BANCA D'ITALIA

Temi di discussione

del Servizio Studi

On the 'conquest' of inflation

by Andrea Gerali and Francesco Lippi

Number 444 - July 2002

The purpose of the Temi di discussione series is to promote the circulation of working papers prepared within the Bank of Italy or presented in Bank seminars by outside economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.

Editorial Board:

Andrea Brandolini, Fabrizio Balassone, Matteo Bugamelli, Fabio Busetti, Riccardo Cristadoro, Luca Dedola, Fabio Fornari, Patrizio Pagano; Raffaela Bisceglia *(Editorial Assistant).*

ON THE 'CONQUEST' OF INFLATION

by Andrea Gerali* and Francesco Lippi**

Abstract

Sargent (1999) warns that if policymakers' views on the unemployment - inflation tradeoff are driven by empirical correlations rather than theory, disinflations (escapes from high to low inflation) may periodically occurr but are not bound to last. This paper asks how different inflation objectives on the part of the policymaker affect this result. We show that escapes in the neighborhood of zero inflation are less frequent and have a shorter duration as policy objectives become more inflation-averse. A sufficiently (but not infinitely) inflation-averse policymaker never escapes Nash inflation and, on average, yields a lower inflation rate.

JEL classification: E5.

Keywords: inflation bias, disinflation, learning, conservative bankers.

Contents

1. Introduction	7
2. The 'conquest' hypothesis	8
2.1 The setup	8
2.2 Equilibria with knowledge of model	
2.3 An approximating model: the self-confirming equilibrium notion	
2.4 Suspecting parameter drift: the emergence of fluctuations	
3. The role of policy objectives	
3.1 Conservatism and the frequency of escapes	
3.2 Conservatism and the duration of escapes	
3.3 Conservatism and average inflation	
4. Concluding remarks	
Tables and figures	
References	

^{*} Bank of Italy, Economic Research Department.

^{**} Bank of Italy, Economic Research Department and CEPR.

1. Introduction

After experiencing double-digit inflation during the seventies, most of the industrial countries managed to return to low inflation rates. Understanding what caused these large swings is essential to assessing whether low inflation will be sustained. Different hypotheses have been formulated.

One is that after the seventies policymakers learned the natural rate hypothesis, put forth by Friedman (1968) and others, and understood that the unemployment problem could not be solved by means of sustained inflation. The spate of central bank reforms of the past twenty years assigning a primary role to price stability as a statutory objective *may* stem from governments' understanding the expectational nature of the unemployment-inflation tradeoff (e.g. Rogoff, 1985; Cukierman, 1994). This would suggest that high inflation is an evil of the past. However, an alternative hypothesis on the 'conquest' of low inflation, formulated by Sargent (1999), and Cho, Williams and Sargent (2001), offers a less reassuring perspective.

The 'conquest' hypothesis also relates policymakers' decisions to disinflate to the evolution of their views on the unemployment-inflation tradeoff, but it sees these views as being driven by econometric estimates rather than theory. The 'conquest' model posits that the government uses the available empirical evidence to measure the tradeoff, neglecting its true expectational nature. It shows that the econometric practice of discounting past observations, on the basis of a suspected parameter drift, causes the actual estimates to fluctuate over time, validating the initial hypothesis of parameter drift (even if there is no drift in the parameters of the true data-generating process). Such a variability in coefficient estimates translates into policymakers' changing views about the unemployment-inflation tradeoff, which in turn causes policy fluctuations.¹ The 'conquest' hypothesis thus suggests that today's low inflation rates are unlikely to persist, because of the weak nature of the learning process followed by the policymaker (i.e. its reliance solely on estimates).

But the stylized setup of the 'conquest' model is mute about the effects of *different policy objectives* on the inflation dynamics and the other outcomes of the model. We intend

¹ When the estimated tradeoff is zero, the policymaker has an incentive to choose zero inflation, and an endogenous disinflationary episode occurs. However, such a situation is unstable, because in the low-inflation environment the policymaker is bound to "re-discover" a non-zero tradeoff between unemployment and inflation. This makes it optimal to abandon the low-inflation policy in an attempt to lower unemployment.

