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A common empirical issue is that of trying to establish whether a time series is

trend stationary or integrated of order one. This is routinely done in the Dickey-Fuller

(or autoregressive) framework, where under the null hypothesis the series is integrated and

under the alternative hypothesis it is stationary. Perron (1989) shows that in the presence

of structural breaks the Dickey-Fuller test is biased towards not rejecting the null hypothesis

and he therefore provides appropriate critical values for this situation� additional results are

obtained by Banerjee et al. (1992), Perron and Vogelsang (1992a,b) and Zivot and Andrews

(1992).

An alternative way of testing trend stationarity is the KPSS test of Kwiatowski et al.

(1992), which reverses the role of the null and alternative hypotheses of the Dickey-Fuller

procedure. It extends the locally best invariant test for the presence of a random walk

component proposed by Nyblom and Makelainen (1983) and Nyblom (1986). Paralleling

Perron’s argument, Busetti and Harvey (2000) modi¿ed the KPSS test to cover the case of

series with structural breaks, since the KPSS test is also consistent against the trend-break

hypothesis� see also Lee et al. (1997).

The multivariate generalizations of the Dickey-Fuller and the KPSS tests are, in some

sense, the tests proposed by Johansen (1988, 1991) and by Nyblom and Harvey (2000)

respectively. While structural breaks in Johansen’s procedure have been considered by Inoue

(1999), this paper deals with breaks in the Nyblom-Harvey framework. The existence and

location of the breakpoints are assumed to be known.

The framework is an unobserved component model. The presence of a random walk

component (stochastic trend) in an otherwise covariance stationary time series makes it

integrated of order one. In the multivariate case the vector time series will be cointegrated

if the covariance matrix of the disturbance term driving the multivariate random walk is not of

full rank.

The simplest case is the univariate random walk plus noise model. Under Gaussianity,

Nyblom and Makelainen (1983) obtain the locally best invariant (LBI) test for the null

 1  I would like to thank Andrew Harvey, Javier Hualde, Liudas Giraitis, Beppe Parigi and the participants
in the LSE Econometrics Workshop for useful comments. Of course I bear sole responsibility for any errors.
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hypothesis that the series is white noise against the alternative hypothesis that a random

walk component is present. The test will be hereafter denoted as NM test. The asymptotic

distribution of the NM statistic under the null hypothesis is the well known Cramér-von Mises

distribution, as in Anderson and Darling (1952). Nyblom (1986) then augments the model by

including a deterministic linear trend� in this case the statistic converges to what is sometimes

called second level Cramér-von Mises distribution.

When the random walk is embedded within a general stationary process, the NM

statistic can be corrected nonparametrically to produce a test statistic with the same asymptotic

distribution. This is done in Kwiatowski et al. (1992) and it is usually denoted as KPSS test.

The same correction applies for a model with a deterministic linear trend.

The NM/KPSS test is extended to the multivariate case in Nyblom (1989) and Nyblom

and Harvey (2000), where the LBI test for the presence of a multivariate random walk

component is derived under the assumptions of Gaussianity and white noise innovations. A

test for common trends is also proposed by Nyblom and Harvey (2000). Their null hypothesis

is a speci¿ed value for the rank of the covariance matrix of the disturbances driving the random

walk component. Under the alternative hypothesis the rank is bigger. Since the existence of

common trends implies cointegration, this also tests the dimension of the cointegration space.

As already mentioned, the NM/KPSS test contrasts with the tests in the unit root

literature (Dickey-Fuller test and modi¿cations) because it reverses the roles of the null and

the alternative hypotheses. Similarly, the common trend test of Nyblom and Harvey (2000)

contrasts with the tests of Johansen (1988,1991).

The objective of this paper is to extend the multivariate NM/KPSS test and the common

trend test of Nyblom and Harvey (2000) to cover, in particular, the case of series with

one or more structural breaks (which we will often refer to as the ”breaking trends” case).

The issue is important because these tests are also consistent against shifts in the series, as

indirectly showed in an early work of Gardner (1969) and later in Nyblom (1989) and Lee

et al. (1997). Thus the failure to take into account a structural break is likely to produce

evidence of nonstationarity (or unit root) for series that are actually stationary. This problem

was highlighted by Perron (1989) in the context of the unit root literature. In our setting,

Busetti and Harvey (2000) analyze the case of a scalar time series. Here we also generalize
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some results of that study. The location of the breakpoints is assumed to be known, e.g. they

may correspond to exogenous events that affect the behavior of the series.

The paper is organized as follows. Section 2 reviews the multivariate LBI statistic and

derives its asymptotic distribution, under both the null and the alternative hypotheses, for

a general speci¿cation of the deterministic component, which includes breaking trends as a

particular case. The breaking trends case is analyzed in Section 3, where upper tail percentage

points from the distribution under the null hypothesis are tabulated across a range of the

breakpoint location parameter. A modi¿ed test statistic is then introduced, whose asymptotic

distribution belongs to the Cramér-von Mises family and is independent of the breakpoint

parameter. The advantage of this modi¿cation is that it allows the construction of a test in the

case of multiple breakpoints. Section 4 considers tests for the presence of a certain number

of common trends and provides the critical values for the breaking trends case. This also

corresponds to testing the dimension of the cointegration space. Section 5 shows that adding a

deterministic seasonal component and/or weakly dependent exogenous regressors to the model

does not affect the asymptotic distribution of the tests considered in the previous Sections.

Finally, Section 6 presents some applications and Section 7 concludes.

Note that throughout the paper we will often refer to the (multivariate) KPSS test as a

test for nonstationarity, although Lee and Schmidt (1996) showed that it can also be used to

detect long memory in a stationary time series.

We use standard notation:
R

$ and _
$ indicate convergence in probability and

convergence in distribution, respectively� , stands for weak convergence to a stochastic

process� n�n is the euclidean norm and �E�� is the indicator variable

.

�� 7KH PXOWLYDULDWH /%, WHVW IRU QRQVWDWLRQDULW\

Let )| be a vector of � time series. Assume )| is generated by the model

)| ' �� |n�| n %|c(1)

�
|

' �
|3� n �

|
c(2)
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�
|
� ����_�EfcP

#
�c(3)

where  | is a R-dimensional vector of ?J?�r|JS�@r|�S regressors (including a constant term),

� is a Rx� matrix of parameters, �| is a multivariate random walk (stochastic trend) with

�f ' f, and for the time being %| is a white noise disturbance term, independent of �r for all |

and r. When  | ' � for every |, Harvey (1989) refers to (1)-(3) as the multivariate local level

model. The notation ����_� stands for independent and identically distributed.

Under the further assumption of Gaussianity, Nyblom and Harvey (2000) show that

the Locally Best Invariant (LBI) test for Hf G P# ' f against H� G P# ' ^P0c where

P0 G' T @oE%|� and ^ : fc has a rejection region of the form

|o
�
5
3�
�
�
: Sc(4)

where � 'A32
S

A

|'�

�S
|

r'�
i|

� �S
|

r'�
i|

�
�

c 5 'A3�
S

A

|'�
i|i

�

|
c i|’s are the OLS residuals

from regressing )| on  | and S is an appropriate critical value. The test is invariant with

respect to the af¿ne linear transformation )| :�$ �)
|
n� |c where � is a nonsingular �x�

matrix and $ is an arbitrary �xR matrix.

Under the null hypothesis the model does not contain a stochastic trend component.

Under the alternative hypothesis P# is proportional to P0, i.e. the model is ”homogeneous”

in the sense of Harvey (1989, chapter 8). Thus, the test maximizes the local power against

homogeneous alternatives. However the test is also consistent against the more general

alternative hypothesis H� G o@?&EP#� : f�

Nyblom and Harvey (2000) then concentrate on the cases  | ' � and  | ' E�c |��c i.e.

on the null hypothesis of stationarity around a constant level and a linear trend respectively.

In this paper, we consider a more general form for the regressors  |c that covers the case of

breaking trends.

The case of serial dependence in the disturbance term %| can be treated by correcting

the statistic (4) nonparametrically by replacing 5 with a consistent estimator of the long run

variance of %|. This correction is often termed KPSS correction, after Kwiatowski et al. (1992).
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The proposed estimator has the form

elE6� '

6[
�'36

�E�c6�eKE� �c
where �E� c6� is a weighting function and

eKE�� ' A3�

A[
|'�n�

i|i
�

|3�

is the sample autocovariance at lag � � In this paper we use �E� c6� ' ��m� m*E6n��c i.e. the

simple Bartlett kernel( other possibilities are examined in Andrews (1991).

The corrected statistic is then

1
�

' |o
�elE6�3��

�
�(5)

The next proposition gives the asymptotic distribution of 1
�

under the null hypothesis

and for an assumption on the regressors  | which includes breaking trends as a particular case.

In the next Section we will analyze the breaking trends case in detail, providing upper tail

percentage points from that distribution.

$VVXPSWLRQ �� The regressors [| are non-stochastic and there existd a scaling matrix �A

and a bounded piecewise continuous function  Eo� such that (i) �A dAoo $  Eo� as A $ 4

uniformly in o 5 dfc �o c and (ii)
U �

f
 Eo� Eo��_o is positive de¿nite�

$VVXPSWLRQ �� The vector process {%|j satis¿es the following assumptions: (i)

EE0�|� ' fc � ' �c ���c �c | ' �c ���c A ( (ii) t�T
|
Em0�|m

2q
	 4c � ' �c ���c �c q : 2(

(iii) i%|j is strong mixing with mixing coef¿cients k� that satisfy
S

"

�'�
k
�32*q

�
	 4((iv)

l ' *�4A3�E
�S

A

|'�
%|
S

A

|'�
%�
|

�
exists and is positive de¿nite.

