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Aim of this article is to judge the empirical performance of ‘ARCH models as diffusion
approximations’ of models of the short-term rate with stochastic volatility. Our estimation
strategy is based both on moment conditions needed to guarantee the convergence of the
discrete time models and on the quasi indirect inference principle. Unlike previous literature
in which standard ARCH models approximate only speci¿c diffusion models (those in which
the variance of volatility is proportional to the square of volatility), our estimation strategy
relies on ARCH models that approximate any CEV-diffusion model for volatility. A Monte-
Carlo study reveals that the ¿ltering performances of these models are remarkably good, even
in the presence of important misspeci¿cation. Finally, based on a natural substitute of a global
speci¿cation test for just-identi¿ed problems designed within indirect inference methods, we
provide strong empirical evidence that approximating diffusions with our models gives rise to
a disaggregation bias that is not signi¿cant.

JEL classi¿cation: C15, E43, G12.
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The increased importance played by conditional volatility in ¿nancial economics has

led researchers (e.g., Hull and White, 1987� Wiggins, 1987� Longstaff and Schwartz,

1992� Heston, 1993) to extend early asset pricing theories (e.g., Black and Scholes, 1973�

Merton, 1973� Vasicek, 1977) to the case in which volatility evolves in a stochastic manner.

Empirically, time-varying volatility is well captured by the ARCH-type models introduced by

Engle (1982) and Bollerslev (1986) (see, e.g., Bollerslev et al., 1994, for a survey). From a

continuous time perspective, the initial contribution of Nelson (1990) established that some

basic ARCH models can be reasonably considered as approximations of diffusion processes,

which in turn are so frequently used to set up theoretical models� the major contribution of

Nelson to this strand of research can be found in part II of the book edited by Rossi (1996).

The central objective of this article consists in extending the research agenda initiated

by Nelson. As widely recognized, ARCH models are very appealing for statistical reasons,

even though there exist alternative econometric formulations that are surveyed, for instance,

in Ghysels et al. (1996) or in Shephard (1996). Despite the popularity of ARCH models and

the celebrated work of Nelson, it is surprising that there has not yet been any empirical work

assessing how well these models perform when they are taken as approximation to diffusion

processes. As emphasized by Campbell et al. (1997, p. 381), the empirical properties

of ARCH as approximations of continuous time stochastic volatility processes “have yet to

be explored but will no doubt be the subject of future research”. This is precisely what is

attempted here.

Our focus is on formulating and estimating new stochastic volatility models of the short-

term rate. Motivated by the above mentioned literature on the potential connection between

ARCH models and the continuous time models that are typically used in ¿nance, our primary

concern lies in investigating whether ARCH-type models are useful devices to approximate

4 This paper is a revised and extended version of Fornari and Mele (2000e). It was written while the ¿rst
author was at the University of Cambridge and the second at Princeton University. We thank Gilles Dufrénot
and Manfred Gilli for advice on numerical issues� Yacine Aït-Sahalia, Pippo Altissimo, Stephen Brown, Carl
Chiarella, Ron Gallant, Michael Rockinger, José Scheinkman and seminar participants at Princeton University
and Cambridge University, the 1998 Econometric Society European Meeting at Berlin and the 1999 Society for
Computational Economics Conference at Boston College for helpful comments. We also thank three anonymous
referees for valuable suggestions. The usual disclaimer applies: responsibility for any views or errors in the paper
rests with the authors, who can be reached at the following e-mail addresses: IRUQDUL�IDELR#LQVHGLD�LQWHUEXVLQHVV�LW
and DQWRQLR�PHOH#X�SDULV���IU
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and/or support the estimation of the parameters of stochastic differential equations. Unlike

previous literature in which standard ARCH models approximated only speci¿c diffusion

models (namely, models in which the variance of volatility was proportional to the square

of volatility), however, our estimation strategy relies on ARCH models that approximate any

diffusion model for volatility with constant elasticity of variance (CEV henceforth), which

we call CEV-ARCH models. To summarize, the class of models covered in this paper is a

fairly general formulation that encompasses for example the continuous time version of the

short-term rate model of Brenner et al. (1996).

�� 3ODQ RI WKH SDSHU

Our ¿rst econometric objective is to make inference on the parameters of the stochastic

differential equations which de¿ne our model. Of course, data are collected at discrete time

points and it is well known that standard maximum likelihood (ML) techniques would not

be suitable, since the likelihood function implied by the measure induced by our discretely

sampled model is not known in closed-form. The econometric strategy that we implement is

made up of two steps.

In the ¿rst one, we make use of the moment conditions that guarantee the weak

convergence of ARCH models toward the theoretical model� in such a way we obtain a

GLUHFW, preliminary estimate of the model’s parameters. Since such estimates are obtained

by means of discrete time models that are typically not closed under temporal aggregation

(Drost and Nijman, 1993 and Drost and Werker, 1996), in a second step we test and

correct potential ‘disaggregation’ biases using ARCH models viewed as DX[LOLDU\ devices

in simulation-based (indirect inference) schemes (see Gouriéroux and Monfort, 1996, for a

full account of simulation-based inference methods). In applying such a research strategy

to 3-month US Treasury Bill rates, we ¿nd that the correction made by indirect inference

methods is not statistically signi¿cant. Such a result is obtained via a global speci¿cation test

for just-identi¿ed models that was originally suggested by Gouriéroux et al. (1993).2 Our

empirical ¿ndings are obtained with the data set used in a frequently cited empirical work

of Andersen and Lund (1997@). The authors make use of the ef¿cient method of moments

5 We obtain very similar ¿ndings in a companion paper (Fornari and Mele, 2001) in the stochastic volatility
option pricing area. Naturally, the empirical success ARCH models have in approximating diffusion processes
here does not invalidate simulation-based methods. On the contrary, exploring the validity of ARCH as approxi-
mators of diffusion processes has been possible due to the availability of simulation-based techniques.
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(EMM) techniques developed by Gallant and Tauchen (1996), in which a highly parametrized

discrete time model is used with the main purpose of calibration� precisely, the auxiliary model

generates a score, and the EMM objective is then to minimize a chi-squared criterion that

is a quadratic form in the expected score computed via a long simulation of the theoretical

model. The advantage of the EMM estimator is that it achieves the same ef¿ciency as the

true (intractable) ML estimator when the auxiliary model generates a density that ‘smoothly

embeds’ the true likelihood function of the discretely sampled diffusion. Following the results

of Gallant and Long (1997), one can use a semi-nonparametric-based likelihood function to

provide the additional parameters that increment the ef¿ciency of the EMM estimator. One of

the earliest applications of the EMM techniques to models of the stock prices with continuous

time stochastic volatility is in Gallant and Tauchen (1997).3

It should be clear that the estimation strategy that we follow has a different rationale:

instead of selecting a highly parametrized auxiliary model that has the scope of calibration,

we just wish to ascertain whether our auxiliary model is a reasonable approximation of the

continuous time model. In technical terms, we are going to focus on the empirically dif¿cult

just-identi¿ed case. Such a strategy was originally suggested in Gouriéroux et al. (1993)

(p. S108): “[Indirect inference] methods seem particularly promising when the criterion is

based on approximations of the likelihood function, time discretization, range discretizations,

linearizations, etc. In this case the method is simpler [...] and appears as an automatic

correction for the asymptotic bias implied by the approximation”. In our context, indeed,

“the asymptotic bias implied by the approximation” is given by a disaggregation bias. While

not closed under temporal aggregation, ARCH models still have a natural interpretation in

terms of the continuous time models that they approximate, since they are very close (in terms

of the probability distributions generating them) to the approximated continuous time models

when the sampling frequency is high. Furthermore, the auxiliary criteria that we construct are

based on approximations that create a natural one-to-one interpretation of the sequence of the

parameters of the auxiliary discrete time model in terms of the parameters of the continuous

time model (see paragraph 4): as is clear, we are exactly in the situation originally put forward

by Gouriéroux et al. (1993).

6 Gallant and Tauchen (1997) also consider the application of EMM to interest rates models without stochas-
tic volatility, while Gallant et al. (1997) apply the EMM technique to discrete time models with stochastic volatil-
ity.
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In addition to the point estimates of the parameters of stochastic differential equation

system, an essential ingredient of the practical implementation of any stochastic volatility

model is obviously the knowledge of the volatility at the dates of interest. In pricing bonds

in a stochastic volatility setting, for instance, one needs volatility estimates. Clearly, this

is a challenging problem since the short-term rate volatility is not directly observable, and

especially in continuous time, it is not trivial to obtain ¿ltered estimates of the unobservable

volatility� see however, the reprojection techniques implemented by Gallant and Tauchen

(1998) in recent empirical work. In this respect, appropriate sequences of ARCH models

are known to estimate consistently the volatility of a continuous time stochastic process as the

sample frequency gets larger and larger, even in the presence of serious misspeci¿cations (see

Nelson, 1992, and Nelson and Foster, 1994, for the univariate cases� Bollerslev and Rossi,

1996, (p. xiii-xvii) for a brief account on the ¿ltering performances of ARCH models as

applied to continuous time stochastic volatility models). In this case, as put by Bollerslev and

Rossi (1996), “one could regard the ARCH model as merely a device which can be used to

perform ¿ltering or smoothing estimation of unobserved volatilities” (p. xiv). In addition, our

motivation to use ARCH-type models to ¿lter volatility is reinforced here, since we show that

the desiderable ¿ltering performances of VWDQGDUG ARCH models are also shared by the CEV-

ARCH models, as it might be expected by a suitable interpretation of the theory (see Nelson

and Foster, 1994, theorem 4.1). In a nutshell, the approach suggested in this paper allows one

to ¿lter volatility ef¿ciently in any CEV-diffusion model for volatility.

The practical relevance of the ¿ltering theory for ARCH models can be grasped very

simply. Figure 1 depicts the typical ¿ltering of an ARCH model as applied to a simpli¿ed

version of our model. There, the straight line is one weekly sampled trajectory of the volatility

jE� � simulated within the following model:;?= _oE� � ' E� w � oE���_� n
s
oE�� � jE�� � _` E��E��

_jE� � ' E/ � ) � jE���_� n � � jE� � � _` E2�E� �
(1)

where `
E��, � ' �c 2c are standard Brownian motions, and c wc /c ) and � are real-valued

parameters ¿xed at their estimates obtained with US data (see paragraph 5). The dotted line

represents instead the (rescaled) volatility obtained via an ARCH model ¿tted to the weekly

sampled trajectory of the short-term rate oE� �, as simulated by (1)� of course, in estimating

the ARCH model, we considered ourselves constrained to RQO\ knowing the realization of the
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simulated oE��. In fact, ¿gure 1 visualizes one of the simulations performed in the Monte

Carlo experiment of paragraph 5, but such a performance is typical of the overall experiment�

this can be gauged by the very tiny RMSE between the two trajectories computed over all

the simulations (see section 5 and Schwartz et al., 1993, for previous related work on similar

models).

The ¿nal contribution of the paper is to explore a term-structure extension of the model.

The main objective is to understand the relationship between equilibrium bond prices and

volatility within the framework of our estimated stochastic volatility model. While it is well

known that a three-factor model is needed to explain level, slope and curvature of the term-

structure (see, e.g., Andersen and Lund, 1997Kc and Dai and Singleton, 2000), it will be

argued that our two-factor model is already able to capture fundamental qualitative features

of the relationship between bond prices and volatility, which is the only objective pursued

here. Similar exercises were already performed by Chen (1996) and Andersen and Lund

(1997K). These authors did not emphasize how to determine the risk-premia associated with

the Àuctuations of the uncertainty factors. To address this issue within a theoretically sound

framework, we then study the compatibility of our data generating process with an equilibrium

in which agents are endowed with a CRRA utility function. Our empirical results then imply

that the term-structure of interest rates increases with volatility.

The paper is organized as follows. Next section presents the basic structure of our

continuous time model� it also provides intuition and preliminary results on the estimation

and ¿ltering methods to be implemented with the help of ARCH models that do not constrain

the elasticity of variance to one (the “CEV-ARCH models”). The econometric strategy is fully

detailed in paragraph 4. Empirical results are in paragraph 5 and 6. Technical considerations

and proofs are gathered in the appendices.
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The most salient feature of the model we consider in this paper is that the instantaneous

volatility of the short-term rate is a process with constant elasticity of variance (CEV):;A?A=
_oE� � ' E� woE� ��_� n jE��

s
oE� �_` E��E� �

_jE� �B ' E/ � )jE� �B�_� n �jE� �Bu#_
�
4`

E��E� ��
s
� � 42`

E2�E� �
�
c

(2)

where @ ' Ec wc Bc /c)c �c #c 4� is the parameter vector of interest, ` E��, � ' �c 2, are standard

Brownian motions, and B � ��The
s
oE��-term included in the short-term rate diffusion

equation constrains the short-term rate to take only positive values. With such a term, the

model also captures an empirical regularity known as the ‘level effect’, i.e., FRHWHULV SDULEXV,

the short-term rate volatility gets higher as the short-term rate level increases. Allowing for

more general diffusion terms such as for instance jE�� moE��m_ E_ � �*2� is possible, though it

would not change dramatically our empirical results.

