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TESTING FOR STOCHASTIC TRENDS IN SERIES WITH STRUCTURAL
BREAKS

by Fabio Busetti”

Abstract

This paper considers the problem of testing for the presence of stochastic trends in
multivariate time series with structural breaks. The breakpoints are assumed to be known.
The testing framework is the multivariate Locally Best Invariant test and the common trend
test of Nyblom and Harvey (2000). The asymptotic distributions of the test statistics are
derived under a general specification of the deterministic component, which allows for
structural breaks as a particular case. Asymptotic critical values are provided for the case of
a single breakpoint. A modified statistic is then proposed, the asymptotic distribution of
which is independent of the breakpoint location and belongs to the Cramér-von Mises
family. This modification is particularly advantageous in the case of multiple breakpoints. It
Is also shown that the asymptotic distributions of the test datistics are unchanged when
seasonal dummy variables and/or weakly dependent exogenous regressors are included.
Finally, as an example, the tests are applied to UK macroeconomic data and to data on road
casualties in Great Britain.

JEL classification: C12, C32.

Keywords: cointegration, common trends, Cramér-von Mises distribution, locally best
invariant test, structural breaks.
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1. Introduction?®

A common empirical issue is that of trying to establish whether a time series is
trend stationary or integrated of order one. This is routinely done in the Dickey-Fuller
(or autoregressive) framework, where under the null hypothesis the series is integrated and
under the alternative hypothesis it is stationary. Perron (1989) shows that in the presence
of structural breaks the Dickey-Fuller test is biased towards not rejecting the null hypothesis
and he therefore provides appropriate critical values for this situation; additional results are
obtained by Banerjee et a. (1992), Perron and Vogelsang (1992a,b) and Zivot and Andrews
(1992).

An dternative way of testing trend stationarity is the KPSS test of Kwiatowski et al.
(1992), which reverses the role of the null and alternative hypotheses of the Dickey-Fuller
procedure. It extends the locally best invariant test for the presence of a random wak
component proposed by Nyblom and Makelainen (1983) and Nyblom (1986). Paralleling
Perron’s argument, Busetti and Harvey (2000) modified the KPSS test to cover the case of
series with structural breaks, since the KPSS test is also consistent against the trend-break
hypothesis, seeaso Leeet al. (1997).

The multivariate generalizations of the Dickey-Fuller and the KPSS tests are, in some
sense, the tests proposed by Johansen (1988, 1991) and by Nyblom and Harvey (2000)
respectively. While structural breaks in Johansen’s procedure have been considered by Inoue
(1999), this paper deals with breaks in the Nyblom-Harvey framework. The existence and
location of the breakpoints are assumed to be known.

The framework is an unobserved component model. The presence of a random walk
component (stochastic trend) in an otherwise covariance stationary time series makes it
integrated of order one. In the multivariate case the vector time series will be cointegrated
if the covariance matrix of the disturbance term driving the multivariate random walk is not of

full rank.

The simplest case is the univariate random walk plus noise model. Under Gaussianity,
Nyblom and Makelainen (1983) obtain the locally best invariant (LBI) test for the null

1 I would like to thank Andrew Harvey, Javier Hualde, Liudas Giraitis, Beppe Parigi and the participants
in the L SE Econometrics Workshop for useful comments. Of course | bear sole responsibility for any errors.



hypothesis that the series is white noise against the alternative hypothesis that a random
walk component is present. The test will be hereafter denoted as NM test. The asymptotic
distribution of the NM statistic under the null hypothesisisthe well known Cramér-von Mises
distribution, asin Anderson and Darling (1952). Nyblom (1986) then augments the model by
including a deterministic linear trend; in this case the statistic converges to what is sometimes
called second level Cramér-von Mises distribution.

When the random walk is embedded within a general stationary process, the NM
statistic can be corrected nonparametrically to produce a test statistic with the same asymptotic
distribution. Thisis done in Kwiatowski et a. (1992) and it is usually denoted as KPSS test.
The same correction applies for amodel with a deterministic linear trend.

The NM/KPSS test is extended to the multivariate case in Nyblom (1989) and Nyblom
and Harvey (2000), where the LBI test for the presence of a multivariate random walk
component is derived under the assumptions of Gaussianity and white noise innovations. A
test for common trends is also proposed by Nyblom and Harvey (2000). Their null hypothesis
Isaspecified valuefor the rank of the covariance matrix of the disturbances driving the random
walk component. Under the alternative hypothesis the rank is bigger. Since the existence of
common trends implies cointegration, this al so tests the dimension of the cointegration space.

As aready mentioned, the NM/KPSS test contrasts with the tests in the unit root
literature (Dickey-Fuller test and modifications) because it reverses the roles of the null and
the alternative hypotheses. Similarly, the common trend test of Nyblom and Harvey (2000)
contrasts with the tests of Johansen (1988,1991).

The objective of this paper isto extend the multivariate NM/K PSS test and the common
trend test of Nyblom and Harvey (2000) to cover, in particular, the case of series with
one or more structural breaks (which we will often refer to as the "breaking trends’ case).
The issue is important because these tests are also consistent against shifts in the series, as
indirectly showed in an early work of Gardner (1969) and later in Nyblom (1989) and Lee
et a. (1997). Thus the failure to take into account a structural break is likely to produce
evidence of nonstationarity (or unit root) for series that are actually stationary. This problem
was highlighted by Perron (1989) in the context of the unit root literature. In our setting,
Busetti and Harvey (2000) analyze the case of a scalar time series. Here we also generalize



some results of that study. The location of the breakpoints is assumed to be known, e.g. they
may correspond to exogenous events that affect the behavior of the series.