$VVXPSWLRQ �� 6$4 as A $4 such that 6 ' J
�
A �*e

�
�

Proposition 1 /HW \| EH JHQHUDWHG E\ WKH PRGHO ������� XQGHU DVVXPSWLRQV ���� 7KHQ XQGHU

+f G P# ' f

1
�

_
$

] �

f

�
fEo���fEo�_oc(6)
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ZKHUH �fEo� ' `Eo� �
�U �

f
 Eo�_`Eo��

�
�
�U �

f
 Eo� Eo��_o

�
3� U

o

f
 Er�_rc o 5 dfc �o c ZLWK

`E�� EHLQJ D VWDQGDUG YHFWRU :LHQHU SURFHVV RI GLPHQVLRQ � �

The proof is provided in Appendix A. It is a straightforward extension of the one in

Nyblom and Harvey (2000), where only the cases [| ' � and [| ' E�c |�� are considered. In

those cases �fEo� reduces respectively to a standard Brownian bridge, denoted as ��Eo�c and

to a second level Brownian bridge, denoted as �2Eo�c where

�
�Eo� ' `Eo� � o`E��c(7)

�
2Eo� ' `Eo� � o`E�� n So E�� o�

�
�
2
`E���

] �

f

`Er�_r

�
�(8)

More generally, when [| contains all the ¿rst � powers of |, i.e. from |f to |�3�c �fEo�

is a (multivariate) �|�-level Brownian bridge as in McNeill (1978) and the distribution ofU �

f
�

fEo���fEo�_o is called �|�-level Cramér-von Mises distribution with � degrees of

freedom. For � ' � percentage points are tabulated in Anderson and Darling (1952),

MacNeill (1978), Nyblom and Mäkeläinen (1983), Nyblom (1986), Nabeya and Tanaka

(1988), Kwiatkowski HW DO� (1992)� when � : � percentage points are tabulated in Nyblom

(1989), Canova and Hansen (1995) and Nyblom and Harvey (2000).

In our case the process �fEo� is more general as since it includes, for example, the case

of breaking trends. We will call this process a generalized Brownian bridge.

Assumption 1 follows Phillips and Xiao (1998). Note that it excludes the dummy

variables used to model seasonal effects� however in Section 5 we will show that adding

these dummies does not affect the limiting distribution. Assumption 2 permits a fairly general

correlation structure for the disturbances %|, which can also be heteroschedastic. Assumption

2 is suf¿cient for applying the invariance principle and, together with assumption 3, for the

consistency of elE6�( see Phillips (1987). Note that imposing stronger conditions on %| would

allow faster rates for 6� For example, in the classical spectral theory of stationary process only

6 ' JEA � is required. In practice the rate 6 ' JEA �*2� can be satisfactory under both the null

and the alternative hypothesis� see Kwiatowski et al. (1992).
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The percentage points from the distribution of (6) can be used to construct an

asymptotically valid test for the null hypothesis of Hf G P# ' f against H� G o@?&EP#� : f�

If %| is a white noise process, then the test is asymptotically equivalent to the LBI test (4).

Under the alternative hypothesis H� G o@?&EP#� ' g : f the statistic diverges, so the

test is consistent. The asymptotic distribution of E6*A � 1
�

under H� is established by the

following proposition.

Proposition 2 /HW \| EH JHQHUDWHG E\ WKH PRGHO ������� XQGHU DVVXPSWLRQV ���� 7KHQ XQGHU

+� G o@?&EP#� ' g : f

E6*A � 1
�

_
$ |o

+�] �

f

`
fEr�`fEr��_r

�3� ] �

f

�]
o

f

`
fEr�_r

��]
o

f

`
fEr�_r

�
�

_o

,
c

ZKHUH`fEo� ' `Eo��
U �

f
`Eo� Eo��_o

�U �

f
 Eo� Eo��_o

�
3�

 Eo�c o 5 dfc �o c DQG`E�� LV

D VWDQGDUG YHFWRU :LHQHU SURFHVV RI GLPHQVLRQg�

The proof is provided in Appendix B. The process `fE�� is the projection in u2 dfc �o

of a Wiener process onto the space orthogonal to the span of  E��� For  | ' � it becomes the

demeaned Wiener process `Eo� �
U �

f
`Eo�_oc and for  | ' E�c |�� it becomes the detrended

Wiener process `Eo� n ESo � e�
U �

f
`Eo�_o � E�2o � S�

U �

f
o`Eo�_o�

�� 7HVWLQJ IRU QRQVWDWLRQDULW\ LQ WKH SUHVHQFH RI VWUXFWXUDO EUHDNV

The multivariate NM/KPSS test proposed by Nyblom and Harvey (2000), based on the

statistic (4)/(5) with  | ' � or  | ' E�c |��c is also consistent against the alternative hypothesis

of a one-time shift in the deterministic trend. This is indirectly shown in Gardner (1969)

who derives the NM statistic in a Bayesian framework to detect a break in an otherwise

i.i.d. series. Later Nyblom (1989) derives (4) as an LM statistic to test for a general form of

parameter constancy in the mean of the series, namely for cases in which, under the alternative

hypothesis, the mean is a martingale (which includes both the cases of random walk and single

shift at a randomly chosen point). Lee et al. (1997) then show directly that the KPSS statistic

diverges when there is a structural break in a (trend stationary) process.
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Therefore it seems important to study the case of breaking trends when testing for the

presence of a random walk component. For a univariate series such study has been conducted

in Busetti and Harvey (2000).

Suppose that there is a shift in the deterministic trend of the series at time A� ' bAc

b 5 Efc ��� We assume that the breakpoint b is exogenous and known. In other words, the

existence and location of a structural break is not of concern. Instead, we focus on series that

are subject to a break in the trend due to some exogenous event, such as a change in economic

policy.

We consider the model (1)-(3) under four different speci¿cations of the deterministic

trend. Let

 
�

|
Eb� '

;AA?AA=
E�c�|Eb��

�

� ' �c

E�c |c �|Eb�c |�|Eb��
�

� ' 2c

E�c |c �|Eb��
�

� ' 2@c

E�c |c E|� bA ��|Eb��
�

� ' 2Kc

(9)

where �|Eb� ' � E| : bA � � Case 1 corresponds to a level break with no slope and case 2 to a

structural break in both the level and the slope� in cases 2a and 2b the break occurs only in the

level and only in the slope, respectively.

Since  �
dA oo

Eb�$  
�Eo(b�c de¿ned by

 
�Eo(b� '

;AA?AA=
E�c �Eo(b��

�

� ' �c

E�c oc �Eo(b�c �Eo(b��
�

� ' 2c

E�c oc �Eo(b��
�

� ' 2@c

E�c oc Eo � b��Eo(b��
�

� ' 2Kc

(10)

with �Eo(b� ' �Eo : b�c assumption 1 holds. Therefore we can apply proposition 1. Call

1�
�
Eb� the statistic (5) constructed using [�

|
Eb� as regressors, � ' �c 2c 2@c 2K� Then under Hf

1�
�
Eb�

_
$

] �

f

�
�Eo(b����Eo(b�_oc(11)

where the generalized Brownian bridge ��Eo(b� is de¿ned in Appendix C.

The form of the processes ��Eo(b�c � ' �c 2c2@c 2Kc has been derived in Busetti and

Harvey (2000) who consider the same problem for a univariate time series. For example

�
�Eo(b� can be interpreted as two adjacent independent Brownian bridges over the intervals

dfc bo and dbc �o respectively.
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The upper tail percentage points for the distribution of (11) when b ' f�ff2c 0.1, 0.2,

0.3, 0.4, 0.5 are reported in the ¿rst column (labelled g ' f� of Tables 1, 2, 3 and 4. The

values for b : f�D are not reported since the distribution is symmetric around b ' f�D� These

percentiles are obtained by simulating the processes ��Eo(b�c � ' �c 2c 2@c 2K using a sample

size of 1,000 and 100,000 replications. We use the random number generator of the matrix

programming language Ox� see Doornik (1998). Note that the values for b ' f�ff2 closely

agree with the values reported in Nyblom and Harvey (2000), which refer to the case b ' f

and were obtained using the series expansion of the distribution.

The statistic 1�
�
Eb� can then be used to construct an asymptotically valid test for

nonstationarity in a model with breaking trends, using the ¿rst column of Tables 1, 2, 3 and 4

to select the appropriate critical values.

The test based on 1�
�
Eb� has desirable properties, including being asymptotically

equivalent to the LBI test for a Gaussian model with serially independent disturbances.

However the critical values depend on the breakpoint parameter b�

In the following subSection we propose a modi¿ed version of the statistic 1�
�
Eb� for

which the asymptotic distribution is independent of b� This extends to multiple breakpoints

and allows us to tabulate critical values across multiple dimensions of the breakpoint location.

The rationale behind this modi¿ed statistic is to exploit the additivity property of the Cramér-

von Mises distributions� see also Busetti and Harvey (2000).

