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ENERGY CONSUMPTION, SURVEY DATA
AND THE PREDICTION OF INDUSTRIAL PRODUCTION IN ITALY

by Domenico J. Marchetti and Giuseppe Parigi

Abstract

We investigatéhe prediction oftalian industrialproduction. We firsspecify a model
based on electricity consumption; we show ttieg cubic trend in such anodel mostly
captures the evolution over time of the electricity coefficient, which can be well
approximated by a smooth transition model aTkrasvirta, with no gains in predictive
power, though. Wealso analyzethe performance omodels based owlata of different
business surveys. According to basic statistics of forecasting acctiaciinearenergy-
based model imot outperformed byny other single model, neither by a combination of
forecasts. However, a mo@mprehensiveset of evaluation criteria sheds light on the
advantages of usinghe whole information available. Overallthe best forecasting
performance is achieved by estimating a combined model which includes aagpvagsors
both energy consumption and survey data.
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1. Introduction®

Industrial production igprobablythe single most important indicator of thesiness
cycle. As such, it is a keyariablefor policy makers. However, in mostdustrial countries
the correspondingndex is released by statistical agencies with a delaynefor twomonths,
due to thetime necessary to collect information from a large numbesrodiuction plants.
Suchdelay makes predictions of industrigloduction crucial for government and central
banks, since thegre one of the most accurdie not theonly) sources ofinformation on
current developments in aggregate supply and defand.

It is not surprising, therefore, that the predictiornolustrialoutputhasattractedmuch
attention in both the forecasting literature and fibkel of applied business cycle analysis.
Whereas univariate methods can offer satisfactory results atieaysually outperformed by
multivariate models. Préxtors usually includequantitative data omputs employed in the
production process, such as the consumption of elguiner, or qualitative information on
the current state oindustrial activity derived from surveys carriedit among business

managers.

In this paper we present and evaluatewanber of different modelfor forecasting
Italian industrial production. We first search fothe best specification with energy
consumptiordataand tackle th@roblem of choosinghe proper fuational form. The results
of our analysis confirm thathe best forecasting performance is obtained by litiear
specification generally employed tne literature (seBodo and Signorini, 1987). However,
the presence of a third-degrpelynomial ofthe trendvariable in this model should be
interpreted as amdication ofthe importance of sonferm of non-linearity. In particular, we
argue that theubictrend can be seen as an approximation of the evolutiontioveiof the

1 We are grateful to Filippo AltissimdGiorgio Bodo, Alberto Locarno, L. Federic®ignorini and,

especially, Timo Terasvirta for useful commeritse usual caveats applyhe viewscontained here atbose
of the authors only and do not necessarily reflect those of Banca d'ltalia.

2 Among other things, the industrial production indeay be successfully employed obtain early

estimates of GNP (see Parigi and Schlitzer, 1995, for an application to Italian national accounts).



coefficient of energy consumptidnin fact, by modelling the relationship between electric
power consumption and industrigroduction according to a smooth transition function, as
suggested by Terasvirta (1994, 1996), we wadle to find a specification thatoes not
include trend terms. We alsanalyzethe predictivepower of models based odatafrom
business surveysonductedby, respectivelyJsco (theltalian national institute fobusiness

cycle analysisland CsC, the research departmentCaoihfindustria (the Confederation of
Italian industry). We then compare andmbinethe predictions of thalifferent models.
According to basic statistics of forecasting accuracy over the whole out-of-sample period (for
example, root mean square error, highest absoluggror and the results of forecast
encompassing $s) the inear model based on electricity consumptioreisds notonly than
eachother model individuallybut also tharany combination oforecasts. However, further
analysisshows that this findingould bemisleading, as indicated by somesults of the
encompassingests. In particular, the use alternative cost functions (rather than the
minimization of squared forecast errorgnd the decomposition of the out-of-sample
forecasting period into different sub-periods reveal that a better forecasting performance is
obtained by using alources of information. Tthis end, wepropose anodelling strategy

that gives better results than a simple combination of the forecasts of different models.

