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Abstract

Aim of thisarticleisto judge the empirical performance of ‘ARCH models as diffusion
approximations’ of models of the short-term rate with stochastic volatility. Our estimation
strategy is based both on moment conditions needed to guarantee the convergence of the
discrete time models and on the quas indirect inference principle. Unlike previous literature
in which standard ARCH models approximate only specific diffusion models (those in which
the variance of volatility is proportiona to the square of volatility), our estimation strategy
relies on ARCH models that approximate any CEV-diffusion model for volatility. A Monte-
Carlo study reveals that the filtering performances of these models are remarkably good, even
in the presence of important misspecification. Finally, based on a natural substitute of a global
specification test for just-identified problems designed within indirect inference methods, we
provide strong empirical evidence that approximating diffusions with our models gives rise to
adisaggregation bias that is not significant.

JEL classification: C15, E43, G12.

Keywords:. stochastic volatility, CEV-ARCH, indirect inference, yield curve.

Contents
L INtrOTUCTION . . ettt e 7
2. Plan Of the PapEr ... 8
3. Modeling volatility @ aCEV PrOCESS. .. ... vut e 12
4, St StiCal INf O ENCE. . .o 19
5. EMPIrical @nalySiS. . ..o e 30
6. Volatility and theterm-Structure .. .. ... i e 35
7. CONCIUSION . . et e e e 39
TablesS and fiQUIES . . ... 41
Y 0] 50
RE EIENCES . . .. 63

* Banca d'Italia, Research Department.

** Université de Paris X - Thema






1. Introduction?®

The increased importance played by conditional volatility in financial economics has
led researchers (e.g., Hull and White, 1987; Wiggins, 1987, Longstaff and Schwartz,
1992; Heston, 1993) to extend early asset pricing theories (e.g., Black and Scholes, 1973;
Merton, 1973; Vasicek, 1977) to the case in which volatility evolves in a stochastic manner.
Empirically, time-varying volatility iswell captured by the ARCH-type modelsintroduced by
Engle (1982) and Bollerslev (1986) (see, e.g., Bollerslev et a., 1994, for a survey). From a
continuous time perspective, the initial contribution of Nelson (1990) established that some
basic ARCH models can be reasonably considered as approximations of diffusion processes,
which in turn are so frequently used to set up theoretical models, the major contribution of
Nelson to this strand of research can be found in part |1 of the book edited by Rossi (1996).

The central objective of this article consists in extending the research agenda initiated
by Nelson. As widely recognized, ARCH models are very appealing for statistical reasons,
even though there exist alternative econometric formulations that are surveyed, for instance,
in Ghysels et al. (1996) or in Shephard (1996). Despite the popularity of ARCH models and
the celebrated work of Nelson, it is surprising that there has not yet been any empirical work
assessing how well these models perform when they are taken as approximation to diffusion
processes. As emphasized by Campbell et al. (1997, p. 381), the empirical properties
of ARCH as approximations of continuous time stochastic volatility processes “have yet to
be explored but will no doubt be the subject of future research”. This is precisely what is
attempted here.

Our focusis on formulating and estimating new stochastic volatility models of the short-
term rate. Motivated by the above mentioned literature on the potential connection between
ARCH models and the continuous time models that are typically used in finance, our primary
concern lies in investigating whether ARCH-type models are useful devices to approximate

L This paper is arevised and extended version of Fornari and Mele (20000). It was written while the first
author was at the University of Cambridge and the second at Princeton University. We thank Gilles Dufrénot
and Manfred Gilli for advice on numerica issues, Yacine Ait-Sahaia, Pippo Altissimo, Stephen Brown, Carl
Chiarella, Ron Gallant, Michael Rockinger, José Scheinkman and seminar participants at Princeton University
and Cambridge University, the 1998 Econometric Society European Meeting at Berlin and the 1999 Society for
Computationa Economics Conference at Boston College for hel pful comments. We al so thank three anonymous
refereesfor valuabl e suggestions. The usual disclaimer applies: responsibility for any viewsor errorsin the paper
restswith theauthors, who can bereached at thefollowing e-mail addresses: fornari.fabio@insedia. interbusiness.it
and antonio.mele@u-parisi0.fr



and/or support the estimation of the parameters of stochastic differential equations. Unlike
previous literature in which standard ARCH models approximated only specific diffusion
models (namely, models in which the variance of volatility was proportional to the square
of volatility), however, our estimation strategy relies on ARCH models that approximate any
diffusion model for volatility with constant elasticity of variance (CEV henceforth), which
we call CEV-ARCH models. To summarize, the class of models covered in this paper is a
fairly general formulation that encompasses for example the continuous time version of the
short-term rate model of Brenner et al. (1996).

2. Plan of the paper

Our first econometric objective is to make inference on the parameters of the stochastic
differential equations which define our model. Of course, data are collected at discrete time
points and it is well known that standard maximum likelihood (ML) techniques would not
be suitable, since the likelihood function implied by the measure induced by our discretely
sampled model is not known in closed-form. The econometric strategy that we implement is
made up of two steps.

In the first one, we make use of the moment conditions that guarantee the weak
convergence of ARCH models toward the theoretical model; in such a way we obtain a
direct, preliminary estimate of the model’s parameters. Since such estimates are obtained
by means of discrete time models that are typically not closed under temporal aggregation
(Drost and Nijman, 1993 and Drost and Werker, 1996), in a second step we test and
correct potential ‘disaggregation’ biases usng ARCH models viewed as auxiliary devices
in simulation-based (indirect inference) schemes (see Gouriéroux and Monfort, 1996, for a
full account of smulation-based inference methods). In applying such a research strategy
to 3-month US Treasury Bill rates, we find that the correction made by indirect inference
methods is not statistically significant. Such aresult is obtained via a global specification test
for just-identified models that was originally suggested by Gouriéroux et al. (1993).2 Our
empirical findings are obtained with the data set used in a frequently cited empirical work
of Andersen and Lund (1997a). The authors make use of the efficient method of moments

2 We obtain very similar findingsin a companion paper (Fornari and Mele, 2001) in the stochastic volatility
option pricing area. Naturally, the empirical success ARCH models have in approximating diffusion processes
here does not invalidate simul ation-based methods. On the contrary, exploring the validity of ARCH as approxi-
mators of diffusion processes has been possible due to the availability of simulation-based techniques.



(EMM) techniques developed by Gallant and Tauchen (1996), in which a highly parametrized
discretetime model is used with the main purpose of calibration; precisely, the auxiliary model
generates a score, and the EMM objective is then to minimize a chi-squared criterion that
Is a quadratic form in the expected score computed via a long simulation of the theoretical
model. The advantage of the EMM estimator is that it achieves the same efficiency as the
true (intractable) ML estimator when the auxiliary model generates a density that ‘smoothly
embeds' the true likelihood function of the discretely sampled diffusion. Following the results
of Gallant and Long (1997), one can use a semi-nonparametric-based likelihood function to
provide the additional parameters that increment the efficiency of the EMM estimator. One of
the earliest applications of the EMM techniques to models of the stock prices with continuous
time stochastic volatility isin Gallant and Tauchen (1997).2

It should be clear that the estimation strategy that we follow has a different rationale:
instead of selecting a highly parametrized auxiliary model that has the scope of calibration,
we just wish to ascertain whether our auxiliary model is a reasonable approximation of the
continuous time model. In technical terms, we are going to focus on the empirically difficult
just-identified case. Such a strategy was originally suggested in Gouriéroux et a. (1993)
(p. S108): “[Indirect inference] methods seem particularly promising when the criterion is
based on approximations of the likelihood function, time discretization, range discretizations,
linearizations, etc. In this case the method is simpler [...] and appears as an automatic
correction for the asymptotic bias implied by the approximation”. In our context, indeed,
“the asymptotic bias implied by the approximation” is given by a disaggregation bias. While
not closed under temporal aggregation, ARCH models till have a natural interpretation in
terms of the continuous time models that they approximate, since they are very close (interms
of the probability distributions generating them) to the approximated continuous time models
when the sampling frequency is high. Furthermore, the auxiliary criteriathat we construct are
based on approximations that create a natural one-to-one interpretation of the sequence of the
parameters of the auxiliary discrete time model in terms of the parameters of the continuous
time model (see paragraph 4): asisclear, we are exactly in the situation originally put forward
by Gouriéroux et al. (1993).

3 Gallant and Tauchen (1997) also consider the application of EMM to interest rates models without stochas-
tic volatility, while Galant et a. (1997) apply the EMM technique to discrete time model swith stochastic vol atil -

ity.
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In addition to the point estimates of the parameters of stochastic differential equation
system, an essential ingredient of the practical implementation of any stochastic volatility
model is obviously the knowledge of the volatility at the dates of interest. In pricing bonds
in a stochastic volatility setting, for instance, one needs volatility estimates. Clearly, this
Is a challenging problem since the short-term rate volatility is not directly observable, and
especially in continuous time, it is not trivial to obtain filtered estimates of the unobservable
volatility; see however, the reprojection techniques implemented by Gallant and Tauchen
(1998) in recent empirical work. In this respect, appropriate sequences of ARCH models
are known to estimate consistently the volatility of a continuous time stochastic process as the
sample frequency gets larger and larger, even in the presence of serious misspecifications (see
Nelson, 1992, and Nelson and Foster, 1994, for the univariate cases, Bollerslev and Ross,
1996, (p. xiii-xvii) for a brief account on the filtering performances of ARCH models as
applied to continuous time stochastic volatility models). In this case, as put by Bollerdev and
Ross (1996), “one could regard the ARCH model as merely a device which can be used to
perform filtering or smoothing estimation of unobserved volatilities” (p. xiv). In addition, our
motivation to use ARCH-type models to filter volatility is reinforced here, since we show that
the desiderable filtering performances of standard ARCH models are also shared by the CEV-
ARCH models, as it might be expected by a suitable interpretation of the theory (see Nelson
and Foster, 1994, theorem 4.1). In a nutshell, the approach suggested in this paper alows one
to filter volatility efficiently in any CEV-diffusion model for volatility.

The practical relevance of the filtering theory for ARCH models can be grasped very
simply. Figure 1 depicts the typical filtering of an ARCH model as applied to a simplified
version of our model. There, the straight line is one weekly sampled trajectory of the volatility
o (1) simulated within the following mode:

dr(t) = (t—0-r(1))dr + /(1) o(r) - dWWH(7)
1
do(t) = (w—¢ o(T))dr 4+ o(r) - dW®(r)
where W®, i = 1,2, are standard Brownian motions, and ¢, 0, w, ¢ and v are real-valued
parameters fixed at their estimates obtained with US data (see paragraph 5). The dotted line
represents instead the (rescaled) volatility obtained via an ARCH mode fitted to the weekly
sampled trajectory of the short-term rate »(7), as simulated by (1), of course, in estimating
the ARCH model, we considered ourselves constrained to only knowing the realization of the
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smulated (7). In fact, figure 1 visualizes one of the simulations performed in the Monte
Carlo experiment of paragraph 5, but such a performance is typical of the overall experiment;
this can be gauged by the very tiny RMSE between the two trajectories computed over all
the ssimulations (see section 5 and Schwartz et a., 1993, for previous related work on similar
models).

The final contribution of the paper isto explore aterm-structure extension of the model.
The main objective is to understand the relationship between equilibrium bond prices and
volatility within the framework of our estimated stochastic volatility model. While it is well
known that a three-factor model is needed to explain level, sope and curvature of the term-
structure (see, e.g., Andersen and Lund, 19975, and Dai and Singleton, 2000), it will be
argued that our two-factor model is already able to capture fundamental qualitative features
of the relationship between bond prices and volatility, which is the only objective pursued
here. Similar exercises were aready performed by Chen (1996) and Andersen and Lund
(1997b). These authors did not emphasize how to determine the risk-premia associated with
the fluctuations of the uncertainty factors. To address this issue within a theoretically sound
framework, we then study the compatibility of our data generating process with an equilibrium
in which agents are endowed with a CRRA utility function. Our empirical results then imply
that the term-structure of interest rates increases with volatility.