to investigate precisely this issue, and in doing so we are motivated by two considerations. First, central banks have historically taken different attitudes towards inflation. Indeed, several textbook explanations of heterogenous inflation records cite the role of policy objectives (e.g. Cukierman, 1992 and Romer, 1996). Understanding whether policymakers with different objectives are all equally prone to succumb to the statistical 'illusions' of an empirical Phillips curve, as described by Cho, Williams and Sargent (2001), is useful in order to assess the robustness of the conquest hypothesis. Second, monetary reforms of the past two decades, e.g. the setup of independent central banks with a mandate of price stability, provide grounds to presume that monetary policy objectives have changed in several countries since the seventies.² Since such reforms do not *necessarily* imply that the natural rate hypothesis was understood, we ask whether a change in policy objectives affects the likelihood that high inflation might return within the context of the 'conquest' model. We think this exercise is useful to assess whether modern monetary institutions, endowed with a price-stability mandate, are just as subject as their predecessors to the inflation risks identified by the 'conquest' model.

The paper is organized as follows. Section 2 presents a basic version of the 'conquest' hypothesis, following Cho, Williams and Sargent (2001). Section 3 analyzes how their results are modified when policymakers have different degrees of aversion to inflation.³ Section 4 summarizes the main findings of the analysis.

2. The 'conquest' hypothesis

2.1 The setup

The model is a version of the one-period economy used by Kydland and Prescott (1977). The government payoff is given by:

(1)
$$W \equiv -E(U^2 + \beta \pi^2)$$

² In the past decade monetary reforms assigning explicit anti-inflation mandates were implemented in Canada, New Zealand, the United Kingdom and the twelve countries of the euro area. Cukierman (1998) reports that twenty-five countries upgraded the legal independence of their central banks in the years since, compared with only two in the previous forty years.

³ We exploited the Matlab (version 5.3) powerful Graphic User Interface to write a user-friendly code that allows exercises on the 'Conquest model' to be replicated (and new ones explored) using intuitive click-on-commands. The program can be downloaded freely from www.dadacasa.com/francesco_lippi or obtained from the authors upon request (non-Matlab users may use a compiled version of the program which runs from DOS).

where E is the expectations operator, U and π denote, respectively, the unemployment rate and inflation, and the parameter β indicates the relative weight attributed to inflation by the policymaker. In the experiments performed by Sargent (1999) and Cho, Williams and Sargent (2001), this parameter is assigned a unit value. We therefore set $\beta = 1$ in this section, where the 'escape' argument is summarized, and analyze the role of different β values, i.e. different monetary objectives, in the next section.

Unemployment is determined by the 'expectations-augmented Phillips curve':

(2)
$$U = U^* - \theta(\pi - \pi^e) + v_1$$

where U^* is the (exogenous) 'natural unemployment rate', θ the Phillips curve slope, π^e denotes expected inflation and v_1 is a zero-mean real shock with finite variance σ_{v1} , unknown to both the government and the private sector. Actual inflation may deviate from the target inflation rate, π^* , which is assumed to be controlled by the government, due to a zero-mean control error v_2 (with finite variance σ_{v2}):

$$\pi = \pi^* + v_2$$

Finally, the private sector is assumed to have rational inflation expectations:

(4)
$$\pi^{\mathsf{e}} = E(\pi) = \pi^*$$

2.2 Equilibria with knowledge of model

Under the assumption that the government knows the true model of the economy, two equilibria have been discussed in the literature: the Nash equilibrium and the Ramsey plan. The former is the pair (π^* ; π^e) which solves the government problem of maximizing (1) with respect to π^* subject to (2) and (3) taking π^e as given, which yields $\pi^* = \pi^e = \theta U^*$.⁴ The inflation and unemployment outcomes associated with this equilibrium are $\pi = \theta U^* + v_2$ and $U = U^* - \theta v_2 + v_1$.

Under the Ramsey plan, instead, the government maximizes (1) with respect to π^* subject to (2), (3) and (4). Due to the additional constraint (4) the government internalizes

⁴ Recall that neither the government nor the private sector observes the realization of the shocks (v_1 and v_2).

the effect of its decisions on private-sector expectations. This removes the incentive to create 'surprise inflation'. The Ramsey plan yields $\pi^* = \pi^e = 0$. Note that while unemployment is the same as under the Nash equilibrium, the inflation rate under Ramsey is $\pi = v_2$, which is smaller than the Nash outcome. As is well know since Kydland and Prescott (1977), the (inefficiently) high inflation associated with the Nash equilibrium compared with the Ramsey plan is due to the fact that the government fails to internalize the effect of its action on expectations.