The structure ofhis paper is thdollowing. In the next section we specify, estimate and
evaluate a linear model based on electricity consumptioBedtion 3 we explore alternative
functional forms. After rejecting a log-linear specification, we model the relationship
betweenoutputand the use of electrpower according to a smootfansition specification.
The estimation and evaluation of models based on suiatyare contained in Section 4. In
Section 5 we compare armmbinethe forecasts of thdifferent models, anghropose a
combined model. Section 6 presents the conclusions.

% The relationshifetween electricity consumpti@nd industriaproduction changesvertime because of
the effects oftechnological change. Furthermore, since ah&/ data onelectricity use whichare readily
available refer to total consumption - i.e. including electricity consumed by housemaldson-industrial
sectors of the economy - the relationship with industrial outigytchangeovertime according to changes in
the structure of the economy and household behavior.



2. Alinear model based on electricity consumption

Electricity consumption has been usedfdoecastindustrial production inltaly since
the mideighties(seeBodo and Signorini, 1987, and the references cited). piubdlems
associated with the use of sudhta arewell known. In thefirst place,the data that the
national electricity board (Enel) makes readily availableefer to overall electricity
consumption, not only industrial consumptidiorecasterbave therefore taontrol for other
uses of electripower(mainly those due to households and sieevicesector).Secondly, the
energy intensity of the production processies significantlyacross industriesqeing highest
in metalworking and chemicalBecause of composition effecsnall shifts inthe industry
mix of production, with no change in the aggregatesl of output, may causesignificant
changes in overall electricity consumption. Thirdlye use of electripower as the only
predictor of output corresponds &ssuming aone-factor production functionyhich is
obviously an oversimplification of regroduction processedll these issues haveeen
thoroughly discussed in the literature (8mloand Signorini, 1987, anBodo, Cividini and
Signorini, 1991), where a theoretical rationalization of the use of electricity consumption
data has been provided along with convinciegpirical evidence orheir reliability in

forecasting industrial production.

Accordingly, the general form of the model described in this section is the following:
8 2 -3 .
(1) y=a+ B.enel+Y y, temp+) d timet®( L ¥ dummies, u

wherey is theindex of industrialproduction,ene] is total (industrial and non-industrial)
electricity consumption irthe i-th regional district, temp is theational average weather
temperaturetimeis a trendvariable,dummiesare season@lummy variablesand® (L) is a
polynomial inthe lag operatorL. Variables refer to periog unless otherwise specified/ith
regard to the dependewariable, we have followethe literature and chosen to adjust the

index of industrial production and theelectricity consumptiondata for trading-day
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variations! In the initial specification ofequation (1) weconsidered data oelectricity
consumption separately by regional district, in @tempt to avoidproblems due to
aggregatiori. The data orclimate are included inthe regression irder to control for
households’ consumption of electpower. In fact, most of theariation in households’ use

of electricity is relateddirectly or indirectly, tathe weather (heating during cold weather, air
conditioning duringhot weather, etc.). Morgpecifically,the relationship between electricity
consumption and climate is known to follow a U-shape, with a minimum level
corrisponding to moderate conditions (10°2), and increasing consumption with extreme
temperatures. A third-degree function tohe is included inthe model specification to
capture both the trend obn-industrial electricity consumption atfte long-termeffects of
technological change on industrial energy intensity, if any. Lagged values of the dependent
variableare included to help tacapture short-term dynamics. Finally, dummy variables are
used to capture the strorsgasonality typical of monthlgata onmanufacturingoutput,
particularly in countries like Italy where #ugust, forexample,the level of production is
about a half that of the other months of the year.