The paper is organized as follows. Next section presents the basic structure of our
continuous time model; it also provides intuition and preliminary results on the estimation
and filtering methods to be implemented with the help of ARCH models that do not constrain
the elasticity of variance to one (the “CEV-ARCH models’). The econometric strategy isfully
detailed in paragraph 4. Empirical results are in paragraph 5 and 6. Technical considerations
and proofs are gathered in the appendices.
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3. Modeling volatility as a CEV process

The basic structure of the continuous time models

The most salient feature of the model we consider in this paper is that the instantaneous
volatility of the short-term rate is a process with constant elasticity of variance (CEV):

dr(r) = (0= 0r(T))dr 4+ a(7)\/r(7)dWO(r

(2
do(1)? = (w—o(1)%)dr + Yo (r)*d (pw(l) \/1—7W(2) )

wherea = (1,0,68,w,,1, 1, p) isthe parameter vector of interest, W®, i = 1,2, are standard
Brownian motions, and § > 1.The 1/r(-)-term included in the short-term rate diffusion
equation constrains the short-term rate to take only positive values. With such a term, the
model also captures an empirical regularity known asthe ‘level effect’, i.e., coeteris paribus,
the short-term rate volatility gets higher as the short-term rate level increases. Allowing for
more general diffusion terms such as for instance o(+) |(:)|* (d > 1/2) is possible, though it
would not change dramatically our empirical results.

The central objective of the paper is to use ARCH-type models that alow for i)
estimation of the continuous time parameters and ii) reconstruction of the unobserved short-
term rate volatility process o(-). A technical presentation of our methodology as opposed
and/or related to other existing methodologies is deferred to the next paragraph. Here we give
an heuristic motivation of the approach followed in this paper as well as preliminary evidence

on its performances.

A class of ARCH models: the CEV-ARCH
Consider an Euler-Maruyama discrete time approximation of (2):

rTnk+1) — nThe = (L —0- hThk)h + hOrkN/BThE *© RUh(E+1)
©) ) ) N
Wohk+1) — h9he = (W= nopp)h+1- hghk !Vh nEn(rt1)

where h denotes the discretization step,

()= ((5): (1, 7))
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and (n7n5,n Ok ) 5o are the discretized short-term rate and volatility processes.

Itiswell known that when i | 0 (3) convergesweakly (or in distribution) to (2).# Hence,
the higher the sampling frequency, the higher should be the accuracy of, say, ML estimates
of a obtained with (3). Unfortunately (3) represents a discrete time stochastic variance model
for which ML methods are quite cumbersome to implement. Used as an auxiliary model in
a smulation-based framework, for instance, (3) would noticeably increase the computational
burden. Considered as a potentially good approximation of (2), to mention a further example,
(3) would lend itself to a computationally intensive testing strategy for the disaggregation bias.
Third, there are no obvious techniques to filter out the actual volatility path with (3).

A natural alternativeis provided by ARCH models. Asnoted in the introduction, ARCH
models can be thought of as diffusion approximations. It is aso well known, however, that
not all diffusion models can be approximated by ARCH models. To get an intuition of this,
consider the standard GARCH(1,1) model of Bollerslev (1986):

2 2 2 _
onpn=w+pfo, +ac,, ¢, =w-0),, n=0,1,--

where w, 5 and « are parameters, ¢ isthe residual of an observation equation, and the index n
IS an abstract notation for sample points at discrete time intervals (a more precise notation will
be introduced in the next section). Rewrite the preceding equation as:

4 Uiﬂ —o=w— (1 — ozE(uQ) — ﬂ) o + ao? (ui — E(u2)) ,

n

and suppose that « ~ N(0,1). When we chop time so asto maken : hk < n < h(k + 1),
k=1,2--- letthe parametersw, (3, o vary with h by introducing sequences wy,, 3;,, o, and
thenlet h | 0, theresulting volatility process converges in distribution to:

(5) do(1)? = (w — 900(7)2) dr + 1/)0(T)2dW(2) (1),

4 1f (2) hasaunique strong solution denoted as {7 (7), o (7)° } »> 0, weak convergence of { 71,1 UZk}k=1,2,...
in (3) to {r(7),0(7)?} >0 means that the finite dimensional distributions of {574z, Uzk}k=1727m converge to
those of {r(7),o(7)’} >0 ash | 0. See Stroock and Varadhan (1979). It turns out that the conditions demanded
by Stroock and Varadhan (1979) are difficult to verify when studying the convergence of ARCH-type models.
One then may wish to make reference to the conditions suggested by Nelson (1990).
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where
limhw h’lwh = w
(6) limpoh ™t (1—an—B;) = ¢
limhw h71/2\/§04h = ’L/)

To obtain an intuition of this result, notice that the sequence (£,,)° , = (u2 — E(u?)),_, isan
I.i.d. sequence of centered chi-square variates with one degree of freedom and represents
the discrete version of the Brownian motion increments diW®)(.). On the other side, the
renormalizing v/2-term in (6) is explained by the fact that ¢ = w?> — E(u?) = u®> — lisa
chi-square variate with one degree of freedom and has a variance equal to two. Naturally, the
normality assumption for « isnot needed to obtain the convergence.

Equation (5) may correspond to the volatility dynamicsin (2) whené = 2, n = 1 and
p = 0. Similarly, it is possible to show that under conditions similar to (6), the so called
Taylor-Schwert model:

Ouit — 0n = w— (1= aB(|ul) = B) o + a0, (fus] — E(Jul)),
also converges in distribution to a diffusion limit with the following form:
(7 do(1) = (w— @o(1))dT + ’L/)J(T)dW(2) (7).

Equation (7) may now correspond to the volatility dynamicsof (2) whené =n = 1andp = 0.

Asthesetwo basic examples should make clear, standard ARCH models do not converge
in distribution to any unrestricted CEV process. Rather, in their diffusion limit, ARCH models
typically make the variance of volatility proportional to the square of volatility, thus restricting
the elasticity of variance to unity. Motivated by this simple remark, we now describe a class of
ARCH models that does not constrain the el asticity of variance to one.> Consider, for instance,

the following model:

8 o =w+ ac? un2n—|—ﬂ02—|—o¢E ul* o — gy |
n+1 n n n n

5 This class of models can be shown to satisfy the most salient theoretical properties of an optimal volatility
filter as developed earlier in the optimal filtering theory of Nelson and Foster (1994, theorems 4.1 and 5.2).
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which can also be rewritten as;

o1 — o =w— (L= aB(|u]™) = ) o7 + a0y (|ual" — E(jul™)).

n —

Clearly, this model collapses to the GARCH(1,1) model (4) when = 1; yet it does not
constrain 7 to that value: rather, n must be estimated from data. Furthermore, in the next
section we show that under conditions similar to those of Nelson, this model converges in
distribution to:

do(1)? = (w — ng(T)Q) dr + ’L/JU(T)QndW(Q)(T).

Finally, to obtain convergence results closer to model (2), we shal be considering a
generalization of (8) that sets the volatility propagation mechanism to:

9) ot 1 = w4 aod? |u, " 4 Bod 4+ aB(|ul”) (0f — of1) .

As before, we will show that at a high sampling frequency, the volatility process in (9)
convergesin distribution to

do(7)’ = (w — QOU(T)5> dr + ’L/)U(T)é'ndW(Q) (1),

which may correspond to the volatility dynamicsin (2) when p = 0. Complications arising
from the presence of correlation will be treated by introducing asymmetries in the volatility
dynamics of (9). In the same way, our searching strategy can be used to introduce nonlinear
volatility dynamics into discrete time models that match any desidered feature of the resulting

diffusion limit. Consider, for instance, the following model:
Onp1 = (L+w)oy — (1= aB(|ul) = 8) oh + a(jua| — E(|ul) 07/,

Using the methods of paragraph 4, it can then be shown that this model converges in
distribution towards:

do(r) = {o(7) (w — o (7))} dr + o (r)/2dW P (7),
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asthe sampling frequency gets higher and higher. Likewise, one can adjust both the short-term
and the volatility equation to include both variables. In this paper, however, we will only test
the adequacy of ARCH-type models in the estimation and filtering of system (2).

Filtering and invariance properties of the CEV-ARCH model: preliminary Monte Carlo
evidence

Here we provide preliminary Monte Carlo evidence on the performance of the CEV-
ARCH models previously introduced. Further Monte Carlo and empirical evidence will be
provided in section 5. Our primary concern lies here in ascertaining whether the CEV-ARCH
model (9) is able to deliver reliable parameter and filtering estimates. To this purpose, we
consider model (2) and fix p = 0 (consistently with the empirical evidence provided in section
5), and the other coefficients at the values indicated in table 1 below. We then simulate (2)
1000 times with an Euler-Maruyama approximation device, and sample simulated data at a
weekly frequency. All smulated samples have 1135 weekly points, which correspond to the
actual sample size used in our empirical analysis (see section 5). Finally, all weekly s mulated
short-term rate data are fitted by a conditionally Gaussian AR(1) model of the form:

Tn = ¢o+ G17n-1+ \/Tn16n  (Pg, ¢; CONStaNtS),

with (9) as volatility propagation equation.

Table 1 reports the results of the experiment. We begin with the case related to the
empirical evidence provided in section 5: there, we find that fitting (9) to actual US short-term
rate data produces estimates of ¢ and » that are both statistically not distinguishable from 1.
Now table 1 shows that when the data generating processin (2) has§ = n = 1, then (9) aso
reproduces, on average, approximately the same ML estimates of 6 and , (see section 5 for the
implementation of experimentsinvolving al parameters). Results not reported here reveal that
the same phenomenon occurs with other possible combinations of 6 and . As an example,
table 1 reports Monte Carlo results concerning the case in which § = 2 and n = 5 in (9).
This case emerges when the data generating process in (2) has a variance concept that follows
a square root process. As is clear from table 1, model (9) plays in practice an excellent role
in mimicking such characteristics of the data generating process. We call these preliminary
properties as time-scale invariance properties of ¢ and . Clearly, such properties should not
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be shared by the other parameters of the models: it is precisely the objective of section 4 to
provide the necessary correction formulae introducing time-scale corrections.

Thefiltering performances of model (9) are also remarkably good. Volatility trajectories
filtered with this equation are very close to volatility trajectories smulated from (2), and the
resulting pattern of the two traectories is very smilar to the one shown in figure 1. Table
1 reports precise results assessing the volatility filtering performance of (9), by comparing
simulated volatility paths with volatility paths filtered with (9). The common concept of
volatility adopted to make comparisonsisthe standard deviation. Theresult iswhat we call the
‘volatility filtering error’, which is defined precisely in paragraph 5. The findings reported in
table 1 are of the same order of magnitude as those of paragraph 5. Notice also that in order to
be able to compare simulated with filtered volatility, the latter hasto be rescaled for diffusions;
techniques for treating thisissue are introduced and explained in great detail in appendix C.

On probabilistic properties of the short-term rate volatility and comparisons with alternative
formulations

Beyond providing aframework for CEV-type diffusion process for volatility, (2) differs
significantly from previous stochastic volatility models, since it does not constrain the
‘volatility concept’ to be ‘variance’ or ‘standard deviation’; rather, in (2) ¢ isanew parameter
that must be estimated from data. In the empirical section of the paper, for instance, we uncover
evidence that § = 1. In that section, we also uncover evidence that n = 1.° Withn = 1 and
positive mean-reversion, the volatility process ¢¢, § > 1, has a steady state distribution that
Is an inverted Gamma with mean % (eg., lemma3.1 p. 217 in Fornari and Mele, 1997q); the

stationary distribution of & is consequently given by

20432
o (2_0;) v’ 2650+ (5+1)9p2 2
i _ 2604 (6+ w
(10) fé(O_) = WJ @2 exp <_—20' 5>
@2 )

(seelemmaA.2, p. 227, in Fornari and Mele, 1997a). As shown by Fornari and Mele (2000a)
(chapter 5), the density f;s(-) tendsto shrink to the left as 6 decreases.