The paper is organized as follows. Section 2 reviews the multivariate LBI statistic and
derives its asymptotic distribution, under both the null and the aternative hypotheses, for
a genera specification of the deterministic component, which includes breaking trends as a
particular case. The breaking trends case is analyzed in Section 3, where upper tail percentage
points from the distribution under the null hypothesis are tabulated across a range of the
breakpoint location parameter. A modified test statistic is then introduced, whose asymptotic
distribution belongs to the Cramér-von Mises family and is independent of the breakpoint
parameter. The advantage of this modification isthat it allows the construction of atest in the
case of multiple breakpoints. Section 4 considers tests for the presence of a certain number
of common trends and provides the critical values for the breaking trends case. This also
corresponds to testing the dimension of the cointegration space. Section 5 shows that adding a
deterministic seasonal component and/or weakly dependent exogenous regressorsto the model
does not affect the asymptotic distribution of the tests considered in the previous Sections.
Finally, Section 6 presents some applications and Section 7 concludes.

Note that throughout the paper we will often refer to the (multivariate) KPSS test as a
test for nonstationarity, although Lee and Schmidt (1996) showed that it can also be used to
detect long memory in a stationary time series.

We use standard notation: 2 and % indicate convergence in probability and

convergence in distribution, respectively, = stands for weak convergence to a stochastic
process, ||| isthe euclidean norm and 1(-) istheindicator variable

2. The multivariate LBI test for nonstationarity

Let y, beavector of NV time series. Assume y;, is generated by the model

1) yi = B'x+p,+ ey

(2 ne = g 1y,
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3) n, ~ i.i.d.(0,3,),

wherex; isap-dimensional vector of non — stochastic regressors (including aconstant term),
B is a pxN matrix of parameters, p, is a multivariate random walk (stochastic trend) with
o = 0, and for the time being &, is awhite noise disturbance term, independent of n, for all ¢
and s. When x; = 1 for every t, Harvey (1989) refersto (1)-(3) as the multivariate local level
model. The notation 7.i.d. stands for independent and identically distributed.

Under the further assumption of Gaussianity, Nyblom and Harvey (2000) show that
the Locally Best Invariant (LBI) test for Hy : 33, = 0 against Hy : 3, = ¢X., where
3. :=Var(e;) and g > 0, has argjection region of the form

4 tr [SflC} > ¢,

where C =725 [S e [2) e, S=T"'37 e, e/s are the OLS residuas
from regressing y; on x; and ¢ is an appropriate critica value. The test is invariant with
respect to the affine linear transformation y, — Py, + Ax,, where P isanonsingular NxN
matrix and A isan arbitrary Nxp matrix.

Under the null hypothesis the model does not contain a stochastic trend component.
Under the alternative hypothesis %, is proportional to X, i.e. the model is ”homogeneous’
in the sense of Harvey (1989, chapter 8). Thus, the test maximizes the local power against
homogeneous alternatives. However the test is aso consistent against the more general
alternative hypothesisH 4 : rank(3,) > 0.

Nyblom and Harvey (2000) then concentrate on the cases x, = 1 and x, = (1,¢)’, i.e.
on the null hypothesis of stationarity around a constant level and a linear trend respectively.
In this paper, we consider a more general form for the regressors x,, that covers the case of
breaking trends.

The case of seria dependence in the disturbance term e, can be treated by correcting
the statistic (4) nonparametrically by replacing S with a consistent estimator of the long run
variance of e,. Thiscorrection isoften termed KPSS correction, after Kwiatowski et al. (1992).



11

The proposed estimator hasthe form

Qm) = > w(r,m)I(7),

where w(7, m) isaweighting function and

T
L(r)=T" Z e,
t=7+1
isthe sample autocovariance at lag 7. In thispaper weuse w(r,m) = 1—|7|/(m+1), i.e. the
simple Bartlett kernel; other possibilities are examined in Andrews (1991).

The corrected statistic is then
(5) £y = tr (ﬁ(m)*lc) .

The next proposition gives the asymptotic distribution of £, under the null hypothesis
and for an assumption on the regressors x; which includes breaking trends as a particul ar case.
In the next Section we will analyze the breaking trends case in detail, providing upper tail

percentage points from that distribution.

Assumption 1. Theregressorsx; are non-stochastic and there existd a scaling matrix é
and a bounded piecewise continuous function x(r) such that (i) drxir,) — x(r) 88T — oo

uniformly in» € [0, 1] , and (ii) fol x(r)x(r) dr is positive definite.

Assumption 2. The vector process {e,} satisfies the following assumptions: (i)
E(sy) = 0,5 = 1,.,N, t = 1,..,T; (ii) sup,Els;s|” < o0, j = 1,..N, 8 > 2
(iii) {e,} is strong mixing with mixing coefficients ay, that satisfy S°°° a; % < ooy(iv)

Q =lim T*1E(2L Ay s;)exists and is positive definite.

Assumption 3. m — oo asT — oo suchthat m = o (T'"/*) .

Proposition 1  Let y, be generated by the model (1)-(3) under assumptions 1-3. Then under
Hy:%,=0

®) eyt / B () BX (r)dr,
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where BX(r) = W(r) - (Jy x(r)dW(r)/)’ (Jo xtryx(ryar)

W (+) being a standard vector Wiener process of dimension N.

Jo x(s)ds, r € [0,1], with

The proof is provided in Appendix A. It is a straightforward extension of the one in
Nyblom and Harvey (2000), where only the casesx; = 1 and x, = (1,¢)" are considered. In
those cases B (r) reduces respectively to a standard Brownian bridge, denoted as B'(r), and
to asecond level Brownian bridge, denoted as B?(r), where

(7) Bi(r) = W(r)—rW(l),

6) BX(r) = W(r)—rW(1)+6r(1—7) {%W(l) - /01 W(s)ds} .