3.1 $ PRGL¿HG VWDWLVWLF

Here we restrict our attention to the cases � ' � and � ' 2 of the deterministic component

 
�

|
Eb� in (9)� Denote by i�

|
Eb� the residuals from the OLS regression of \| on [�

|
Eb�c � ' �c 2�

Note that the orthogonality conditions for the residuals allow us to write

A[
|'�

#
|[

r'�

i
�

r
Eb�

$#
|[

r'�

i
�

r
Eb�

$
�

'

'

A�[
|'�

#
|[

r'�

i
�

r
Eb�

$#
|[

r'�

i
�

r
Eb�

$
�

n

A[
|'A�n�

#
|[

r'A�n�

i
�

r
Eb�

$#
|[

r'A�n�

i
�

r
Eb�

$
�

c � ' �c2c

because the sum of residuals in each of the two subsamples {1,...,A�j and {A� n �c ���c Aj is

zero. Essentially the idea is to take the sum of the two statistics (5) applied to each subsample.
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In particular, we consider the statistic 1W�
�
Eb� de¿ned as

1W�
�
Eb� ' |o

kelE6�3�
�
�

�Eb� n�
2Eb�

�l
c � ' �c 2c(12)

where

�
�Eb� ' A�

32

A�[
|'�

#
|[

r'�

i
�

r
Eb�

$#
|[

r'�

i
�

r
Eb�

$
�

c

�
2Eb� ' EA � A��

32

A[
|'A�n�

#
|[

r'A�n�

i
�

r
Eb�

$#
|[

r'A�n�

i
�

r
Eb�

$
�

c

and elE6� de¿ned as in Section 2.

Proposition 3 /HW \| EH JHQHUDWHG E\ WKH PRGHO ������� XQGHU DVVXPSWLRQV ��� DQG ZLWK WKH

UHJUHVVRUV GH¿QHG E\ ���� 7KHQ XQGHU +f G P# ' f

1W�
�
Eb�

_
$

] �

f

�
�Eo����Eo�_oc � ' �c 2c(13)

ZKHUH��Eo� DQG�2Eo� DUH UHVSHFWLYHO\ D VWDQGDUG YHFWRU %URZQLDQ EULGJH DQG D VHFRQG OHYHO

VWDQGDUG YHFWRU %URZQLDQ EULGJH RI GLPHQVLRQ 2� �

The proof is in Appendix D. The random variable to which 1W�
�
Eb� converge has a

Cramér-von Mises distribution with 2� degrees of freedom. As previously stated, percentage

points from this distribution are tabulated in Nyblom (1989), Canova and Hansen (1995) and

Nyblom and Harvey (2000). They can be used to construct an alternative test for Hf G P# ' f

against H� G o@?&EP#� : f in a model with breaking trends. This test coincides with the LBI

test (11) when b ' f�Dc since 1W�
�
Ef�D� ' f�2D1�

�
Ef�D�.2 For other values of b the test is of

course consistent� furthermore the simulation results of Busetti and Harvey (2000), relating to

the univariate version of the test, show that it only suffers a small loss in power compared with

the LBI test.

The attraction of the test (12) is that it can be easily generalized to the case of two or

more breaks in the deterministic trend. Let there be two structural breaks at time A� ' b�A

and A2 ' b2A� Then we can base the test for nonstationarity on the statistic 1W�
�
Eb�c b2� '

5 From the results of appendix D it follows that for l @ 4> 5 the asymptotic distribution of �lQ +�, may also
be also represented as the distribution of a weighted sum of two Cramer-von Mises random variables with Q

degrees of freedom, where the weights are �
5 and +4� �,5=
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|o
kelE6�3�

�
�

�Eb�c b2� n�
2Eb�c b2�n�

�Eb�c b2�
�l
c � ' �c 2c which will be de¿ned by

generalizing (12) in an obvious way. Its asymptotic distribution is Cramér-von Mises with

�� degrees of freedom.

Another case may be covered by the statistic 1W�
�
Eb�c b2�c namely when some of the �

series break at point b� and some at point b2� Constructing the statistic by forcing all the �

series to have two breakpoints gives rise to a valid test, though not ef¿cient. On the other hand,

for this situation the literature does not seem to provide alternative procedures.

�� 7HVWLQJ IRU WKH SUHVHQFH RI FRPPRQ WUHQGV

In this Section we consider the model (1)-(3) under the null hypothesis Hf G o@?&EP#� '

gc with f � g 	 �c which corresponds to nonstationarity with g stochastic trends. The

alternative hypothesis is H� G o@?&EP#� : g�

The existence of g common trends implies the existence of - ' � �g cointegration

relationships, i.e. there is a -x� (full rank) matrix $ such that �)
|

is stationary. If we knew

$, we could test Hf against H� by applying statistic (5) to �)
|
� But since $ is unknown, one

way of proceeding is to take the minimum of (5) over the set of the -x� matrices $. The

minimum is given by the sum of the - smallest eigenvalues of elE6�3��( see Nyblom and

Harvey (2000).

The statistic we use is then

1
gc�

'

�[
�'gn�

��c(14)

where �� � �2 � ��� � �� � f are the � ordered eigenvalues of elE6�3��� Note that 1fc�

corresponds to statistic (5).

Proposition 4 /HW \| EH JHQHUDWHG E\ WKH PRGHO ������� XQGHU DVVXPSWLRQV ���� 7KHQ XQGHU

+f G o@?&EP#� ' g

1
gc�

_
$ |o

�
�
W

22 ��
W�

�2�
W3�
�� �

W

�2

�
c(15)
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ZKHUH WKH VWRFKDVWLF PDWULFHV �W

��
c �c � ' �c 2c DUH GH¿QHG DV

�
W

�� G '

] �

f

�]
o

f

`
fEr�_r

��]
o

f

`
fEr�_r

�
�

_oc

�
W

�2 G '

] �

f

�]
o

f

`
fEr�_r

�
�

fEo��_oc

�
W

22 G '

] �

f

�
fEo��fEo��_oc

ZKHUH `fEo� LV D g�GLPHQVLRQDO YHFWRU SURFHVV DV GH¿QHG LQ SURSRVLWLRQ ��� DQG �fEo� LV

DQ -�GLPHQVLRQDO YHFWRU SURFHVV DV GH¿QHG LQ SURSRVLWLRQ ����

The proof is in Appendix E. Under H� G o@?&EP#� : gc the statistic 1gc� diverges to

in¿nity as it contains at least one eigenvalue that is �REA*6�( see Appendix B.

When the regressors are de¿ned by (9), the upper tail percentage points of the

distribution of 1
gc�

under Hf are provided in Tables 1, 2, 3 and 4 for a range of values of

the breakpoint parameter b� These are obtained simulating the stochastic processes involved

using a sample size of 1,000 and 100,000 replications.

These tables can then be used to construct an asymptotically valid test for Hf G

o@?&EP#� ' g against H� G o@?&EP#� : g in the breaking trends case. Note that this

is also a test on the dimension of the cointegration space, i.e. a test of

Hf G there are - cointegration relationships

against

H� G there are fewer than - cointegration relationships.

This is to be contrasted with the Johansen type tests of Inoue (1999), where under the

alternative hypothesis there are more than - cointegration relationships (i.e. under the null

hypothesis the model is more nonstationary). In addition, Inoue’s tests are not directly

comparable with ours since they are obtained by taking the supremum of Johansen’s statistics

with respect to the breakpoint location, i.e. they are unconditional to the existence of a break.

Another difference is that, unlike here, they require ¿tting a set of statistical models to the data,

namely ¿tting a vector autoregression for each possible breakpoint location.
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Unfortunately, the test for g : f cannot be modi¿ed along the lines of the previous

Section to yield a statistic whose asymptotic distribution is free of b� Note also that this model

of breaking trends implies that in general the long run equilibrium relation has been subject to

a shift at time A��

�� 6HDVRQDO HIIHFWV DQG ZHDNO\ GHSHQGHQW H[RJHQRXV UHJUHVVRUV

In this Section we will show that augmenting the model (1)-(3) by including

deterministic seasonality and/or weakly dependent exogenous regressors does not affect the

asymptotic distributions of the test statistics of the previous sections. For simplicity we only

consider the test for nonstationarity of Section 2.

We replace equation (1) by

)| ' �� |n�
�

3| n �
|
n %|c(16)

where ]| are additional regressors and � the corresponding coef¿cients.

$VVXPSWLRQ �� Either [A] or [B] below holds.

[A] ]| is a zero mean second order stationary process such that: (A1)
S

"

|'�
nE E3|3

�

��n 	

4c (A2) EE3|%�|� ' fc (A3) *�4A3�E
�S

A

|'�
3|0�|

��S
A

|'�
3|0�|

�
�

	4, � ' �c ���c ��

[B] ]| ' E5�|c ���c 5r3�c|�
� is a set of r�� deterministic seasonal dummy variables, de¿ned

by

5�| '

;?= � | ' �n ?rc
f | 9' �n ?rc
�� | ' ?rc

(17)

for ? ' fc �c 2c ��� Furthermore the function  Eo� of assumption 1 is of bounded variation, i.e.

there exists � 	4 such that for every ¿nite partition of the unit interval f ' of 	 o� 	 ��� 	

o? ' �,
S

?

�'�
n Eo���  Eo�3��n 	 ��

In assumption 4[A], ]| is a weakly dependent process (in second order sense) since

4[A1] implies a ¿nite spectrum at the origin. 4[A2] is an exogeneity condition. The zero mean

assumption is innocuous since an intercept is included among the other regressors [|.
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In assumption 4[B] the seasonal dummies sum to zero over s periods, so they represent

the relative seasonal deviation from the common mean. A reparametrization of the seasonal

effect could be used. The bounded variation condition is of course satis¿ed in the breaking

trends case.

Let the statistic 1
�

of Section 2, equation (5), be constructed using the residuals from

regressing \| on �[�
|
c 3�

|
��� Then the following proposition holds.