Potential interactions between the seasonal and business cycles have recently been
explored by Cecchettkashyap andVilcox (1997).During a boom, the presenceaapacity
constraints can pusfirms to reorganize the pattern of production over yfear and, in
particular, to increase production in off-peak periods. There is another source of interaction
between the seasonal variability@mitputand the state of thieusiness cycle, specific to the
Italian economy. In recent yeaigsdustrial production data adjusted for tradidgys have
been characterized bysérongprocyclical seasonal effect in August and December, due to
the definition of calendar trading days and growing flexibility in the settingolafays
periods by firms. In particular, during expansiofisns tend to reduce thholiday period;
however, such changes aret reflected in the adjustment for workimgys since calendar

4 The index of industrial production adjusted for trading daysysres , is given by:

. : td . . : . . . .
iP aosusten = 1P raw™ tdbase’ whereipgaw is the raw index of industrial productidd,...is the average monthly

number of tradinglays inthe base yearandtd; is the number of tradindgays in montht (see Bodo and
Signorini, 1987, and the Appendix in Bodo, Cividini and Signorini, 1991).
5

t

Overall, there are eight Enel regional districts: Turin, Milan, Venice, Florence, Rome, Naples, Palermo
and Cagliari. The first four districts refer to the North, the remainder to the Center and South of Italy.
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working days are fixed. We therefore included, along with the seasonal dummy variables,
two additional dummy variablesyespectivelyfor the months of August and December,
interacting with a measure of demand presS@eesumably, such variableapture nobnly

the aboverocyclical “spurious” impact ahe adjustment for working daylsut also theind

of effects described by Cecchettigashyap andwilcox (for Italian industrial production,
August and December are typical off-peak periods).

Equation (1) wasestimated over the period 1986.1-1995.4. Otres period, the
evolution of industrialoutput shows significant cyclical variability(see Figurela). The
prolonged expansion difie eighties was followed by a recessiwhich was firstmild (1990-
91) and then deep (1992-19); production recovesteaply inthe years1994-95. The end of
the sample was chosen so as to leave quite a long out-of-gaeniole totest the forecasting
properties of the models. The regressors represeatendricity consumption irthe four
districts of the Center an8outh ofltaly were droppedrom the equation because the
respective coefficientarere notfound to besignificant (not surprisingly, sincemost Italian
industriesare located in the North)Accordingly, to control for households’ electricity
consumption, we used data on the average temperatures in the northern regionbarather
the national averagéhe two measures can differ significantly). Witkgard to theelectricity
consumptiondatafrom the four northern districts, the ndilypothesis of equal coefficients
could not berejected; the equaloefficients hypothesis wasot rejected also for thiagged
values (up to order four) of the dependent variable (see Table 1).

The final specification was the following:
4 2 ) 3 ) 4 y
2 =a+BY enel+ Sy, temph+ § 8, timerpy 2=+ dummies
(@) y le . Zlv P Zl | “Z 4 y

wheretempnis the average monthlyeather temperature in the northern regions. Guezall
fit of the model isgood and the misspecificatiotestsgive satisfactory resultdhe non-
stationarity of some variablg®amely, industrialproduction andelectricity consumption)

®  Thetwo dummy variables are linked to thgnamics of the index of orders released by Istat (called

ordershenceforth). The firsstummy variable is always zero except in Augugien it is equal t@rders.,-
orders 3; the second dummy is always zero except in December, when it is equagig,-orders.s. Similar
dummy variables for the other months were not found to be significant.
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does not seem toreate particulaproblems, sincehe residualsare clearly stationary, as
shown by the result of the augmenteatkey-Fuller test. Furthermore, the Chow test of

predictive power over a 12-month period gives a satisfactory result.

By using a rolling regression technique e@mputed one-step amdo-stepaheadex-
ante forecasts for each month over the period 1995.5-1997.9. The predatted closely
track thereal ones (the correlatioroefficient is equal t®.997; see Figure 1B)Over the
whole period, the forecasts are clearly unbiased; the one-steprabaafdrecast error (ME)
is -0.3 per cenand the rootmeansquare error (RMSE) igist 1.4 per cent (se&able 2,
second column)which is an excellentesult compared with earlier literature. Ttweo-step
ahead forecasting performance is also very satisfactory. The prediat®ssll unbiased,
with a mearerror of 0.4 percent; the RMSE is 1.5 percentage poiotdy one tenth of a

percentage point higher than the one-step ahead forecasts (Table 2b, second column).