More generaly, when x, contains all the first » powers of ¢, i.e. from ¢° to t"~! B¥(r)
is a (multivariate) h'"-level Brownian bridge as in McNeill (1978) and the distribution of
[ BX(ryBX(r)dr is caled h"-level Cramér-von Mises distribution with N degrees of
freedom. For N = 1 percentage points are tabulated in Anderson and Darling (1952),
MacNeill (1978), Nyblom and M&keldanen (1983), Nyblom (1986), Nabeya and Tanaka
(1988), Kwiatkowski ef al. (1992); when N > 1 percentage points are tabulated in Nyblom
(1989), Canova and Hansen (1995) and Nyblom and Harvey (2000).

In our case the process B-* () is more general as sinceit includes, for example, the case
of breaking trends. We will call this process a generalized Brownian bridge.

Assumption 1 follows Phillips and Xiao (1998). Note that it excludes the dummy
variables used to model seasonal effects, however in Section 5 we will show that adding
these dummies does not affect the limiting distribution. Assumption 2 permits afairly general
correlation structure for the disturbances e, which can also be heteroschedastic. Assumption
2 is sufficient for applying the invariance principle and, together with assumption 3, for the
consistency of ﬁ(m); see Phillips (1987). Note that imposing stronger conditionson e; would
allow faster rates for m. For example, in the classical spectral theory of stationary process only
m = o(T) isrequired. In practice the rate m = o(T*/?) can be satisfactory under both the null
and the alternative hypothesis, see Kwiatowski et al. (1992).
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The percentage points from the distribution of (6) can be used to construct an
asymptotically valid test for the null hypothesis of H, : X, = 0 against H, : rank(33,) > 0.
If e, isawhite noise process, then the test is asymptotically equivalent to the LBI test (4).

Under the alternative hypothesis H, : rank(%,) = K > 0Othe statistic diverges, so the
test is consistent. The asymptotic distribution of (m/T") &, under H, is established by the

following proposition.

Proposition 2 Let y, be generated by the model (1)-(3) under assumptions 1-3. Then under
Hy:rank(3,)) =K >0

{</ o >/</ ) ([ wro) o

1

where W= (r) — i W r)dr (fo x(r)’ dr) x(r),r €10,1], and W (-) is

a standard vector Wiener process of dimension K.

The proof is provided in Appendix B. The process W+ (.) is the projection in L, [0, 1]
of a Wiener process onto the space orthogonal to the span of x(-). For x; = 1 it becomes the
demeaned Wiener process W (r fo r)dr, and for x, = (1,1)" it becomes the detrended
Wiener process W (r) + (6r — fo rydr — (12r — fo rW (r)dr.

3. Testing for nonstationarity in the presence of structural breaks

The multivariate NM/KPSS test proposed by Nyblom and Harvey (2000), based on the
statistic (4)/(5) withx, = 1 or x, = (1,¢)’, isalso consistent against the alternative hypothesis
of a one-time shift in the deterministic trend. This is indirectly shown in Gardner (1969)
who derives the NM statistic in a Bayesian framework to detect a break in an otherwise
I.i.d. series. Later Nyblom (1989) derives (4) as an LM statistic to test for a general form of
parameter constancy in the mean of the series, namely for cases in which, under the aternative
hypothes s, the mean isamartingal e (which includes both the cases of random walk and single
shift at a randomly chosen point). Lee et a. (1997) then show directly that the KPSS statistic
diverges when thereis a structural break in a (trend stationary) process.
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Therefore it seems important to study the case of breaking trends when testing for the
presence of arandom walk component. For a univariate series such study has been conducted
in Busetti and Harvey (2000).

Suppose that there is a shift in the deterministic trend of the series at time 77 = AT,
A € (0,1). We assume that the breakpoint X is exogenous and known. In other words, the
existence and location of a structural break is not of concern. Instead, we focus on series that

are subject to a break in the trend due to some exogenous event, such as a change in economic
policy.

We consider the model (1)-(3) under four different specifications of the deterministic
trend. Let

ey 123
i S we(N), twy 1=2,
©) XN =0 (1w ()Y i = 2,

(1,t,(t = AT)we(N)) i =2b,
wherew,(\) = 1 (¢t > AT") . Case 1 corresponds to alevel bresk with no ope and case 2to a
structural break in both the level and the dope; in cases 2aand 2b the break occurs only in the
level and only in the Slope, respectively.

Since xi, (A) — x*(r; A), defined by

(17w<7n; A))/ ' , Z =1
@ =0 Wy
(1,7, (r — Nw(r; A)) i = 2D,

with w(r; \) = 1(r > X), assumption 1 holds. Therefore we can apply proposition 1. Call
% () the statistic (5) constructed using xi(\) as regressors, i = 1,2, 2a, 2b. Then under Hy

1
(1) N~ [ BB ar.
0
where the generalized Brownian bridge B*(r; \) is defined in Appendix C.

The form of the processes Bi(r; A), i = 1,2,2a,2b, has been derived in Busetti and
Harvey (2000) who consider the same problem for a univariate time series. For example
B!(r; \) can be interpreted as two adjacent independent Brownian bridges over the intervals
[0, A] and [A, 1] respectively.
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The upper tail percentage points for the distribution of (11) when A = 0.002, 0.1, 0.2,
0.3, 0.4, 0.5 are reported in the first column (labelled K = 0) of Tables 1, 2, 3 and 4. The
values for A > 0.5 are not reported since the distribution is symmetric around A = 0.5. These
percentiles are obtained by simulating the processes B*(r; \), i = 1,2, 2a, 2b using a sample
size of 1,000 and 100,000 replications. We use the random number generator of the matrix
programming language Ox; see Doornik (1998). Note that the values for A = 0.002 closely
agree with the values reported in Nyblom and Harvey (2000), which refer to thecase A = 0
and were obtained using the series expansion of the distribution.