Proposition 5 /HW \| EH JHQHUDWHG E\ WKH PRGHO ������������ XQGHU DVVXPSWLRQV ���� 7KHQ�

XQGHU +f G P# ' fc WKH DV\PSWRWLF GLVWULEXWLRQ RI 1
�
LV WKH RQH GH¿QHG LQ SURSRVLWLRQ ����

The proof is in Appendix F. Proposition 5 implies that we can use the tests of Sections

2 and 3 to test for nonstationarity in models containing a deterministic seasonal component

and/or weakly dependent regressors too. The same result carries over to the common trend

test of Section 4. The proof is not provided but follows similar lines.

When the seasonality is stochastic and possibly there are seasonal unit roots, the strategy

advocated by Harvey and Streibel (1997) can be applied. Their idea was to replace the

nonparametric treatment of the serial correlation in %| with a fully parametric one and it can be

extended to deal with stochastic seasonality. Note that this approach requires the extra effort of

¿tting a statistical model to the data, but such effort is rewarded with higher power and better

size of the test.

The Harvey-Streibel approach may be summarized as follows. First, fully parametrize

the model to account for serial correlation and possibly stochastic seasonality. Then estimate

it under the alternative hypothesis of nonstationarity, using the Kalman ¿lter to construct the

likelihood function. Finally insert these estimates, re-run the Kalman ¿lter under the null

hypothesis and construct the LBI statistic (4) using the Kalman ¿lter innovations (whose

correlation structure has been consistently estimated). Harvey and Streibel (1997) show that

the distribution of this statistic is asymptotically equivalent to the distribution of (4). They also

compare their procedure with the KPSS correction and show, through simulation experiments,

that their procedure permits large gains in the power of the test and a more reliable size.

The case of I(1) regressors ]| is examined in Choi and Ahn (1995). They consider testing

for stationarity of the errors in multiple equations with integrated variables. In their framework

stationarity of the errors corresponds to cointegration between regressands and regressors.
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�� ([DPSOHV

The use of the tests is illustrated with two examples, one using UK macroeconomic data

and the other using data on road casualties in Great Britain. The latter dataset was used by

Harvey and Durbin (1986) to study the effect of the introduction of the seat belt law and is

provided with the program STAMP 5.0 of Koopman et al. (1995).

Figures 1a, 1b and 1c plot the logarithms of UK gross domestic product, consumption

and investment for the period 1960-1990, together with a ¿tted broken trend. The data are

quarterly, seasonally adjusted and at constant 1990 prices. The source is the Central Statistical

Of¿ce.

We have assumed that there was an exogenous structural break around 1979-1980, as the

plot of the series, that of investment in particular, seem to reveal. The exogeneity of the break

may be due to the following two reasons: ¿rst, the oil shock of 1979-1980 may have caused a

drop in the series� second, in 1979 a right-wing government with Margaret Thatcher as Prime

Minister was elected and this may have determined the higher growth rates of investment

thereafter. Thus, we have chosen to ¿t a broken linear trend to the data, with a break in the

second quarter of 1980.3

We consider the case of a break in both level and slope and we apply the common trend

test of Section 4 to the trivariate series of (log) GDP, consumption and investment. The results

are displayed in Table 5 for various values of the lag length parameter 6. The breakpoint is at

the second quarter of 1980, corresponding to a value of 0.66 for b. Note that the statistic for

g ' f is equivalent to the nonstationarity test statistic of Section 3, case 2. The critical values

for the case when there is no break are taken from Nyblom and Harvey (2000), those for the

case of structural break are taken from Table 2, �=3 and b=0.3.

Standard macroeconomic arguments would suggest the existence of one stochastic trend

among the variables, probably representing the effect of technological progress. However

Table 5 shows that the null hypothesis of one common trend Eg ' �� is rejected at 5 per cent

signi¿cance level when the structural break of 1979-1980 is not considered. Indeed, even the

hypothesis of two trends seems to be rejected. On the contrary, ¿tting a broken deterministic

6 Of course there might have been other events that, on a priori grounds, could have determined a break in
the series. However, since the purpose of this section is only to illustrate the use of the tests, we do not delve
deeply into the issue of the exogeneity of the breakpoint.
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trend to the data results in non rejection of Mf G g ' � at 10 per cent level of signi¿cance.

The result is obtained for 6 � e( note also that the KPSS correction has little adverse effect

on the value of the statistic as 6 grows.

Now consider the series of the logarithm of front and rear passengers killed or seriously

injured (KSI) in road accidents, as displayed in Figure 2. The data are monthly, not seasonally-

adjusted, and cover the period January 1969 to December 1984. These data were used by

Harvey and Durbin (1986) to assess the effect of the seat belt law, which made it compulsory

for front-seat passengers to wear seat belts after 31 January 1983. Clearly, there is an

exogenous structural break in the series of front-seat passengers but not in the series of rear

passengers. As explained in Section 3, it is possible to apply our tests by forcing both series to

break in February 1983.

Harvey and Durbin (1986) show that a reasonable univariate time series model for the

KSI series would be the simple random walk plus noise and a seasonal component, with

seasonality being ¿xed. Given the nature of the data, it would seem plausible that in a

multivariate model the random walk component has dimension 1.

Table 6 shows the results of applying the common trend test of Section 4 to the bivariate

series of front and rear-seat passengers. A slope component is not included. The breakpoint

parameter b takes the value 0.88, corresponding to February 1983. The statistic is computed

including the set of 11 dummy variables as regressors to account for seasonality. As explained

in Section 5 the asymptotic distribution is not affected.

If we do not consider the break (¿rst two rows of the Table), we end up rejecting the

null hypothesis of one common trend, g ' �c at 5 per cent level of signi¿cance even for

very large values of the lag truncation parameter 6 (6 ' �e corresponds to the square root

of the sample size). On the other hand, forcing both series to break at 1983.2 results in not

rejecting the hypothesis of one common trend even for 6 ' �� Note that since each series

can be modelled as a univariate random walk plus noise, considering small values of 6 seems

appropriate. Finally, the modi¿ed test of nonstationarity (¿fth row of the Table) con¿rms the

¿nding that g : f�



23

�� &RQFOXGLQJ UHPDUNV

This paper has considered tests for the presence of stochastic trends in multivariate time

series with structural breaks. The asymptotic distributions of the statistics have been derived

and the critical values have been tabulated. Testing for the existence of a certain number of

stochastic trends may also be interpreted as testing the dimension of the cointegration space.

Note that this implies a shift in the cointegration relation at the time of the break.

The basic nonstationarity test has also been modi¿ed to handle the case of multiple

breakpoints. Interestingly, the asymptotic distribution of this modi¿ed statistic is independent

of the breakpoint location parameters.

Throughout the paper, the breakpoint is assumed to be known. If this is not the

case, it seems preferable to establish whether or not a break exists for each series in turn.

For a univariate model Busetti and Harvey (2000) have proposed an inf-type statistic for

nonstationarity that covers the case of an unknown breakpoint. Alternatively, one could adopt

a two step strategy, where ¿rst the breakpoint is estimated and then this estimate is used to

compute our tests. However, since the properties of the tests will be affected in a complicated

way, this strategy is left for future research.



T
ab

le
  1

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

1
/
D
P
E
G
D

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

λ=
0.

00
2

0,
34

9
0,

46
4

0,
74

6
λ=

0.
1

0,
28

4
0,

37
5

0,
60

4
λ=

0.
2

0,
23

1
0,

30
2

0,
48

4
�

λ=
0.

3
0,

18
7

0,
24

3
0,

38
0

λ=
0.

4
0,

16
0

0,
20

1
0,

30
3

λ=
0.

5
0,

15
2

0,
18

7
0,

27
1

λ=
0.

00
2

0,
60

6
0,

74
8

1,
07

8
0,

16
3

0,
22

2
0,

39
6

λ=
0.

1
0,

49
4

0,
60

8
0,

87
6

0,
13

4
0,

18
1

0,
32

3
λ=

0.
2

0,
40

2
0,

49
2

0,
70

4
0,

11
4

0,
15

1
0,

26
6

�
λ=

0.
3

0,
32

9
0,

39
8

0,
55

8
0,

10
5

0,
13

6
0,

23
0

λ=
0.

4
0,

28
2

0,
33

4
0,

45
4

0,
10

8
0,

13
7

0,
21

3
λ=

0.
5

0,
26

5
0,

30
9

0,
40

9
0,

11
1

0,
14

0
0,

21
3

λ=
0.

00
2

0,
83

7
0,

99
9

1,
35

7
0,

29
6

0,
38

1
0,

62
2

0,
09

3
0,

12
0

0,
20

2
λ=

0.
1

0,
68

5
0,

81
5

1,
10

6
0,

24
4

0,
31

3
0,

51
0

0,
07

8
0,

10
0

0,
16

6
λ=

0.
2

0,
55

8
0,

66
0

0,
89

7
0,

20
6

0,
26

2
0,

41
9

0,
07

0
0,

08
8

0,
14

3
�

λ=
0.

3
0,

45
9

0,
53

8
0,

71
8

0,
19

0
0,

23
5

0,
35

7
0,

07
2

0,
08

9
0,

13
7

λ=
0.

4
0,

39
5

0,
45

3
0,

58
7

0,
19

4
0,

23
2

0,
32

4
0,

07
5

0,
09

3
0,

14
5

λ=
0.

5
0,

37
1

0,
42

2
0,

53
2

0,
19

8
0,

23
4

0,
31

6
0,

07
5

0,
09

4
0,

14
9

λ=
0.

00
2

1,
05

7
1,

23
2

1,
61

0
0,

42
2

0,
52

8
0,

82
5

0,
16

9
0,

20
8

0,
32

2
0,

06
2

0,
07

8
0,

12
1

λ=
0.