6 Engle and Lee (1996) fitted a restricted version of the volatility equation of mode (2) to stock returns,
namely for § = 2, and supported a model in which the volatility of volatility raised linearly with the square of
volatility, as our empirical findings do.
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The volatility equation in (2) encompasses other formulations already encountered in
the stochastic volatility literature (see, for instance, Ball and Roma, 1994, and Taylor, 1994,
for alist of the typical models in the stochastic volatility option pricing ared). Thisis the
case, for instance, of the non-stationary models of Hull and White (1987) or Johnson and
Shanno (1987), to which our volatility equation reduces when w = 0: by 1t0’s lemma, indeed,

V = log o2 is solution of
(11)
2
dV@?==<—2£%%£—+2%emo<—gV@?>>dr+%?d(mwﬂ>+\/1—pﬂvﬂg.

In contrast, log-volatility mean-reverts in anon-linear manner when w # 0. Therefore,
(11) is rather different from the /inear mean-reverting process for the log-volatility adopted
in the seminal paper of Wiggins (1987) in the stochastic volatility option pricing domain, and
in the empirical work of Andersen and Lund (1997a) or Gallant and Tauchen (1998) in the
interest ratesfield. To seethisin more detail, consider the linear mean reverting model utilized
in the study of Andersen and Lund,

dV(r) = (@ — V(1)) dr + EdW ()

where W is astandard Brownian motion and @, 3, € are real constants. By 1t0’s lemma, in this
model ¢¢ is the solution of
_ =2 9 =
— )
(12 d(j(T)‘5 = (%0(7)5 — ﬂ0(7)5 - log J(T)5> dr + %U(T)édW(T),
which becomes of course also the starting point of Wiggins (1987 eg. (2) p. 353 and eg. (15)

p. 361) when § = 1. Although the volatility of volatility in (12) rises linearly with ¢2°, asiin
(2) whenn = 1, the drift behaves rather differently in the two volatility equations.

Figure 2 depicts acomparison between the stationary densitiesthat are generated by (11)
and (12). Thefirst is given by (10) and has been produced using the parameters estimates of
section 5; the latter isjust alog-normal density, and has been produced using the parameters
estimates reported in Andersen and Lund (1997b). While the two models approximately
put the same probability masses on low levels of volatility, our model puts relatively more
masses on high values of volatility than the Andersen-Lund model. An explanation of such
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a phenomenon can be found by comparing the drift functions of the two models: asis clear
from figure 3, the two drift functions are of the same order of magnitude when volatility is
low; once volatility visits higher regions, however, the Andersen-Lund linear drift function
pulls volatility towards its steady state expected value more rapidly than the drift function
of our model. This implies that our model generates relatively more frequent episodes of
high volatility than the Andersen-Lund model. Naturally, our model does not encompass
the Andersen-Lund model, but it should be more flexible in practice due to the presence
of the additional parameter ¢ in the volatility equation: should the volatility equation in (2)
be misspecified, such an additional parameter might permit to better adjust the model to the
statistical properties of the true volatility generating mechanism.

4, Statistical inference

Various methods have been recently proposed to estimate the parameters of a diffusion
when sampling is not continuous. Asiswell known, the main difficulty of ML methodsiis that
the likelihood function implied by the measure induced by a discretely sampled diffusion can
not be calculated explicitly.” Alternative methods rely on nonparametric density estimation
(Ait-Sahalia, 1996a and 1996b) and/or closed-form approximations of the true (unknown)
likelihood function of the discretely sampled diffusion (Pedersen, 1995; Ait-Sahalia, 2000), on
the generalized method of moments (Hansen and Scheinkman, 1995; Conley et al., 1997), or
ontheindirect inference principle,® whose main references have been cited in the introduction.

In this paper, we adopt the indirect inference principle, which is particularly well-
suited to problems in which the state is partially observed. One important concern, however,
Is aso to study whether a smple ARCH model fitted to high frequency data provides a
reasonable approximation of (2). Accordingly, in section 4 we start with presenting a vary
basic approach to obtain an initial estimate of the vector of parameter of interest, a. It consists
in replacing the (intractable) likelihood function implied by the true measure induced by (2)
with an approximation of it. Such an approximation may be based on a discretization of (2),

" Following Lo (1988), ML estimation might turn out to be feasible if the transition density of {r(7)},>0
in (2) could be computed easily. Since thisis not the case here — asin virtualy all continuous time stochastic
volatility models— ML is computationaly demanding, since it would require to implement anumerical solution
to amulti-dimensiona partial differential equation at each iteration of the optimization agorithm. Thelikelihood
would then be recovered by integrating out with respect to volatility.

8 Inthis paper, we adopt the convention to include the EMM theory of Gallant and Tauchen (1996) as a part
of theindirect inference principle.
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but as the arguments of the previous paragraph should have clarified, even a standard Euler
approximation of (2) yields a discrete time stochastic variance model, and eventually implies
an approximated likelihood that does not simplify the problem in a noticeable way.?

One natural alternative isto make use of a (tractable) exact likelihood function of aclass
of approximated models. The main idea has been presented in the previous paragraph, and
consists in resorting to a suitably chosen class of ARCH models converging in distribution to
the solution of (2) as the sampling frequency gets infinite, following the strand of literature
which shows the convergence in distribution of ARCH-type models to diffusion processes.
Since the resulting likelihood function refers to a model converging in distribution to the
solution of (2) that isnor an Euler approximation of (2), however, we call theresulting criterion

‘quasi’ -approximated likelihood function.

The advantage of the quasi-approximated ML estimator is that it demands no
computational efforts, and its main drawback is that it is not necessarily consistent. In fact,
the ARCH models we use are typically not closed under temporal aggregation, which means
that at least theoretically, there is not a one-to-one correspondence between convergence
in distribution of the discrete time models and disaggregation from a diffusion. On a
theoretical standpoint, such a correspondence exists only when the concept of an ARCH
model is weakened (Drost and Nijman, 1993, and Drost and Werker, 1996)."° Furthermore,
Corradi (2000) recently criticized the conditions in Nelson (1990) , necesary to achieve the
convergence of the basic GARCH(1,1) to a diffusion; in section 4, we show how to adapt
Corradi’s critique to our setup.

Recognising the presence of disaggregation bias and the possibility that the ARCH
models we use may even fail to converge to any diffusion limit, in section 4 we show how
to construct a very precise testing procedure of the validity of the moment conditions needed
to guarantee the convergence to well-defined diffusion limits, as it turns out, such a testing
procedure also gives information about the relevance of disaggregation biases. Our strategy

9 See, forinstance, Harvey et . (1994) or Jacquier et al. (1994) for the estimation of discretetime stochastic
variance models, Jacquier et al. (1999) for multivariate and distributional extensions, Gallant et al. (1997) for the
EMM approach to discrete time stochastic variance models, and Shephard (1996) for a succinct survey of related
methods.

10 Drost and Werker (1996, p. 33) report that using ARCH asindirect approximators should be more efficient
than using their identification procedures, since in this case the criterion function would be close to the true ML
equations.
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is based on the consistency test originally suggested by Gouriéroux et al. (1993, section 4.2),
and it can be viewed as the natural substitute of a global specification test in just-identified
problems.

Quasi-approximated likelihood functions

The rationale behind the quasi-approximated ML estimator that we propose liesin the
weak convergence of a class of ARCH models towards the solution of (2). For ease of
exposition, we start with considering the restricted version of (2) that setsn = 1. Theorem
4.2 below treats the genera case. With n = 1, amodel approximating (2) can be a discrete
time approximation of the short-term rate equation in (2) modified by introducing the so-called
asymmetric-power ARCH model introduced by Ding et al. (1993):

ATngl = ATnHiA —Oa ATh + ACn1v/ATn © AlUngt
(13) A€n = AlUn-aOn, 22~ N(0,1)
A0y = wa+aa(|aen] =7+ a€)’ + Ba - ac),
where the indexing n = 0,1, - - refers to consecutive observations sampled at the same

frequency A (weekly, say), ta,0a, wa are of the form za = z@® . A, with (&) ) real
parameters and w®) > 0, aa, B4 > 0,7 € (—=1,1),6 > 0. Findly, ~ allows for the leverage
effect originally observed by Black (1976), and incorporated by Nelson (1991) in ARCH-type
models. To keep things relatively simple, we assumed a sort of time-scale invariance of (6, )
in the preceding approximation scheme. The invariance of ¢ is, however, strongly supported
by the Monte Carlo experiments reported in paragraph 3.

To heuristically obtain the weak convergence towards the solution of (2), chop time as
hk <n < h(k+1):

KT h(k+1) = wThktin — On s wThi + WORGE+1)VAETRE © R URK+1)
(14) hEnk = nUnk " nOhnk, hf}%k ~ N(07 1)

hgi E4+1) hgik = wp—(1—ay ’huhk’5 (1- ’73k>5h7% - ﬂh)hgik
(k+1)
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(Wlth Sk = s.gn(huhk) and’ Vh > 07 ({Lh}u {eh}{wh}u {ah}u {ﬂh}) S Ri and v E (_17 +1))’
and impose suitable Lipschitz conditions on the * h-drift’ as well as non-explosion conditions
on the ‘ v/h-diffusion’ terms of volatility.

Nelson (1996, p. 19) was one of the first to suggest a model of the kind of (14) as
a discrete time approximation of a continuous time model for the short-term rate. More
specifically, Nelson (1996) took 6 = 2 and v = 0 in (14), and pointed out that the resulting
scheme isthe model of Brenner et al. (1996) atered slightly to admit a diffusion limit. While
the empirical results of this paper suggest a smplification of (2) in which § isone and p is
nil, we provide here more general results that can be useful when applied to different data sets
and/or related problems. As originally remarked by Nelson (1996), the kind of results that we
are going to provide can be useful especially when a researcher is interested in the filtering
performances of model (13) when p isnot nil in (2). Also, we slightly complicate the analysis
and allow standardized residuals to be general error distributed, but such a possibility is not
considered in the empirical section of the paper:** in addition to the standard motivation that
the normal distribution is not flexible enough empirically,** a second motivation for such a
complication here came from some findings of Engle and L ee (1996) (seetheir tables 2 and 4),
who obtained indirect estimates that seemed to be dependent on the distributional assumption
made for the auxiliary model.

To save space, we shall be avoiding as much as possible unnecessary technical discussion
referring to the construction of the measure space in (14): technical details can be found in
Nelson (1990), and are those exploited in Fornari and Mele (1997a, b and 2000a) (see aso
Duan, 1997, for related work). We only introduce notation for the filtration generated by
{nrni—1ym o9, 151, which is Fpi, and which will be used in appendix A. Let the symbol =
denote weak convergence. Recall that if arandom variable x is general error distributed then

—Ligovgv v ;
verl a¥u 8D ywhere V2 = .t D o 5 0 and T(.) is the

its density is written as o T ) ErrGeT)

1 The reason why we did not implement the g.e.d.-based likelihood function in the empirica section isthat
doing so implies non-stationarity of the resulting model. However, by taking a normal-based likelihood function,
we can alwaysinterpret the resulting estimates as gml estimates.