The datistic £5()\) can then be used to construct an asymptotically valid test for
nonstationarity in a model with breaking trends, using the first column of Tables 1, 2, 3and 4
to select the appropriate critical values.

The test based on & ()\) has desirable properties, including being asymptotically
equivalent to the LBI test for a Gaussian model with serially independent disturbances.
However the critical values depend on the breakpoint parameter A.

In the following subSection we propose a modified version of the statistic £’ (\) for
which the asymptotic distribution is independent of A\. This extends to multiple breakpoints
and allows us to tabulate critical values across multiple dimensions of the breakpoint location.
The rationale behind this modified statistic isto exploit the additivity property of the Cramér-
von Mises distributions, see also Busetti and Harvey (2000).

3.1 A modified statistic

Herewerestrict our attention to the cases: = 1 and ¢ = 2 of the deterministic component
x4()\) in (9). Denote by e} () the residuals from the OLS regression of y, on xi()\), i = 1,2.
Note that the orthogonality conditionsfor the residuals allow usto write

2 (i ei@)) (i ei()\)) _

t=1 s=1 s—=1

-3 () (L) + 3 (3 @) (3 aw) . imre

=1 s=1 t=T14+1 \s=11+1 s=T1+1

because the sum of residuas in each of the two subsamples {1,..., 71} and {11 + 1,...,T} is
zero. Essentialy the ideaisto take the sum of the two statistics (5) applied to each subsample.
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In particular, we consider the statistic £4:(\) defined as
(12) B = [Qm) (@), =12

where

-T2y (z ezm) (z ezm) |

GO (1) S (z ezm) ( 5 ezm) |

and ﬁ(m) defined asin Section 2.

Proposition 3 Let y; be generated by the model (1)-(3) under assumptions 2-3 and with the
regressors defined by (9). Then under Hy : 3, = 0

(13) jvi(A)i/O Bi(r)Bi(r)dr, i=1,2,

where B'(r) and B?(r) are respectively a standard vector Brownian bridge and a second level

standard vector Brownian bridge of dimension 2N.

The proof is in Appendix D. The random variable to which ¢%()\) converge has a
Cramér-von Mises distribution with 2V degrees of freedom. As previoudly stated, percentage
points from this distribution are tabulated in Nyblom (1989), Canova and Hansen (1995) and
Nyblom and Harvey (2000). They can be used to construct an aternative test for Hy : 33, = 0
against H, : rank(33,) > 0 in amodel with breaking trends. Thistest coincides with the LBI
test (11) when A = 0.5, since £3:(0.5) = 0.25¢%,(0.5).2 For other values of \ the test is of
course consistent; furthermore the simulation results of Busetti and Harvey (2000), relating to
the univariate version of the test, show that it only suffersasmall lossin power compared with
the LBI test.

The attraction of the test (12) is that it can be easily generalized to the case of two or
more breaks in the deterministic trend. Let there be two structural breaks at time 7y = AT
and 75 = A\,7. Then we can base the test for nonstationarity on the statistic &5 (A, Ay) =

2 From the resuilts of appendix D it follows that for i = 1,2 the asymptotic distribution of £4;(\) may aso
be aso represented as the distribution of a weighted sum of two Cramer-von Mises random variables with NV
degrees of freedom, where the weightsare \* and (1 — \)2.
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tr [ﬁ(m)’l (C1 (A1, M) +c2(A1,A2)+c3(A1,A2))} . i = 1,2, which will be defined by
generalizing (12) in an obvious way. Its asymptotic distribution is Cramér-von Mises with
3N degrees of freedom.

Another case may be covered by the statistic &5 (A1, A2), namely when some of the N
series break at point A; and some at point A,. Constructing the statistic by forcing all the vV
seriesto have two breakpoints givesrise to avalid test, though not efficient. On the other hand,

for this situation the literature does not seem to provide alternative procedures.

4. Testing for the presence of common trends

Inthis Section we consider the model (1)-(3) under the null hypothesisHy : rank(%,) =
K, with0 < K < N, which corresponds to nonstationarity with K stochastic trends. The
aternative hypothesisisH, : rank(3,) > K.

The existence of K common trends implies the existence of # = N — K cointegration
relationships, i.e. thereisa Rx/N (full rank) matrix A such that Ay, isstationary. If we knew
A, we could test H, against H 4 by applying statistic (5) to Ay,. But since A is unknown, one
way of proceeding is to take the minimum of (5) over the set of the £x/N matrices A. The
minimum is given by the sum of the 2 smallest eigenvalues of £2(1m)'C; see Nyblom and
Harvey (2000).

The statistic we use is then

N
(14) Exn = Y &
j=K+1

where 4, > 0, > ... > fy > 0 arethe N ordered eigenvalues of £2(m) 'C. Note that Eon

corresponds to statistic (5).

Proposition 4 Let y, be generated by the model (1)-(3) under assumptions 1-3. Then under
Hy : rank(%,) = K

(15) Exn 1 (Chy — CHCIHICH,)
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where the stochastic matrices C;, i,j = 1,2, are defined as

(G :/01 </0TWX(s)ds> </0TWX(s)ds>/dr,
Ci, :/01 </0TWX(s)ds> B*(r)dr,

1
Csy @ = / B (r)B*(r)dr,
0

where W (r) is a K-dimensional vector process as defined in proposition 2.2 and BX (r) is

an R-dimensional vector process as defined in proposition 2. 1.

The proof isin Appendix E. Under H, : rank(%,) > K, the statistic £ ,; divergesto
infinity as it contains at least one eigenvalue that is O, (1 /m); see Appendix B.