1
0,

86
8

1,
00

4
1,

31
6

0,
34

8
0,

43
5

0,
68

1
0,

14
1

0,
17

2
0,

26
5

0,
05

3
0,

06
5

0,
10

1
λ=

0.
2

0,
70

8
0,

82
0

1,
06

8
0,

29
5

0,
36

5
0,

55
3

0,
12

7
0,

15
3

0,
23

0
0,

05
1

0,
06

2
0,

09
2

�
λ=

0.
3

0,
58

3
0,

66
8

0,
85

9
0,

27
2

0,
32

7
0,

47
3

0,
12

9
0,

15
2

0,
21

9
0,

05
3

0,
06

5
0,

09
6

λ=
0.

4
0,

50
2

0,
56

8
0,

71
2

0,
27

3
0,

31
8

0,
42

6
0,

13
4

0,
16

0
0,

22
8

0,
05

4
0,

06
6

0,
10

0
λ=

0.
5

0,
47

3
0,

53
0

0,
65

1
0,

27
7

0,
31

9
0,

41
1

0,
13

6
0,

16
2

0,
23

1
0,

05
4

0,
06

6
0,

10
0

λ=
0.

00
2

1,
27

3
1,

46
5

1,
87

1
0,

54
8

0,
67

8
1,

01
2

0,
24

0
0,

28
9

0,
43

1
0,

11
3

0,
13

4
0,

19
3

0,
04

7
0,

05
6

0,
08

4
λ=

0.
1

1,
04

6
1,

19
6

1,
52

7
0,

45
1

0,
55

7
0,

83
0

0,
20

1
0,

24
1

0,
36

2
0,

09
6

0,
11

3
0,

16
1

0,
04

0
0,

04
8

0,
07

0
λ=

0.
2

0,
85

5
0,

97
9

1,
23

9
0,

38
3

0,
46

8
0,

68
1

0,
18

1
0,

21
3

0,
31

4
0,

09
2

0,
10

7
0,

14
8

0,
04

0
0,

04
8

0,
06

8
�

λ=
0.

3
0,

70
5

0,
79

7
0,

99
9

0,
35

2
0,

41
8

0,
58

1
0,

18
3

0,
21

2
0,

29
6

0,
09

6
0,

11
2

0,
15

2
0,

04
1

0,
04

9
0,

07
1

λ=
0.

4
0,

60
7

0,
67

9
0,

83
1

0,
35

1
0,

40
2

0,
52

3
0,

19
1

0,
22

2
0,

30
4

0,
09

7
0,

11
4

0,
15

8
0,

04
1

0,
05

0
0,

07
2

λ=
0.

5
0,

57
3

0,
63

5
0,

76
2

0,
35

4
0,

40
0

0,
50

0
0,

19
4

0,
22

7
0,

30
7

0,
09

7
0,

11
4

0,
16

0
0,

04
1

0,
04

9
0,

07
2

λ=
0.

00
2

1,
48

4
1,

68
6

2,
12

4
0,

67
3

0,
82

3
1,

19
2

0,
31

1
0,

36
9

0,
54

2
0,

16
1

0,
18

8
0,

25
9

0,
08

4
0,

09
7

0,
13

3
0,

03
7

0,
04

4
0,

06
2

λ=
0.

1
1,

21
5

1,
37

8
1,

72
7

0,
55

3
0,

67
8

0,
98

1
0,

26
0

0,
30

8
0,

45
1

0,
13

7
0,

15
8

0,
21

8
0,

07
3

0,
08

4
0,

11
3

0,
03

2
0,

03
8

0,
05

3
λ=

0.
2

0,
99

6
1,

12
6

1,
39

6
0,

47
0

0,
56

7
0,

81
1

0,
23

5
0,

27
4

0,
39

2
0,

13
2

0,
15

0
0,

19
9

0,
07

3
0,

08
3

0,
11

0
0,

03
3

0,
03

9
0,

05
4

�
λ=

0.
3

0,
82

4
0,

92
2

1,
13

3
0,

43
3

0,
50

9
0,

69
1

0,
23

6
0,

27
2

0,
37

0
0,

13
7

0,
15

6
0,

20
3

0,
07

5
0,

08
6

0,
11

4
0,

03
3

0,
03

9
0,

05
5

λ=
0.

4
0,

71
2

0,
78

7
0,

94
6

0,
42

6
0,

48
4

0,
61

7
0,

24
6

0,
28

3
0,

37
5

0,
13

9
0,

15
9

0,
21

3
0,

07
5

0,
08

6
0,

11
6

0,
03

3
0,

03
9

0,
05

5
λ=

0.
5

0,
67

2
0,

73
7

0,
87

1
0,

42
9

0,
47

9
0,

58
9

0,
25

1
0,

28
9

0,
37

8
0,

13
9

0,
16

0
0,

21
7

0,
07

5
0,

08
6

0,
11

6
0,

03
3

0,
03

9
0,

05
5

U
PP

E
R

 T
A

IL
 P

E
R

C
E

N
T

A
G

E
 P

O
IN

T
S:

 i=
1



T
ab

le
  2

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

1
/
D
P
E
G
D

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

λ=
0.

00
2

0,
11

9
0,

14
8

0,
21

7
λ=

0.
1

0,
09

7
0,

12
1

0,
17

8
λ=

0.
2

0,
07

9
0,

09
7

0,
14

2
�

λ=
0.

3
0,

06
5

0,
07

9
0,

11
3

λ=
0.

4
0,

05
6

0,
06

6
0,

09
0

λ=
0.

5
0,

05
2

0,
06

1
0,

08
2

λ=
0.

00
2

0,
21

0
0,

24
5

0,
33

0
0,

08
4

0,
10

5
0,

16
0

λ=
0.

1
0,

17
2

0,
20

1
0,

26
7

0,
06

9
0,

08
6

0,
13

0
λ=

0.
2

0,
14

0
0,

16
3

0,
21

5
0,

05
7

0,
07

0
0,

10
4

�
λ=

0.
3

0,
11

6
0,

13
3

0,
17

4
0,

04
9

0,
05

9
0,

08
6

λ=
0.

4
0,

09
9

0,
11

2
0,

14
2

0,
04

5
0,

05
3

0,
07

3
λ=

0.
5

0,
09

4
0,

10
5

0,
13

1
0,

04
5

0,
05

2
0,

07
0

λ=
0.

00
2

0,
29

4
0,

33
5

0,
42

7
0,

15
1

0,
17

8
0,

24
5

0,
06

1
0,

07
5

0,
11

3
λ=

0.
1

0,
24

2
0,

27
5

0,
34

9
0,

12
4

0,
14

6
0,

20
0

0,
05

0
0,

06
1

0,
09

2
λ=

0.
2

0,
19

7
0,

22
4

0,
28

1
0,

10
2

0,
12

0
0,

16
2

0,
04

2
0,

05
1

0,
07

5
�

λ=
0.

3
0,

16
3

0,
18

4
0,

22
8

0,
08

8
0,

10
2

0,
13

4
0,

03
8

0,
04

6
0,

06
5

λ=
0.

4
0,

14
1

0,
15

7
0,

18
9

0,
08

2
0,

09
2

0,
11

7
0,

03
8

0,
04

4
0,

06
1

λ=
0.

5
0,

13
4

0,
14

7
0,

17
5

0,
08

0
0,

09
0

0,
11

2
0,

03
8

0,
04

4
0,

06
0

λ=
0.

00
2

0,
37

6
0,

42
2

0,
52

1
0,

21
4

0,
24

6
0,

32
2

0,
11

0
0,

12
9

0,
17

7
0,

04
6

0,
05

6
0,

08
2

λ=
0.

1
0,

30
9

0,
34

5
0,

42
5

0,
17

6
0,

20
1

0,
26

2
0,

09
0

0,
10

6
0,

14
6

0,
03

8
0,

04
6

0,
06

7
λ=

0.
2

0,
25

2
0,

28
1

0,
34

3
0,

14
5

0,
16

6
0,

21
4

0,
07

6
0,

08
9

0,
12

0
0,

03
3

0,
03

9
0,

05
6

�
λ=

0.
3

0,
20

9
0,

23
2

0,
28

1
0,

12
6

0,
14

2
0,

18
0

0,
06

9
0,

07
9

0,
10

3
0,

03
1

0,
03

7
0,

05
1

λ=
0.

4
0,

18
2

0,
19

9
0,

23
5

0,
11

6
0,

12
9

0,
15

8
0,

06
8

0,
07

6
0,

09
6

0,
03

1
0,

03
7

0,
05

0
λ=

0.
5

0,
17

3
0,

18
7

0,
21

8
0,

11
4

0,
12

6
0,

15
1

0,
06

8
0,

07
7

0,
09

5
0,

03
2

0,
03

7
0,

05
0

λ=
0.

00
2

0,
45

5
0,

50
4

0,
61

3
0,

27
4

0,
31

1
0,

39
7

0,
15

6
0,

17
9

0,
23

6
0,

08
3

0,
09

6
0,

12
9

0,
03

6
0,

04
3

0,
06

2
λ=

0.
1

0,
37

3
0,

41
4

0,
50

0
0,

22
6

0,
25

5
0,

32
3

0,
12

9
0,

14
7

0,
19

5
0,

06
9

0,
08

0
0,

10
6

0,
03

0
0,

03
6

0,
05

1
λ=

0.
2

0,
30

6
0,

33
7

0,
40

5
0,

18
7

0,
21

1
0,

26
5

0,
10

9
0,

12
4

0,
16

1
0,

06
0

0,
06

9
0,

09
0

0,
02

7
0,

03
1

0,
04

3
�

λ=
0.

3
0,

25
5

0,
27

8
0,

33
0

0,
16

2
0,

18
0

0,
22

3
0,

09
9

0,
11

1
0,

14
0

0,
05

7
0,

06
4

0,
08

2
0,

02
7

0,
03

1
0,

04
1

λ=
0.