The central objective of the paper is to use ARCH-type models that allow for i)

estimation of the continuous time parameters and ii) reconstruction of the unobserved short-

term rate volatility process jE��. A technical presentation of our methodology as opposed

and/or related to other existing methodologies is deferred to the next paragraph. Here we give

an heuristic motivation of the approach followed in this paper as well as preliminary evidence

on its performances.

$ FODVV RI $5&+ PRGHOV� WKH &(9�$5&+

Consider an Euler-Maruyama discrete time approximation of (2):;?= �o�E&n�� � �o�& ' E� w � �o�&��n �j�&

s
�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/ � ) � �j

B
�&��n � � �j

Bu#
�&

s
� �
h1�E&n��(3)

where � denotes the discretization step,�
���&

�
h1�&

�
� �U(

��
f
f

�
(

�
�

s
�4s

�4 �

��
c
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and E�o�&c� j�&�
"
&'� are the discretized short-term rate and volatility processes.

It is well known that when � & f (3) converges weakly (or in distribution) to (2).4 Hence,

the higher the sampling frequency, the higher should be the accuracy of, say, ML estimates

of @ obtained with (3). Unfortunately (3) represents a discrete time stochastic variance model

for which ML methods are quite cumbersome to implement. Used as an auxiliary model in

a simulation-based framework, for instance, (3) would noticeably increase the computational

burden. Considered as a potentially good approximation of (2), to mention a further example,

(3) would lend itself to a computationally intensive testing strategy for the disaggregation bias.

Third, there are no obvious techniques to ¿lter out the actual volatility path with (3).

A natural alternative is provided by ARCH models. As noted in the introduction, ARCH

models can be thought of as diffusion approximations. It is also well known, however, that

not all diffusion models can be approximated by ARCH models. To get an intuition of this,

consider the standard GARCH(1,1) model of Bollerslev (1986):

j
2
?n� ' � n qj

2
? n k"

2
?c "? � E� � j�?c ? ' fc�c � � �

where �c q and k are parameters, " is the residual of an observation equation, and the index ?

is an abstract notation for sample points at discrete time intervals (a more precise notation will

be introduced in the next section). Rewrite the preceding equation as:

j
2
?n� � j

2
? ' � �

�
�� k.E�2�� q

�
j
2
? n kj

2
?

�
�
2
? � .E�2�

�
c(4)

and suppose that � � �Efc ��. When we chop time so as to make ? G �& � ? � �E& n ��,

& ' �c 2c � � �, let the parameters �c qc k vary with � by introducing sequences ��c q�c k�, and

then let � & f, the resulting volatility process converges in distribution to:

_jE� �2 '
�
/ � )jE� �2

�
_� n �jE� �2_` E2�E� �c(5)

7 If (2) has a unique strong solution denoted as iu+� ,> �+� ,�j��3, ZHDN FRQYHUJHQFH of ikukn>k ��
knjn@4>5>===

in (3) to iu+� ,> �+� ,�j��3 means that the ¿nite dimensional distributions of ikukn>k ��
knjn@4>5>=== converge to

those of iu+� ,> �+� ,�j��3 as k & 3. See Stroock and Varadhan (1979). It turns out that the conditions demanded
by Stroock and Varadhan (1979) are dif¿cult to verify when studying the convergence of ARCH-type models.
One then may wish to make reference to the conditions suggested by Nelson (1990).
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where ;?=
*�4��f �

3�
�� ' /

*�4��f �
3� E� � k� � q�� ' )

*�4��f �
3�*2s2k� ' ��

(6)

To obtain an intuition of this result, notice that the sequence E1?�
"
?'� � E�2? � .E�2��

"
?'� is an

i.i.d. sequence of centered chi-square variates with one degree of freedom and represents

the discrete version of the Brownian motion increments _`
E2�E��. On the other side, the

renormalizing
s
2-term in (6) is explained by the fact that 1 ' �

2 � .E�2� ' �
2 � � is a

chi-square variate with one degree of freedom and has a variance equal to two. Naturally, the

normality assumption for � is not needed to obtain the convergence.

Equation (5) may correspond to the volatility dynamics in (2) when B ' 2, # ' � and

4 ' f. Similarly, it is possible to show that under conditions similar to (6), the so called

Taylor-Schwert model:

j?n� � j? ' � � E�� k.Em�m�� q�j? n kj? Em�?m � .Em�m�� c

also converges in distribution to a diffusion limit with the following form:

_jE�� ' E/ � )jE� ��_� n �jE� �_` E2�E� ��(7)

Equation (7) may now correspond to the volatility dynamics of (2) when B ' # ' � and 4 ' f.

As these two basic examples should make clear, standard ARCH models do not converge

in distribution to any unrestricted CEV process. Rather, in their diffusion limit, ARCH models

typically make the variance of volatility proportional to the square of volatility, thus restricting

the elasticity of variance to unity. Motivated by this simple remark, we now describe a class of

ARCH models that does not constrain the elasticity of variance to one.5 Consider, for instance,

the following model:

j
2
?n� ' � n kj

2#
? m�?m

2# n qj
2
? n k.Em�m2#�

�
j
2
? � j

2#
?

�
c(8)

8 This class of models can be shown to satisfy the most salient theoretical properties of an optimal volatility
¿lter as developed earlier in the optimal ¿ltering theory of Nelson and Foster (1994, theorems 4.1 and 5.2).
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which can also be rewritten as:

j
2
?n� � j

2
? ' � �

�
�� k.Em�m2#�� q

�
j
2
? n kj

2#
?

�
m�?m

2# � .Em�m2#�
�
�

Clearly, this model collapses to the GARCH(1,1) model (4) when # ' �� yet it does not

constrain # to that value: rather, # must be estimated from data. Furthermore, in the next

section we show that under conditions similar to those of Nelson, this model converges in

distribution to:

_jE��2 '
�
/ � )jE� �2

�
_� n �jE� �2#_` E2�E� ��

Finally, to obtain convergence results closer to model (2), we shall be considering a

generalization of (8) that sets the volatility propagation mechanism to:

j
B
?n� ' � n kj

B#
? m�?m

B# n qj
B
? n k.Em�mB#�

�
j
B
? � j

B#
?

�
�(9)

As before, we will show that at a high sampling frequency, the volatility process in (9)

converges in distribution to

_jE� �B '
�
/ � )jE��B

�
_� n �jE� �Bu#_` E2�E� �c

which may correspond to the volatility dynamics in (2) when 4 ' f. Complications arising

from the presence of correlation will be treated by introducing asymmetries in the volatility

dynamics of (9). In the same way, our searching strategy can be used to introduce nonlinear

volatility dynamics into discrete time models that match any desidered feature of the resulting

diffusion limit. Consider, for instance, the following model:

j?n� ' E� n ��j? � E�� k.Em�m�� q�j2
? n k Em�?m � .Em�m�� j�*2? �

Using the methods of paragraph 4, it can then be shown that this model converges in

distribution towards:

_jE� � ' ijE�� E/ � )jE� ��j _� n �jE� ��*2_` E2�E� �c
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as the sampling frequency gets higher and higher. Likewise, one can adjust both the short-term

and the volatility equation to include both variables. In this paper, however, we will only test

the adequacy of ARCH-type models in the estimation and ¿ltering of system (2).

)LOWHULQJ DQG LQYDULDQFH SURSHUWLHV RI WKH &(9�$5&+ PRGHO� SUHOLPLQDU\ 0RQWH &DUOR

HYLGHQFH

Here we provide preliminary Monte Carlo evidence on the performance of the CEV-

ARCH models previously introduced. Further Monte Carlo DQG empirical evidence will be

provided in section 5. Our primary concern lies here in ascertaining whether the CEV-ARCH

model (9) is able to deliver reliable parameter and ¿ltering estimates. To this purpose, we

consider model (2) and ¿x 4 ' f (consistently with the empirical evidence provided in section

5), and the other coef¿cients at the values indicated in table 1 below. We then simulate (2)

1000 times with an Euler-Maruyama approximation device, and sample simulated data at a

weekly frequency. All simulated samples have 1135 weekly points, which correspond to the

actual sample size used in our empirical analysis (see section 5). Finally, all weekly simulated

short-term rate data are ¿tted by a conditionally Gaussian AR(1) model of the form:

o? ' �f n ��o?3� n
s
o?3�"? (�f, �� constants),

with (9) as volatility propagation equation.

Table 1 reports the results of the experiment. We begin with the case related to the

empirical evidence provided in section 5: there, we ¿nd that ¿tting (9) to actual US short-term

rate data produces estimates of B and # that are both statistically not distinguishable from �.

Now table 1 shows that when the data generating process in (2) has B ' # ' �, then (9) also

reproduces, on average, approximately the same ML estimates of B and # (see section 5 for the

implementation of experiments involving all parameters). Results not reported here reveal that

the same phenomenon occurs with other possible combinations of B and #. As an example,

table 1 reports Monte Carlo results concerning the case in which B ' 2 and # ' �
2

in (9).

This case emerges when the data generating process in (2) has a variance concept that follows

a square root process. As is clear from table 1, model (9) plays in practice an excellent role

in mimicking such characteristics of the data generating process. We call these preliminary

properties as time-scale invariance properties of B and #. Clearly, such properties should not
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be shared by the other parameters of the models: it is precisely the objective of section 4 to

provide the necessary correction formulae introducing time-scale corrections.

The ¿ltering performances of model (9) are also remarkably good. Volatility trajectories

¿ltered with this equation are very close to volatility trajectories simulated from (2), and the

resulting pattern of the two trajectories is very similar to the one shown in ¿gure 1. Table

1 reports precise results assessing the volatility ¿ltering performance of (9), by comparing

simulated volatility paths with volatility paths ¿ltered with (9). The common concept of

volatility adopted to make comparisons is the standard deviation. The result is what we call the

‘volatility ¿ltering error’, which is de¿ned precisely in paragraph 5. The ¿ndings reported in

table 1 are of the same order of magnitude as those of paragraph 5. Notice also that in order to

be able to compare simulated with ¿ltered volatility, the latter has to be rescaled for diffusions�

techniques for treating this issue are introduced and explained in great detail in appendix C.

2Q SUREDELOLVWLF SURSHUWLHV RI WKH VKRUW�WHUP UDWH YRODWLOLW\ DQG FRPSDULVRQV ZLWK DOWHUQDWLYH

IRUPXODWLRQV

Beyond providing a framework for CEV-type diffusion process for volatility, (2) differs

signi¿cantly from previous stochastic volatility models, since it does not constrain the

‘volatility concept’ to be ‘variance’ or ‘standard deviation’� rather, in (2) B is a new parameter

that must be estimated from data. In the empirical section of the paper, for instance, we uncover

evidence that B �' �. In that section, we also uncover evidence that # �' �.6 With # ' � and

positive mean-reversion, the volatility process jB, B � �, has a steady state distribution that

is an inverted Gamma with mean /
)

(e.g., lemma 3.1 p. 217 in Fornari and Mele, 1997@)� the

stationary distribution of j is consequently given by

sBEj� �
B �
�
2/
�2

�2)n�2

�2

K
�
2)n�2

�2

� j
3 2B)nEBn���2

�2 i T

�
�
2/

�
2 j

3B
�

(10)

(see lemma A.2, p. 227, in Fornari and Mele, 1997@). As shown by Fornari and Mele (2000@)

(chapter 5), the density sBE�� tends to shrink to the left as B decreases.

9 Engle and Lee (1996) ¿tted a restricted version of the volatility equation of model (2) to stock returns,
namely for � @ 5, and supported a model in which the volatility of volatility raised linearly with the square of
volatility, as our empirical ¿ndings do.
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The volatility equation in (2) encompasses other formulations already encountered in

the stochastic volatility literature (see, for instance, Ball and Roma, 1994, and Taylor, 1994,

for a list of the typical models in the stochastic volatility option pricing area). This is the

case, for instance, of the non-stationary models of Hull and White (1987) or Johnson and

Shanno (1987), to which our volatility equation reduces when / � f: by Itô’s lemma, indeed,

Y � *L} j2 is solution of

_YE� � '
�
�
2)n �

2

B
n 2

/

B
i T

�
�
B

2
YE��

��
_� n

2�

B
_

�
4`

E�� n
s
� � 42`

E2�
�
�

(11)

In contrast, log-volatility mean-reverts in a QRQ�OLQHDU manner when / 9' f. Therefore,

(11) is rather different from the OLQHDU mean-reverting process for the log-volatility adopted

in the seminal paper of Wiggins (1987) in the stochastic volatility option pricing domain, and

in the empirical work of Andersen and Lund (1997@) or Gallant and Tauchen (1998) in the

interest rates ¿eld. To see this in more detail, consider the linear mean reverting model utilized

in the study of Andersen and Lund,

_YE� � '
�
k � qYE� �

�
_� n 1_` E� �

where ` is a standard Brownian motion and kcqc 1 are real constants. By Itô’s lemma, in this

model jB is the solution of

_jE� �B '

#
ekB n 1

2
B
2

H
jE� �B � qjE��B � *L} jE� �B

$
_� n

1B

2
jE� �B_` E� �c(12)

which becomes of course also the starting point of Wiggins (1987 eq. (2) p. 353 and eq. (15)

p. 361) when B � �. Although the volatility of volatility in (12) rises linearly with j
2B, as in

(2) when # ' �, the drift behaves rather differently in the two volatility equations.