When the regressors are defined by (9), the upper tail percentage points of the
distribution of £, » under Hy are provided in Tables 1, 2, 3 and 4 for a range of values of
the breakpoint parameter \. These are obtained simulating the stochastic processes involved
using a sample size of 1,000 and 100,000 replications.

These tables can then be used to construct an asymptotically valid test for Hy
rank(X%,) = K against Hy : rank(3,) > K in the breaking trends case. Note that this
isaso atest on the dimension of the cointegration space, i.e. atest of

Ho : there are R cointegration relationships

against
H 4 : there are fewer than R cointegration relationships.

This is to be contrasted with the Johansen type tests of Inoue (1999), where under the
alternative hypothesis there are more than R cointegration relationships (i.e. under the null
hypothesis the model is more nonstationary). In addition, Inoue's tests are not directly
comparable with ours since they are obtained by taking the supremum of Johansen’s statistics
with respect to the breakpoint location, i.e. they are unconditional to the existence of a break.
Another differenceisthat, unlike here, they requirefitting aset of statistical modelsto the data,
namely fitting a vector autoregression for each possible breakpoint location.
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Unfortunately, the test for K > 0 cannot be modified along the lines of the previous
Section to yield a statistic whose asymptotic distribution isfree of A. Note aso that this model
of breaking trends implies that in general the long run equilibrium relation has been subject to
ashift at time 7.

S. Seasonal effects and weakly dependent exogenous regressors

In this Section we will show that augmenting the model (1)-(3) by including
deterministic seasonality and/or weakly dependent exogenous regressors does not affect the
asymptotic distributions of the test statistics of the previous sections. For simplicity we only
consider the test for nonstationarity of Section 2.

We replace equation (1) by
(16) yi = 8%+ 2 + p, + &,
where z, are additional regressors and ~ the corresponding coefficients.

Assumption 4. Either [A] or [B] below holds.

[A] z, isazero mean second order stationary processsuch that: (A1) >°.°, ||E(z.z})|| <
/
o0, (A2) E(z€,) = 0, (A3) limT’lE(z:f:1 ztsit) (Z; ztsl-t) <oo,i=1,...,N.

[B] z: = (%1, ..., 2s-1,:) iSaset of s—1 deterministic seasonal dummy variables, defined

by

1 t=h+ns,
(17) Zre =14 0 t # h+ ns,
—1 t =mns,

forn = 0,1,2,... Furthermore the function x(r) of assumption 1 is of bounded variation, i.e.

there exists M < oo such that for every finite partition of theunitinterval 0 = rg < 7 < ... <
roo= 1,300 [x(rs) — x(ria)|| < M.

In assumption 4[A], z, is a weakly dependent process (in second order sense) since
4[A1] implies afinite spectrum at the origin. 4[A2] isan exogeneity condition. The zero mean

assumption is innocuous since an intercept is included among the other regressors x;.
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In assumption 4[B] the seasonal dummies sum to zero over s periods, so they represent
the relative seasonal deviation from the common mean. A reparametrization of the seasonal
effect could be used. The bounded variation condition is of course satisfied in the breaking
trends case.

Let the statistic £,, of Section 2, equation (5), be constructed using the residuals from
regressing y; on (x;, z,)’. Then the following proposition holds.

Proposition 5 Let y, be generated by the model (16),(2)-(3) under assumptions 1-4. Then,
under Hy : X, = 0, the asymplotic distribution of § y; is the one defined in proposition 2.1.

The proof isin Appendix F. Proposition 5 implies that we can use the tests of Sections
2 and 3 to test for nonstationarity in models containing a deterministic seasonal component
and/or weakly dependent regressors too. The same result carries over to the common trend
test of Section 4. The proof is not provided but follows similar lines.

When the seasonality is stochastic and possibly there are seasonal unit roots, the strategy
advocated by Harvey and Streibel (1997) can be applied. Their idea was to replace the
nonparametric treatment of the serial correlation in e, with afully parametric oneand it can be
extended to deal with stochastic seasonality. Note that this approach requires the extra effort of
fitting a statistical model to the data, but such effort is rewarded with higher power and better
Size of the test.

The Harvey-Streibel approach may be summarized as follows. First, fully parametrize
the model to account for serial correlation and possibly stochastic seasonality. Then estimate
It under the aternative hypothesis of nonstationarity, using the Kalman filter to construct the
likelihood function. Finally insert these estimates, re-run the Kalman filter under the null
hypothesis and construct the LBI statistic (4) using the Kalman filter innovations (whose
correlation structure has been consistently estimated). Harvey and Streibel (1997) show that
the distribution of this statistic is asymptotically equivalent to the distribution of (4). They also
compare their procedure with the KPSS correction and show, through simulation experiments,
that their procedure permits large gainsin the power of the test and amorereliable size.

The case of 1(1) regressorsz, isexamined in Choi and Ahn (1995). They consider testing
for stationarity of the errorsin multiple equations with integrated variables. In their framework

stationarity of the errors corresponds to cointegration between regressands and regressors.
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6. Examples

The use of the testsis illustrated with two examples, one using UK macroeconomic data
and the other using data on road casualties in Great Britain. The latter dataset was used by
Harvey and Durbin (1986) to study the effect of the introduction of the seat belt law and is
provided with the program STAMP 5.0 of Koopman et al. (1995).

Figures 1a, 1b and 1c plot the logarithms of UK gross domestic product, consumption
and investment for the period 1960-1990, together with a fitted broken trend. The data are
quarterly, seasonally adjusted and at constant 1990 prices. The source isthe Central Statistical
Office.