12 Asargued in Fornari and Mele (1997a), the combination of § and v should increase the flexibility of both
the conditional and unconditional distributions of the error terms. Infact, while the conditionally normal GARCH
givesriseto an invariant distribution of residuals that is a Student ¢, which is shaped by a single parameter, model
(14) augmented with a conditional g.e.d. gives rise to an invariant distribution that is a generalized Student ¢
when § = v, and afairly general distribution when é # v, thus providing apotentia better fit for the distribution
of theresidual.
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Gamma function. The following convergence result is an extension of theorem 2.3 p. 211 in
Fornari and Mele (1997q) that allowsfor the presence of the instantaneous correl ation between

{hrhk}k:O,l,--- and {ho_(}ik}kzﬂ,l,--- as h shrinks to nil:

26 ')
2T71v%51—\(25j1) 2;71v51—\(ﬂ)

THEOREM 4.1: Let ms,, = NOR) Mg = W, and let h“ﬁ be general

error distributed. Let:

(159 ¢, = 1—nsu((1=7)" + (1 +7)")an— B,

A8) = \fme — 2 (2% + (L+2)%) — 202, (1 3P (1+7) - on,

5 v+1

VML) - (1 =2)' = (149))

an p
T(v*)\/(mé,v =13 ) (1 =7)% + (1+7)%) = 2n5 (1 = 7)1 +7)°

and suppose that limy, o h ', = ¢, limy, 0 h™ 10, = 0 and:

limhw h’lwh = w¢ (0, OO),
(18) limyoh tp, = ¢ <o,
limp o b2, = 1 < o0,

Then, {nrng-1y:n Oogth—o,.. = {r(7),0(7)°}r>0 as h | 0, where {r(1),0(7)°}r>0 are
solutions of (2) whenn = 1.

Let

hrUhk hAUnhk

s | (1 ) — (22| (1= o))

hghk .
V0ms =2 ) (1= 7)% + (L+7)%) = 202, (1= 7)°(L+7)°

The preceding approximation result then says that when 7 shrinks to zero and the moment
conditionsin (18) are fulfilled, the distribution of the sample paths generated by the following
model,

RTh(k+1) — nThk = (Lh — Oy - hThk) + hOr(k+1)VRThE © hUn(E+1)

(19)

5 s _
WOpk+1) — WOk = (wn = @n - n0h) + U5 100 ném
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gets ‘closer and closer’ to the distribution generated by the sample paths generated by (2),
with p given by (17). Comparing (13) with (19) then suggests an estimator based on moment
conditions; specifically, the quasi-approximated ML (g-aml) estimators of W, ¢, we propose

are
Wogam = A73/2{U\A7
(20) <70q-aml = Ail@é\?
,L/}q-aml = A71/21/}A7

where § 4, @ A are obtained by means of (15)-(16) computed in correspondence of the gml
estimator of model (13), wa isthe gml estimator of wa of model (13). The g-aml estimator of
6 isthe gml estimator of 6 in model (13), and the g-aml estimators of  and ¢ are as those of w
and ¢ above. Finally, the g-aml estimator of p is obtained by plugging the gml estimators of
(6,v,v) informula (17).

The estimatorsin (20) are based on the moment conditions (18) and as we noted before,
they may be affected by a disaggregation bias; furthermore, Corradi (2000) recently questioned
the realism of the moment conditions that Nelson (1990) originally imposed to show the weak
convergence of the GARCH(1,1) towards a continuous time stochastic volatility model. Her
reasoning can be generalized here asfollows. In thethird equation of (14), the term generating
the diffusion terms of volatility is proportional to (7~ %) - |nunk|’, whichis of course O, (v/h)
under the third moment condition in (18). In other terms, a condition for a diffusion to be
obtained is to scale the variance of |,uy,|° with a diverging sequence. In general, one would
generate diffusion terms with oy, - |suni|’, Where oy, &~ O(h9), ¢ € R. This leaves three
aternatives:

-dg=5"
b)q<1;2‘5.

1-§

The first condition is another way to express the condition under which (14) has a
well-defined diffusion limit, the second condition implies that (14) does not converge to
any diffusion limit; and the third condition implies a ‘degenerate’ diffusion limit, i.e. with
identically zero diffusion terms.
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While recognizing that weak convergence results such as those contained in theorem
4.1 are obvioudy related to parametrization issues, in the empirical section we find that not
only the parametrization in (14) provides areasonably good picture of the volatility dynamics,
consistently with the theoretical results of Nelson and Foster (1994), but it even passes the
global consistency test that checks a posteriori the accuracy of the approximation in (15)-(16)
and that we present below.

Finally, the previous conclusions remain perfectly the same when we generalize theorem
4.1 by freeing up n. As remarked in the previous section, there are no available ARCH
models in the literature that can be used to obtain the convergence towards an unrestricted
CEV volatility process. Consider however generalizing both (8) and (9) by means of the
following model:

[ ATnt1 = ATnFiA—O0A ATh + ACni1V/ATH* AUt
21) A€n = Al AOn, S5~ ged,
A0py = wa+aa(lan] =7+ a€)" 4+ B a0y,
\ +an - E{(|atn] =7+ aun)™} - {ach — acll}.
Chopping time in (21) asin (13), and rearranging, yields:
(22)
( RTh(k+1) = wTne+tn = On wThk + WOk 1)VAThE © RURGK11)

hUnE
hEnk = nUnk ' WO0hk, v ged,

&
ho_i(k+1) - hgik = Wp— (1 —h 2 E {’huhk’&? (1— 7%)577} Qp — ﬂh) hﬂik
&
Tan (’th’&7 (1 —ysp)" — B {’h”hklén (1- VSk)M}) hi?ﬁgiz'

We have:
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THEOREM 4.2: Let

(23) o = 1= nepo((L =)+ 1 +7))on = By,

@) ¢, = \/(mén,v - ngn,v)((l — )%+ (1 + 7)) — 271(%,7’“(1 — )1 (1 4+ v)% - ap,

and

Sn—v+1

22V (1= 9) — (14 9)") |
0 1) ey = 12, ) (L =2 + (L4 )1) = 202, (L= )21+ )"

(25) p=

Suppose that limp, o h™ 1y, = ¢, limy, 0 b0, = 0 and:

limhw h’lwh = wE (0, OO),
(26) limpohte, = ¢ <oo,
limy o h~ Y2, = 1 < oo.

Then, {nrn-1y,n 0oy th0,.. = {r(7),0(7)°}rs0 as h | 0, where {r(7),0(7)’}r>0 are

solutions of (2) and {7 1x—1),n 0oy tr—0,1,... are solution of (22).

Finally, notice that one can make a creative use of alternative asymmetric ARCH models
to obtain convergence to models with correlated Brownian motions. An example of such a

searching strategy is provided in appendix A.

Quasi indirect inference

We test and correct the potential disaggregation bias of the g-aml estimator with the
indirect inference principle. The procedure that we follow is a natural generalization of
Broze et al. (1995) and alows the volatility of the short-term rate to evolve in a stochastic
and autonomous manner. Formally, if we replace the normality assumption with the g.e.d.
assumption, the g-aml estimator of b = (A=, A7 '0a, A3 2wa, Ao, AV, 7, 6,
n,v) in(21)is

Qg-am = /b\N = arg ml?x £N(AT; b),

where £x(a7; ) is the likelihood function implied by (21), N is the sample size, and a7 is
the observations set, which is supposed to be a discretely sampled diffusion from (2) when
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the true parameter vector is ay. Note that dim(b) > dim(a). In the empirical implementation
below, however, we shall consider the Gaussian case in which v = 2, and motivated by the
Monte Carlo findings reported in section 3, we shall impose the time-scale invariance of 6 and
n. We aso assume the same for ~; ascertaining whether such a time-scale invariance of ~
IS a reasonable assumption in practice is an open question that we leave for future research.
Accordingly, now we re-interpret b as a vector in an open subset of R® (with coordinates
A Via, AN, A3 2w, AT, A7V2,), £4(.) as anormal likelihood function with
6,n and ~y fixed at prespecified values (e.g. at the preliminary gml estimates obtained by fitting
model (21), as we actually do in the empirical part of the paper), and a as avector in an open
subset of R?, with coordinates:,0,w, ¢, 1.

It is well known that under standard regularity conditions (appendix B), one has
asymptotic normality of the pseudo-ML estimator,

VA (B = bo(ao)) = N (0,2, (ao; bo(ao)) - T(ao)- €., (an:bofan)))
where £, (.) and J(.) are defined in appendix B, and by(.) is the so-called binding fiunction:
bo(ap) = arg max £(ao; b), thelimit problem.

However, the true law of A7, asimplied by the data generating mechanism, say 4o (a7), issuch
that

to(ar) ¢ {€n(ar;b), bvarying},

and the discrete time model is expected to behave in away that allowsfor adiscretization bias:

b(ao) 7é ap.

The reason why we may also refer to the preceding inequality as a ‘discretization bias' is
that when we chop time in (21) by creating sequences of the form {¢, 05, wy,, s, 8, }, and
substitute the moment conditions (23)-(26) of theorem 4.2 in (22), thereby creating astochastic
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process {hrhkyh O_ik}kio,l,"' solution of:

rTh(k+1) — nThe = (L— 0- hThk)h‘l' RO+ RThE © AUR(K+1)
(27)
hgi(kJrl) — w0hy, = (W—@- wop )b+ hUhk\/E 3
then (21) |S embedded in {hrhkuh O’ik}k:()’l’... (namely fOI’ h = A), and yet

{nThion 095 be—0.1,.. converges weakly to the solution of (2) under the conditions given in
theorem 4.2.

Indirect inference methods correct the preceding bias in the following manner. Consider
simulating (27) for smal . This is accomplished by setting v, 6 to their ML estimates 3,3,
assigning values to a = (¢,0,w, ,v), and drawing h“ﬁ from the normal distribution; one
obtains ,,7®)(a) = {7 (a)}2/h s =1,...,S, where S is the number of simulations. For
each simulation, just retain the (V) numbers h?f{?( ) that correspond to integer indexes of
time, and estimate the auxiliary model on each series of simulated data:

E(fofl)s(a) = argmax En(anf(a);b), s=1,---,8,

where A ,7(*)(.) denotes the set of the simulated short-term rate with integer indexes of time
at smulation s and interval h. In our specific just-identified problem (dim(a) = dim(b)), the
indirect estimator of a isthen the solution (provided it exists) of the following five-dimensional
system:

o-m——zsﬂmm

Cal an(ap) the solution of the preceding system. Heuristically, its asymptotic distribution
can be obtained as follows. Expand the preceding system of equalities around ag:

. s by, _
ZSA“<>—<§zsl%w%Q@mmw—%»

For large IV, the preceding is in fact an equality in distribution, and the covariance matrix

g 8b( ) s m
of (>, 1 —=2(ap))(n@n(ao) — ao) is the covariance matrix of by — 5 2 e 1 bys(ao), i
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(1+ Lycov(b5,(ao)), and one has
d 1
(28) VN (uaw(ao) —ao) N 100, h | 0—N <o, <1 + §> Volrova”) ,

where T, isthe covariance matrix of the simulated estimator and v = % (ap), 1.e. the Jacobian
of the binding function evaluated at ay. Broze et al. (1998) proved the preceding result in great
generality — i.e. in the case of a general diffusion in R! — and to avoid bias due to the
discretization step used during the smulations (hence the label ‘ quasi’ -indirect inference), the
authors also suggested to take » = N ¢ withd > 1. In appendix B, we check the conditions
of Broze et al. (1998) that ensure that (28) holds for the scheme proposed here.

Notice also that (27) do not represent the Euler approximation of (2), but thisis not a
disturbing feature since it is known since Broze et al. (1998) that implementing the indirect
inference estimator just requiresthe weak convergence of the high frequency simulator towards
the solution of (2); see also appendix B. For reasons of comparisons, however, the empirical
section also considers the case in which the high frequency smulator is the Euler-Maruyama

approximation of (2) (i.e.,(3)).