Figure 2 depicts a comparison between the stationary densities that are generated by (11)

and (12). The ¿rst is given by (10) and has been produced using the parameters estimates of

section 5� the latter is just a log-normal density, and has been produced using the parameters

estimates reported in Andersen and Lund (1997K). While the two models approximately

put the same probability masses on low levels of volatility, our model puts relatively more

masses on high values of volatility than the Andersen-Lund model. An explanation of such
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a phenomenon can be found by comparing the drift functions of the two models: as is clear

from ¿gure 3, the two drift functions are of the same order of magnitude when volatility is

low� once volatility visits higher regions, however, the Andersen-Lund linear drift function

pulls volatility towards its steady state expected value more rapidly than the drift function

of our model. This implies that our model generates relatively more frequent episodes of

high volatility than the Andersen-Lund model. Naturally, our model does not encompass

the Andersen-Lund model, but it should be more Àexible in practice due to the presence

of the additional parameter B in the volatility equation: should the volatility equation in (2)

be misspeci¿ed, such an additional parameter might permit to better adjust the model to the

statistical properties of the true volatility generating mechanism.

�� 6WDWLVWLFDO LQIHUHQFH

Various methods have been recently proposed to estimate the parameters of a diffusion

when sampling is not continuous. As is well known, the main dif¿culty of ML methods is that

the likelihood function implied by the measure induced by a discretely sampled diffusion can

not be calculated explicitly.7 Alternative methods rely on nonparametric density estimation

(Aït-Sahalia, 1996@ and 1996K) and/or closed-form approximations of the true (unknown)

likelihood function of the discretely sampled diffusion (Pedersen, 1995� Aït-Sahalia, 2000), on

the generalized method of moments (Hansen and Scheinkman, 1995� Conley et al., 1997), or

on the indirect inference principle,8 whose main references have been cited in the introduction.

In this paper, we adopt the indirect inference principle, which is particularly well-

suited to problems in which the state is partially observed. One important concern, however,

is also to study whether a simple ARCH model ¿tted to high frequency data provides a

reasonable approximation of (2). Accordingly, in section 4 we start with presenting a vary

basic approach to obtain an initial estimate of the vector of parameter of interest, @. It consists

in replacing the (intractable) likelihood function implied by the true measure induced by (2)

with an approximation of it. Such an approximation may be based on a discretization of (2),

: Following Lo (1988), ML estimation might turn out to be feasible if the transition density of iu+� ,j��3
in (2) could be computed easily. Since this is not the case here — as in virtually all continuous time stochastic
volatility models — ML is computationally demanding, since it would require to implement a numerical solution
to a multi-dimensional partial differential equation at each iteration of the optimization algorithm. The likelihood
would then be recovered by integrating out with respect to volatility.

; In this paper, we adopt the convention to include the EMM theory of Gallant and Tauchen (1996) as a part
of the indirect inference principle.
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but as the arguments of the previous paragraph should have clari¿ed, even a standard Euler

approximation of (2) yields a discrete time stochastic variance model, and eventually implies

an approximated likelihood that does not simplify the problem in a noticeable way.9

One natural alternative is to make use of a (tractable) exact likelihood function of a class

of approximated models. The main idea has been presented in the previous paragraph, and

consists in resorting to a suitably chosen class of ARCH models converging in distribution to

the solution of (2) as the sampling frequency gets in¿nite, following the strand of literature

which shows the convergence in distribution of ARCH-type models to diffusion processes.

Since the resulting likelihood function refers to a model converging in distribution to the

solution of (2) that is QRW an Euler approximation of (2), however, we call the resulting criterion

‘quasi’-approximated likelihood function.

The advantage of the quasi-approximated ML estimator is that it demands no

computational efforts, and its main drawback is that it is not necessarily consistent. In fact,

the ARCH models we use are typically not closed under temporal aggregation, which means

that at least theoretically, there is not a one-to-one correspondence between convergence

in distribution of the discrete time models and disaggregation from a diffusion. On a

theoretical standpoint, such a correspondence exists only when the concept of an ARCH

model is weakened (Drost and Nijman, 1993, and Drost and Werker, 1996).10 Furthermore,

Corradi (2000) recently criticized the conditions in Nelson (1990) , necesary to achieve the

convergence of the basic GARCH(1,1) to a diffusion� in section 4, we show how to adapt

Corradi’s critique to our setup.

Recognising the presence of disaggregation bias and the possibility that the ARCH

models we use may even fail to converge to any diffusion limit, in section 4 we show how

to construct a very precise testing procedure of the validity of the moment conditions needed

to guarantee the convergence to well-de¿ned diffusion limits� as it turns out, such a testing

procedure also gives information about the relevance of disaggregation biases. Our strategy

< See, for instance, Harvey et al. (1994) or Jacquier et al. (1994) for the estimation of discrete time stochastic
variance models, Jacquier et al. (1999) for multivariate and distributional extensions, Gallant et al. (1997) for the
EMM approach to discrete time stochastic variance models, and Shephard (1996) for a succinct survey of related
methods.

43 Drost and Werker (1996, p. 33) report that using ARCH as indirect approximators should be more ef¿cient
than using their identi¿cation procedures, since in this case the criterion function would be close to the true ML
equations.
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is based on the consistency test originally suggested by Gouriéroux et al. (1993, section 4.2),

and it can be viewed as the natural substitute of a global speci¿cation test in just-identi¿ed

problems.

4XDVL�DSSUR[LPDWHG OLNHOLKRRG IXQFWLRQV

The rationale behind the quasi-approximated ML estimator that we propose lies in the

weak convergence of a class of ARCH models towards the solution of (2). For ease of

exposition, we start with considering the restricted version of (2) that sets # � �. Theorem

4.2 below treats the general case. With # ' �, a model approximating (2) can be a discrete

time approximation of the short-term rate equation in (2) modi¿ed by introducing the so-called

asymmetric-power ARCH model introduced by Ding et al. (1993):;AAAA?AAAA=
{o?n� ' {o? n { � w{ � {o? n {j?n�

s
{o? � {�?n�

{"? ' {�? � {j?c {�?I
{
� � Efc ��

{j
B
?n� ' �{ n k{Em{"?m � � � {"?�B n q{ � {j

B
?

(13)

where the indexing ? ' fc �c � � � refers to consecutive observations sampled at the same

frequency { (weekly, say), {c w{c �{ are of the form %{ ' %
E{� � {, with 

E{�
c w

E{� real

parameters and �
E{�

: fc k{c q{ � fc � 5 E��c ��c B : f. Finally, � allows for the leverage

effect originally observed by Black (1976), and incorporated by Nelson (1991) in ARCH-type

models. To keep things relatively simple, we assumed a sort of time-scale invariance of EBc ��

in the preceding approximation scheme. The invariance of B is, however, strongly supported

by the Monte Carlo experiments reported in paragraph 3.

To heuristically obtain the weak convergence towards the solution of (2), chop time as

�& � ? � �E& n ��:;AAAA?AAAA=
�o�E&n�� ' �o�& n � � w� � �o�& n �j�E&n��

s
�o�& � ���E&n��

�"�& ' ���& � �j�&c
���&I

�
� � Efc ��

�j
B
�E&n�� � �j

B
�& ' �� � E� � k� m���&m

B E� � �r&�
B
�
3 B

2 � q���j
B
�&

(14)
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(with r& ' signE���&� and, ;� : fc Ei�jc iw�ji��jc ik�jc iq�j� 5 UD
n and � 5 E��cn��),

and impose suitable Lipschitz conditions on the ‘�-drift’ as well as non-explosion conditions

on the ‘
s
�-diffusion’ terms of volatility.

Nelson (1996, p. 19) was one of the ¿rst to suggest a model of the kind of (14) as

a discrete time approximation of a continuous time model for the short-term rate. More

speci¿cally, Nelson (1996) took B � 2 and � � f in (14), and pointed out that the resulting

scheme is the model of Brenner et al. (1996) altered slightly to admit a diffusion limit. While

the empirical results of this paper suggest a simpli¿cation of (2) in which B is one and 4 is

nil, we provide here more general results that can be useful when applied to different data sets

and/or related problems. As originally remarked by Nelson (1996), the kind of results that we

are going to provide can be useful especially when a researcher is interested in the ¿ltering

performances of model (13) when 4 is not nil in (2). Also, we slightly complicate the analysis

and allow standardized residuals to be general error distributed, but such a possibility is not

considered in the empirical section of the paper:11 in addition to the standard motivation that

the normal distribution is not Àexible enough empirically,12 a second motivation for such a

complication here came from some ¿ndings of Engle and Lee (1996) (see their tables 2 and 4),

who obtained indirect estimates that seemed to be dependent on the distributional assumption

made for the auxiliary model.

To save space, we shall be avoiding as much as possible unnecessary technical discussion

referring to the construction of the measure space in (14): technical details can be found in

Nelson (1990), and are those exploited in Fornari and Mele (1997@c K and 2000@) (see also

Duan, 1997, for related work). We only introduce notation for the ¿ltration generated by

i�o�E�3��c� jB��j&�'�, which is I�& , and which will be used in appendix A. Let the symbol ,

denote weak convergence. Recall that if a random variable % is general error distributed then

its density is written as
v i TE3 �

2
Q3v
v
�%�v�

2�nv
3�QvKEv3��

, where u2
v � KEv3��

22*vKE�v3��
c v : f and KE�� is the

44 The reason why we did not implement the g.e.d.-based likelihood function in the empirical section is that
doing so implies non-stationarity of the resulting model. However, by taking a normal-based likelihood function,
we can always interpret the resulting estimates as qml estimates.

45 As argued in Fornari and Mele (1997d), the FRPELQDWLRQ of � and  should increase the Àexibility of both
the conditional and unconditional distributions of the error terms. In fact, while the conditionally normal GARCH
gives rise to an invariant distribution of residuals that is a Student w, which is shaped by a single parameter, model
(14) augmented with a conditional g.e.d. gives rise to an invariant distribution that is a JHQHUDOL]HG Student w
when � @  , and a fairly general distribution when � 9@  , thus providing a potential better ¿t for the distribution
of the residual.
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Gamma function. The following convergence result is an extension of theorem 2.3 p. 211 in

Fornari and Mele (1997@) that allows for the presence of the instantaneous correlation between

i�o�&j&'fc�cuuu and i�jB�&j&'fc�cuuu as � shrinks to nil:

THEOREM 4.1: /HW6Bcv '
2
2B
v
3�Q2B

v
KE 2Bn�

v
�

KEv3��
c ?Bcv '

2
B
v
3�QB

v
KE Bn�

v
�

KEv3��
c DQG OHW ���&I

�
EH JHQHUDO

HUURU GLVWULEXWHG� /HW:

)� � �� ?BcvEE� � ��B n E� n ��B�k� � q�c(15)

�� �
t
E6Bcv � ?2Bcv�EE� � ��2B n E� n ��2B�� 2?2BcvE� � ��BE� n ��B � k�c(16)

4 �
2
B3vn�

v uBn�
v KEBn2

v
� � EE� � ��B � E� n ��B�

KEv3��
t
E6Bcv � ?2Bcv�EE�� ��2B n E� n ��2B�� 2?2BcvE� � ��BE� n ��B

(17)

DQG VXSSRVH WKDW *�4��f �
3�
� ' c *�4��f �

3�
w� ' w DQG:

*�4��f �
3�
�� ' / 5 Efc4�c

*�4��f �
3�
)� ' ) 	4c

*�4��f �
3�*2

�� ' � 	4�

(18)

7KHQ� i�o�E&3��c� jB�&j&'fc�cuuu , ioE� �c jE� �Bj�Df DV � & fc ZKHUH ioE� �c jE� �Bj�Df DUH

VROXWLRQV RI (2) ZKHQ # � �.