We have assumed that there was an exogenous structural break around 1979-1980, asthe
plot of the series, that of investment in particular, seem to reveal. The exogeneity of the break
may be due to the following two reasons: first, the oil shock of 1979-1980 may have caused a
drop in the series; second, in 1979 a right-wing government with Margaret Thatcher as Prime
Minister was elected and this may have determined the higher growth rates of investment
thereafter. Thus, we have chosen to fit a broken linear trend to the data, with a break in the

second quarter of 1980.3

We consider the case of a break in both level and slope and we apply the common trend
test of Section 4 to the trivariate series of (log) GDP, consumption and investment. The results
are displayed in Table 5 for various values of the lag length parameter . The breakpoint is at
the second quarter of 1980, corresponding to a value of 0.66 for A. Note that the statistic for
K = 0 isequivalent to the nonstationarity test statistic of Section 3, case 2. The critical values
for the case when there is no break are taken from Nyblom and Harvey (2000), those for the
case of structural break are taken from Table 2, N=3 and A=0.3.

Standard macroeconomic arguments would suggest the existence of one stochastic trend
among the variables, probably representing the effect of technological progress. However
Table 5 shows that the null hypothesis of one common trend (K = 1) is rejected at 5 per cent
significance level when the structural break of 1979-1980 is not considered. Indeed, even the
hypothesis of two trends seems to be rejected. On the contrary, fitting a broken deterministic

3 Of course there might have been other events that, on a priori grounds, could have determined a break in
the series. However, since the purpose of this section is only to illustrate the use of the tests, we do not delve
deeply into the issue of the exogeneity of the breakpoint.
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trend to the data results in non rejection of H, : K = 1 at 10 per cent level of significance.
The result is obtained for m > 4; note aso that the KPSS correction has little adverse effect

on the value of the statistic asm grows.

Now consider the series of the logarithm of front and rear passengers killed or seriously
injured (KSl) inroad accidents, as displayed in Figure 2. The data are monthly, not seasonally-
adjusted, and cover the period January 1969 to December 1984. These data were used by
Harvey and Durbin (1986) to assess the effect of the seat belt law, which made it compulsory
for front-seat passengers to wear seat belts after 31 January 1983. Clearly, there is an
exogenous structural break in the series of front-seat passengers but not in the series of rear
passengers. Asexplained in Section 3, itis possible to apply our tests by forcing both seriesto
break in February 1983.

Harvey and Durbin (1986) show that a reasonable univariate time series model for the
KSI series would be the simple random walk plus noise and a seasonal component, with
seasonality being fixed. Given the nature of the data, it would seem plausible that in a
multivariate model the random walk component has dimension 1.

Table 6 shows the results of applying the common trend test of Section 4 to the bivariate
series of front and rear-seat passengers. A slope component is not included. The breakpoint
parameter \ takes the value 0.88, corresponding to February 1983. The statistic is computed
including the set of 11 dummy variables as regressors to account for seasonality. As explained
in Section 5 the asymptotic distribution is not affected.

If we do not consider the break (first two rows of the Table), we end up rejecting the
null hypothesis of one common trend, K = 1, at 5 per cent level of significance even for
very large values of the lag truncation parameter m (m = 14 corresponds to the square root
of the sample size). On the other hand, forcing both series to break at 1983.2 results in not
rejecting the hypothesis of one common trend even for mm = 1. Note that since each series
can be modelled as a univariate random walk plus noise, considering small values of m seems
appropriate. Finally, the modified test of nonstationarity (fifth row of the Table) confirms the
finding that K > 0.
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7. Concluding remarks

This paper has considered tests for the presence of stochastic trends in multivariate time
series with structural breaks. The asymptotic distributions of the statistics have been derived
and the critical values have been tabulated. Testing for the existence of a certain number of
stochastic trends may also be interpreted as testing the dimension of the cointegration space.
Note that thisimplies a shift in the cointegration relation at the time of the break.

The basic nonstationarity test has also been modified to handle the case of multiple
breakpoints. Interestingly, the asymptotic distribution of this modified statistic is independent
of the breakpoint location parameters.

Throughout the paper, the breakpoint is assumed to be known. If this is not the
case, it seems preferable to establish whether or not a break exists for each series in turn.
For a univariate model Busetti and Harvey (2000) have proposed an inf-type statistic for
nonstationarity that covers the case of an unknown breakpoint. Alternatively, one could adopt
a two step strategy, where first the breakpoint is estimated and then this estimate is used to
compute our tests. However, since the properties of the tests will be affected in a complicated
way, this strategy isleft for future research.
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Table 5

COMMON TREND TEST FOR UK QUARTERLY SERIES OF Y,C,I (1960-1990)

m=1 m=2 m=3 m=4 m=5 m=8 m=11 10% 5%

K=0 2.043 1409 1.089 0.896 0.768 0.558 0.457 | 0.296 0.332
No break K=1 0.845 0.584 0.453 0.374 0.322 0.238 0.199| 0.151 0.180
K=2 0.180 0.129 0.102 0.087 0.077 0.062 0.057| 0.061 0.075

K=0 0.694 0.494 0.392 0.331 0.291 0.228 0.207 | 0.163 0.184
Break 1980.2 K=1 0.159 0.116 0.094 0.082 0.074 0.066 0.074| 0.088 0.102
(lambda = 0.66) K=2 0.038 0.030 0.026 0.024 0.023 0.025 0.032| 0.038 0.046

Table 6

COMMON TREND TEST AND MODIFIED TEST FOR KSI FRONT AND REAR
PASSENGERS (1969-1984)

m=0 m=1 m=2 m=3 m=4 m=5 m=14| 10% 5%

No break K=0 13.002 7.210 5.081 3.955 3.265 2.785 1.535| 0.596 0.746

K=1 1.121 0.855 0.694 0585 0.513 0.454 0.274| 0.156 0.212
Break 1983.2 K=0 7.992 4.640 3.339 2.640 2.197 1.889 0.881| 0.494 0.608
(lambda = 0.88) K=1 0.184 0.171 0.161 0.151 0.146 0.139 0.107| 0.134 0.181

Modified Test 10.667 6.255 4.537 3.608 3.023 2.612 1.257 | 0.607 0.748




Figure 1
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Figure 2

FRONT AND REAR PASSENGERS KILLED OR SERIOUSLY
INJURED IN ROAD ACCIDENTS, 1969-1983
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APPENDIX

A. Proof of proposition 1

Under Hy and assumptions 1-3, ﬁ(m) 2 . By assumption 2, the long-run variance of
thedisturbances €2 isfiniteand of full rank. Hence there existsanonsingular matrix P such that
POQP' =Iand PX, P’ = diag(qi, ¢o, ..., qv ), Where the ¢g;'sarethe N roots of |X,, — ¢€2| = 0;
see Rao (1973, p.41).