Finally, it iseasy now to implement aglobal specification testing procedure that controls
the adequacy of the approximating model (21). It is sufficient to use the consistency test
appearing in Gouriéroux et al. (1993, section 4.2 and appendix 3). Such atest is designed to
verify the existence of afixed point of the binding function:

HO Qg = b(ao).
Let I denote the identity matrix in R>*°, Under H,, one has that:

N 1 PR
VE (B - 5 S0

d ob P O | ob’ 1 .21 .1
(29 —>N<0, <I—%(ao)> £ J L <I—%(a0)> +§£oo J£oo>.
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5. Empirical analysis

The data

We use weekly data referring to 3-month Treasury Bill rates to approximate the short-
termrate.”® Thisisthe samedataset used by Andersen and Lund (1997a,b), but here we restrict
attention to the sample spanning the period from May 30, 1973 to February 22, 1995, which
has 1135 observations. The motivation for using weekly data lies in an attempt of avoiding
problems raised by market microstructure effects. The motivation for restricting attention to
such a particular sample liesin the possibility of estimating risk premia coefficients in aterm-
structure extension of the model (see paragraph 6), by fitting our resulting theoretical model
to atarget term structure that is closely related to the target term structure constructed by Ait-
Sahalia (1996a) in correspondence of the same sample period. For reasons developed below,
however, we did not use the short-term rate data set constructed by Ait-Sahalia (1996¢, b).

Raw data are converted into instantaneous figures, hereafter referred to asr, and table 2
contains some preliminary statistics. Table 3 contains the estimated autocorrelation function,
which shows a high amount of persistence in the data. Nonstationarity is formally tested by
performing augmented Dickey-Fuller tests that indicate that data are borderline stationary. As
an example, the statistic takes a value of —2.435 at lag 5, which is roughly the threshold
value for rejecting nonstationarity with 90 percent probability; more generally, one rejects
nonstationarity at the 85-90 percent to the extent of lag 15, but because the test has low power,
even such a dight rejection can be symptomatic of stationarity in the data. It isworth noticing
that the same kind of results holds for the full sample originally exploited by Andersen and
Lund.

The auxiliary discrete time model

We start with estimating model (21). Consistently with previous results of Andersen
and Lund (1997a), we do not find evidence that positive shocks introduce more volatility
than negative shocks of the same size, i.e., the inverse of the leverage effect. At best, thereis
evidence that the opposite takes place, although the estimate of ~y is not statistically significant.
When we try to fit the same kind of models to weekly samples of the data used by Ait-Sahalia

13 See Chapman et a. (1999) for an analysis concerning the validity of such an approximation.
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(1996a, b), however, we find strong evidence of asymmetry having the ‘right’ direction, but
also find that volatility dynamics is almost entirely driven by past errors, thus exhibiting
a rather chaotic behavior. We thus pursue the analysis with the Andersen-Lund data, and
estimate again model (21) dropping the asymmetry parameter. The parameters estimates are
very close to the ones that we finally use as calibrating devices during the indirect inference
procedure, and imply that the model gives rise to stable dynamics for the volatility process.
As regards the estimates of ¢ and n, we find that they are 1.0326 and 1.0014, respectively, and
that they are statistically not distinguishable from 1. This suggests the possibility of further
simplifying the representation in (2), by fixing 6 = n = 1. Such arestriction, along with
the restriction v = 0, will propagate into an important ssimplification of the indirect inference
phase. In the model that we select as an auxiliary device, we thus restrict (6,7,~v) = (1, 1,0).
Furthermore, please notice that due to numerical stability issues, model (21) was estimated
without explicitly disentangling the sample frequency. When we estimated (21) with the
restrictions (6,7,~) = (1, 1,0), for instance, we casted the model in the following format,

rn = Co+cirn_1+ Ti/fl €, €= (u-0),, u~NIDO2I)
(30)

o, = wHalea|+pPony, n=2,--- N

I

where {r,, }"V_, denotes the observed (weekly) series, and (¢, ¢;, w, ., 3) are real parameters.
The correspondence between the estimators of the parameters in (21) and (30) is not hard to

write down:
6N = Ggam = Do + A1y,

where my denotes the vector of the ML estimators of the parameters in (30), Aq =
(0 At 0 At 0),and

A1 0 0 0 0
0 —-A1!' 0 0 0
A = 0 0 A2 0 0 ,
0 0 0 —0.798 - A1 —A1
0 0 0 0603-AY2 ¢

with A = % Similarly, the Jacobian of the binding function that has been used to report the
t-statistics and the consistency testsin table 6 is based on the set of parameters of the auxiliary
model (30): to such aset of parametersis associated a binding function of theformm = m(a),
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and the relationship between the Jacobians of b and m is

ob A om

(31) 7 () = Big ()

Model (30) isthe absolute-value model of Taylor (1986) and Schwert (1989) with normal
errors, studied by Nelson and Foster (1994) and Fornari and Mele (1997q). Its main advantage
over the more usual variance specifications is that it delivers estimates of volatility that are
relatively more robust to the presence of possible outliers in the data. In this case, we also
know that the invariant distribution of residuals is approximately a generalized Student’s t
when § = v (theorem 3.3 p. 218 in Fornari and Mele (1997a)), which reducesto the celebrated
Student’st result of Nelson (1990) when § = v = 2.

As mentioned in paragraph 4, we consider normally distributed errors only, since
expanding into non-normality makes the resulting model non-stationary.** Hence, we are
left with a specification in which (6,7,v) = (1,1,2), and it is possible to show that in this
case the invariant distribution of ¢ is more leptokurtic than the Student’s t that obtains when
(6,m,v) = (2,1, 2). Specifically, by applying theorem 3.5 p. 218 in Fornari and Mele (19974),
we obtain that the invariant distribution of residualsin model (30) is given by

_‘U

2 _2043¢? 1 2
(32) P(e) = — / o exp <——62a:2 —C;a:1> dx, €= L,
V2 P “DJ“w 2 (2 Vh

ash | 0. Figure 4 compares the density in (32) with a normal density with variance equal

0 (w /¢)” where w, ¢ and 1 have been fixed at the values of the second column of table 6.
Thedensity in (32) should capture the usual stylized facts of the unpredictable parts of general
financia time series and, following Gallant and Tauchen (1996), one might conjecture that the
Il estimator described in section 4 would be as efficient as the (intractable) ML estimator if the
density in (32) were to form a smooth embedding of the invariant distribution associated with
the discretely sampled diffusion (2).

4 Such a phenomenon is aso noted by Andersen and Lund (1997c), who show that a specification based
on EGARCH-type models is more stable when the errors of the model are nonnormal. Motivated by further
empirical findings of Andersen and Lund (1997a), we also tried to include further lagsin the volatility equation,
but we did not observe any significant improvements.
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Unfortunately, such a conjecture seems to be hard to verify here, since the conditional
distribution of the residuas that eventually generated (32) is just a normal distribution;
nevertheless, the distribution (32) should play an excellent role in mimicking the long-run
properties of the unpredictable part of the series that we study.

Table 4 reports the gml estimates of model (30). Notice that the condition for covariance-
stationarity of thismodel isnot violated. Theorem 4.1 suggests that the covariance-stationarity
condition does not impose that o« + 3 < 1; rather, 2:n4 oo + 3 = 0.798-a + 3 < 1 hasto hold
here, which is effectively the case of the gml estimates reported in table 3. This implies a
persistence of nearly 0.993 in the volatility propagating process.

Table5 presents summary statistics of the volatility filtered by the model (not yet rescaled
for diffusions), and figure 5 depictsits behavior in the sample. For reasons of comparisons, we
also depict the first differences of . The model appears to successfully capture some stylized
features of the data, including the high volatility induced by the ‘“Monetary Experiment’ of
the early 80’s. It is also worth noticing that perhaps due to such an isolated and yet relatively
persistent episode, the long run volatility as implied by the parameter estimates attains the

value of 5= 15.458-10~3, which is more than twice the average value of the filtered
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volatility for thewhole sample. Becausethe estimated volatility wandersin arange of variation
of about 0.026, however, such a difference is negligible: when we compute the ratio of the
difference between the long run and average volatility to the range of variation, we find that it

equals0.321.

Correction of the discretization bias, consistency tests, and filtering

Following the program stated in paragraph 4, we begin with computing the g-aml
estimates (see (18) and (20)). The second column in table 6 reports such figures. Then we
proceed with correcting their potential disaggregation bias by means of indirect inference. To
implement the indirect inference estimator, system (2) is simulated by means of the Euler-
Maruyama approximation® (3) with ~~! = 1300, which corresponds to generating 25 sub-
intervals within a week. With an observations set of N = 1135, thisimpliesthat h = N,
withl ~ 1.0193 > %: hence, we are fulfilling the conditions developed in Broze et a. (1998)

15 Using (27) as simulation device does not alter our estimation results.



to avoid simulation biases. We use S = 50 simulations. The estimation results are in the third
column of table 6. The correction made by indirect inference does not appear to be important.
First, we find that none of the g-aml estimates are out of the usual 95 percent probability
bands around the corresponding indirect inference estimates. Second, and more importantly,
when we formally checked the adequacy of the auxiliary model through the consistency test
described in paragraph 4, we found that the adjustment speed of the short-term rate isthe only
parameter that does not pass the test at the standard 95 percent level.

Such findings are of special interest here: asrecalled in paragraph 4, Drost and Nijman
(1993) constructively showed that ARCH models aggregate only when one weakens the
concept of an ARCH model, which led the authors to introduce the so-called weak-ARCH
process, more importantly, Drost and Werker (1996) generalized the Drost-Nijman setting
by introducing the so-called ARCH diffusion which is, heuristically, the continuous time
stochastic volatility process whose implied discrete differences form a weak-ARCH process.
A natural interpretation of our empirical findingsisthat even though the ARCH modelswe use
do not aggregate, they still remain, for a given frequency, an excellent approximation to the
continuous time models towards which they converge in distribution, at least insofar as they
are anatural proxy to the corresponding (discrete time) weak-ARCH models. Naturally, these
are issues that deserve a deep theoretical investigation that we leave for future research.

To check that the previous estimation results do not depend on the dimension of the
simulation experiment (S = 50), we implement a sort of reverse exercise that consists at
looking for the ARCH model that one can expect to estimate if the true data generating
mechanism happens to be (2). Specifically, we smulate (2) with parameters fixed at the
indirect inference estimates of table 6, sample the short-term rate at weekly frequency, and
estimate model (30) with such sampled data. We repeat the experiment 5000 times, and remove
the simulations for which there was not stationarity for the short-term rate and volatility (i.e.,
for persistence greater than one). Notice that as a by-product of such an experiment, we will
also get an assessment of the filtering performance of model (30).

Table 7 provides some basic statistics of the estimates, and figure 6 displaystheir relative
frequencies. The distributions of the estimates are concentrated around the values of the
estimates reported in table 4: specificaly, the standard 95 percent confidence bands of the
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Monte Carlo estimates are sufficiently tight to ensure statistical significance, yet they contain
the figures corresponding to the true estimates reported in table 4.

The filtering performance of the model is gauged in the following manner. Let
o;, denote the voldtility simulated at the ith simulation and sampled a =, and o;,, is
the corresponding (rescaled) ARCH estimate. We are interested in evaluating the average
filtering error in al the smulations: {&}2%°, where & = =L S""%(0,, — Gy0).
Figure 7 displays the Monte Carlo distribution of the average filtering error. It has an
average value of 9.610-10° and a standard deviation of 3.275.10~* The RMSE, defined as

5000 SO S s — Gin)?), IS equal 10 0.0209.

1135 n=1

6. Volatility and the term-structure

What does theory say ?

An empirical issue that has received relatively little attention in the literature is the
relationship between the short-term rate volatility and the whole term-structure of interest
rates. In arecent paper, Mele (2000) provides atheoretical analysis of this problem. One of his
main results is that when the risk-neutralized drift function of the short-term rateis increasing
involatility, theyield curve at short maturity dates increases with volatility. This phenomenon
takes place irrespective of whether one considers two-factor models (such as the model this
paper analyses) or modelswith, say, threefactors that incorporate a stochastic central tendency
factor.