Let

�1�& �

������&I
�

���B E�� �r&�B � .E
������&I

�

���B E� � �r&�B�t
E6Bcv � ?2Bcv�EE� � ��2B n E� n ��2B�� 2?2BcvE�� ��BE� n ��B

�

The preceding approximation result then says that when � shrinks to zero and the moment

conditions in (18) are ful¿lled, the distribution of the sample paths generated by the following

model, ;?= �o�E&n�� � �o�& ' E� � w� � �o�&� n �j�E&n��
s

�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E�� � )� � �j

B
�&� n �� � �j

B
�& � �1�&

(19)
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gets ‘closer and closer’ to the distribution generated by the sample paths generated by (2),

with 4 given by (17). Comparing (13) with (19) then suggests an estimator based on moment

conditions� speci¿cally, the TXDVL�DSSUR[LPDWHG ML (q-aml) estimators of /c)c� we propose

are

/q-aml � {3�*2 e�{c

)q-aml � {3�e){c

�q-aml � {3�*2e�{c

(20)

where e){c
e�{ are obtained by means of (15)-(16) computed in correspondence of the qml

estimator of model (13), e�{ is the qml estimator of �{ of model (13). The q-aml estimator of

B is the qml estimator of B in model (13), and the q-aml estimators of  and w are as those of /

and ) above. Finally, the q-aml estimator of 4 is obtained by plugging the qml estimators of

(Bc vc �) in formula (17).

The estimators in (20) are based on the moment conditions (18) and as we noted before,

they may be affected by a disaggregation bias� furthermore, Corradi (2000) recently questioned

the realism of the moment conditions that Nelson (1990) originally imposed to show the weak

convergence of the GARCH(1,1) towards a continuous time stochastic volatility model. Her

reasoning can be generalized here as follows. In the third equation of (14), the term generating

the diffusion terms of volatility is proportional to E�3
B

2k���m���&m
B, which is of course �RE

s
��

under the third moment condition in (18). In other terms, a condition for a diffusion to be

obtained is to scale the variance of m���&m
B with a diverging sequence. In general, one would

generate diffusion terms with k� � m���&m
B, where k� � �E�^�c ^ 5 U. This leaves three

alternatives:

– a) ^ ' �3B
2

.

b) ^ 	 �3B
2

.

c) ^ : �3B
2

.

The ¿rst condition is another way to express the condition under which (14) has a

well-de¿ned diffusion limit� the second condition implies that (14) does not converge to

any diffusion limit� and the third condition implies a ‘degenerate’ diffusion limit, i.e. with

identically zero diffusion terms.
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While recognizing that weak convergence results such as those contained in theorem

4.1 are obviously related to parametrization issues, in the empirical section we ¿nd that not

only the parametrization in (14) provides a reasonably good picture of the volatility dynamics,

consistently with the theoretical results of Nelson and Foster (1994), but it even passes the

global consistency test that checks a posteriori the accuracy of the approximation in (15)-(16)

and that we present below.

Finally, the previous conclusions remain perfectly the same when we generalize theorem

4.1 by freeing up #. As remarked in the previous section, there are no available ARCH

models in the literature that can be used to obtain the convergence towards an unrestricted

CEV volatility process. Consider however generalizing both (8) and (9) by means of the

following model:;AAAAAA?AAAAAA=

{o?n� ' {o? n { � w{ � {o? n {j?n�
s

{o? � {�?n�

{"? ' {�? � {j?c
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B
?

nk{ � .
�
Em{�?m � � � {�?�B#

�
�
�
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B
? � {j

B#
?

�
�

(21)

Chopping time in (21) as in (13), and rearranging, yields:

;AAAAAAAA?AAAAAAAA=

�o�E&n�� ' �o�& n � � w� � �o�& n �j�E&n��
s
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�
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B
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�
�� �
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q
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m���&m

B# E�� �r&�
B# � .
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B#
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�
3 B#

2 j
B#

�&�

(22)

We have:
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THEOREM 4.2: /HW

)� � � � ?B#cvEE� � ��B n E� n ��B�k� � q�c(23)

�� �
t
E6B#cv � ?2B#cv�EE� � ��2B# n E� n ��2B#�� 2?2

B#cvE� � ��B#E� n ��B# � k�c(24)
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v KE B#n2
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�(25)
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(26)

7KHQ� i�o�E&3��c� jB�&j&'fc�cuuu , ioE��c jE��Bj�Df DV � & fc ZKHUH ioE��c jE��Bj�Df DUH

VROXWLRQV RI (2) DQG i�o�E&3��c� jB
�&j&'fc�cuuu DUH VROXWLRQ RI (22).

Finally, notice that one can make a creative use of alternative asymmetric ARCH models

to obtain convergence to models with correlated Brownian motions. An example of such a

searching strategy is provided in appendix A.

4XDVL LQGLUHFW LQIHUHQFH

We test and correct the potential disaggregation bias of the q-aml estimator with the

indirect inference principle. The procedure that we follow is a natural generalization of

Broze et al. (1995) and allows the volatility of the short-term rate to evolve in a stochastic

and DXWRQRPRXV manner. Formally, if we replace the normality assumption with the g.e.d.

assumption, the q-aml estimator of K ' E{3�
{, {3�

w{, {3�*2
�{, {3�

){, {3�*2
�{, �, B,

#, v�� in (21) is:

@q-aml � eK� ' @h}4@ 
K
1�E{o( K�c

where 1� E{o( K� is the likelihood function implied by (21), � is the sample size, and {o is

the observations set, which is supposed to be a discretely sampled diffusion from (2) when
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the true parameter vector is @f. Note that dimEK� : dimE@�. In the empirical implementation

below, however, we shall consider the Gaussian case in which v � 2, and motivated by the

Monte Carlo ¿ndings reported in section 3, we shall impose the time-scale invariance of B and

#. We also assume the same for �� ascertaining whether such a time-scale invariance of �

is a reasonable assumption in practice is an open question that we leave for future research.

Accordingly, now we re-interpret K as a vector in an open subset of UD (with coordinates

{3�
{, {3�

w{, {3�*2
�{, {3�

){, {3�*2
�{), 1�E�� as a normal likelihood function with

Bc # and � ¿xed at prespeci¿ed values (e.g. at the preliminary qml estimates obtained by ¿tting

model (21), as we actually do in the empirical part of the paper), and @ as a vector in an open

subset of UD, with coordinates c wc /c)c �.

It is well known that under standard regularity conditions (appendix B), one has

asymptotic normality of the pseudo-ML estimator,

s
�

�eK� � KfE@f�
�

_$ N
�
fc

��

1
3�
" E@f( KfE@f�� � aE@f��

��

1
3�
" E@f( KfE@f��

�
c

where
��

1" E�� and aE�� are de¿ned in appendix B, and KfE�� is the so-called ELQGLQJ IXQFWLRQ:

KfE@f� ' @h}4@ 
K
1"E@f( K�, the limit problem.

However, the true law of {o, as implied by the data generating mechanism, say �fE{o�, is such

that

�fE{o� *5 i1�E{o( K�c K varyingj c

and the discrete time model is expected to behave in a way that allows for a discretization bias:

KE@f� 9' @f�

The reason why we may also refer to the preceding inequality as a ‘discretization bias’ is

that when we chop time in (21) by creating sequences of the form i�c w�c ��c k�c q�j, and

substitute the moment conditions (23)-(26) of theorem 4.2 in (22), thereby creating a stochastic
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process i�o�&c� jB�&j&'fc�cuuu solution of:;?= �o�E&n�� � �o�& ' E� w � �o�&��n �j�E&n��
s

�o�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/ � ) � �j

B
�&��n � � �j

B#
�&

s
� �1�&

(27)

then (21) is embedded in i�o�&c� jB
�&j&'fc�cuuu (namely for � � {), and yet

i�o�&c� jB�&j&'fc�cuuu converges weakly to the solution of (2) under the conditions given in

theorem 4.2.

Indirect inference methods correct the preceding bias in the following manner. Consider

simulating (27) for small �. This is accomplished by setting �c B to their ML estimates e�ceB,

assigning values to @ ' Ec wc /c )c��, and drawing ���&I
�

from the normal distribution� one

obtains �c�hoEr�E@� ' i�hoEr��& E@�j
�*�

&'fc r ' �c � � �c 7, where 7 is the number of simulations. For

each simulation, just retain the (� ) numbers �hoEr��& E@� that correspond to integer indexes of

time, and estimate the auxiliary model on each series of simulated data:

eKE���crE@� ' @h} 4@ 
K
1�E{c�hoEr�E@�( K�c r ' �c � � �c 7c

where {c�hoEr�E�� denotes the set of the simulated short-term rate with integer indexes of time

at simulation r and interval �. In our speci¿c just-identi¿ed problem (_�4E@� ' _�4EK�), the

indirect estimator of @ is then the solution (provided it exists) of the following ¿ve-dimensional

system:

f ' eK� � �

7

S7

r'�
eKE���crE@��

Call �e@� E@f� the solution of the preceding system. Heuristically, its asymptotic distribution

can be obtained as follows. Expand the preceding system of equalities around @f:

eK� � �

7

S7

r'�
eKE���crE@f� '

#
�

7

S7

r'�

YeKE���cr

Y@
E@f�

$
E�e@�E@f� � @f� �

For large � , the preceding is in fact an equality in distribution, and the covariance matrix

of E �
7

S7

r'�

YeK
E��

�cr

Y@
E@f��E�e@�E@f� � @f� is the covariance matrix of eK� � �

7

S7

r'�
eKE���crE@f�, i.e.
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E� n �
7
�covEeKE���crE@f��, and one has:

s
� E�e@�E@f�� @f�

_

� % 4c � & f$ N

�
fc

�
� n

�

7

�
T
3�
f KfT

�3�
f

�
c(28)

where Kf is the covariance matrix of the simulated estimator and Tf � YK
Y@
E@f�, i.e. the Jacobian

of the binding function evaluated at @f. Broze et al. (1998) proved the preceding result in great

generality — i.e. in the case of a general diffusion in U, — and to avoid bias due to the

discretization step used during the simulations (hence the label ‘quasi’-indirect inference), the

authors also suggested to take � ' �
3_ with _ :

�
2
. In appendix B, we check the conditions

of Broze et al. (1998) that ensure that (28) holds for the scheme proposed here.

Notice also that (27) do QRW represent the Euler approximation of (2), but this is not a

disturbing feature since it is known since Broze et al. (1998) that implementing the indirect

inference estimator just requires the weak convergence of the high frequency simulator towards

the solution of (2)� see also appendix B. For reasons of comparisons, however, the empirical

section also considers the case in which the high frequency simulator is the Euler-Maruyama

approximation of (2) (i.e.,(3)).

Finally, it is easy now to implement a global speci¿cation testing procedure that controls

the adequacy of the approximating model (21). It is suf¿cient to use the consistency test

appearing in Gouriéroux et al. (1993, section 4.2 and appendix 3). Such a test is designed to

verify the existence of a ¿xed point of the binding function:

H0 G @f ' KE@f��

Let U denote the identity matrix in UDfD. Under Hf, one has that:

s
�

�eK� � �

7

S7

r'�
eKE���crE

eK� ��
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�
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�
U �
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�� (PSLULFDO DQDO\VLV

7KH GDWD

We use weekly data referring to 3-month Treasury Bill rates to approximate the short-

term rate.13 This is the same data set used by Andersen and Lund (1997@,K), but here we restrict

attention to the sample spanning the period from May 30, 1973 to February 22, 1995, which

has 1135 observations. The motivation for using weekly data lies in an attempt of avoiding

problems raised by market microstructure effects. The motivation for restricting attention to

such a particular sample lies in the possibility of estimating risk premia coef¿cients in a term-

structure extension of the model (see paragraph 6), by ¿tting our resulting theoretical model

to a target term structure that is closely related to the target term structure constructed by Aït-

Sahalia (1996@) in correspondence of the same sample period. For reasons developed below,

however, we did not use the short-term rate data set constructed by Aït-Sahalia (1996@c K).

Raw data are converted into instantaneous ¿gures, hereafter referred to as o, and table 2

contains some preliminary statistics. Table 3 contains the estimated autocorrelation function,

which shows a high amount of persistence in the data. Nonstationarity is formally tested by

performing augmented Dickey-Fuller tests that indicate that data are borderline stationary. As

an example, the statistic takes a value of �2�e�D at lag 5, which is roughly the threshold

value for rejecting nonstationarity with 90 percent probability� more generally, one rejects

nonstationarity at the 85-90 percent to the extent of lag 15, but because the test has low power,

even such a slight rejection can be symptomatic of stationarity in the data. It is worth noticing

that the same kind of results holds for the full sample originally exploited by Andersen and

Lund.

7KH DX[LOLDU\ GLVFUHWH WLPH PRGHO

We start with estimating model (21). Consistently with previous results of Andersen

and Lund (1997@), we do not ¿nd evidence that positive shocks introduce more volatility

than negative shocks of the same size, i.e., the inverse of the leverage effect. At best, there is

evidence that the opposite takes place, although the estimate of � is not statistically signi¿cant.