2.3 An approximating model: the self-confirming equilibrium notion

When the government does not know the true structure of the economy, the model must be enlarged to encompass government 'beliefs' about the true structure of the economy (see Sims, 1988 and Sargent, 1999): two different models come into play, the true one (datagenerating model) and the one perceived by the government, sometimes referred to as the 'approximating' model.

In Cho, Williams and Sargent (2001) this means that the government does not know equations (2), (3), (4), and instead uses an approximating model that posits a structural relationship between unemployment and realized inflation alone. The approximating model is thus restricted to belong to the following family of curves:

(5)
$$U_{\rm t} = \gamma_0 + \gamma_1 \pi_{\rm t} + \varepsilon_{\rm t}$$

where γ_0 , γ_1 are coefficients to be determined and ε_t is a random term orthogonal to the constant and to π_t . Thus, the policymaker approximating model is misspecified, as it fails to recognize the existence of a shifter parameter (the expectations of the private sector, π^e) that positions the Phillips curve (2).

Government beliefs are thus described by the vector $\gamma = \frac{\gamma_0}{\gamma_1}^{\circ}$. The policy problem is then to maximize (1) with respect to π^* subject to (5). This yields the government's best response function:

(6)
$$\pi^* = \frac{-\gamma_0 \gamma_1}{1 + \gamma_1^2}$$

The model is closed by requiring beliefs (γ) to satisfy a 'rationality requirement'. In this context, where there exist two models, the equilibrium notion requires the 'wrong' model to

be indistinguishable from the correct one in equilibrium. This leads to the 'self-confirming equilibrium' (SCE) notion. In an SCE, the beliefs are the ones that best conform to the moments of the observable data. The 'self-confirming' element of the equilibrium lies in the fact that beliefs feed back to determine the moments of the data that are observed. The moment condition is thus self-referential: government *equilibrium* beliefs imply behavior that produces data whose moment matrices confirm such beliefs.⁵ In the model, such a form of 'rational' beliefs implies that they satisfy the orthogonality condition:

(7)
$$E\varepsilon_{t} \quad \frac{1}{\pi_{t}} = 0$$

which identifies γ as the population least square regression vector. Thus, government beliefs are driven by the best statistical fit of the data within the class of models considered.

Sargent (1999) shows that the above specification has a unique self-confirming equilibrium under which inflation and unemployment coincide with the Nash outcomes.⁶ Moreover, under a conventional learning scheme such as the least squares estimation of (5), the learning process on γ eventually converges on point estimates that satisfy the SCE condition. Thus, if the policymaker estimates (5) using ordinary least squares, the model predicts that, in the long run (i.e. after the learning process has converged), the economy will converge to the Nash equilibrium and remain there afterwards.⁷

2.4 Suspecting parameter drift: the emergence of fluctuations

Cho, Williams and Sargent (2001) show that the suspicion of parameter drift on the part of the government may break such a convergence result.

Parameter drift leads the government to replace least square estimation with a method that discounts past observations (i.e. a 'fixed-gain scheme'). Cho, Williams and Sargent (2001) show how this instance also has a self-confirming flavor: if the government discounts past observations on the basis of a suspected parameter drift, actual estimates will oscillate over

⁶ The unique SCE of this model is $\gamma = \begin{array}{c} U^*(1+\theta^2) \\ -\theta \end{array}$.

⁵ A little more formally, economic outcomes, X, depend on the government beliefs (γ), via government best response $\pi^* = h(\gamma)$ and the data generating process T(), i.e. $X = T(h(\gamma))$. Government beliefs, in turn, depend on economic outcomes via equation (7), $\gamma = G(X)$. A self-confirming equilibrium solves the fixed point problem $\gamma = G(T(h(\gamma)))$.

⁷ However, convergence to such an equilibrium may be extremely slow (see Sims, 1988).

time. Thus the (incorrect) hypothesis of parameter drift appears validated even if there is no drift in the parameters of the true data-generating process. This result has an important policy implication: because coefficient estimates fluctuate, policymakers' beliefs on the inflationunemployment tradeoff change over time, leading to changing inflation policies.

