
k=1r r=1 k=0

Recall that by (32)
b ~ ey ETOTD k5 0.

For the first term of (42), given Y720 = > 4+ >° ., and using Grad-
shteyn and Ryzhik (1994, # 3.381-3 and # 8.357), yields

(Z ¢ku2> (Z i uz) ~ e (pay) w0t u— oo,

Note that psy? < 1 implies poy < 1, given py < /5. Next, along the same
lines, for the second term of (42)

0 Z ¢2 k+u 2k) ~ c(p2y)" U72(5+1)(1 + 172;14:1“72571); U —» 00,
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where now one needs to distinguish between case y2j14 < 1 and case y2juy = 1.
By similar calculations, it turns out that the two terms in (43) are of smaller
order, bounded by

O (u™ D (7)™ + (ar®)" (27)")) 5 u — 0.

By means of tedious calculations, noting that

k1 ko

X X2+ut Z¢k1¢k2HH|ut il weru—s

klyékr) j=1s=1

the same applies to the ACF of Yf. ]
Proof of Theorem 5. Using (39)

) A=~ U =~
mln[ X n,ts X nt]g Xntgmax[ X n,ty X nt]
where
00 1 n % k ) i 2
X ot = U Z(EZ% H(ﬁz +aiup_;)2)° |,
k=0 =1 j=1
o0 n k
A 1 1 1
X nt — U (Z E Zwiz H(ﬁl + Oéiu?_j);> .
k=0 i=1 j=1

Next, using (see Zaffaroni (1999, section 2))

l

L —()
H(ﬁz‘ + aiuf—j) = 1= + 1i>0 Z afﬁf-_k <Z(k)u?—j1"'u?—ﬁ—...—jk) , (44)
k=0

j=1
with
—(1) I—k+11-k+2—j1  I=ji——Jr—1
Z(k) = gm0 + Lgso Z Z Z ,
J1=1  ja2=1 Jr=1

and using (39) once again, yields

1
L= :
. 2
Sorm o (SX St Sebab ),
=0 k=0
o o
Xn,t = Ut (Z

WE

! 0

— 1 1ok =k
Z(k) KN T — (52%2045@ ’ )) :
=1
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(i) Set

1

o L —) Loe ok )

Xt o (Z Z Z(k)uffjl”'u?*jr---*jk (E(wz? af ﬁz 2 ))2)’ (45)

1=0 k=0
e

— > 1ok Lk
&:W<Z§:Z@H%MWWHLJHMW%@20%%)

=0 k=0

1ok Ik
We follow the proof of Theorem 4. Applying (40) to the sequence {w?a? 3, * }
yields, as n — oo,

1 1k I=k 1 —
| = wial b ? —E(wiagﬁ%ﬂ
=1
prloglogn 1 1 _
=0 (20 B~ e — )l
_ <(loglog7’t)%a§ﬁl—T l—%(min[ba,cza]-l-n-l-l))’ 0.s.. (47)
n

for 0 < k <[. The last bound is obtained as follows.
E[(1 — pocy; — @')nafﬁé_k]

a B
N kla — a)bed 1 — — Bk — )
e [ ata—a)eda [ (1= pma—apsHE - 5)eds
a 1
=cp* / o (a — a)b"da/ (1 — pga — Bt)1F(1 — t)edt
B p ’ 1
=cpt /0 of(a—a)(1— ma)"da/o (1 —0(a)t)™ " (1 — t)dt,

by means of the change of variable ¢ = /B, setting for simplicity’s sake
O(c) = /(1 — pgar), where the constant ¢ is not always the same. Note that
by assumption f(a) < 1 with #(a) — 1~ as & — @~ . Using Gradshteyn and
Ryzhik (1994, # 3.197-3) for the second integral of the right hand side (in ¢)
gives
cﬁl_kB(l—k+1,cﬁ+1)/ oF (a—a)be (1—pg) "9 Fy (—n, I—k+1; I—k+cs+2; 0())da,
0
(48)
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where B(-,-) is the Beta function and 5 Fj(-,-; ;) denotes the hypergeomet-
ric function (Gradshteyn and Ryzhik 1994, section 9.1). As a — a—, by
Gradshteyn and Ryzhik (1994, # 9.122-1),

F(l—k+2+05)

Fi(-nl—k+1;1l—k 2:60 ~
2 1( 777 + ) +CB+ ) (Oé)) Cr(l—k+0ﬁ+2+’f])’

yielding, in (48), with the change of variable ¢t = /@,

Tk
IF'l—k+cs+2+m)
L(l—k+1) l—kk/l k b
(1 — t)°~dt

CT—htveresn’ * ), -9

< C/Bl_k@kk_(ba+l)(l i k)—(cB+n+1)’