When we try to ¿t the same kind of models to weekly samples of the data used by Aït-Sahalia

46 See Chapman et al. (1999) for an analysis concerning the validity of such an approximation.
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(1996@c K), however, we ¿nd strong evidence of asymmetry having the ‘right’ direction, but

also ¿nd that volatility dynamics is almost entirely driven by past errors, thus exhibiting

a rather chaotic behavior. We thus pursue the analysis with the Andersen-Lund data, and

estimate again model (21) dropping the asymmetry parameter. The parameters estimates are

very close to the ones that we ¿nally use as calibrating devices during the indirect inference

procedure, and imply that the model gives rise to stable dynamics for the volatility process.

As regards the estimates of B and #, we ¿nd that they are ��f�2S and ��ff�e, respectively, and

that they are statistically not distinguishable from �. This suggests the possibility of further

simplifying the representation in (2), by ¿xing B ' # ' �. Such a restriction, along with

the restriction � ' f, will propagate into an important simpli¿cation of the indirect inference

phase. In the model that we select as an auxiliary device, we thus restrict EBc #c �� � E�c �c f�.

Furthermore, please notice that due to numerical stability issues, model (21) was estimated

without explicitly disentangling the sample frequency. When we estimated (21) with the

restrictions EBc #c �� � E�c �cf�, for instance, we casted the model in the following format,;?= o? ' Sf n S�o?3� n o
�*2
?3� � "?c "? � E� � j�?c � � �U((0,1)

j? ' � n k m"?3�mn qj?3�c ? ' 2c � � �c�c

(30)

where io?j�?'� denotes the observed (weekly) series, and ESfc S�c �c kc q� are real parameters.

The correspondence between the estimators of the parameters in (21) and (30) is not hard to

write down:

eK� � @q-aml ' {f n{� e6� c

where e6� denotes the vector of the ML estimators of the parameters in (30), {f '

E f {3� f {3� f ��, and

{� '

3EEEEC
{3� f f f f
f �{3� f f f
f f {3�*2 f f
f f f �f�.bH �{3� �{3�

f f f f�Sf� �{3�*2 f

4FFFFD c

with { ' �
D2

. Similarly, the Jacobian of the binding function that has been used to report the

t-statistics and the consistency tests in table 6 is based on the set of parameters of the auxiliary

model (30): to such a set of parameters is associated a binding function of the form 6 ' 6E@�,
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and the relationship between the Jacobians of K and 6 is

YK

Y@
E�� ' {�

Y6

Y@
E���(31)

Model (30) is the absolute-value model of Taylor (1986) and Schwert (1989) with normal

errors, studied by Nelson and Foster (1994) and Fornari and Mele (1997@). Its main advantage

over the more usual variance speci¿cations is that it delivers estimates of volatility that are

relatively more robust to the presence of possible outliers in the data. In this case, we also

know that the invariant distribution of residuals is approximately a generalized Student’s t

when B ' v (theorem 3.3 p. 218 in Fornari and Mele (1997@)), which reduces to the celebrated

Student’s t result of Nelson (1990) when B ' v ' 2.

As mentioned in paragraph 4, we consider normally distributed errors only, since

expanding into non-normality makes the resulting model non-stationary.14 Hence, we are

left with a speci¿cation in which EBc #c v� ' E�c �c2�, and it is possible to show that in this

case the invariant distribution of " is more leptokurtic than the Student’s t that obtains when

EBc #c v� ' E2c �c 2�. Speci¿cally, by applying theorem 3.5 p. 218 in Fornari and Mele (1997@),

we obtain that the invariant distribution of residuals in model (30) is given by

� E"� '

�
2/
�2

�2)n�2

�2

s
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2)n�2
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�
c(32)

as � & f. Figure 4 compares the density in (32) with a normal density with variance equal

to E/ %)�
2 where /c) and � have been ¿xed at the values of the second column of table 6.

The density in (32) should capture the usual stylized facts of the unpredictable parts of general

¿nancial time series and, following Gallant and Tauchen (1996), one might conjecture that the

II estimator described in section 4 would be as ef¿cient as the (intractable) ML estimator if the

density in (32) were to form a smooth embedding of the invariant distribution associated with

the discretely sampled diffusion (2).

47 Such a phenomenon is also noted by Andersen and Lund (1997d), who show that a speci¿cation based
on EGARCH-type models is more stable when the errors of the model are nonnormal. Motivated by further
empirical ¿ndings of Andersen and Lund (1997d), we also tried to include further lags in the volatility equation,
but we did not observe any signi¿cant improvements.
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Unfortunately, such a conjecture seems to be hard to verify here, since the conditional

distribution of the residuals that eventually generated (32) is just a normal distribution�

nevertheless, the distribution (32) should play an excellent role in mimicking the long-run

properties of the unpredictable part of the series that we study.

Table 4 reports the qml estimates of model (30). Notice that the condition for covariance-

stationarity of this model is not violated. Theorem 4.1 suggests that the covariance-stationarity

condition does not impose that kn q 	 �� rather, 2�?�c2kn q ' f�.b8�kn q 	 � has to hold

here, which is effectively the case of the qml estimates reported in table 3. This implies a

persistence of nearly f�bb� in the volatility propagating process.

Table 5 presents summary statistics of the volatility ¿ltered by the model (not yet rescaled

for diffusions), and ¿gure 5 depicts its behavior in the sample. For reasons of comparisons, we

also depict the ¿rst differences of o. The model appears to successfully capture some stylized

features of the data, including the high volatility induced by the ‘Monetary Experiment’ of

the early 80’s. It is also worth noticing that perhaps due to such an isolated and yet relatively

persistent episode, the long run volatility as implied by the parameter estimates attains the

value of �
�3f�.bHuk3q ' �D�eD8��f3�, which is more than twice the average value of the ¿ltered

volatility for the whole sample. Because the estimated volatility wanders in a range of variation

of about f�f2S, however, such a difference is negligible: when we compute the ratio of the

difference between the long run and average volatility to the range of variation, we ¿nd that it

equals f��2�.

&RUUHFWLRQ RI WKH GLVFUHWL]DWLRQ ELDV� FRQVLVWHQF\ WHVWV� DQG ¿OWHULQJ

Following the program stated in paragraph 4, we begin with computing the q-aml

estimates (see (18) and (20)). The second column in table 6 reports such ¿gures. Then we

proceed with correcting their potential disaggregation bias by means of indirect inference. To

implement the indirect inference estimator, system (2) is simulated by means of the Euler-

Maruyama approximation15 (3) with �
3� � ��ff, which corresponds to generating 25 sub-

intervals within a week. With an observations set of � ' ���D, this implies that � ' �
3,,

with , * ��f�b� : �
2
: hence, we are ful¿lling the conditions developed in Broze et al. (1998)

48 Using (27) as simulation device does not alter our estimation results.
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to avoid simulation biases. We use 7 ' Df simulations. The estimation results are in the third

column of table 6. The correction made by indirect inference does not appear to be important.

First, we ¿nd that none of the q-aml estimates are out of the usual 95 percent probability

bands around the corresponding indirect inference estimates. Second, and more importantly,

when we formally checked the adequacy of the auxiliary model through the consistency test

described in paragraph 4, we found that the adjustment speed of the short-term rate is the only

parameter that does not pass the test at the standard 95 percent level.

Such ¿ndings are of special interest here: as recalled in paragraph 4, Drost and Nijman

(1993) constructively showed that ARCH models aggregate only when one weakens the

concept of an ARCH model, which led the authors to introduce the so-called weak-ARCH

process� more importantly, Drost and Werker (1996) generalized the Drost-Nijman setting

by introducing the so-called ARCH diffusion which is, heuristically, the continuous time

stochastic volatility process whose implied discrete differences form a weak-ARCH process.

A natural interpretation of our empirical ¿ndings is that even though the ARCH models we use

do not aggregate, they still remain, for a given frequency, an excellent approximation to the

continuous time models towards which they converge in distribution, at least insofar as they

are a natural proxy to the corresponding (discrete time) weak-ARCH models. Naturally, these

are issues that deserve a deep theoretical investigation that we leave for future research.

To check that the previous estimation results do not depend on the dimension of the

simulation experiment (7 ' Df), we implement a sort of reverse exercise that consists at

looking for the ARCH model that one can expect to estimate if the true data generating

mechanism happens to be (2). Speci¿cally, we simulate (2) with parameters ¿xed at the

indirect inference estimates of table 6, sample the short-term rate at weekly frequency, and

estimate model (30) with such sampled data. We repeat the experiment 5000 times, and remove

the simulations for which there was not stationarity for the short-term rate and volatility (i.e.,

for persistence greater than one). Notice that as a by-product of such an experiment, we will

also get an assessment of the ¿ltering performance of model (30).

Table 7 provides some basic statistics of the estimates, and ¿gure 6 displays their relative

frequencies. The distributions of the estimates are concentrated around the values of the

estimates reported in table 4: speci¿cally, the standard 95 percent con¿dence bands of the
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Monte Carlo estimates are suf¿ciently tight to ensure statistical signi¿cance� yet they contain

the ¿gures corresponding to the true estimates reported in table 4.

The ¿ltering performance of the model is gauged in the following manner. Let

j�c? denote the volatility simulated at the �th simulation and sampled at ?, and ej�c? is

the corresponding (rescaled) ARCH estimate. We are interested in evaluating the average

¿ltering error in all the simulations: iH�jDfff�'� , where H� � �
���D

S���D
?'� Ej�c? � ej�c?�.

Figure 7 displays the Monte Carlo distribution of the average ¿ltering error. It has an

average value of b�S�0��f3D and a standard deviation of ��2.5��f3� The RMSE, de¿ned ast
�

Dfff

SDfff
�'� E

�
���D

S���D
?'� Ej�c? � ej�c?�2�, is equal to 0.0209.

�� 9RODWLOLW\ DQG WKH WHUP�VWUXFWXUH

:KDW GRHV WKHRU\ VD\ "

An empirical issue that has received relatively little attention in the literature is the

relationship between the short-term rate volatility and the whole term-structure of interest

rates. In a recent paper, Mele (2000) provides a theoretical analysis of this problem. One of his

main results is that when the risk-neutralized drift function of the short-term rate is increasing

in volatility, the yield curve at VKRUW maturity dates increases with volatility. This phenomenon

takes place irrespective of whether one considers two-factor models (such as the model this

paper analyses) or models with, say, three factors that incorporate a stochastic central tendency

factor.

To get an intuition of such a result, consider the following model:;AAAAAAAA?AAAAAAAA=

_oE� � ' KEoE��c 5E� �c ,E� ��_� n
s
2jE5E� �� � @EoE� �� � _ìE� �c � 5 Efc A o

_5E� � ' )EoE� �c 5E���_� n
s
2�EoE��c 5E� �� � _ì5E��c � 5 Efc A o

_,E�� ' 0E,E� ��_� n
s
2ZE,E� �� � _ì,E� �c � 5 Efc A o

oEf� ' %, 5Ef� ' r, ,Ef� ' S

(33)

where ìc ì5 and ì, are Brownian motion de¿ned under the risk-neutral measure, and the

various drift and diffusion functions above satisfy conditions guaranteeing that the previous

system has a strong solution.
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In this model, , can be interpreted as a stochastic central tendency factor: it enters

the drift function of the short-term rate but not the diffusion coef¿cient
s
2j@ in order to

be distinguished from the stochastic volatility factor 5. Now suppose for simplicity that the

various Brownian motions are independent. Let the bond rational price function at � ' f be

�E%c rc Sc fc A �. As shown by Mele (2000, section 5), Y�Eoc 5c ,c � c A �*Y5 is then the solution

of the following partial differential equation:

;AAA?AAA=
�

Y
Y�

n u � &
�

Y�Eoc5c,c� cA �
Y5

' �
�
YKEoc5�
Y5

� Y�Eoc5c,c�cA �
Yo

n j
�Eo�@Eo�Y

2�Eoc5c,c�cA �
Yo2

�
c

;Eoc 5c ,c � � 5 Un � U� Un � dfc A �

Y�Eoc5c,cA cA �
Y5

' fc ;Eoc 5c ,� 5 Un � U�Un

(34)

where u is a partial differential operator and & is a killing rate (see Mele, 2000, for further

details). Mele shows that at short maturity dates, Y�Eoc 5c ,c � c A �*Yo is always negative and

of a higher order than Y
2
�Eoc 5c ,c � c A �*Yo2. By the maximum principle, Y�Eoc 5c ,c � c A �*Y5 is

then always negative at short maturity dates whenever YKEoc 5�*Y5 : f.