To get an intuition of such aresult, consider the following model:

(dr(7) = b(r(7), 2(7), (1))dT + \/20(2’(7')) ~a(r(T)) - dW(T), 7€ (0,7]
dz(1) = p(r(7), 2(7)dT 4+ /2¢(r(7), 2(7)) - dWZ(T), 7€ (0,7]
dl(7) = e(I())dT + \/2x(I(7)) - dW'(7), T € (0,T)

(33)

where W, W* and W' are Brownian motion defined under the risk-neutral measure, and the
various drift and diffusion functions above satisfy conditions guaranteeing that the previous

system has a strong solution.
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In this model, I can be interpreted as a stochastic central tendency factor: it enters
the drift function of the short-term rate but not the diffusion coefficient v/20a in order to
be distinguished from the stochastic volatility factor z. Now suppose for simplicity that the
various Brownian motions are independent. Let the bond rational price functionat 7 = 0 be
v(x,s,¢,0,T). Asshown by Mele (2000, section 5), du(r, z,1,7,T) /0% is then the solution
of the following partial differential equation:

(34)
w(r,z,l,m,T b(r,z ov(r,z,l,7,T ?v(rz, 7, T
(24— k) 2EtnD _ _ (Ble), Metdnil) | g1 () Erlznl))
V(r,z,l,7) e Ry x Rx Ry x[0,7T)
el 1) = 0, V(r,z,]) ERy x Rx Ry

where L is a partial differential operator and k is a killing rate (see Mele, 2000, for further
details). Mele shows that at short maturity dates, dv(r, 2,1, 7,7)/dr is always negative and
of ahigher order than 8%v(r, 2,1, 7,T') /Or?*. By themaximum principle, dv(r, z,1,7,T)/dz is
then always negative at short maturity dates whenever 9b(r, z)/0z > 0.

Models with three factors of this kind have been introduced because the yield curve
seems to be driven by three factors (see, e.g., Litterman and Scheinkman, 1991; Dai and
Singleton, 2000; earlier proponents of models such as (33) were Balduzzi et al., 1996, Chen,
1996, Andersen and Lund, 1997b). Despite the rich dynamicsthat (33) can generate, however,
(34) reveals that the qualitative behavior of duv(r, z,1,7,T)/0z is the same as the qualitative
behavior of bond pricesin an economy without a stochastic central tendency factor. It isthen
appropriate to get a picture of the relationship between volatility and the term-structure within
atwo-factor model that does not display any central tendency of the kind of (33).

Motivated by these results, we now address issues concerning the relations between
volatility and the term-structure by making reference to our model (2), with parameters set to
the estimates obtained in the previous paragraph. Our primary interest lies in understanding
whether the positive relationship between volatility and the term-structure that is predicted by
the theory at short maturities also holds at higher ones. Naturally, we are not claiming to be
correctly modeling the whole term-structure with the help of just two factors. The objective
hereisonly a proper understanding of the relationships between volatility and term-structure:
as explained before, appending a central tendency factor to model (2) would not significantly
change any of the primary conclusions we shall obtain, as (34) reveals.
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To correctly address the issues we are exploring in this paragraph, we need specifying
the risk-premia demanded by agents as compensation for the fluctuation of the stochastic
factors. In appendix D, we provide conditions under which a supporting equilibrium exists
for arational bond price function satisfying the following partial differential equation:

Lo(r,z,7,T) = Alr,z,7,T)+rv(r,z,7,T), 7€ 10,7T)
(35
o(r,z, T, T) = 1,Y(r,2) e R%,

where

Lo(r,z,7,T)

vr+v. - (L—0r)+ v, (w—p2)
+% <U7’7’ : TZQ + 2Urz ' ,L/}p\/?ZQ + Uy 1/}22/2) )

Ar,z, 7, T) = v.-Mrz+uv,- (Alp + Aoy /1 — p2) bz,

and A\, Ay are constants. As shown in appendix C, our supporting equilibrium extends Cox
et a. (1985) and implies that the short-term rate is the solution of (2) when 6 = n = 1
and p = 0, which are the estimates found in the previous paragraph. Generalizing such a
supporting equilibrium to cases in which p # 0, and 6 and » take arbitrary (and admissible)
values is straightforward. In any case, the two unit risk premia demanded by agents in this
economy will always be given by:

(36) M(T) = X /r(7), i =1,2.

Calibration, comparative statics and misspecification issues

Previouswork on the term-structure with stochastic volatility used to produce simulation
exercises based on arbitrary functional forms of the risk premia with parameters fixed at
smilarly arbitrary numerical values.®® In addition to provide an equilibrium justification of
the functional forms of the risk-premia (see (36) and appendix D), we also calibrate model
(35) to atarget term structure. Our target term-structure is very close to the one used by Ait-
Sahalia (1996¢) (see Fornari and Mele, 20006, section I V.E, for details). Wefix theinitial state
at (r(0),0(0)) = (7.1-1072,0.05), which corresponds to the sample average level of r and

16 A |one exception isthe work of Longstaff and Schwartz (1992).
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the average (rescaled) o asfiltered by model (30). Then we calibrate model (35) by choosing
the couple (A, A\2) as the one which minimizes the squared differences between the target
term structure and the one predicted by our model. In such a search procedure, the remaining
parameters of the model were fixed at the indirect inference estimates of table 6. The partial
differential equation (35) was solved numerically with the Crank-Nicholson method.*” We
imposed the following transversality conditions: lim, ., B(r,o,t) =0V(o,t) € Ry x [0,7],
and lim, ., B(r,o,t) =0V(r,t) € R, x [0,T]. Wefound that (A, A\y) = (—0.581,0.677),
with afairly good fit (see Fornari and Mele, 20000, for further details).

Figure 8 depicts our fitted term-structure, which isthe second curve starting from the top.
It is consistent with well-known stylized facts of the US term structurein the analyzed sample:
it isincreasing, very steep until 5 years and relatively flat for higher maturities. Figure 8 also
shows that the yield curve increases with volatility. Thisis in accordance with the theoretical
predictions mentioned previously: due to the fact that A\, is negative, the risk-neutral drift of
the short-term rate is increasing in volatility, according to the Girsanov’s theorem, and (34)
then says that bond prices are decreasing in volatility, at least at short-maturity dates. The
new aspect that is important here is that the yield curve appears to be always increasing in
volatility, even at medium-long maturity dates. In order to ascertain whether such a result
IS due to the transversality condition involving volatility, we then repeated the calibration
procedure described before without imposing such a transversality condition. Of course we
obtained different values for (A1, A\2), but the qualitative features of figure 8 remained the
same, although the fit deteriorated.

Naturally, the purpose of the previous exercises was not to test the restrictions imposed
by the theoretical two-factor model (35). This is a kind a testing procedure that goes
well beyond the central objectives of the paper. Indeed, it is well known at least since
Litterman and Scheinkman (1991) that actual yield curve movements are driven by three
factors corresponding to changes in level, steepness and curvature of the term structure. A
three-factor model such as (33) seems then to be more appropriate for the purpose of bond
pricing. Nevertheless, our intent here was to understand the relationship between volatility
and the term-structure with the help of model (2). As already argued, theory suggests that our

17 See Fornari and Mele (2000a, chapter 5) for technical details concerning the implementation of this
method in models of the short-term rate with stochastic vol atility.
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findings can be utilized to obtain a reliable qualitative picture concerning such a relationship
even when the data generating process comprises three factors, asin (33).

The last objective of this paragraph now consists in showing that even in the presence
of misspecification, the kind of models considered in this paper still remain a valid reference,
a least insofar as one considers volatility filtering issues. Suppose, in other terms, that the
data generating process (under the objective measure) is a three-factor model including the
short-term rate, stochastic volatility, and a stochastic central tendency factor. The question
we want to answer to is. are the filtering results of this paper still valid when we attempt at
extracting the (unobserved) stochastic volatility of such adata generating process? In addition
to its obvious practical content, such aproblem is directly related to previous theoretical work
by Nelson (1992) and Nelson and Foster (1994). As mentioned in the Introduction, these
authors produced many theoretical results based on more or less restrictive assumptions. The
message of such resultsisthat even in the presence of serious misspecification, ARCH models
still remain robust volatility filters. Now we wish to ascertain whether such results hold in
an experiment in which ARCH models are used to reconstruct the volatility dynamics of a
three-factor data generating process.

To thisend, weimplement aMonte Carlo experiment in which wefit model (30) to 1,000
simulated trajectories of a three-factor model that extends in a natural way model (1) (see the
equations in table 8). Table 8 provides the results. Even though model (30) is neglecting a
factor (namely, the stochastic central tendency factor), it exhibits volatility filtering properties
of exceptional interest. The Monte Carlo properties of the volatility filtering error display
the same order of magnitude as those found in section 5 and, again, the resulting dynamics
of smulated vis-a-vis filtered volatility trajectories display the same patterns as in figure
1. Considered as a (stochastic) volatility filter, model (30) would be hardly rejected as a
remarkably useful tool of analysis, even in the presence of neglected factors.

7. Conclusion

The intent of this paper was to explore to which extent ARCH models can be used in
practice for the purpose of providing parameter estimates and volatility filtering of diffusions
processes. Since the standard ARCH modelsthat have traditionally been used in the empirical
literature do not approximate all diffusion models, we considered a reasonably wide class of
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ARCH models, which we named CEV-ARCH, that converges toward any unrestricted CEV
diffusion process as the sample frequency becomes larger and larger. While the searching
strategy followed in this paper to the aim of approximating diffusions by means of ARCH can
be used to construct ARCH sequences converging to yet more general diffusion processes, our
central focus was the special case of volatility following a CEV-diffusion with linear drift.

Despite the fact that the CEV coefficient of volatility was unrestricted in this paper, we
provided empirical evidence supporting amodel in which the (stochastic) volatility process of
the short-term rate follows a diffusion process with unit elasticity of variance. In addition,
we made use of simulation-based techniques to implement a global specification test for
just-identified problems and provided evidence that (suitably rescaled) ARCH estimates of
relevant parameters are statistically not distinguishable from estimates that one obtains with,
say, indirect inference methods. Finally, the volatility filtering performances of the models are
excellent. Even in the presence of important misspecification, i.e. by extracting volatility from
a three-factor model by means of a two-factor model only, the volatility filtering errors have
the same order of magnitude as in absence of misspecification. This finding suggests very
simple and yet efficient tools to extract (unobserved) volatility of a diffusion.



Tables and figures
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Table
Monte Carlo study ¢
parameter true average median std.dev.
6 1 1.0725 1.0206 0.1273
n 1 1.0849 1.0834 0.0961
volatility filteringerror NA -1.1163.10 %% -2.2082.10 ¢ 4.5025.10*
6 2 2.0047 1.9737 0.2474
n L 0.6178 0.6132 0.1320

2
volatility filtering error NA -1.4995.1073¢ -2.3333-10"* 5.6091.10 2

% The third column reports the average ML estimates of ¢ and 77 in (2) obtained by fitting an AR(1) model
with volatility equation given by eg. (9) to 1000 simulated weekly sampled trgjectories from the stochastic
differential equation system (2). In these simulations, t = 81072,0 = 0.11, ¢ = 0.38 and § and )
arefixed at the values of the second column, with A) w = 0.03,?% = 0.8 whend = n = 1, and B)
w=23610"31 = 0.06 when§ = 2andn = % The fourth and fifth columns report the Monte
Carlo median and standard deviation of such estimates. Thecase & = 17 = 1 corresponds to the actud
estimates obtained in paragraph 5. The Table a so reports the Monte Carlo average (with the RMSE and the
steady state expectation of g in parentheses), median and standard deviation of the volatility filtering error.
*(RMSE: 1.8609 - 10 2); (w /¢ = 7.895-102);

* (RMSE: 1.6692 - 10-2); (\/<w —y?/4) /o = 6.1985 10*2) .