The authors provide a characterization of these fluctuations showing that, under a fixedgain scheme, the learning process is subject to recurrent episodes of slow convergence toward the SCE and rapid escapes from it towards the zero inflation Ramsey outcome. These 'escape dynamics' always push the system toward an outcome associated with the policymaker discovering too strong a version of the natural rate hypothesis. In fact, during these episodes the government is led to believe that γ_1 is almost nil, implying that there is no tradeoff between inflation and output, while in reality a short run impact exists.

The key mechanism triggering the escape dynamics is a movement in π^* (the target level of inflation chosen by the government) which translates one-to-one into movements of π^e , the expectational parameter in the true data-generating process (DGP henceforth). It is only when π^* , and thus π^e , start moving around as a result of a particularly unusual sequence of shocks in the DGP, that the policymaker observes data points (U_t , π_t) that tend to steepen the estimated Phillips curve (EPC henceforth), making the perceived tradeoff less favorable to exploit.

Figure 1 helps us illustrate how an escape from the neighborhood of high (Nash) inflation towards zero (Ramsey) inflation may happen. Let us consider a situation as the one illustrated by epc1 and dgp1 in the figure. Here the estimated Phillips curve coincides with the true DGP. This is the situation that obtains in an SCE: the expectation parameter π_1^e (and the policy variable, π_1^*) are set at the Nash equilibrium level $\pi_1^e = \pi_1^* = \theta U^*$, the estimated slope of the Phillips curve (the inverse of the slope depicted in the figure) is $\gamma_1 = -\theta$. The data points are clustered around the two overlapping loci epc1 and dgp1. Now suppose that a sequence of sufficiently large shocks occurs, and that it is influential enough to move the estimated slope of the Phillips curve in either direction.⁸ Suppose, to consider a counter-intuitive case, that the new data tend to flatten the estimated Phillips curve. A flattening of the curve means a more favorable tradeoff, which leads the government to *raise* its target inflation rate from π_1^* to π_2^* . Since the private sector has rational expectations, the shifter parameter in the DGP moves from

⁸ Here is where the discounting of past observations (i.e. a fixed-gain algorithm) is crucial, as it gives the new data sufficient leverage to change the accumulated evidence. This does not happen under least squares.

 π_1^e to π_2^e , shifting the true DGP upwards, to dgp2. Now the clouds of points generated by the true model are around dgp2, above the old cloud: note that this effect steepens the estimate of the Phillips curve slope, γ_1 . A steeper tradeoff, in turn, leads to a downward revision of π^* (and π^e), say to π_3^* . Note how the data that are generated by this new DGP (below the old ones) contribute to a further steepening of the estimated tradeoff. When such a process is started, a few iterations lead the policymaker to believe the Phillips curve is almost vertical. The perceived absence of a tradeoff makes (almost) zero inflation a best response (see 6). At this point policy is near the Ramsey outcome, the (time inconsistent) level of inflation. But such an 'escape' is not bound to last. As new data accumulate around dgp3 (and old data are discounted) the existence of a short-run tradeoff is (re)discovered. A slow process of upward revisions in γ_1 , converging towards its unique SCE value of $-\theta$, will accompany a gradual rise in inflation.⁹

Sargent (1999) uses the 'conquest' model as a parable of the US inflation history after the Second World War. In his view, the steady increase in inflation, from 1965 until 1980, can be seen as an episode of convergence towards the SCE-Nash level of inflation: as policymakers *measured* an apparently exploitable unemployment-inflation tradeoff, they tried to use it, and inflation increased. Disinflation (i.e. the rapid escape from high inflation towards the Ramsey outcome) came when the data ceased to reveal an exploitable tradeoff.

3. The role of policy objectives

The dismal message of the 'conquest' hypothesis is that the errors of the past will be repeated in the future. Government beliefs based on statistical estimates are not acquired for good. This might explain why at the end of the seventies the Phillips curve had almost disappeared, whereas today a number of policymakers and academics are noticing that the Phillips curve is 'alive and well'. The risk is that governments might be tempted to exploit the tradeoff.

How worrying is that warning? Are all governments (or central bankers) equally bound to fall victims to such statistical illusions? The hypothesis that policymakers learned the

⁹ To *see* the dynamics which underlie Figure 4.1 the interested reader can use our click-on Matlab program (see footnote 3). This allows users to visualize the evolution of the estimated tradeoff and the actual one (DGP) during the relevant phases of a simulation (e.g. escapes), observation after observation.