Models with three factors of this kind have been introduced because the yield curve

seems to be driven by three factors (see, e.g., Litterman and Scheinkman, 1991� Dai and

Singleton, 2000� earlier proponents of models such as (33) were Balduzzi et al., 1996, Chen,

1996, Andersen and Lund, 1997K). Despite the rich dynamics that (33) can generate, however,

(34) reveals that the qualitative behavior of Y�Eoc 5c ,c � c A �*Y5 is the same as the qualitative

behavior of bond prices in an economy ZLWKRXW a stochastic central tendency factor. It is then

appropriate to get a picture of the relationship between volatility and the term-structure within

a two-factor model that does not display any central tendency of the kind of (33).

Motivated by these results, we now address issues concerning the relations between

volatility and the term-structure by making reference to our model (2), with parameters set to

the estimates obtained in the previous paragraph. Our primary interest lies in understanding

whether the positive relationship between volatility and the term-structure that is predicted by

the theory at VKRUW maturities also holds at higher ones. Naturally, we are not claiming to be

correctly modeling the whole term-structure with the help of just two factors. The objective

here is only a proper understanding of the relationships between volatility and term-structure:

as explained before, appending a central tendency factor to model (2) would not signi¿cantly

change any of the primary conclusions we shall obtain, as (34) reveals.
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To correctly address the issues we are exploring in this paragraph, we need specifying

the risk-premia demanded by agents as compensation for the Àuctuation of the stochastic

factors. In appendix D, we provide conditions under which a supporting equilibrium exists

for a rational bond price function satisfying the following partial differential equation:;?= u�Eoc 5c � c A � ' \Eoc 5c � c A � n o�Eoc 5c � c A �c � 5 dfc A �

�Eoc 5c Ac A � ' �c ;Eoc 5� 5 U2
nn

(35)

where

u�Eoc 5c � c A � � �� n �o � E� wo� n �5 � E/ � )5�
n�

2

�
�oo � o52 n 2�o5 � �4

s
o5

2 n �55 � �2
5
2
�
c

\Eoc 5c � c A � � �o � b�o5 n �5 �
�
b�4 n b2

s
�� 42

�
� �5

s
oc

and b�c b2 are constants. As shown in appendix C, our supporting equilibrium extends Cox

et al. (1985) and implies that the short-term rate is the solution of (2) when B ' # ' �

and 4 ' f, which are the estimates found in the previous paragraph. Generalizing such a

supporting equilibrium to cases in which 4 9' f, and B and # take arbitrary (and admissible)

values is straightforward. In any case, the two unit risk premia demanded by agents in this

economy will always be given by:

b�E� � � b�

s
oE��c � ' �c 2�(36)

&DOLEUDWLRQ� FRPSDUDWLYH VWDWLFV DQG PLVVSHFL¿FDWLRQ LVVXHV

Previous work on the term-structure with stochastic volatility used to produce simulation

exercises based on arbitrary functional forms of the risk premia with parameters ¿xed at

similarly arbitrary numerical values.16 In addition to provide an equilibrium justi¿cation of

the functional forms of the risk-premia (see (36) and appendix D), we also calibrate model

(35) to a target term structure. Our target term-structure is very close to the one used by Aït-

Sahalia (1996@) (see Fornari and Mele, 2000K, section IV.E, for details). We ¿x the initial state

at EoEf�c jEf�� �' E.�� � �f32c f�fD�, which corresponds to the sample average level of o and

49 A lone exception is the work of Longstaff and Schwartz (1992).
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the average (rescaled) j as ¿ltered by model (30). Then we calibrate model (35) by choosing

the couple Eb�c b2� as the one which minimizes the squared differences between the target

term structure and the one predicted by our model. In such a search procedure, the remaining

parameters of the model were ¿xed at the indirect inference estimates of table 6. The partial

differential equation (35) was solved numerically with the Crank-Nicholson method.17 We

imposed the following transversality conditions: *�4o<"�Eoc jc |� ' f ;Ejc |� 5 Un� dfc A o,

and *�4j<"�Eoc jc |� ' f ;Eoc |� 5 Un � dfc A o. We found that Eb�c b2� �' E�f�DH�c f�S..�,

with a fairly good ¿t (see Fornari and Mele, 2000Kc for further details).

Figure 8 depicts our ¿tted term-structure, which is the second curve starting from the top.

It is consistent with well-known stylized facts of the US term structure in the analyzed sample:

it is increasing, very steep until 5 years and relatively Àat for higher maturities. Figure 8 also

shows that the yield curve increases with volatility. This is in accordance with the theoretical

predictions mentioned previously: due to the fact that b� is negative, the risk-neutral drift of

the short-term rate is increasing in volatility, according to the Girsanov’s theorem, and (34)

then says that bond prices are decreasing in volatility, at least at short-maturity dates. The

new aspect that is important here is that the yield curve appears to be always increasing in

volatility, even at medium-long maturity dates. In order to ascertain whether such a result

is due to the transversality condition involving volatility, we then repeated the calibration

procedure described before without imposing such a transversality condition. Of course we

obtained different values for Eb�c b2), but the qualitative features of ¿gure 8 remained the

same, although the ¿t deteriorated.

Naturally, the purpose of the previous exercises was not to test the restrictions imposed

by the theoretical two-factor model (35). This is a kind a testing procedure that goes

well beyond the central objectives of the paper. Indeed, it is well known at least since

Litterman and Scheinkman (1991) that actual yield curve movements are driven by three

factors corresponding to changes in level, steepness and curvature of the term structure. A

three-factor model such as (33) seems then to be more appropriate for the purpose of bond

pricing. Nevertheless, our intent here was to understand the relationship between volatility

and the term-structure with the help of model (2). As already argued, theory suggests that our

4: See Fornari and Mele (2000d, chapter 5) for technical details concerning the implementation of this
method in models of the short-term rate with stochastic volatility.
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¿ndings can be utilized to obtain a reliable qualitative picture concerning such a relationship

even when the data generating process comprises three factors, as in (33).

The last objective of this paragraph now consists in showing that even in the presence

of misspeci¿cation, the kind of models considered in this paper still remain a valid reference,

at least insofar as one considers volatility ¿ltering issues. Suppose, in other terms, that the

data generating process (under the objective measure) is a three-factor model including the

short-term rate, stochastic volatility, and a stochastic central tendency factor. The question

we want to answer to is: are the ¿ltering results of this paper still valid when we attempt at

extracting the (unobserved) stochastic volatility of such a data generating process? In addition

to its obvious practical content, such a problem is directly related to previous theoretical work

by Nelson (1992) and Nelson and Foster (1994). As mentioned in the Introduction, these

authors produced many theoretical results based on more or less restrictive assumptions. The

message of such results is that even in the presence of serious misspeci¿cation, ARCH models

still remain robust volatility ¿lters. Now we wish to ascertain whether such results hold in

an experiment in which ARCH models are used to reconstruct the volatility dynamics of a

three-factor data generating process.

To this end, we implement a Monte Carlo experiment in which we ¿t model (30) to 1,000

simulated trajectories of a three-factor model that extends in a natural way model (1) (see the

equations in table 8). Table 8 provides the results. Even though model (30) is neglecting a

factor (namely, the stochastic central tendency factor), it exhibits volatility ¿ltering properties

of exceptional interest. The Monte Carlo properties of the volatility ¿ltering error display

the same order of magnitude as those found in section 5 and, again, the resulting dynamics

of simulated vis-a-vis ¿ltered volatility trajectories display the same patterns as in ¿gure

1. Considered as a (stochastic) volatility ¿lter, model (30) would be hardly rejected as a

remarkably useful tool of analysis, even in the presence of neglected factors.

�� &RQFOXVLRQ

The intent of this paper was to explore to which extent ARCH models can be used in

practice for the purpose of providing parameter estimates and volatility ¿ltering of diffusions

processes. Since the VWDQGDUG ARCH models that have traditionally been used in the empirical

literature do not approximate all diffusion models, we considered a reasonably wide class of
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ARCH models, which we named CEV-ARCH, that converges toward any unrestricted CEV

diffusion process as the sample frequency becomes larger and larger. While the searching

strategy followed in this paper to the aim of approximating diffusions by means of ARCH can

be used to construct ARCH sequences converging to yet more general diffusion processes, our

central focus was the special case of volatility following a CEV-diffusion with linear drift.

Despite the fact that the CEV coef¿cient of volatility was unrestricted in this paper, we

provided empirical evidence supporting a model in which the (stochastic) volatility process of

the short-term rate follows a diffusion process with XQLW elasticity of variance. In addition,

we made use of simulation-based techniques to implement a global speci¿cation test for

just-identi¿ed problems and provided evidence that (suitably rescaled) ARCH estimates of

relevant parameters are statistically not distinguishable from estimates that one obtains with,

say, indirect inference methods. Finally, the volatility ¿ltering performances of the models are

excellent. Even in the presence of important misspeci¿cation, i.e. by extracting volatility from

a three-factor model by means of a two-factor model only, the volatility ¿ltering errors have

the same order of magnitude as in absence of misspeci¿cation. This ¿nding suggests very

simple and yet ef¿cient tools to extract (unobserved) volatility of a diffusion.



7DEOHV DQG ¿JXUHV
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Table 1

0RQWH &DUOR VWXG\ @

parameter true average median std.dev.
B � ��f.2D 1.0206 0.1273
# � ��fHeb 1.0834 0.0961
volatility ¿ltering error �� -1.1163�103e K -2.2082�103e 4.5025�103�

B 2 2.0047 1.9737 0.2474
#

�
2

0.6178 0.6132 0.1320
volatility ¿ltering error �� -1.4995��f3� S -2.3333��f3e 5.6091��f32

@ The third column reports the average ML estimates of B and # in (2) obtained by ¿tting an AR(1) model

with volatility equation given by eq. (9) to 1000 simulated weekly sampled trajectories from the stochastic

differential equation system (2). In these simulations,  ' 8��f3�, w ' f���, ) ' f��H and B and #

are ¿xed at the values of the second column, with A) / ' f�f�, � ' f�H when B ' # ' �, and B)

/ ' 2��6��f3�, � ' f�fS when B ' 2 and # ' �
2

. The fourth and ¿fth columns report the Monte

Carlo median and standard deviation of such estimates. The case B ' # ' � corresponds to the actual

estimates obtained in paragraph 5. The Table also reports the Monte Carlo average (with the RMSE and the

steady state expectation of j in parentheses), median and standard deviation of the volatility ¿ltering error.

K ERMSE: ��HSfb � �f32� ( E/ %) ' .�HbD � �f32� (
S ERMSE: ��SSb2 � �f32� (

�t�
/ � �

2
*e
�
%) ' S��bHD � �f32

�
�

Table 2

6XPPDU\ VWDWLVWLFV RI o

mean median maximum minimum std. dev. skewness kurtosis
0.070 0.068 0.155 0.026 0.026 0.828 3.681
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Table 3

$XWRFRUUHODWLRQ IXQFWLRQ RI U

lag 1 2 3 4 5 10 30 50
autocorrelation 0.995 0.998 0.979 0.971 0.961 0.914 0.789 0.696

Table 4

40/ HVWLPDWHV RI ����@

parameter estimate t-stat K

Sf ��DD5��f3e 2�fb
E2�DH�

S� f�bb.b S�.bu�f2
Eb�HSu�f2�

� ����0��f3e e��S
E��e��

k f��Dfe ���fD
E���.S�

q f�H.2H b��b.
E��b��H�

@ QML is the quasi-maximum likelihood estimation of the short rate dynamics. K Bollerslev-Wooldridge

(1992) robust t-statistics in parentheses.

Table 5

6XPPDU\ VWDWLVWLFV RI WKH FRQGLWLRQDO YRODWLOLW\ j DV ¿OWHUHG E\ HT� ���� @

mean median maximum minimum std. dev. skewness kurtosis
.��f2�103� D�eH��103� 2�HfD�1032 2�fe2�103� e��fS�103� 1.761 6.048

@ Not rescaled for diffusion.
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Table 6

3DUDPHWHU HVWLPDWHV @

parameter q-aml II II t-stat consistency tests
 0.0081 0.0082 3.04 �0.6727
w 0.1067 0.1108 2.92 �2.0855
/ 0.0418 0.0301 2.98 �1.2177
) 0.3736 0.3806 3.01 �0.1275
� 0.6540 0.8092 3.23 0.1390

@ The second column reports the estimates of the parameters in (2) obtained with the moment conditions

(18) and (20). The second column reports estimates obtained via the indirect inference (II) strategy explained

in paragraph 5, and the third column gives the corresponding t-statistics computed using the variance in

(28) and (31) as the Jacobian of the binding function. The last column reports the ratio of each element ofeK� � �
7

S7

r'�
eKE���crE

eK�� to the corresponding standard error computed from the variance in (29) and

using (31) as the Jacobian of the binding function.
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Table 7

0RQWH &DUOR VWXG\ @

parameter average median std. dev.
Sf 1.640��f3e ��S�0�103e ���e0��f3D
S� 0.9974 0.9976 ��.S4��f3�
� 1.210��f3e ����0�103e e�e20��f3D
k 0.1548 0.1544 2�ef5��f32
q 0.8665 0.8669 2�fD6��f32

@ The second column reports the average qml estimates of the parameters in model (30) obtained by ¿tting

model (30) to 5000 simulated weekly sampled trajectories from the stochastic differential equation system (2).