Table

Summary statistics of r

mean median maximum minimum std. dev. skewness kurtosis
0.070 0.068 0.155 0.026 0.026 0.828 3.681




Table

Autocorrelation function of r

lag 1 2 3 4 5 10 30 50
autocorrelation  0.995 0.998 0.979 0.971 0.961 0914 0.780 0696

Table
QML estimates of (30)”

parameter  estimate  t-stat’

— 2.09
o L155510° %

102
¢ 0.9979  gzg10)

— 4.36
11101074 %

13.05
0.1504 3%

w
o

93.97
I54 0.8728 (139.18)

@ QML is the quasi-maximum likelihood estimation of the short rate dynamics. b Bollerdev-Wooldridge

(1992) robust t-tatistics in parentheses.

Table
Summary statistics of the conditional volatility o as filtered by eq. (30) ¢

mean median maximum  minimum std. dev. skewness kurtosis

7.102.107% 5.483.10° 2.805-10°%2 2.042-10° 4.306-10 3 1.761 6.048

% Not rescaled for diffusion.



Parameter estimates @

Table

parameter g-aml

Il t-stat consistency tests

0.0081
0.1067
0.0418
0.3736
0.6540

<=6 & © ~

0.0082
0.1108
0.0301
0.3806
0.8092

3.04
2.92
2.98
3.01
3.23

—0.6727
—2.0855
—1.2177
—0.1275

0.1390

® The second column reports the estimates of the parameters in (2) obtained with the moment conditions

(18) and (20). The second column reports estimates obtained via the indirect inference (I1) strategy explained

in paragraph 5, and the third column gives the corresponding t-statistics computed using the variance in

(28) and (31) as the Jacobian of the binding function. The last column reports the ratio of each element of

> ) . .
by — % 25:1 ?)TN’)S(Z) N) to the corresponding standard error computed from the variance in (29) and

&

using (31) as the Jacobian of the binding function.

6
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Table

Monte Carlo study ¢

parameter  average median std. dev.
Co 1.640.10* 1.610-10 * 3.340.10 °
¢ 0.9974 09976  1.764-10°3
w 1.210-10°* 1.130-10 * 4.420.10°°
« 0.1548 0.1544 2.405-102
16 0.8665 0.8669  2.056-10 2

% The second column reports the average gml estimates of the parameters in model (30) obtained by fitting
model (30) to 5000 s mulated weekly sampled trajectories from the stochagtic differentia equation system (2).
In these simulations, parameters are set to their 11 estimates reported in the third column of table 6. The third

and fourth columns report the Monte Carlo median and standard deviation of the simulated gml estimates.

Table

Monte Carlo study ¢

average median std. dev.
volatility filtering error  —3.6815-107°% —6.0461.10"°> 3.9666-10°

 The second column reports the average volatility filtering error defined in paragraph 5 (with the RMSE and
the steady state expectation of ¢ in parentheses) obtained by fitting model (30) to 1000 simulated weekly

sampled trgjectories of the following three-factor modd:

dr(t) = 0((r) —r(n))dr + \/r(T)o(r)dWO(r
do(r) = ( _SOU(T))dT+1/JU( )dw<2>( )
di(t) = (b — bol(7))dT + b3+ /1(7)dW®

whereWW® i = 1,2, 3, are standard Brownian motions, §, w,  and ) arefixed at theindirect inference
estimates of Table6, and b;, 7 = 1,2, 3, arefixed at the val ues suggested by Andersen and Lund (19970),
i.e by = 0.0078,by = 0.1257 and b3 = 0.0493. The third and fourth columns report the Monte
Carlo median and standard deviation of the volatility filtering error.

b (RMSE: 0.0285); (w /¢ = 7.895-102).
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Figure1
Filtered weekly volatility diffusion o(7) in eqs.(1) by means of an ARCH model

— discretely sampled diffusion ~~ ----- (rescaled) ARCH filter
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Figure 2
Density comparison
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This Figure compares the log-norma density generated by the Andersen-Lund estimates (dotted line) and the
density f 1 (0) in (10) generated by the estimates of paragraph 5.
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Figure 3
Drift comparison
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This Figure compares the linear drift function generated by the Andersen-Lund estimates (dotted line) and the
nonlinear drift functionin eg. (11) generated by the estimates of paragraph 5.

Figure 4

Stationary Distributions of Errors
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In this Figure, I° (\/Lﬁ) iss the approximate invariant distribution of the errors in mode! (30) rescaled by /71 (see

egs. (22)). N(O, (i)Q) isingtead a norma density with standard deviation fixed at the steady state expectation
of the volétility process (see modd (2)).
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Figure5

First difference of the interest rate and estimated volatility

first differences of r
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Monte Carlo densities of the ARCH parameters estimates
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Figure 7
Monte Carlo fitering error
filtering error
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The filtering error of the conditional volatility is evaluated over 5,000 smulations as {EZ-}?Q‘{O, where

b, = ﬁ Z}fji’((jm — 04,n) With 1,135 being sample size, 7; ,, and 7; , the true and the predicted

volatility. The Monte Carlo distribution of the average filtering error has an average of 9.61 - 107° and a
standard deviation of 3.275- 1073,

Figure 8
Term structure
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From bottom to top, the curves correspond to values of 0(0) equal to 0.0100, 0.0114, 0.0131, 0.0150,
0.0173, 0.0200, 0.0233, 0.0275, 0.0329, 0.0400, 0.0500, 0.0650. The average level of the (resca ed) volatility

was 0.0490, and the curve corresponding to o (0) = 0.0500 wasfitted to the target term structure.
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Appendix A: Convergence results for section 4

Proof of theorem 4.1

Conditions (18) are sufficient to establish the weak convergence of the short-term rate
and volatility processes toward the solutions of the following stochastic differential equations:

dr(t) = (0= 0r(1))dr 4+ o(7)\/r(7)dW O (1)
do(T)? = (w— @o(T)")dT + o (T)°dW® ()

where {IW0)(7)} 50, 7 = 1 and 3, are F(7)-Brownian motions. This has been shown in thm,
2.3 p. 209-211 of Fornari and Mele (19974) in the case of a geometric Brownian motion, and
the case of a square root process follows easily by an extension of another convergence result
(see appendix B in Fornari and Mele (20000) for further references).

It remains to show that 17 )(7) can be written as:

WO(r) = pWO (1) + /1 - p2WD(7), 7> 0
with {IWW® (1)}, another F(7)-Brownian motion. It is sufficient to show that the limit:

liiﬁ)l htlp { (;ﬂ"hk - hTh(k71)> (hgi(kﬂ) - hUik) | fhk}

Isnot ill-behaved. After that, an identification argument will do the work.
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By (18), and the fact that Lﬁ isg.e.d.,, for each £,

I}iﬁ} h'E {(;ﬂ"hk — hrh(k71)> (hgi(kﬂ) - hUik) | fhk}

= limh 'E {(Lh —On+ WTh(k—1) T WOREA/BTR(E-1) * huhk>

nl0

X(wh + (Oéh ’huhk’5 (1 - WSk)éff% + B — 1) hgik) ’ fhk}

. _ _s
= limh 'E {huhk (Oéh ’huhk’5 (1 - ’Y%)éh 2 + ) — 1) : hgi;rl ’ fhk} * A/ h(k-1)

nl0o

= lim hflf%@h ) {huhk ’huhk’5 (1-— ’Ysk)é . thjgl ’ fhk} * /AT h(k—1)

nl0o

— lim a—f {((1 =)’ = (1+7)°) [, a?‘”lp(da?)} RO TG

nlo /B

where p(.) denotes the g.e.d.(,) density, or:

1}1%1 W E{ (rme — h%(kﬂ))(hffi(kﬂ) — 100) | Fre}

o G NS 5 P AR )
= 1,13)1ﬁ{(1 = (L4} K- w0yl - /aTnge;

here,

S—v+1

2 Vo HD(22)
F(v1)

K =

By using (18),

i O Y
o vVh  VZ

where Z = (ms0 — nf,) (1 —7)% + (1+9)%) = 2n (1 —7)°(1 +7)°.

Hence,

K
Limh 'E{(srar — wTnr-1)) (hffi(kﬂ) — w0) | Fur} = % AR/

nl0
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where:

K=(1-7"-@1+7))K

To identify p, we note that this has to solve the following equation: +p = %F, which yields:

Nk

p =
The proof is complete.

Proof of theorem 4.2

Nearly identical to the proof of theorem 4.1.

Construction of alternate converging asymmetric models

It is well known that in correspondence with a given diffusion model, there may exist
many well-behaved discrete time models converging in distribution to the given continuous
time model. Hence, we can find other examples of discrete time ARCH-type models

converging to model (2). Asan example, consider the following model:

Al 0'5 :w—l—ﬂO'é—I—Oél— Sné77 unén_E unén 05777’76 _171
n+1 n Y n

The main difference between model (21) and model (A1) is the way how asymmetries
in volatility are modeled. Suppose for instance that + > 0 in model (Al). In this case,
‘large’ negative shocks introduce more volatility than positive shocks of the same size, while
‘small’ negative shocks introduce less volatility than positive shocks of the same size. Such
a phenomenon, referred to as ‘volatility reversal’ in Fornari and Mele (199756), seems to be
pervasive in many stock markets and in this respect, model (A1) represents another example
of the volatility-switching ARCH models that were originally introduced by Fornari and Mele
(1997b).

Our objective now is to give a sketch of the proof that (A1) convergesin distribution to
(2) as the sampling frequency gets higher and higher. Consider the following approximating
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scheme:

on
> )

WOhi) — O = Wn — (1= 083) nohy, + an(l — ysg)™ {’huhk’&? -k (’huhklén) } B2 nOh

and introduce the following moment conditions:

limhw h’lwh = w¢ (0, OO),
(AZ) limhw hil(l — ﬂh) = @ <X,
limp o B2 {14 7)%7 4 (1= )"} (msy — 203, ) = 1 < o0

For each h, we have that
) {(1 — vs;)%" (]huhk]‘s" - F (]huhk]‘s")) h7 ] fhk} =0,
and so the drift per unit of timeis:
h'E (hgi(kﬂ) — 1O | fhk) =" twy, — hil(l — Bn) nOhk-

By taking limitsfor 2 | 0, and using the moment conditions (A2), we obtain the drift function
of volatility in (2).

Now consider the second order moment per unit of time h™ ' E{ (105, 1) — n034)? |
Frnr}- By taking limits for 2 | 0, and using again the moment conditionsin (A2), yields after

tedious computations:
. _ 2
tim b { (10201 — 108) | P}

0
rUnk

= lim <%>2 {E ((1 — )2 NG

—Ansy B ((1 — ’ysk)%"

26m
) + 4n§nva ((1 — 'ysk)Q‘m)

on
26m
RO g,

2
o Cp 26 26 2 26
= tim () {42 =27 G = 208,003

which gives the diffusion function of volatility in (2).

rUnk

Vh




Asregards correlation issues, the proof is very similar to that of thm. 4.1:

lé{gh E{(;ﬂ"hk — nTh(k— 1)) (hgi(k+1) - hUik) | fhk}

rUnk

Vh

on
— 27’1,577’“) }

= {(1—7)5’7—(1+7)‘5’7}#§§W{F <5nj2>r<%> —1"<57];‘1>1—‘<%>}7

and u is ged,,.

o s+l
n+
- 271577,1; ’ Fre ¢ - hOnr A ARTRh(E-1),

Using an identification device as in the proof of theorem 4.1, we find that:

{197 = ()} PR T () T (3) - T () T ()
[+ 9P+ (L= (Mo, — 207, |

p:

In correspondence with reasonable values of 6,7 and v, the term {I' (22)T (1) —

I (2H)T (2)} isstrictly positive, thus restricting sign(p) to be minus sign(v), as in thms.
4.1and 4.2.

Appendix B: Standard regularity conditions and the convergence of the criterion
ASSUMPTION B1.

-plimy €5 (a7;0) = £..(ag; b), say, uniformly inb € B C R®.

-plimy, 228 (\r:b) =&, (ag; b), say, uniformly inb € B. Further, &, (.) isinvertible.