4
0,

22
2

0,
24

0
0,

27
8

0,
15

0
0,

16
4

0,
19

6
0,

09
7

0,
10

7
0,

13
0

0,
05

7
0,

06
4

0,
08

0
0,

02
7

0,
03

1
0,

04
2

λ=
0.

5
0,

21
1

0,
22

6
0,

25
9

0,
14

8
0,

16
0

0,
18

7
0,

09
7

0,
10

7
0,

12
8

0,
05

8
0,

06
5

0,
08

1
0,

02
7

0,
03

1
0,

04
2

λ=
0.

00
2

0,
53

2
0,

58
5

0,
70

0
0,

33
4

0,
37

5
0,

46
9

0,
20

2
0,

22
8

0,
29

3
0,

11
9

0,
13

5
0,

17
5

0,
06

6
0,

07
5

0,
09

9
0,

03
0

0,
03

5
0,

04
8

λ=
0.

1
0,

43
8

0,
48

1
0,

57
1

0,
27

5
0,

30
8

0,
38

4
0,

16
6

0,
18

9
0,

24
1

0,
09

9
0,

11
1

0,
14

4
0,

05
5

0,
06

3
0,

08
1

0,
02

5
0,

02
9

0,
04

0
λ=

0.
2

0,
35

8
0,

39
2

0,
46

3
0,

22
8

0,
25

4
0,

31
3

0,
14

1
0,

15
8

0,
20

0
0,

08
6

0,
09

6
0,

12
2

0,
04

9
0,

05
5

0,
07

1
0,

02
3

0,
02

6
0,

03
5

�
λ=

0.
3

0,
29

9
0,

32
5

0,
38

0
0,

19
8

0,
21

8
0,

26
3

0,
12

9
0,

14
3

0,
17

5
0,

08
2

0,
09

0
0,

11
2

0,
04

8
0,

05
4

0,
06

7
0,

02
3

0,
02

6
0,

03
5

λ=
0.

4
0,

26
1

0,
28

0
0,

32
1

0,
18

3
0,

19
9

0,
23

4
0,

12
5

0,
13

7
0,

16
3

0,
08

2
0,

09
0

0,
10

9
0,

04
9

0,
05

5
0,

06
7

0,
02

3
0,

02
7

0,
03

5
λ=

0.
5

0,
24

8
0,

26
5

0,
29

9
0,

18
0

0,
19

4
0,

22
3

0,
12

5
0,

13
6

0,
16

0
0,

08
2

0,
09

1
0,

10
9

0,
04

9
0,

05
5

0,
06

9
0,

02
3

0,
02

7
0,

03
5

U
PP

E
R

 T
A

IL
 P

E
R

C
E

N
T

A
G

E
 P

O
IN

T
S:

 i=
2



T
ab

le
 3

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

1
/
D
P
E
G
D

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

λ=
0.

00
2

0,
11

9
0,

14
8

0,
21

7
λ=

0.
1

0,
09

8
0,

12
2

0,
17

9
λ=

0.
2

0,
08

5
0,

10
3

0,
14

8
�

λ=
0.

3
0,

08
6

0,
10

3
0,

14
2

λ=
0.

4
0,

09
7

0,
12

0
0,

18
0

λ=
0.

5
0,

10
5

0,
13

4
0,

20
5

λ=
0.

00
2

0,
21

0
0,

24
5

0,
33

0
0,

08
4

0,
10

5
0,

16
0

λ=
0.

1
0,

17
4

0,
20

4
0,

27
0

0,
07

0
0,

08
7

0,
13

1
λ=

0.
2

0,
15

2
0,

17
5

0,
22

8
0,

06
5

0,
07

9
0,

11
4

�
λ=

0.
3

0,
15

1
0,

17
3

0,
22

2
0,

06
8

0,
08

3
0,

11
7

λ=
0.

4
0,

17
2

0,
20

2
0,

27
0

0,
06

9
0,

08
5

0,
12

9
λ=

0.
5

0,
18

8
0,

22
3

0,
30

6
0,

06
7

0,
08

4
0,

13
3

λ=
0.

00
2

0,
29

4
0,

33
5

0,
42

7
0,

15
1

0,
17

8
0,

24
5

0,
06

1
0,

07
5

0,
11

3
λ=

0.
1

0,
24

5
0,

27
8

0,
35

2
0,

12
7

0,
14

9
0,

20
2

0,
05

2
0,

06
3

0,
09

3
λ=

0.
2

0,
21

4
0,

24
1

0,
29

9
0,

11
7

0,
13

5
0,

17
9

0,
05

1
0,

06
1

0,
08

7
�

λ=
0.

3
0,

21
4

0,
23

9
0,

29
2

0,
12

1
0,

14
0

0,
18

2
0,

05
3

0,
06

4
0,

09
2

λ=
0.

4
0,

24
3

0,
27

6
0,

35
2

0,
12

4
0,

14
6

0,
20

0
0,

05
1

0,
06

2
0,

09
2

λ=
0.

5
0,

26
3

0,
30

3
0,

39
5

0,
12

2
0,

14
6

0,
21

2
0,

05
0

0,
06

0
0,

08
9

λ=
0.

00
2

0,
37

6
0,

42
2

0,
52

1
0,

21
4

0,
24

6
0,

32
2

0,
11

0
0,

12
9

0,
17

7
0,

04
6

0,
05

6
0,

08
2

λ=
0.

1
0,

31
3

0,
35

0
0,

43
0

0,
17

9
0,

20
5

0,
26

6
0,

09
3

0,
10

9
0,

14
9

0,
04

0
0,

04
8

0,
06

8
λ=

0.
2

0,
27

5
0,

30
4

0,
36

7
0,

16
6

0,
18

7
0,

23
7

0,
09

2
0,

10
5

0,
13

9
0,

04
1

0,
04

9
0,

06
8

�
λ=

0.
3

0,
27

4
0,

30
1

0,
36

0
0,

17
1

0,
19

3
0,

23
9

0,
09

5
0,

10
9

0,
14

3
0,

04
1

0,
04

9
0,

07
1

λ=
0.

4
0,

31
0

0,
34

8
0,

42
9

0,
17

6
0,

20
2

0,
26

6
0,

09
2

0,
10

7
0,

14
5

0,
04

0
0,

04
8

0,
06

8
λ=

0.
5

0,
33

6
0,

38
0

0,
48

1
0,

17
5

0,
20

5
0,

28
2

0,
09

0
0,

10
4

0,
14

3
0,

04
0

0,
04

7
0,

06
6

λ=
0.

00
2

0,
45

5
0,

50
4

0,
61

3
0,

27
4

0,
31

2
0,

39
7

0,
15

6
0,

17
9

0,
23

6
0,

08
3

0,
09

6
0,

12
9

0,
03

6
0,

04
3

0,
06

2
λ=

0.
1

0,
37

9
0,

41
9

0,
50

6
0,

23
1

0,
26

0
0,

32
8

0,
13

3
0,

15
2

0,
19

9
0,

07
2

0,
08

3
0,

11
0

0,
03

2
0,

03
8

0,
05

3
λ=

0.
2

0,
33

3
0,

36
4

0,
43

3
0,

21
4

0,
23

8
0,

29
2

0,
13

0
0,

14
6

0,
18

6
0,

07
4

0,
08

4
0,

10
8

0,
03

3
0,

03
9

0,
05

4
�

λ=
0.

3
0,

33
3

0,
36

2
0,

42
5

0,
22

0
0,

24
4

0,
29

5
0,

13
4

0,
15

2
0,

19
2

0,
07

4
0,

08
5

0,
11

2
0,

03
3

0,
03

9
0,

05
4

λ=
0.

4
0,

37
6

0,
41

6
0,

50
3

0,
22

7
0,

25
7

0,
32

8
0,

13
1

0,
14

9
0,

19
4

0,
07

2
0,

08
3

0,
10

9
0,

03
3

0,
03

8
0,

05
3

λ=
0.

5
0,

40
7

0,
45

4
0,

56
2

0,
22

7
0,

26
2

0,
35

0
0,

12
8

0,
14

6
0,

19
3

0,
07

2
0,

08
2

0,
10

7
0,

03
2

0,
03

8
0,

05
2

λ=
0.

00
2

0,
53

2
0,

58
5

0,
70

0
0,

33
4

0,
37

5
0,

46
9

0,
20

2
0,

22
8

0,
29

3
0,

11
9

0,
13

5
0,

17
5

0,
06

6
0,

07
5

0,
09

9
0,

03
0

0,
03

5
0,

04
8

λ=
0.

1
0,

44
5

0,
48

8
0,

57
8

0,
28

1
0,

31
4

0,
38

9
0,

17
2

0,
19

4
0,

24
7

0,
10

3
0,

11
6

0,
14

9
0,

05
8

0,
06

6
0,

08
5

0,
02

7
0,

03
1

0,
04

2
λ=

0.
2

0,
39

1
0,

42
5

0,
49

7
0,

26
0

0,
28

7
0,

34
7

0,
16

8
0,

18
7

0,
23

0
0,

10
5

0,
11

8
0,

14
6

0,
06

0
0,

06
8

0,
08

7
0,

02
8

0,
03

2
0,

04
4

�
λ=

0.
3

0,
39

0
0,

42
2

0,
48

9
0,

26
7

0,
29

3
0,

34
7

0,
17

3
0,

19
3

0,
23

7
0,

10
6

0,
11

9
0,

15
2

0,
06

0
0,

06
8

0,
08

8
0,

02
7

0,
03

2
0,

04
3

λ=
0.