'natural rate hypothesis' seems at odds with the continued use of econometric estimates of the unemployment-inflation 'tradeoffs' by most central banks.¹⁰

While it is difficult to ascertain whether policymakers learned the natural rate hypothesis after the seventies, something is known about the monetary reforms implemented since then with the aim of making monetary policy more committed to fighting inflation. Several central banks have been given independence and a mandate to pursue price stability (Cukierman, 1998), and have displayed behavior consistent with a greater aversion to inflation than in the seventies (Clarida, Gali and Gertler, 2000). A worldwide trend towards more inflation-averse central banks prompts us to ask how the warning of the conquest model is affected when central banks are given objectives which are more (but not infinitely) averse to inflation.

We do this by means of a simple modification of the original model. While the parameter β , weighting inflation and unemployment in the government objectives, is equal to one in the original setting, we analyze the consequences of different β values (a low value identifies a policymaker primarily concerned with output fluctuations, see equation (1)). For the sake of brevity we follow Rogoff (1985) and refer to β as 'conservatism'. For comparability with the results of Sargent (1999) and Chow, Williams and Sargent (2001), all other parameter settings in our simulations coincide with theirs.¹¹

3.1 Conservatism and the frequency of escapes

The first question we investigate is whether escapes (from the neighborhood of the Nash equilibrium towards the zero inflation) are more or less frequent when conservatism is greater.¹²

¹⁰ Sargent (1999) notes that "the method survived and prospered within the Federal Reserve System".

¹¹ We also conducted some robustness experiments by replicating the simulations in other points of the parameter space, namely changing the ratio of the two standard deviations σ_{v2}/σ_{v1} . Our results on the role of β do not change qualitatively in a significant way as σ_{v2}/σ_{v1} changes.

¹² A first issue to address in answering this question concerns the escape definition. Cho, Williams and Sargent (2001) define an escape in the space of inflation outcomes (i.e. when actual inflation π gets "sufficiently close" to zero). But, as (8) shows, the desired inflation rate π^* , and thus realized inflation π , depend directly on β in our case and correspondingly the SCE/Nash equilibrium level of inflation varies as β varies. This makes it inappropriate to choose a threshold value of π^* (or π) above which an escape begins. To avoid this problem, we define an escape in the γ_1 space, whose range of variation is not dependent on β .

Thus, we define an escape to begin when γ_1 is above γ_1^{in} ($-1 < \gamma_1^{in} < 0$) and that escape to end when γ_1 drops below γ_1^{out} ($-1 < \gamma_1^{out} \le \gamma_1^{in} < 0$). By making $\gamma_1^{out} < \gamma_1^{in}$ we prevent the algorithm from counting "too many" escapes due to minor fluctuations in γ_1 . In practice, we set $\gamma_1^{out} = -0.25$ and $\gamma_1^{in} = -0.20$.

At first blush, it might be supposed that more conservative policymakers are relatively more willing to shoot for low inflation and learn 'too strong' a version of the natural rate hypothesis. But this is not the case. As β increases, the results of the simulations reveal that the occurrence of an escape becomes less frequent, as shown in the second column of Table 1. This indicates that an endogenous disinflation episode becomes less likely as more conservative central bankers are appointed to office. For the parameter set used by Cho, Williams and Sargent (2001), the frequency of escapes becomes almost nil as β approches 5.

To understand this result, recall how the reaction function of the policymaker (6) changes once we take account of β :

(8)
$$\pi^* = \frac{-\gamma_0 \gamma_1}{\beta + \gamma_1^2}$$

This formula gives the optimal inflation level chosen by the policymaker in each period, given its current estimate of the tradeoff. Recall that variation in π^* is the key ingredient needed to trigger an escape. The high inflation aversion of such a central banker translates, via equation (8) above, into choices of π^* that are tightly clustered around each other. This can be seen by noting that, for a given change in beliefs, i.e. the vector of variation $[d\gamma_0 d\gamma_1]$, the amplitude of the resulting adjustment in π^* is decreasing in β .¹³ This dampens the vertical displacements in the true data-generating process (recall that $\pi^e = \pi^*$). In essence, a more conservative central banker has smaller incentives to adjust the inflation rate in response to a changing tradeoff. Less variation in the desired inflation policy makes it less likely to discover that the estimated tradeoff is vertical, since the vertical displacements of the true data-generating process are less frequent.