- |V N2 (o7 b) <, N(0, J(ap)).

b:bo(ao)
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CONVERGENCE OF THE CRITERION (Sketch). We assume as in Broze et a. (1998)
the continuity of the partial application a +— 65\2(“)’ and for the case S = 1, we define
B = 00 () and AF(.) = axFM(.). Itis not hard to show that under conditions
on £y (a7(a);b) that paralel those in assumption B1 stated above for the direct criterion
£n(ar; b), the smulated estimator is asymptotic normal:

VN (50(0) = 47(@)) 4 N (0,80 (@:0§°(@) - T @) 82 (@8 (@)

where 5 (a) = argmax, £ (a;b), the limit smulation problem, and &

(.) and J®M(.)
are defined similarly as £.. (.) and J(.). Now, it follows from thm. 4.2 that the solution
of (22): {nruk.n 09% b e—01,.. = {r(7),0(7)°};>0 (the solution of (2)). By this, an extension
of a result cited in Fornari and Mele (20000) (appendix B) that shows that the solution of
(22) is unique, stationary and ergodic (for fixed 1), and assuming the uniform continuity
of the criterion £5(.;0), it follows that £5(a7(a0);0) = L£n(ar(ag);b) as h | 0, and
we suppose, as in Broze et a. (1998), that the convergence is uniform in 5. Finaly,
because plimy, £y (a7(a);b) = £8(a;b) and plimy £x(a7:b) = Lu0(ao; ), uniformly in
b € B (both by assumption), one can easily verify that for small A, this implies b(()h)(ao) =
arg maxg, Sg..}f)(ao; b) = argmaxy £oo(ao; b) = bp(ap). Thisis:
lim b3 (a0) = bo(ao),

while for fixed h, it is assumed that there exists only one solution to the system b\ (a) =
bo(ag): this has the form A™ (ay), with limy . 4™ (ag) = ao. Now by proposition 6 in
Brozeet al. (1998), onehasthat /N (an(ao) — AM(ag)) N (0, ™) (for fixed h), where
(™ is such that limy, o =" = 2V, 'T,Vy, and (28) follows for S = 1. In the preceding
expressions, T is defined as the limit of T\ as 7 | 0, V; is defined similarly, and T{" isthe
limitof £ (a; 57 ()) - J® (@) £ (a5 (a)) as N 1 oo, whereas V™ isthe limit of

= (h)
lag—ﬁ(a) asN T oo. Thecase S > 1 issimilar.
a=A(" (ao)
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Appendix C: How to rescale volatility for diffusions?

Here we provide details on how we rescaled ARCH-filtered volatility for diffusions. Let
us rewrite the first equation of the Euler-Maruyama discrete approximation of (2) in (3) as:

(Cl) Tn = Lh _I_ (1 - eh)rnfl _I_ \/Eo_nflw/rn—lun, n = 17 .. .7N7

where N denotesthe total number of points generated by the simulationsand w,, isN1D(0, 1).
Simulated data are sampled every ¢ points. Iterating (C1) leaves:

= 5 {1 —(1- eh)"} (1= 0R)

_l_\/ﬁ {O_nfl‘ [T 11Uy + (1 — gh) Opn—9\/Tn—oUp_1 + (1 — 9h)2 Opn—3vTn—3Up—2
fo b (1=0n) o, Tnffun*(gfl)} :

Because a diffusion is continuous with locally bounded paths, when h islow enough » and o
do not move too much within the unsampled ¢ subintervals. Let usdenotewith 7, | and o,
the (random) representative, fictious values of » and o within the unsampled intervals that are

such that the previous equation can be written approximately as:

{1=—ony'}+@—omr,,

| =~

4ot vV {un + (1= 0h)up g+ 4+ (1 —0R) Unf(efl)} Tt

Our objective is to estimate each point of the sequence {5}, ,,, 5, inorder to useit to
filter the actual (discretely sampled) volatility path generated by the second equation of the
Euler-Maruyama discrete approximation of (2) in (3): {o;}Y/} = {o(¢- j)}}7.
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Rewrite the previous equation as:

ry = 5 {1 (- eh)"} (1= Oh) T

ot - \/ﬁ\/l + (1 — 9h)2 +(1— 9h)4 +o+(1- 9h>2(é’*1) L

= 2 {1=@=ony'}+ (= on)ry o +7 - J h (11;11:;)2 ) Nt

where %! is a standard Gaussian variate.

Now all the models we used in this paper actually deliver an estimate of

h (1 —(1- Qh)%)
(C2) v; =05 L j=40,20,..

1—(1—6hn)

Therefore, an estimate of each point of the sequence {7 }
formula (C2) to form the desired sequence:

2

h (1 (- eh)“)
In this paper, we used:

1

h=——
A0

A =52, (=25,

j=£2¢, N/

LN/t

, is obtained by inverting

LN/

and the estimates of ¢ reported in table 6 of the main text are such that |, /% is

awayscloseto 7.218.

The filtered series of volatility reported throughout the paper are based on formula (C3)

(see, however, below for numerical improvements of thisformula). To relate the number found

before to the correction given in formula (20) for the intercept of the volatility equation, note

that;

Weam = A1 A2 G4,
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Here the correcting term is A~'/2 = 7.211, which in practice is very close to the conversion
factor given above.

In addition to being based on the stability of volatility within unsampled periods, the
conversion formula (C3) is based on the assumption that the (small) changes of o/ are not
autocorrelated. Relaxing such an assumption requires a much more complicated approach
with continuous updatings. A reliable alternative consists in finding numerically a conversion
formulasimilar to (C3). In this paper, we proceeded in the following way. We simulated 5000
times the continuous time system (2) in correspondence of the parameter estimates found in
paragraph 5. Then we defined:

5000 N /e
N =

5000 - (N/é) — =

where o;(¢ - j) and v;; are smulated volatility and filtered volatility as of time j obtained in
theith simulation. We found that R =~ 6.928.

Appendix D: A supporting equilibrium for Paragraph 6

In this appendix we construct a supporting equilibrium for the model analysed in section
V. To save space, only a sketch is provided of this construction; further details can be found in
Fornari and Mele (2000b;appendix A).

Construction of an equilibrium state price density

et (Q,F,P) be a probability space, T < oo, and F = {F(7)}rcpo,r the P-
augmentation of the natura filtration 7" (7) = o(W(s),s < 1) generated by a Brownian
motion inR2: W = {W(7) = (WO (), WE(1)) }repm (With F = F(T)). We consider a
diffusion state processy = (1, y2) solution of

(D1) d<y1(T> > - < r=0-y(7) >dT+ < V() - ma(7) 0( | >dW(T)’

Y2(7) W —@-ys(7) 0 P yoT

and assume that the various constants «, 6, w, ¢ and i are such that the preceding system
admits a strong solution (Karatzas and Shreve, 1991, definition 2.1, p. 285). Let



59

{(M(7),S(7)) }repo,m be the F(7)-adapted stochastic process representing the price of an
accumulation factor (M) plus one primitive asset entitling to rights on the fruits, or dividends
(the numéraire), of one tree—as in the discrete time model of L ucas (1978)—. We assume that
the asset priceis the solution of:

4S(7)/5(7) = alry(hr + Y [ o pl)awO(s),

where (7, y) isthetotal expected appreciation rate of the asset price, and isequal to afunction
a(t,y) + (¢/S)(1,y); ¢ isthedividend rate; and a(7, y), v;(7,y), j = 1,2, are well specified
functions. We assume that ((7) = (a — a)(7) - S(7), where (¢ — a)(7) is a deterministic
function of time. Thisimplies that

(D2) ac(7,y) = ax(7) + a(r,y) and v(7,y) = v(7,y),

where a, and v, denote drift and volatility-vector processes of d¢/¢, and a; is the
(deterministic) time-varying growth rate of (a — a).

We now impose restrictions that represent a natural generalization of the Cox et al.
(1985) single factor model:

(D3)

—N
=
-y
|
T &)
Ned
=
y

where a and 7 are, respectively, a constant and avector of constantsin R2.

Let p1op(w) = M(w,T) '¢(w, T) be the Arrow-Debreu pricing kernel of one unit of
numéraire at 1" at the point w € 2. In the notation of the preceding definition, £(7°) is the
Radon-Nikodym derivative of any ¢ € Q on F(1") with density process

e (= [ Teawe = [T )

where {A(7)}.cor) iSs a F(r)-adapted process that satisfies the Novikov's condition:
5 (exp (3 5 IA)||” ds) ) < o0, and hasto be determined at the equilibrium.

)

o) en=|3

Consider a representative agent maximizing (1 — ¢) £ (fOT e ITe(T) 4T + a:lﬁ’)

under the congtraint that x = £ (Mo,T -~ Xy + fOT o+ * C(T)dT), where z and z; are initital
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and final wealth, respectively, and g and ¢ are constants satisfying usual restrictions as well as
viability restrictions to be determined below. Here markets are compl ete because our agent can
trade with one stock and one bond the equilibrium price of which (v, say) will be determined
below. After differentiating the first order conditions of this agent’s problem we get:

dloge(t) = £71 <g—|—7“ —H)\ H>d7+€1)\ (T)dW (7).

Using the equilibrium condition ¢ = ¢, and identifying both drift and diffusion terms of the
preceding equation |leaves:

{rvyv» = g+ (a(r) +a(r,y(r)) — L ||u(r,y(1)]?
(DS)
X(ry(n) = -v(ryr).

Furthermore, by the martingale property of A/ 1S and A/ ~'» under the measure  that we are
looking for, it must be the case that:

(D6) (T, y(1)) = a(r,y(7)) = v(r,y(1)) - A7, y(7)),
aswell as
(D7) (T, y(1)) = a’(7,y(7)) = (7, y(7)) - M7, y(7)),

where a” and v’ are drift and volatility-vector processes of dv /v, and @ has density process
asin (D4) with X given by the second relation in (D5).

Substituting (D3) and the second relation of (D5) into (D6) leaves:
(D8) r(r) = @£ |21°) - (7).

By differentiating » and using (D1), we get the first equation of system (1), and by
differentiating the resulting volatility function we get the second equation in (1) whenever
a—£-|7||* > 0, inwhich caser is also positive. Finally, using again (D3) and the second

()

equation in (D5),

Nry(r) = 0/ (r) = 91/ (@ — ¢ 91°) /(1)
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where A; and )\, are two constants. Under al of our assumptions, {A(7)}.cjo.r) Satisfies the
Novikov’s condition. Now it follows by (D7), and 1t6’s lemma, that the bond price satisfies
exactly the partia differential equation (35).

Viability restrictions

While deriving the previous results, we did not fully analyse what (D6) and system
(D5) imply. Taking account of this imposes further restrictions that guarantee the internal
consistency of the model, which we call “viability restrictions’. The starting point is to note
that comparing (D5) with (D6) implies that the following must hold:

¢
s= =0 (atr) = § oI ) = fou(o),
By using (D3), the previous relation yields:
o
9= =0 (3= 5171 ()~ o).
For each ¢ # 0, the previous relationship can hold when (1 —¢) (@ — £ |7)|*) = 0, a, = 0 and

g = 0. In this case we are left with two possible choices:
- a=3 o),
— ¢ =1 (logarithmic utility).

In the first case, relation (D8) impliesthat () = —% - |D||* - y1(7): except when ¢ < 0,
r isaways negativein this case. In the second case, relation (D8) impliesthat:

r(r) = (@ [71°) - (7).

Hence, the results of the previous subsection can be fully supported by an economy with
a representative agent with logarithmic utility and zero discount rate, and dividends on the
stock price that are proportional to the share price, with a proportionality factor (see eg. (D2))

that is constant over time.

Consistency tests a la Walras

The supporting equilibrium for the model of paragraph 6 was found without explicitly
dealing with the dynamic portfolio choices. In fact, it is possible to show that the equilibrium
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conditions of the previous subsections entail the equilibrium conditions in the securities
markets. The argument is shown in Fornari and Mele (20006; Appendix A).
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