4
0,

44
1

0,
48

2
0,

57
5

0,
27

7
0,

30
9

0,
38

6
0,

16
9

0,
19

0
0,

24
3

0,
10

3
0,

11
5

0,
14

7
0,

05
9

0,
06

7
0,

08
5

0,
02

7
0,

03
2

0,
04

3
λ=

0.
5

0,
47

6
0,

52
7

0,
64

0
0,

27
8

0,
32

0
0,

41
4

0,
16

6
0,

18
7

0,
24

2
0,

10
2

0,
11

4
0,

14
5

0,
05

9
0,

06
7

0,
08

5
0,

02
7

0,
03

2
0,

04
3

U
PP

E
R

 T
A

IL
 P

E
R

C
E

N
T

A
G

E
 P

O
IN

T
S:

 i=
2a



T
ab

le
 4

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

.
 
�

1
/
D
P
E
G
D

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��

�
��
�

�
��
�

λ=
0.

00
2

0,
11

9
0,

14
8

0,
21

8
λ=

0.
1

0,
10

3
0,

12
7

0,
18

6
λ=

0.
2

0,
08

9
0,

11
0

0,
16

1
�

λ=
0.

3
0,

07
8

0,
09

6
0,

13
8

λ=
0.

4
0,

07
1

0,
08

6
0,

12
3

λ=
0.

5
0,

06
9

0,
08

3
0,

11
8

λ=
0.

00
2

0,
21

1
0,

24
6

0,
32

9
0,

08
4

0,
10

6
0,

16
0

λ=
0.

1
0,

18
2

0,
21

3
0,

28
4

0,
07

3
0,

09
0

0,
13

7
λ=

0.
2

0,
15

8
0,

18
3

0,
24

2
0,

06
4

0,
07

9
0,

11
7

�
λ=

0.
3

0,
13

9
0,

16
1

0,
21

1
0,

05
8

0,
07

0
0,

10
3

λ=
0.

4
0,

12
7

0,
14

6
0,

18
9

0,
05

5
0,

06
6

0,
09

5
λ=

0.
5

0,
12

3
0,

14
1

0,
18

2
0,

05
4

0,
06

5
0,

09
2

λ=
0.

00
2

0,
29

5
0,

33
6

0,
42

8
0,

15
1

0,
17

8
0,

24
5

0,
06

1
0,

07
5

0,
11

4
λ=

0.
1

0,
25

5
0,

29
0

0,
36

9
0,

13
1

0,
15

4
0,

21
0

0,
05

3
0,

06
5

0,
09

7
λ=

0.
2

0,
22

2
0,

25
2

0,
31

7
0,

11
5

0,
13

5
0,

18
2

0,
04

7
0,

05
7

0,
08

4
�

λ=
0.

3
0,

19
6

0,
22

1
0,

27
7

0,
10

4
0,

12
1

0,
16

2
0,

04
4

0,
05

3
0,

07
6

λ=
0.

4
0,

17
9

0,
20

2
0,

24
9

0,
09

9
0,

11
3

0,
14

9
0,

04
3

0,
05

2
0,

07
3

λ=
0.

5
0,

17
4

0,
19

5
0,

23
9

0,
09

7
0,

11
1

0,
14

5
0,

04
3

0,
05

2
0,

07
3

λ=
0.

00
2

0,
37

6
0,

42
2

0,
52

2
0,

21
4

0,
24

7
0,

32
2

0,
11

0
0,

12
9

0,
17

8
0,

04
6

0,
05

6
0,

08
2

λ=
0.

1
0,

32
6

0,
36

4
0,

45
1

0,
18

6
0,

21
3

0,
27

8
0,

09
6

0,
11

2
0,

15
5

0,
04

0
0,

04
8

0,
07

0
λ=

0.
2

0,
28

3
0,

31
6

0,
38

9
0,

16
3

0,
18

6
0,

24
0

0,
08

5
0,

09
9

0,
13

4
0,

03
6

0,
04

4
0,

06
2

�
λ=

0.
3

0,
25

1
0,

27
9

0,
33

8
0,

14
8

0,
16

8
0,

21
4

0,
08

0
0,

09
2

0,
12

2
0,

03
5

0,
04

2
0,

05
9

λ=
0.

4
0,

23
1

0,
25

5
0,

30
6

0,
14

1
0,

15
8

0,
20

0
0,

07
9

0,
09

0
0,

11
6

0,
03

5
0,

04
2

0,
05

8
λ=

0.
5

0,
22

4
0,

24
6

0,
29

6
0,

13
9

0,
15

5
0,

19
3

0,
07

8
0,

08
9

0,
11

5
0,

03
5

0,
04

2
0,

05
8

λ=
0.

00
2

0,
45

6
0,

50
5

0,
61

4
0,

27
5

0,
31

2
0,

39
8

0,
15

6
0,

18
0

0,
23

7
0,

08
4

0,
09

7
0,

13
0

0,
03

6
0,

04
3

0,
06

2
λ=

0.
1

0,
39

4
0,

43
7

0,
53

0
0,

23
9

0,
27

0
0,

34
1

0,
13

6
0,

15
6

0,
20

6
0,

07
3

0,
08

4
0,

11
2

0,
03

2
0,

03
8

0,
05

3
λ=

0.
2

0,
34

3
0,

37
8

0,
45

5
0,

21
0

0,
23

7
0,

29
7

0,
12

2
0,

13
9

0,
18

0
0,

06
6

0,
07

6
0,

10
0

0,
03

0
0,

03
5

0,
04

8
�

λ=
0.

3
0,

30
5

0,
33

4
0,

39
8

0,
19

1
0,

21
4

0,
26

5
0,

11
5

0,
12

9
0,

16
5

0,
06

4
0,

07
3

0,
09

5
0,

02
9

0,
03

4
0,

04
7

λ=
0.

4
0,

28
0

0,
30

6
0,

36
1

0,
18

1
0,

20
1

0,
24

7
0,

11
2

0,
12

5
0,

15
7

0,
06

4
0,

07
3

0,
09

3
0,

02
9

0,
03

4
0,

04
7

λ=
0.

5
0,

27
2

0,
29

6
0,

34
9

0,
17

9
0,

19
7

0,
24

0
0,

11
2

0,
12

5
0,

15
5

0,
06

4
0,

07
3

0,
09

3
0,

03
0

0,
03

5
0,

04
7

λ=
0.

00
2

0,
53

4
0,

58
7

0,
70

2
0,

33
4

0,
37

6
0,

46
9

0,
20

2
0,

22
9

0,
29

4
0,

11
9

0,
13

5
0,

17
6

0,
06

6
0,

07
6

0,
09

9
0,

03
0

0,
03

5
0,

04
8

λ=
0.

1
0,

46
2

0,
50

7
0,

60
5

0,
29

0
0,

32
5

0,
40

5
0,

17
6

0,
19

8
0,

25
4

0,
10

4
0,

11
8

0,
15

2
0,

05
8

0,
06

7
0,

08
6

0,
02

6
0,

03
1

0,
04

2
λ=

0.
2

0,
40

3
0,

44
1

0,
52

1
0,

25
6

0,
28

5
0,

35
3

0,
15

8
0,

17
7

0,
22

5
0,

09
5

0,
10

7
0,

13
6

0,
05

4
0,

06
1

0,
07

8
0,

02
5

0,
02

9
0,

03
9

�
λ=

0.
3

0,
35

8
0,

38
9

0,
45

7
0,

23
3

0,
25

8
0,

31
6

0,
14

8
0,

16
5

0,
20

6
0,

09
2

0,
10

3
0,

12
8

0,
05

4
0,

06
0

0,
07

6
0,

02
5

0,
02

9
0,

03
9

λ=
0.

4
0,

33
0

0,
35

7
0,

41
5

0,
22

1
0,

24
3

0,
29

2
0,

14
5

0,
16

0
0,

19
6

0,
09

2
0,

10
2

0,
12

6
0,

05
4

0,
06

0
0,

07
6

0,
02

5
0,

02
9

0,
03

9
λ=

0.
5

0,
32

0
0,

34
6

0,
40

1
0,

21
8

0,
23

9
0,

28
4

0,
14

4
0,

15
9

0,
19

3
0,

09
2

0,
10

2
0,

12
5

0,
05

4
0,

06
0

0,
07

6
0,

02
5

0,
02

9
0,

03
9

U
PP

E
R

 T
A

IL
 P

E
R

C
E

N
T

A
G

E
 P

O
IN

T
S:

 i=
2b



��� ��� ��� ��� ��� ��� ���� �	
 �


K=0 2.043 1.409 1.089 0.896 0.768 0.558 0.457 0.296 0.332
��
����� K=1 0.845 0.584 0.453 0.374 0.322 0.238 0.199 0.151 0.180

K=2 0.180 0.129 0.102 0.087 0.077 0.062 0.057 0.061 0.075

K=0 0.694 0.494 0.392 0.331 0.291 0.228 0.207 0.163 0.184
�����
���	�� K=1 0.159 0.116 0.094 0.082 0.074 0.066 0.074 0.088 0.102
(lambda = 0.66) K=2 0.038 0.030 0.026 0.024 0.023 0.025 0.032 0.038 0.046

��	 ��� ��� ��� ��� ��� ���� �	
 �


��
����� K=0 13.002 7.210 5.081 3.955 3.265 2.785 1.535 0.596 0.746
K=1 1.121 0.855 0.694 0.585 0.513 0.454 0.274 0.156 0.212

�����
������ K=0 7.992 4.640 3.339 2.640 2.197 1.889 0.881 0.494 0.608
(lambda = 0.88) K=1 0.184 0.171 0.161 0.151 0.146 0.139 0.107 0.134 0.181

��������
���� 10.667 6.255 4.537 3.608 3.023 2.612 1.257 0.607 0.748
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$� 3URRI RI SURSRVLWLRQ �

Under Hf and assumptions 1-3, elE6�
R

$ l� By assumption 2, the long-run variance of

the disturbancesl is ¿nite and of full rank. Hence there exists a nonsingular matrix 3 such that

3l�� ' W and 3P#�
� ' _�@}E^�c ^2c ���c ^� �c where the ^�’s are the 1 roots of mP# � ^lm ' f(

see Rao (1973, p.41).