In these simulations, parameters are set to their II estimates reported in the third column of table 6. The third

and fourth columns report the Monte Carlo median and standard deviation of the simulated qml estimates.

Table 8

0RQWH &DUOR VWXG\ @

average median std. dev.
volatility ¿ltering error ���SH�D � �f3D K �S.0461�1f3D 3.9666�1f3�

@ The second column reports the average volatility ¿ltering error de¿ned in paragraph 5 (with the RMSE and

the steady state expectation of j in parentheses) obtained by ¿tting model (30) to 1000 simulated weekly

sampled trajectories of the following three-factor model:;?=
_oE� � ' w E,E��� oE��� _� n

s
oE� �jE� �_` E��E� �

_jE� � ' E/ � )jE� �� _� n �jE� �_` E2�E� �

_,E� � ' EK� � K2,E� �� _� n K�

s
,E� �_` E��

where` E��, � ' �c 2c �, are standard Brownian motions, wc /c ) and� are ¿xed at the indirect inference

estimates of Table 6, and K�, � ' �c 2c �, are ¿xed at the values suggested by Andersen and Lund (1997K),

i.e. K� ' f�ff.H, K2 ' f��2D. and K� ' f�feb�. The third and fourth columns report the Monte

Carlo median and standard deviation of the volatility ¿ltering error.

K ERMSE: f�f2HD� ( E/ %) ' .�HbD � �f32� �
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Figure 1
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Figure 2
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This Figure compares the log-normal density generated by the Andersen-Lund estimates (dotted line) and the

density s�Ej� in (10) generated by the estimates of paragraph 5.
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Figure 3
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This Figure compares the linear drift function generated by the Andersen-Lund estimates (dotted line) and the

nonlinear drift function in eq. (11) generated by the estimates of paragraph 5.

Figure 4
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In this Figure, � E "I
�
� is the approximate invariant distribution of the errors in model (30) rescaled by

s
� (see

eqs. (22)). �Efc E/
)
�2� is instead a normal density with standard deviation ¿xed at the steady state expectation

of the volatility process (see model (2)).
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Figure 5
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Figure 6
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Figure 7
0RQWH &DUOR ¿WHULQJ HUURU
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The ¿ltering error of the conditional volatility is evaluated over 5,000 simulations as i.�jDfff�'� , where

.� � �
���D

S���D
?'�Ej�c? � ej�c?� with 1,135 being sample size, j�c? and ej�c? the true and the predicted

volatility. The Monte Carlo distribution of the average ¿ltering error has an average of b�S� � �f3D and a

standard deviation of ��2.5��f3�.

Figure 8
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From bottom to top, the curves correspond to values of jEf� equal to 0.0100, 0.0114, 0.0131, 0.0150,

0.0173, 0.0200, 0.0233, 0.0275, 0.0329, 0.0400, 0.0500, 0.0650. The average level of the (rescaled) volatility

was f�febf, and the curve corresponding to jEf� ' f�fDff was ¿tted to the target term structure.



$SSHQGL[

$SSHQGL[ $� &RQYHUJHQFH UHVXOWV IRU VHFWLRQ �

3URRI RI WKHRUHP ���

Conditions (18) are suf¿cient to establish the weak convergence of the short-term rate

and volatility processes toward the solutions of the following stochastic differential equations:;?= _oE� � ' E� woE� ��_� n jE��
s
oE� �_` E��E� �

_jE� �B ' E/ � )jE� �B�_� n �jE� �B_` E��E� �

where i` E��E� �j�Dfc � ' � and �, are IE� �-Brownian motions. This has been shown in thm.

2.3 p. 209-211 of Fornari and Mele (1997@) in the case of a geometric Brownian motion, and

the case of a square root process follows easily by an extension of another convergence result

(see appendix B in Fornari and Mele (2000K) for further references).

It remains to show that ` E��E� � can be written as:

`
E��E� � ' 4`

E��E�� n
s
� � 42`

E2�E� �c � � f

with i` E2�E� �j�Df another IE��-Brownian motion. It is suf¿cient to show that the limit:

*�4
��f

�
3�
.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
m I�&

�
is not ill-behaved. After that, an identi¿cation argument will do the work.
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By (18), and the fact that ���&I
�

is g.e.d.Ev� for each �,

*�4
��f

�
3�
.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
m I�&

�

' *�4
��f

�
3�
.
��
� � w� � �o�E&3�� n �j�&

s
�o�E&3�� � ���&

�
�E�� n

�
k� m���&m

B E� � �r&�
B
�
3 B

2 n q� � �
�

�j
B
�&� m I�&

r

' *�4
��f

�
3�
.

q
���&

�
k� m���&m

B E�� �r&�
B
�
3 B

2 n q� � �
�
� �j

Bn�
�& m I�&

r
� s�o�E&3��

' *�4
��f

�
3�3 B

2k� � .
q
���& m���&mB E� � �r&�

B � �j
Bn�
�& m I�&

r
� s�o�E&3��

' *�4
��f

k�s
�

q�
E� � ��B � E� n ��B

� U
Un

%
Bn�

RE_%�
r
� �j

Bn�
�& � s�o�E&3��c

where RE�� denotes the g.e.d.Ev� density, or:

*�4
��f

�
3�
.
�
E�o�& � �o�E&3���E�j

B
�E&n�� � �j

B
�&� m I�&

�

' *�4
��f

k�s
�

�
E�� ��B � E� n ��B

�
g � �j

Bn�
�& � s�o�E&3��(

here,

g '
2
B3vn�

v uBn�
v KE Bn2

v
�

KEv3��
�

By using (18),

*�4
��f

k�s
�
'

�
s
~
c

where ~ � E6Bcv � ?
2
Bcv�

�
E� � ��2B n E� n ��2B

�
� 2?2BcvE� � ��BE� n ��B.

Hence,

*�4
��f

�
3�
.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
m I�&

�
'

�g
s
~
j
Bn� �

s
oc
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where:

g '
�
E�� ��B � E� n ��B

�
g�

To identify 4, we note that this has to solve the following equation: �4 ' �I
~
g, which yields:

4 '
g
s
~
�

The proof is complete.

3URRI RI WKHRUHP ���

Nearly identical to the proof of theorem 4.1.

&RQVWUXFWLRQ RI DOWHUQDWH FRQYHUJLQJ DV\PPHWULF PRGHOV

It is well known that in correspondence with a given diffusion model, there may exist

many well-behaved discrete time models converging in distribution to the given continuous

time model. Hence, we can ¿nd other examples of discrete time ARCH-type models

converging to model (2). As an example, consider the following model:

j
B
?n� ' � n qj

B
? n kE� � �r?�

B#
�
m�?mB# � .

�
m�?mB#

��
j
B#
? c � 5 E��c ���(A1)

The main difference between model (21) and model (A1) is the way how asymmetries

in volatility are modeled. Suppose for instance that � : f in model (A1). In this case,

‘large’ negative shocks introduce more volatility than positive shocks of the same size, while

‘small’ negative shocks introduce less volatility than positive shocks of the same size. Such

a phenomenon, referred to as ‘volatility reversal’ in Fornari and Mele (1997K), seems to be

pervasive in many stock markets and in this respect, model (A1) represents another example

of the volatility-switching ARCH models that were originally introduced by Fornari and Mele

(1997K).

Our objective now is to give a sketch of the proof that (A1) converges in distribution to

(2) as the sampling frequency gets higher and higher. Consider the following approximating
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scheme:

�j
B
�E&n�� � �j

B
�& ' �� � E� � q�� �j

B
�& n k�E�� �r&�

B#
q
m���&m

B# � .

�
m���&m

B#
�r

�
3 B#

2 �j
B
�&c

and introduce the following moment conditions:

*�4��f �
3�
�� ' / 5 Efc4�c

*�4��f �
3�E�� q�� ' ) 	4c

*�4��f �
3�*2

�
E� n ��2B# n E� � ��2B#

�
E6B#cv � 2?2B#cv�k� ' � 	4�

(A2)

For each �, we have that

.

q
E� � �r&�

B#
�
m���&m

B# � .

�
m���&m

B#
��

�
3 B#

2 m I�&

r
' fc

and so the drift per unit of time is:

�
3�
.
�
�j

B
�E&n�� � �j

B
�& m I�&

�
' �

3�
�� � �

3�E� � q�� �j
B
�&�

By taking limits for � & f, and using the moment conditions (A2), we obtain the drift function

of volatility in (2).

Now consider the second order moment per unit of time �
3�
.iE�jB

�E&n��
� �j

B
�&�

2 m

I�&j. By taking limits for � & f, and using again the moment conditions in (A2), yields after

tedious computations:

*�4
��f

�
3�
.

q�
�j

B
�E&n�� � �j

B
�&

�2 m I�&

r

' *�4
��f

�
k�s
�

�2
+
.

#
E� � �r&�

2B#

�������&s
�

����2B#
$
n e?2B#cv.

�
E� � �r&�

2B#
�

�e?B#cv.

#
E� � �r&�

2B#

�������&s
�

����B#
$,

�j
2B#

�&

' *�4
��f

�
k�s
�

�2 �
E� n ��2B# n E� � ��2B#

�
E6B#cv � 2?2B#cv� �j

2B#

�& c

which gives the diffusion function of volatility in (2).
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As regards correlation issues, the proof is very similar to that of thm. 4.1:

*�4
��f

�
3�
.
��

�o�& � �o�E&3��
� �

�j
B
�E&n�� � �j

B
�&

�
m I�&

�

' *�4
��f

k�s
�
� .

+
���&s
�
E�� �r&�

B#

#�������&s
�

����B# � 2?B#cv

$
m I�&

,
� �j

B#n�

�& � s�o�E&3��c

where

*�4
��f

.

+
���&s
�
E�� �r&�

B#

#�������&s
�

����B# � 2?B#cv

$,

' .

qh� E�� � � signEh���B# �mh�mB# � 2?B#cv

�r

'
�
E� � ��B# � E� n ��B#

� 2
B#3vn�

2 uB#n�
v

KE �
v
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�
K

�
B# n 2

v

�
K

�
�

v

�
� K

�
B# n �

v

�
K

�
2

v

��
c

and h� is }e_v.

Using an identi¿cation device as in the proof of theorem 4.1, we ¿nd that:

4 '

�
E�� ��B# � E� n ��B#

�
2
B#3vn�

2 QB#n�
v

KE �
v
�2

�
K
�
B#n2

v
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K
�
�

v
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� K

�
B#n�

v

�
K
�
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v

��
iE� n ��2B# n E� � ��2B#j E6B#cv � 2?2B#cv�

�

In correspondence with reasonable values of Bc # and v, the term iK
�
B#n2

v

�
K
�
�

v

�
�

K
�
B#n�

v

�
K
�
2

v

�
j is strictly positive, thus restricting signE4� to be minus signE��, as in thms.

4.1 and 4.2.

$SSHQGL[ %� 6WDQGDUG UHJXODULW\ FRQGLWLRQV DQG WKH FRQYHUJHQFH RI WKH FULWHULRQ

ASSUMPTION B1.

-T*�4� 1� E{o( K� ' 1"E@f( K�, say, uniformly in K 5 � � UD.

-T*�4�
Y21�
YKYK�

E{o( K� '
��

1" E@f( K�, say, uniformly in K 5 �. Further,
��

1" E�� is invertible.