3.2 Conservatism and the duration of escapes

In spite of the fact that more conservative policymakers are less prone to discover a 'strong version' of the natural rate hypothesis, it might be supposed that once they escape Nash inflation their strong inflation aversion would make them more willing to sustain low inflation, i.e. to remain longer in the neighborhood of zero inflation. On the contrary, in addition to escaping less frequently, conservative central bankers also spend less time around the Ramsey outcome once they reach it. The third column of Table 1 reports the duration of

¹³ Note from (8) that both partial derivatives of π^* with respect to γ_0 and γ_1 tend to zero as $\beta \to \infty$.

an escape, measured by the number of periods during which the estimated unemploymentinflation tradeoff remains 'almost zero' *provided* an escape has occurred.¹⁴

As β increases from $\beta = 0.2$ to $\beta = 4$, the escape duration decreases by a factor of 10. This effect reinforces and cumulates with that concerning the frequency of escapes. Both effects make a period of almost-zero inflation implemented by a conservative policymaker (who mistakenly believes there is no unemployment-inflation tradeoff) a rare event. The combined result of these effects is reported in the fourth column of Table 1, which shows the number of periods in a simulation (given by the number of escapes times their duration) during which the policymaker measures a non-exploitable tradeoff as a ratio over the length of that simulation. When $\beta = 0.2$, the policymaker believes that γ_1 is near zero more than half of the times; the same event occurs less than 1 percent of the times for β greater than 4.

3.3 Conservatism and average inflation

We just showed that a conservative policymaker is both less likely to disinflate *all the way* to zero and less willing to sustain Ramsey inflation whenever he gets there. Thus, somewhat paradoxically, less conservative policymakers are more likely to implement *near zero* inflation than more conservative policymakers. The latter, on the other hand, yield lower inflation rates under the Nash equilibrium, near which they float most of their time. Therefore, the last question we ask is whether these results are enough to deliver an average performance in terms of attained inflation (over a long period of time) that penalizes the conservative central banker.

Changes in the policymaker's aversion to inflation affect average inflation through three distinct channels: two were discussed in the previous two subsections; the third, working in the opposite direction, is immediate from (8): a more conservative central banker chooses lower inflation rates (π^*). Figure 2 shows that this last effect dominates: a clearly negative correlation exists between the average inflation rate and central bank conservatism. This result indicates that average inflation is driven by the Nash inflation outcome (which is decreasing in β) despite the existence of (possibly) substantial deviations from that focal point. Having a conservative policymaker remains an effective way to bring inflation down even in this model and in spite of the fact that he will choose zero inflation less often than less conservative policymakers.

¹⁴ The duration is computed as follows: provided an escape has begun (i.e. that the estimated γ_1 climbs above the threshold value $\gamma_1^{in} = -0.2$), the algorithm counts for how many periods the estimated γ remains "near zero", i.e. above the threshold value $\gamma_1^{out} = -0.25$ (see footnote 12).

4. Concluding remarks

A recent interpretation of inflation dynamics after the Second World War, first articulated by Sargent (1999), suggests that recurrent oscillations between high and low inflation may be produced by policymakers who ignore the expectational nature of the unemployment-inflation tradeoff. One attractive feature of this interpretation is that the empirical relation between unemployment and inflation remains an important one in policy discussions. This justifies doubting the idea that policymakers believe in the natural rate hypothesis. The interpretation flashes a warning about the potential inflationary risks associated with such a policy behavior. Low inflation may occur when the data do not reveal an exploitable unemployment-inflation tradeoff, but such a situation is not bound to last.

The above warning deserves attention, particularly at a time when statistical Phillipscurve type relations seem to be enjoying revived interest among academics and policymakers.¹⁵ We therefore examined its solidity without denying its premise, i.e. the ignorance of the expectational nature of the tradeoff. Rather, we adhere to the setup of Sargent (1999) and Cho, Williams and Sargent (2001) and construct a slightly more general version of their model, which allows different policy objectives to be considered. In particular, in comparison with their analysis, our model allows one to analyze how different degrees of inflation aversion on the part of the policymaker affect the warning. Policy objectives are important because monetary authorities have historically shown different attitudes towards inflation. Moreover, monetary reforms in the recent past have made price stability the main policy objective of several central banks. Such reforms are suggested as a cure for high inflation by standard economic theory in which the policymaker is assumed to know the structure of the economy (e.g. Rogoff, 1985). But what if the model is not properly specified? Would such reforms allow inflation to be controlled? To answer this question, we investigated how different inflation objectives of the conquest model.