Since the test statistic 1
�

is invariant to premultiplying the observations \| by an arbitrary

nonsingular 1x1 matrix 3� without loss of generality we can restrict ourselves to the case of

l ' W and P# ' _�@}E^�c ^2c ���c ^���

Then 1
�
' |o

�
EWnJRE���

3�
�
�
�

Since i| ' %| �
S

A

|'� %| 
�

|

�S
A

|'�  | 
�

|

�
3�

 |c it follows that under assumptions 1-2

A
3

�

2

dAoo[
|'�

i| ,`Eo��

�] �

f

 Eo�_`Eo��
���] �

f

 Eo� Eo��_o

�3� ] o

f

 Er�_rc o 5 dfc �o c

(A.1)

where :Eo� is a standard vector Wiener process of dimension �� We denote the process on

the right-hand side of (A.1) as �fEo�c and we call it a generalized Brownian bridge. Thus, by

the continuous mapping theorem and using the de¿nition of &, 1�
_

$
U �

f
�fEo���fEo�_o�

%� 3URRI RI SURSRVLWLRQ �

Let assumptions 1-3 hold. Without loss of generality we again restrict ourselves to the

case of l ' W and P# ' _�@}E^�c ���c ^��� The hypothesis H� G o@?&EP#� ' g can be

equivalently formulated as H� G ^� : f for � ' �c ���cg and ^� ' f for � ' g n �c ���c ��

Consider the OLS residuals for the �-equation under H�,

e�| ' E>
�|
n 0�|��  �

|

#
A[
|'�

 | 
�

|

$3�
A[
|'�

 |E>�| n 0�|�c � ' �c ���cgc

and

e�| ' 0�| �  �
|

#
A[
|'�

 | 
�

|

$
3�

A[
|'�

 |0�|c � ' g n �c ���c �c
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since >
�|
' f for � ' g n �c ���c � , | ' �c ���c A�

Then, the following weak convergence results hold:

A
3�*2

e�cdAoo , ^�`
f

�
Eo�c � ' �c ���cgc (B.1)

A
3�*2

dA oo[
|'�

e�| , ^�

]
o

f

`
f

�
Er�_rc � ' �c ���cgc (B.2)

A
3�*2

dA oo[
|'�

e�| , �
f

�
Eo�c � ' g n �c ���c �c (B.3)

where the processes `
f

�
Eo� and �

f

�
Eo�c o 5 dfc�o c are the one-dimensional version of the

processes de¿ned in the statement of propositions 1 and 2, and are uncorrelated across � (and

with each other). The results (B.1)-(B.3) are obtained applying the invariance principle to the

partial sums of %| and �
|

and using assumption 1 of non-stochastic regressors.

Denote the E�c ��-elements of the matrices �c elE6� by S��c e/��� Then we have the

following further asymptotic results:

A
32
S��

_
$ E^�^���*2

U �

f

�U
o

f
`

f

�
Er�_r

U
o

f
`

f

�
Er�_r

�
_oc �c � � gc (B.4)

A
3�
S��

_

$ ^
�*2

�

] �

f

�]
o

f

`
f

�
Er�_r

�
�

f

�
Eo�_oc � � gc � : gc (B.5)

S��
_
$
U �

f
�

f

�
Eo��f

�
Eo�_oc �c � : gc (B.6)

E6A �3�e/��

_
$ E^�^��

�*2
U �

f
`

f

�
Eo�`f

�
Eo�_oc �c � � gc (B.7)

e/�� ' �RE6�c � � gc � : gc (B.8)

e/��

R

$ �E� ' ��c �c � : g� (B.9)

(B.4)-(B.6) result directly from the application of the continuous mapping theorem�

(B.7) corresponds to equation (23) of Kwiatowski et al. (1992)� (B.9) holds because of the
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consistency of the long run variance estimator and (B.8) because A
3�
S

A

|'�n� e|�e|3�c� '

�RE�� uniformly in � ' �6c�6n �c ���c6�

Our test statistic is de¿ned as the trace of elE6�3��c i.e. the sum of its eigenvalues. Let

�� � �2 � ��� � �� � f be the � ordered eigenvalues of elE6�3��� Using the results (B.4)-

(B.9) we will show that, under H� G o@?&EP#� ' gc g eigenvalues are �REA*6� and � �g

eigenvalues are �RE��� Thus asymptotically the distribution of the statistic coincides with the

distribution of the sum of those g asymptotically bigger eigenvalues� see also Nyblom and

Harvey (2000).

Partition elE6� and � as

elE6�'

� el��
el�2el�2

� el22

�
and � '

�
��� ��2

��2
� �22

�
c

where el�� and &�� are gxg� The eigenvalues of elE6�3�� solve the determinantal equation

f '
������� elE6�

���
'

������ � ��
el��

���
�

�����22 � ��
el22 �

�
��2 � ��

el�2

�
�
�
��� � ��

el��

�
3� �

��2 � ��
el�2

����� c
see Rao (1973, p.32). Then using (B.4)-(B.9) we see that the roots of the ¿rst determinant

are �REA*6�, whereas the roots of the second determinant are �RE�� and asymptotically

equivalent to the eigenvalues of E�22 � ��

�2�
3�
����2�( see Nyblom and Harvey (2000) for

further details.

Therefore E6*A � 1
�

_
$ |o

�
lW3�

�� �W

��

�
c where

�W

�� G '

] �

f

�]
o

f

`fEr�_r

��]
o

f

`fEr�_r

�
�

_oc

lW

�� G '

] �

f

`fEo�`fEo��_oc

with `fEo� being the g-dimensional vector process de¿ned in the statement of the

proposition�
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where `Eo�c o 5 dfc �oc is an � -dimensional standard Wiener process and

@ ' E�� b��E� n �b�c
K ' ��b2E� � b�2c
S ' b

�Ee � �b�c

a� '
U
b

f
o_`Eo�� b`Eb� n b

2

2
`E��c

a2 '
U �

b
o_`Eo�� b E`E���`Eb��� E�3b�2

2
`E���

'� 3URRI RI SURSRVLWLRQ �

Let 3| ' � for the case � ' � and let 3| ' E�c |�� for the case � ' 2( drop the superscript

� for simplicity. The model can be parametrized equivalently using [|Eb� ' E �|Eb�
�
c 2|Eb�

���

as regressors, where  �|Eb� ' 3| � � E| � bA � and [2| ' 3| � � E| : bA � � Then the model

is orthogonal and in order to obtain the OLS residuals we can consider the two subsamples

{1,...,A�j,{A� n �c ���c Aj separately and in each of them regress \| on ]|�

Again, without loss of generality and under assumption 2, we can restrict ourselves

to the case of l ' W and P# ' _�@}E^�c ^2c ���c ^� �� Then, under assumptions 2-3, we can

write 1
�W

�
Eb� ' |o

�
EWn JRE���3� E��Eb� n�2Eb��

�
� Under Hfc the invariance principle can

be applied in each subsample, yielding

A
3�*2

�

dA�oo[
|'�

i|Eb�, ��

�Eo�c

and

EA � A��
3�*2

dEA3A��oo[
|'�

i|nA�
Eb�, ��

2Eo�c � ' �c 2c ���c �c

where ��

�Eo� and ��

2Eo� are � -dimensional independent standard vector Brownian bridges for

� ' � and second-level Brownian bridges for � ' 2. Independence holds because the two

Brownian bridges are the limit of partial sum processes containing non-overlapping subsets of

disturbances.

By the continuous mapping theorem it then follows that 1�W
�
Eb� converges to the sum of

two independent random variables, each with a Cramér-von Mises distribution with � degrees

of freedom. The limiting distribution is then Cramér-von Mises with 2� degrees of freedom�

see Nyblom (1989) and Busetti and Harvey (2000) for details on the additivity property of

Cramér-von Mises random variables.
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From appendix B we know that under assumptions 1-3 and under o@?&EP#� ' gc

the - smallest eigenvalues of el3�� are asymptotically equivalent to the eigenvalues of

�22 ���2
����

3���2� Therefore, using the results (B.4)-(B.6),
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Thus, by the continuous mapping theorem,
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Without loss of generality we assume �A ' W in assumption 1 and l ' W in assumption

2. The standardized partial sums of OLS residuals can be written as
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If we show that
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and
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$ f uniformly in o 5 dfc �o c (F.2)

then A
3

�

2

SdAoo

|'� i| , �fEo�c the generalized Brownian bridge de¿ned in proposition 2, and

thus proposition 5 follows by applying the continuous mapping theorem.
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Consider assumption 4[A] ¿rst. Condition (F.1) above holds because for each 5�| element

of ]| and each %�| element of [| we have

E
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32
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mE E5�|5�r�m $ f

by assumption 4[A1] and by recalling that without loss of generality %�| is assumed bounded

throughout this proof. Then from assumption 4[A] it follows that A3�
S

A
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|
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holds too.

Now consider assumption 4[B]. To check condition (F.1) ¿rst note that
S
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by the assumption of bounded variation. Condition (F.2) holds since A3�
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