-
ks

�
Y1�
YK

E{o( K�
l
K'KfE@f�

_$ � Efc aE@f��.
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CONVERGENCE OF THE CRITERION (Sketch). We assume as in Broze et al. (1998)

the continuity of the partial application @ :$ eKE���crE@�, and for the case 7 ' �, we de¿neeKE��� E�� � eKE���c�E�� and {hoE�� � {c�hoE��E��. It is not hard to show that under conditions

on 1� E{hoE@�( K� that parallel those in assumption B1 stated above for the direct criterion

1� E{o( K�, the simulated estimator is asymptotic normal:

s
�

�eKE��� E@�� K
E��

f E@�
�

_$ �

�
fc

��

1
E��3�
" E@( K

E��

f E@�� � a E��E@��
��

1
E��3�
" E@( K

E��

f E@��
�
c

where K
E��

f E@� ' @h}4@ K 1
E��
" E@( K�, the limit simulation problem, and

��

1
E��

" E�� and a
E��E��

are de¿ned similarly as
��

1" E�� and aE��. Now, it follows from thm. 4.2 that the solution

of (22): i�o�&c� jB�&j&'fc�cuuu , ioE��c jE��Bj�Df (the solution of (2)). By this, an extension

of a result cited in Fornari and Mele (2000K) (appendix B) that shows that the solution of

(22) is unique, stationary and ergodic (for ¿xed �), and assuming the uniform continuity

of the criterion 1� E�( K�, it follows that 1�E{hoE@f�( K� , 1� E{oE@f�( K� as � & f, and

we suppose, as in Broze et al. (1998), that the convergence is uniform in K. Finally,

because T*�4� 1� E{hoE@�( K� ' 1
E��
" E@( K� and T*�4� 1�E{o( K� ' 1"E@f( K�, uniformly in

K 5 � (both by assumption), one can easily verify that for small �, this implies KE��f E@f� '

@h}4@ K 1
E��
" E@f( K� ' @h}4@ K 1"E@f( K� ' KfE@f�. This is:

*�4
��f

K
E��

f E@f� ' KfE@f�c

while for ¿xed �, it is assumed that there exists only one solution to the system K
E��

f E@� '

KfE@f�: this has the form DE��E@f�, with *�4��fDE��E@f� ' @f. Now by proposition 6 in

Broze et al. (1998), one has that
s
�
�
�e@�E@f��DE��E@f�

� _$ N
�
fcPE��

�
(for ¿xed �), where

PE�� is such that *�4��fP
E�� ' 2T 3�

f KfT
�
f , and (28) follows for 7 ' �. In the preceding

expressions, Kf is de¿ned as the limit of KE��

f as � & f, Tf is de¿ned similarly, and KE��

f is the

limit of
��

1
E��3�
" E@( KE��f E@�� � a E��E@��

��

1
E��3�
" E@( KE��f E@�� as � % 4, whereas T E��

f is the limit of�
YeK

E��

�

Y@
E@�

�
@'�E��E@f�

as � % 4. The case 7 : � is similar.
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$SSHQGL[ &� +RZ WR UHVFDOH YRODWLOLW\ IRU GLIIXVLRQV"

Here we provide details on how we rescaled ARCH-¿ltered volatility for diffusions. Let

us rewrite the ¿rst equation of the Euler-Maruyama discrete approximation of (2) in (3) as:

o? ' �n E�� w��o?3� n
s
�j?3�

s
o?3��?c ? ' �c � � �c h�c(C1)

where h� denotes the total number of points generated by the simulations and �? is �U(Efc ��.

Simulated data are sampled every � points. Iterating (C1) leaves:

o? '


w

q
� � E�� w���

r
n E�� w��� o?3�

n
s
�
�
j?3�

s
o?3��? n E� � w��j?32

s
o?32�?3� n E� � w��2 j?3�

s
o?3��?32

n � � �nE� � w���3� j?3�
s
o?3��?3E�3��

r
�

Because a diffusion is continuous with locally bounded paths, when � is low enough o and j

do not move too much within the unsampled � subintervals. Let us denote with o�?3� and j
�
?3�

the (random) representative, ¿ctious values of o and j within the unsampled intervals that are

such that the previous equation can be written approximately as:

o? '


w

q
� � E�� w���

r
n E�� w��� o?3�

nj�?3� �
s
�

q
�? n E� � w���?3� n � � �n E�� w���3� �?3E�3��

rt
o
�
?3��

Our objective is to estimate each point of the sequence
�
j
�
�

�
�'�c2�cuuuc h�%�

in order to use it to

¿lter the actual (discretely sampled) volatility path generated by the second equation of the

Euler-Maruyama discrete approximation of (2) in (3): ij�j
h�%�

�'�
' ijE� � ��j

h�%�

�'�
.
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Rewrite the previous equation as:

o? '


w

q
�� E� � w��

�
r
n E� � w��� o?3�

nj�
?3� �

s
�

t
� n E� � w��2 n E� � w��e n � � �n E� � w��2E�3�� �

t
o
�
?3� � h��?3�

'


w

q
�� E� � w���

r
n E� � w��� o?3� n j

�
?3� �

yxxw�

�
�� E�� w��2�

�
�� E�� w��2

�
t
o
�
?3� � h��?c

where h�� is a standard Gaussian variate.

Now all the models we used in this paper actually deliver an estimate of

�� � j
�
� �

yxxw�

�
�� E� � w��2�

�
� � E� � w��2

c � ' �c 2�c � � �c h� %� �(C2)

Therefore, an estimate of each point of the sequence
�
j
�
�

�
�'�c2�cuuuc h�%�

is obtained by inverting

formula (C2) to form the desired sequence:

j
�
� '

yxxw �� E� � w��2

�

�
�� E� � w��2�

� � ��c � ' �c2�c � � �c h� %� �(C3)

In this paper, we used:

� '
�

{ � �
c { ' D2, � ' 2Dc

and the estimates of w reported in table 6 of the main text are such that
u

�3E�3w��2

�E�3E�3w��2��
is

always close to .�2�H.

The ¿ltered series of volatility reported throughout the paper are based on formula (C3)

(see, however, below for numerical improvements of this formula). To relate the number found

before to the correction given in formula (20) for the intercept of the volatility equation, note

that:

/q-aml ' {3� �{3�*2 � e�{�
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Here the correcting term is {3�*2 ' .�2��, which in practice is very close to the conversion

factor given above.

In addition to being based on the stability of volatility within unsampled periods, the

conversion formula (C3) is based on the assumption that the (small) changes of j
s
o are not

autocorrelated. Relaxing such an assumption requires a much more complicated approach

with continuous updatings. A reliable alternative consists in ¿nding numerically a conversion

formula similar to (C3). In this paper, we proceeded in the following way. We simulated 5000

times the continuous time system (2) in correspondence of the parameter estimates found in

paragraph 5. Then we de¿ned:

C �
�

Dfff �
� h� %�

� Dfff[
�'�

h�%�[
�'�

j�E� � ��
���

c

where j�E� � �� and ��� are simulated volatility and ¿ltered volatility as of time � obtained in

the �th simulation. We found that C � S�b2H�

$SSHQGL[ '� $ VXSSRUWLQJ HTXLOLEULXP IRU 3DUDJUDSK �

In this appendix we construct a supporting equilibrium for the model analysed in section

V. To save space, only a sketch is provided of this construction� further details can be found in

Fornari and Mele (2000K(appendix A).

&RQVWUXFWLRQ RI DQ HTXLOLEULXP VWDWH SULFH GHQVLW\

Let ElcI c � � be a probability space, A 	 4, and I ' iIE� �j�MdfcA o the � -

augmentation of the natural ¿ltration I` E� � ' jE` Er�c r � � � generated by a Brownian

motion in U2: ` ' i` E� � ' E` E��E��c` E2�E� ���j�MdfcA o (with I ' IEA �). We consider a

diffusion state process + � E+�c +2� solution of

_

�
+�E� �
+2E� �

�
'

�
V� w � +�E� �h/ � ) � +2E��

�
_� n

� s
+�E� � � +2E� � f

f � � +2E� �

�
_` E� �c(D1)

and assume that the various constants Vc wc h/c) and � are such that the preceding system

admits a strong solution (Karatzas and Shreve, 1991, de¿nition 2.1, p. 285). Let
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iE�E� �c 7E� ���j�MdfcA o be the IE� �-adapted stochastic process representing the price of an

accumulation factor E� � plus one primitive asset entitling to rights on the fruits, or dividends

(the numéraire), of one tree—as in the discrete time model of Lucas (1978)—. We assume that

the asset price is the solution of:

_7E� �*7E� � ' @E� c +E� ��_� n
2[

�'�

] �

f

D�Erc +Er��_`
E��Er�c

where @E� c +� is the total expected appreciation rate of the asset price, and is equal to a functionh@E� c +� n El*7�E�c +�� l is the dividend rate� and h@E�c +�c D�E� c +�c � ' �c 2c are well speci¿ed

functions. We assume that lE� � ' E@ � h@�E� � � 7E� �, where E@ � h@�E� � is a deterministic

function of time. This implies that

@lE�c +� ' @&E� � n @E�c +� and DlE�c +� ' DE�c +�c(D2)

where @l and Dl denote drift and volatility-vector processes of _l*l , and @& is the

(deterministic) time-varying growth rate of E@� h@�.
We now impose restrictions that represent a natural generalization of the Cox et al.

(1985) single factor model: �
@E� � ' e@ � +�E��
DE� � ' eD �s+�E� �

(D3)

where e@ and eD are, respectively, a constant and a vector of constants in U2.

Let >fcA E/� � �E/c A �3�1E/c A � be the Arrow-Debreu pricing kernel of one unit of

numéraire at A at the point / 5 l. In the notation of the preceding de¿nition, 1EA � is the

Radon-Nikodym derivative of any ' 5 T on IEA � with density process

1E� � �
����_'_�

����
5E��

' i T

�
�
] �

f

b
�
Er�_` Er��

�

2

] �

f

��bEr���2 _�� c(D4)

where ibE� �j�MdfcA o is a IE��-adapted process that satis¿es the Novikov’s condition:

.

�
i T

�
�

2

U �

f

��bEr���2 _r�� 	4, and has to be determined at the equilibrium.

Consider a representative agent maximizing E� � ��3�.
�U A

f
e
3}u�

SE� ��3�_� n %
�3�
n

�
under the constraint that % ' .

�
>fcA � %n n

U A

f
>fc� � SE� �_�

�
, where % and %n are initital
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and ¿nal wealth, respectively, and } and � are constants satisfying usual restrictions as well as

viability restrictions to be determined below. Here markets are complete because our agent can

trade with one stock and one bond the equilibrium price of which (�, say) will be determined

below. After differentiating the ¿rst order conditions of this agent’s problem we get:

_ *L} SE�� ' �
3�
�
�} n oE� � n

�

2

��bE� ���2� _� n �
3�
b
�
E� �_` E� ��

Using the equilibrium condition S ' l , and identifying both drift and diffusion terms of the

preceding equation leaves:;?=
oE� c +E��� ' } n � E@&E� � n @E� c +E� ���� �E�n��

2
nDE�c +E���n2

b
�
E� c +E� �� ' � � DE�c +E����

(D5)

Furthermore, by the martingale property of �3�
7 and �3�

� under the measure ' that we are

looking for, it must be the case that:

oE� c +E� �� ' @E� c +E� ��� DE�c +E� �� � bE� c +E� ��c(D6)

as well as

oE�c +E� �� ' @
KE� c +E� ��� D

KE� c +E� �� � bE� c +E� ��c(D7)

where @K and D
K are drift and volatility-vector processes of _� %� , and ' has density process

as in (D4) with b given by the second relation in (D5).

Substituting (D3) and the second relation of (D5) into (D6) leaves:

oE� � '
�e@� � � neDn2� � +�E���(D8)

By differentiating o and using (D1), we get the ¿rst equation of system (1), and by

differentiating the resulting volatility function we get the second equation in (1) whenevere@ � � � neDn2 : f, in which case o is also positive. Finally, using again (D3) and the second

equation in (D5),

bE� c +E� �� ' �eD �s+�E� � ' �eD �t�
��e@� � neDn2�soE�� �

�
b�

b2

�
�
s
oE� �c
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where b� and b2 are two constants. Under all of our assumptions, ibE� �j�MdfcA o satis¿es the

Novikov’s condition. Now it follows by (D7), and Itô’s lemma, that the bond price satis¿es

exactly the partial differential equation (35).

9LDELOLW\ UHVWULFWLRQV

While deriving the previous results, we did not fully analyse what (D6) and system

(D5) imply. Taking account of this imposes further restrictions that guarantee the internal

consistency of the model, which we call “viability restrictions”. The starting point is to note

that comparing (D5) with (D6) implies that the following must hold:

} ' E�� ��

�
@E� ��

�

2
nDE� c +E� ��n2

�
� �@&E� ��

By using (D3), the previous relation yields:

} ' E�� ��

�e@� �

2
neDn2� +�E� �� �@&E� ��

For each � 9' f, the previous relationship can hold when E�� ��
�e@� �

2
neDn2� ' f, @& ' f and

} ' f. In this case we are left with two possible choices:

– e@ ' �
2
neDn2.

– � ' � (logarithmic utility).

In the ¿rst case, relation (D8) implies that oE� � ' � �
2
� neDn2 � +�E��: except when � 	 f,

o is always negative in this case. In the second case, relation (D8) implies that:

oE� � '
�e@� neDn2� � +�E���

Hence, the results of the previous subsection can be fully supported by an economy with

a representative agent with logarithmic utility and zero discount rate, and dividends on the

stock price that are proportional to the share price, with a proportionality factor (see eq. (D2))

that is constant over time.

&RQVLVWHQF\ WHVWV j OD :DOUDV

The supporting equilibrium for the model of paragraph 6 was found without explicitly

dealing with the dynamic portfolio choices. In fact, it is possible to show that the equilibrium
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conditions of the previous subsections entail the equilibrium conditions in the securities

markets. The argument is shown in Fornari and Mele (2000K� Appendix A).
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