Sincethetest statistic &, isinvariant to premultiplying the observationsy, by an arbitrary
nonsingular NXN matrix P, without loss of generality we can restrict ourselves to the case of
Q=TandX, = diag(q1,9s, -, qn)-

Then&, = tr ((I—I—op(l)f1 C).

(1]

T3 D e =W(r) - </01 X(T)dW(T)/>

t=1

/

-1
Sincee; = e, — 5., , &, (ZL xtx;) x;, it follows that under assumptions 1-2
-1 .,
/ x(s)ds, r€][0,1],
0

< /0 1 X(T)X(T)’d?")
(A1)

where W(r) is a standard vector Wiener process of dimension /N. We denote the process on
the right-hand side of (A.1) as B*(r), and we call it a generalized Brownian bridge. Thus, by
the continuous mapping theorem and using the definition of C, & % fol BX(r)B*(r)dr.

B. Proof of proposition 2

Let assumptions 1-3 hold. Without loss of generality we again restrict ourselves to the
cae of 2 =1and X, = diag(q,...,qn). The hypothesis H4 : rank(3,) = K can be
equivalently formulatedasH, : ¢; > 0forj=1,...,Kandg, =0forj = K +1,...,N.

Consider the OLSresiduals for the j-equation under H 4,
,1 T

T
eje = (e + £jt) — % (Z th;) S xilpten), =1, K,
t=1 t=1

and

T
/ / .
€it = Ejt — Xy (E tht> E X(Ejt 5 j=K+1, .. N,
t=1 t=1
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sincep;, =0forj=K+1,.,N,t=1,..T.

Then, the following weak convergence results hold:

T = W), j=1,..,K, (B.1)
[Tr] r

Y e =g [ Wi s =LK (8.2
t—1 0
[Tr]

Y e BG) jeKslN @3

t=1

where the processes W, (r) and B;*(r), r € [0,1], are the one-dimensional version of the
processes defined in the statement of propositions 1 and 2, and are uncorrelated across j (and
with each other). The results (B.1)-(B.3) are obtained applying the invariance principle to the
partial sums of e, and 1, and using assumption 1 of non-stochastic regressors.

Denote the (5, h)-elements of the matrices C, Q(m) by ¢in, Win. Then we have the
following further asymptotic results:

T 2ci % (gia0)"? [ (f7 Wi (s)ds [T WX (s)ds)dr, j,h <K, (B.4)
T e S q)? /1 </ WjX(s)ds> B (r)dr, i< K, h>K, (B.5)

0 0
cin = Jo B (r)By (r)dr, jh> K, (B.6)
(mT) @y % (gyan)"? [y WX (r)WX (r)dr, j.h <K, (B.7)
Win = Op(m), j< K, h>K, (B.8)
Ojn = 1(j = h), ih> K. (B.9)

(B.4)-(B.6) result directly from the application of the continuous mapping theorem;
(B.7) corresponds to equation (23) of Kwiatowski et al. (1992); (B.9) holds because of the
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consistency of the long run variance estimator and (B.8) because 7! ZtT:T 11 64C T h =

O,(1) uniformly in7 = —m, —m + 1, ..., m.

Our test statistic is defined as the trace of £2(m)*C, i.e. the sum of its eigenvalues. Let
0y >0y > ... > ¢y > 0bethe N ordered eigenvalues of ﬁ(m)*lC. Using the results (B.4)-
(B.9) we will show that, under H, : rank(3,) = K, K eigenvaluesare O,(1'/m) and N — K
eigenvalues are O,(1). Thus asymptotically the distribution of the statistic coincides with the
distribution of the sum of those K asymptotically bigger eigenvalues, see also Nyblom and
Harvey (2000).

Partition (1) and C as

o~

ﬁll 5/_\212 Cll Cl?
= X Py and C =
(m> l 912/ 922 1 l 012/ 022 1 ’

where 2, and Cy; are KxK. The eigenvalues of ﬁ(m)*lC solve the determinantal equation

0 = ‘C—Ejﬁ(m)‘

- \cn — 0,00

~ ~ ! ~ -1 ~
% |Co = £ — (Cio = :015) (Ciy = 6:21)  (Cio — 6:00)

I

see Rao (1973, p.32). Then using (B.4)-(B.9) we see that the roots of the first determinant
are O,(1T'/m), whereas the roots of the second determinant are O,(1) and asymptotically
equivalent to the eigenvalues of (Cy, — C},C,Cy,); see Nyblom and Harvey (2000) for
further details.

Therefore (m/T) €y % tr (1 'C},) , where
1 T T !
Ci, :/ </ WX(s)ds> </ WX(s)ds> dr,
o \Jo 0
1
Qi :/ WX (rYWX (r) dr,
0

with WX (r) being the K-dimensional vector process defined in the statement of the
proposition.
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C. The form of the generalized Brownian bridge for the statistic (11).