1
ﬁl—kak/ th(1 — )b (1 — poart)dt
0

using, for the last inequality, Stirling’s formula (Brockwell and Davis 1987,
p.522) to expand the gamma function I'(-). Repeating the same arguments
but starting to integrate with respect to « finally yields

o [ O(BFak (1 — k)il nY 0 < ko< 1/
k pl—k1 ) = )
E[(l—MQOfi_ﬁi)nOéi 5z ] - { 19) (Blfk ak kf(min[ba,CﬁPrnJrl)) ’ l/2 < k < L.

_ (49)
Consider X, ;. Then

En |Yn,t - Yt|
l

loglogn . 1 ~— l koSlk i
B O<(T)QZ[Z <k>ﬂlfa‘-’ﬁ 7 [~ (minlbat BH‘TH'U])

=0 k=0

n n
=0

Lol
N——
8
»

under the stated conditions. For X, ,, simply adapt the proof of Theorem 4,
using (47).

(ii) Boundedness, strict stationarity and ergodicity easily follows by using
the same arguments as in the proof of Theorem 4.

(iii) The asymptotic covariance stationarity conditions, for levels and squares,
easily follow. Let us focus on the memory properties only. Consider X, ;. For
simplicity’s sake let us set w; = 1 as this is completely innocuous. Then, for
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any integer u > 0, setting 6;;(t) = (ﬁiﬁj)% + (Ozz-aj)%uf and 0;; = E,(0,5(t)),
using (44) backward and using the cumulants’ theorem,
1 ~ 3 3

101
2 — 2,,2,,2,,2 Su—1
COV“(XnUXntJru)_H Wi ijawbdab (A+B)7

i,ja,b=1

with

A = covy(u2, o, ZE H(Smt—rl Z H5abt—7“2

11=0 ri=1 1o=0 ro=1
B = E, (u}0u( ZZCovn H 8t — 1)), H Sab(t — 72))
ll 0[2 0 r1i= 1 r2:1
For A,
1 1
A = jy(ag a)? .
M4(Oé ab) 1— 5,11, 1— 5z’j

However, by the bounded fourth moment condition
0ij < T <1,
yielding, as n — oo,
1

11011 11
E w]w Qwé’w,féfjb_lANcE (wiwlfé;‘b_l)

i,ja,b=1

Given the binomial formula, (a + b)* = Y-" | (%)a*"~*, and using (49) (re-
placing n, k, [ with n/2, s/2,u/2) yields

11
E (wé’wlj’ (5;‘;1) = O (7"u )y — . (50)

For the other term, involving B, it turns out that these will be character-
ized by the same asymptotic behaviour as for (50). Note that the ACF of
X? , is nonnegative, given that cov(d;;(t), as()) > 0 (uf not degenerate) for
any 1, j,a, b, and using the following result for sequence of independent r.vs

{CZ,Dl}

m m m k—1 m m

coo([ [ Ci. [ 21) =D [ E(CiDj)cov(Cr, DWE( [] CHE( ][ Dy).

i=1 i=1 k=1 j=1 j=k+1 j=k+1
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which holds when the left hand side is well-defined and bounded. Thus, given
that var(Z) < E(Z?) for any r.v. Z with bounded second moment,

o 11 1
ll lf) 12 l‘) ll ll
< Bt (o + 3 S 3 S )
11=11>=0 [>=111=0
(51)
setting
Kavig = (Bi3iBabBs)? + 1a(0i0tja0n)? + p1a(0:10;8aBs) 2 + piz( a0 i)
Consider the first term on the right hand side of (51). Using

5ab K’alng

SABMOPABIIGWE

r1=0 ro=0
M; SHER k(ﬂaﬁb) (5153)

s+7‘1+l k—ro
obtained by repeated use of the binomial formula, and suitably applying (49),
yields, as n — oo,

n o0
1 1 1 1
3,,9,,2,,2 §u—1 ! u—1 ~2(6+1)
E Wi w? we Wy dg E Kapij ~ B (wa w28 (1 + ! )] -
1=0

i,ja,b=1

u— s+k ) l—r1—r9

7‘1+7‘2 (aza]) L :

(cacw)

Note that the covariance stationarity conditions for the X, requires 2(6+1) <
1, yielding

E (wa W% (1 + u1_2(5+1))> ~F (wa WEo” 1) , U — 0.

For the other two terms, on the right hand side of (51), with easy but tedious
calculations, the result follows. [J
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