Our results show that the statistical illusions to which policymakers succumb in the analysis of Sargent (1999) and Cho, Williams and Sargent (2001) are less likely to occur when policymakers are more inflation averse, because conservative policymakers are less willing to move inflation away from target to reduce unemployment, even when the data suggest that

¹⁵ See the 1999 special issue of the Journal of Monetary Economics, "The Return of the Phillips Curve", edited by R.G. King and C.I. Plosser.

such a policy is feasible. By generating much less variability in inflation, they annihilate the spark that triggers the escapes. Somewhat paradoxically, this implies that less conservative policymakers, being relatively more prone to generate inflation variability, are more likely to hit zero inflation than conservative ones. But despite such episodes, which are infrequent and relatively short lived, the average inflation rate is lower for more conservative policymakers. This suggests that, even within the context of the conquest model, a conservative policymaker provides an effective way to reduce inflation in lasting fashion.

Tables and figures

Table 1

Frequency^a Duration of an escape^b % time believing β value (percentage ratio) (number of periods) that γ_1 is near zero 0.2 0.43 (.05) 138 (19) 58.7 0.5 28.3 0.24 (.04) 118 (18) 0.7 0.21 (.04) 119 (20) 24.0 107 (20) 1 0.20 (.04) 20.6 1.5 0.20 (.04) 16.3 83 (14) 2.0 11.8 0.20 (.04) 60 (11) 2.5 0.18 (.04) 40 (9) 7.0 3.0 0.13 (.04) 27 (8) 3.3 3.5 0.08 (.04) 18 (10) 1.4 4.0 0.05 (.04) 13 (10) 0.6 4.5 0.04 (.04) 11 (10) 0.3

Features of 'Escapes' as β varies

Notes: Numbers in the table are averages calculated over 500 simulations for each value of beta (each simulation lasts 10,000 periods). Standard deviations are reported in parenthesis.

^aThe frequency of escapes is defined as the percentage ratio between the average number of escapes observed in a simulation and the total number of periods in that simulation (e.g. the frequency value 0.24, associated to beta=0.5, indicates that on average 24 escapes are observed over 10,000 periods in a simulation where beta=0.5). ^bThe duration of an escape is the average number of periods during which the estimated slope of the tradeoff remains greater than the threshold value -0.25 provided an escape has started (i.e. the estimated slope is greater than -0.20; see footnotes 12 and 14 for more details).

Figure

2

Ramsey Escapes

Average inflation as β varies

References

- Cho, In-Koo, Noah Williams and Thomas J. Sargent (2001), "Escaping Nash Inflation", **Review of Economic Studies**, forthcoming.
- Clarida, Richard, Jordi Galí and Mark Gertler (2000), "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory", Quarterly Journal of Economics, vol. 115, pp. 147-80.
- Cukierman, Alex (1992), Central Bank Strategy, Credibility and Independence: Theory and Evidence, The MIT Press, Cambridge, MA.
- Cukierman, Alex (1994), "Commitment through delegation, political influence and central bank independence", in: J. de Beaufort Wijnholds, S. Eijffinger and L. Hooghduin (Eds.), A Framework for Monetary Stability, Dordrecht/Boston/London: Kluwer Academic Publishers.
- Cukierman, Alex (1998), "The Economics of Central Banking", in *Contemporary Policy Issues*, Proceedings of the Eleventh World Congress of the International Economic Association, vol. 5, Macroeconomic and Finance, H. Wolf (Ed.), Macmillan Press, London.
- Friedman, Milton (1968), "The role of monetary policy", **American Economic Review**, vol. 58, pp. 1-17.
- Kydland, Finn. E. and Edward Prescott (1977), "Rules Rather than Discretion: The Inconsistency of Optimal Plans", **Journal of Political Economy**, vol. 85, pp. 473-92.
- Rogoff, Kenneth (1985), "The Optimal Degree of Commitment to an Intermediate Monetary Target", **Quarterly Journal of Economics**, vol. 100, pp. 1169-90.
- Romer, David (1996), Advanced Macroeconomics, McGraw Hill.
- Sargent, Thomas J. (1999), *The Conquest of American Inflation*, Princeton University Press, Princeton NJ.
- Sims, Christopher, A. (1988), "Projecting Policy Effects with Statistical Models", **Revista de** Analisis Economico, vol. 3, pp. 3-20.