W(r) — sW(A) for0<r <A\
B'(r.\) =
" { (W) — W) — =2 (W(1) - W(N) fora<r<l
([ W(r) — $W(})
(= X) [fo AW ()~ 3W)| foro < <A
B ) = 9 (W) - W) — 22 (W(1) - W(a) -
—(lf/\)g (r—1)(r—A)-
\'Lﬁm“mﬁ_%wwﬂ%Wmﬂﬂ forx<r<1

[l W) - 3WO) - W) - Wiy foro <<

B**(r, \) =
(W(r) - XVWE - ﬁ (W(1) = W)
L ) [}013;\"2%(7") - %W()‘) - %(W(l) - W()\))} fora<r<1
( W(T> - TW(l) )\3(1?),)\)3
{(a5 —an+5 (@0 —p1=2?)) 3,
(05 — b+ (BN — (1 - N)?) ) T,
foro<r <A\
B”(r,\) =
W(r)—rW(l) — ﬁ
{(co% #0228 — e =) +5 (¥ - - ) 3
(b et e = N+ (0N = (1 - )\)2)) 3}
L fora<r<1
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where W(r), r € [0, 1], isan N-dimensional standard Wiener process and

a=(1-X\>3(1+3\),
b= —3\(1-1\)?,
c= N4 —3)),

Iy = [JrdW(r) — AW () + 2

o

D. Proof of proposition 3

Letz, = 1 forthecasei = 1 andlet z, = (1,¢)’ for the case i = 2; drop the superscript
i for smplicity. The model can be parametrized equivalently using x;(\) = (x¢(\)', x2:(A)")’
as regressors, where x,(A\) = z, - 1 (¢t < AT) and xo, = 2, - 1 (¢t > AT"). Then the model
Is orthogonal and in order to obtain the OLS residuals we can consider the two subsamples
{1,... 71} {11 + 1,..., T} separately and in each of them regressy, onz;.

Again, without loss of generality and under assumption 2, we can restrict ourselves
tothecase of @ =1 and X, = diag(q1, ¢, -..,qn). Then, under assumptions 2-3, we can
write €5 (\) = tr [(T+ op(1)) ! (C'(A) + C%()))] . Under Ho, the invariance principle can
be applied in each subsample, yielding

[Thr]

7,23 e(N) = Bi(r),

t=1

and
(T—T1)r]

(T - Tl)il/Q Z S ()\> = BZQ(T>7 j = 17 27 "'7N7

t=1
where B (r) and B (r) are N-dimensiona independent standard vector Brownian bridges for
i = 1 and second-level Brownian bridges for i« = 2. Independence holds because the two
Brownian bridges are the limit of partial sum processes contai ning non-overlapping subsets of
disturbances.

By the continuous mapping theorem it then follows that ¢4 (\) converges to the sum of
two independent random variables, each with a Cramér-von Mises distribution with N degrees
of freedom. The limiting distribution is then Cramér-von Mises with 2V degrees of freedom,
see Nyblom (1989) and Busetti and Harvey (2000) for details on the additivity property of

Cramér-von Mises random variables.
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E. Proof of proposition 4

From appendix B we know that under assumptions 1-3 and under rank(3,) = K,
the R smallest eigenvalues of Q1C ae asymptotically equivalent to the eigenvalues of
Cyy — C19'Cy11Cy,. Therefore, using the results (B.4)-(B.6),

T7%Cy % QCQ?,
T'Cys 4, Q%Ch

d s
Car — Gy,

where C7;,

1 1
i = 1,2, are defined in the statement of proposition 4 and Q: = diag (qf s q,j).

Thus, by the continuous mapping theorem,
d * * *— *
SK,N — tr <022 — CL,CHL 1Cl2> .

F. Proof of proposition 5

Without loss of generaity we assume d1 = 1 inassumption 1 and 2 = I in assumption
2. The standardized partial sums of OL S residuals can be written as

[Tr] [Tr] [Tr] [Tr]

T3 Zet =73 Z & — T3 (B_/B)/Tfl th ~ T3 (3’_7)/7%1 ZZu re[0,1],
t=1 t=1

t=1 t=1

where
< B-8 > — < Yo XXy D Xz, > 1 < > Xk} >
¥ Zthl ZiX, 23:1 747, 23:1 z&, )
If we show that
T
Ty xz, 50 (F1)
t=1
and
. (]
T2(F—y)T ">z, 5 0 uniformly inr € [0,1], (F2)

t=1
then 72 Y™ e, = BX(r), the generalized Brownian bridge defined in proposition 2, and

thus proposition 5 follows by applying the continuous mapping theorem.
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Consider assumption 4[A] first. Condition (F.1) above holds because for each z;; el ement

of z, and each x;; element of x, we have

2

T
71 s
Zztajgt

t=1

T T
E SH%gX |20 ss| T2 Z Z |E (zitzis)| — 0O

t=1 s=1

by assumption 4[A1] and by recalling that without loss of generality x;; is assumed bounded
throughout this proof. Then from assumption 4[A] it follows that 7! Zle 7z, = O,(1),
T2 3 ze, = 0,(1) and T~ 317 7,—0,(1) uniformly in r € [0, 1] ; thus condition (F.2)

holds too.

Now consider assumption 4[B]. To check condition (F.1) first note that Zle e =
1(Il'#ns,n=1,2,...), foreech h = 1,...;s — 1. Then, using the summation by parts

argument,

-1 ¢
T Z (Xe41 — X¢) Z Zh;
t—1 j—1
Tf
T ke — x| + T x|

T
1
+ (| T XTE Zht
—1

T
-1
T E Xt<ht
t=1

IA

t=1
— 0 asT —

by the assumption of bounded variation. Condition (F.2) holdssince 7' 3! | zz, — s ',
where[2],, = 1+ 1(h =1),and clearly T %37 z} = 0,(1).
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