- No. 421 Struttura dell'offerta e divari territoriali nella filiera dell'information and communication technologies in Italia, by G. IUZZOLINO (October 2001).
- No. 422 Multifactor Productivity and Labour Quality in Italy, 1981-2000, by A. BRANDOLINI and P. CIPOLLONE (October 2001).
- No. 423 Tax reforms to influence corporate financial policy: the case of the Italian business tax reform of 1997-98, by A. STADERINI (November 2001).
- No. 424 Labor effort over the business cycle, by D. J. MARCHETTI and F. NUCCI (November 2001).
- No. 425 Assessing the effects of monetary and fiscal policy, by S. NERI (November 2001).
- No. 426 Consumption and fiscal policies: medium-run non-Keynesian effects, by G. RODANO and E. SALTARI (November 2001).
- No. 427 Earnings dispersion, low pay and household poverty in Italy, 1977-1998, by A. BRANDOLINI, P. CIPOLLONE and P. SESTITO (November 2001).
- No. 428 Nuove tecnologie e cambiamenti organizzativi: alcune implicazioni per le imprese italiane, by S. TRENTO and M. WARGLIEN (December 2001).
- No. 429 Does monetary policy have asymmetric effects? A look at the investment decisions of Italian firms, by E. GAIOTTI and A. GENERALE (December 2001).
- No. 430 Bank-specific characteristics and monetary policy transmission: the case of Italy, by L. GAMBACORTA (December 2001).
- No. 431 Firm investment and monetary transmission in the euro area, by J. B. CHATELAIN, A. GENERALE, I. HERNANDO, U. VON KALCKREUTH and P. VERMEULEN (December 2001).
- No. 432 Financial systems and the role of banks in monetary policy transmission in the euro area, by M. EHRMANN, L. GAMBACORTA, J. MARTÍNEZ-PAGÉS, P. SEVESTRE and A. WORMS (December 2001).
- No. 433 Monetary policy transmission in the euro area: what do aggregate and national structural models tell us?, by P. VAN ELS, A. LOCARNO, J. MORGAN and J.P. VILLETELLE (December 2001).
- No. 434 The construction of coincident and leading indicators for the euro area business cycle, by F. ALTISSIMO, A. BASSANETTI, R. CRISTADORO, L. REICHLIN and G. VERONESE (December 2001).
- No. 435 A core inflation index for the euro area, by R. CRISTADORO, M. FORNI, L. REICHLIN and G. VERONESE (December 2001).
- No. 436 A real time coincident indicator of the euro area business cycle, by F. AITISSIMO, A. BASSANETTI, R. CRISTADORO, M. FORNI, M. LIPPI, L. REICHLIN and G. VERONESE
- No. 437 The use of preliminary data in econometric forecasting: an application with the Bank of Italy Quarterly Model, by F. BUSETTI (December 2001).
- No. 438 Financial crises, moral hazard and the "speciality" of the international interbank market: further evidence from the pricing of syndicated bank loans to emerging markets, by F. SPADAFORA (March 2002).
- No. 439 Durable goods, price indexes and quality change: an application to automobile prices in Italy, 1988-1998, by G. M. TOMAT (March 2002).
- No. 440 Bootstrap bias-correction procedure in estimating long-run relationships from dynamic panels, with an application to money demand in the euro area, by D. FOCARELLI (March 2002).
- No. 441 Forecasting the industrial production index for the euro area through forecasts for the main countries, by R. ZIZZA (March 2002).
- No. 442 Introduction to social choice and welfare, by K. SUZUMURA (March 2002).
- No. 443 *Rational ignorance and the public choice of redistribution*, by V. LARCINESE (July 2002).

^(*) Requests for copies should be sent to:

Banca d'Italia - Servizio Studi - Divisione Biblioteca e pubblicazioni - Via Nazionale, 91 - 00184 Rome (fax 0039 06 47922059). They are available on the Internet at www.bancaditalia.it