3. Alternative functional forms

3.1 Log-linear versus linear specification

The most common alternative to andar specification ishe log-linear form,
particularly for economic variables which evolve over time in an exponential way. This
seems to behe case ofitalian industrialproduction during the most receakpansions.
Accordingly, we considered a specification suci{Zgsbut with thelogarithms of industrial
output and electricity consumption. Aftedhe usual specification search we estimated the

following equation:
4 2 . 3 o 4 |y . _
(3) ly=a+BY lene| +Y y, temph+ Y d, timetpy) - +dummies y

wherely andlene| are thdogarithmsof, respectivelyy andenel, and the othevariables are
as definedabove. As with the tiear modelthe diagnostics results are satisfactory (Eaiae

4); the forecasting performance is, however, a little worse, with an RMSE equal to 1.7.

" A brief string of non-negligibleforecast errors is concentrated the beginning of 1997, in the

neighborhood of the most recdntning point in thecycle of ltalian industrial output (Figure 1chiowever,
although the sizevas underestimatethe sign of variation of the dependent variabld-@bruary 1997 was
correctly predicted (see Section 5).
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In order to compare thenkar and log-linear specifications, we consider&b@Cox
transformation off andenelwith different parameters for the two variables. We estimated:

AL

-1 enel? -1
@ y=" -

andenel=————;
1 )\2

whenA; (i=1,2) is equal to 1, the lineapecification has to be used; wherO0, the log-linear

form is to be preferredur estimates over the period 1986.1-1995.4 )éirec 0.82 (0.35),

-~

A, =1.21(0.39)with the standare@rrors in parentheses, = 0.68 (p-value 71 per cent) is
the joint test for thehypothesis thathe two coefficientsare notdifferent from one; it is
distributed as &%(2). As can be seeour resultsclearly suggest that therlear specification

has to be preferret.

3.2 A smooth transition model of industrial output and electricity consumption

We extended ouanalysis otthe fuctional form by focusing othe cubictrendincluded
in (2). In particular, we addressed the question of wiad of non-linear behavior is
captured by the third-degr@elynomial of timeand whether there is a more appropriate way
of modelingit, possibly improving the explanatogowerand forecasting performance of the
model. In general, univariate non-linear models have been used successfully in the literature to
capture theasymmetries that characterize outfluctuations (for a review, see Granger and
Terasvirta, 1993).0Our case is somewhdifferent, since asymmetrical cycles of industrial
production are likely to beaccompanied, at least to some extent, by corresponding
fluctuations in electricity consumptiorlowever,non-linear models caprovevery useful in
capturing thedynamics ofthe link between théwo variables.Here weconfine ourselves to
the class ofsmooth transition regressiq®TR) models, which have recentbttracted the

attention of economists after therk of Timo Terasvirta andthers (sedin and Terasvirta,

8 The same resultas obtainedvith the tesiproposed by Andrews (197andmodified by Godfrey and

Wickens (1981). A sort of rollin@ox-Cox specification was estimated over differeamtple periodand the
linear specification continued to be preferred.

°® One class of non-linear parametmiodelsthat hasbecomencreasingly popular in recent yearstist

of neural networks, whictlerivetheir namefrom their alleged analogy tthe way the human braiprocesses
information. However,though fairly powerful andflexible, neural networkmodels requirghe estimation of

an extensive number of parametarsl areherefore potentially unstable, unlike other families of parametric
models.
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1994, and Terasvirta, 1998) These models provide fiexible generalization of switching
regression models, by allowinfgr a smooth transition fronone regime toanother. The
transition variable can be time any observableconomic variable. Ithe former case, STR
modelsrepresent one of the latest developments in the literature on structural breaks in
parameters originating ie classicalork of Chow (1960). Furthermorsince this class of
model is locally linear, iprovides a suitable alternative agambich the linearity assumption

can be tested.

We performedinearity tests on the parameters of (B@spectively with andvithout
trend terms. Wentesting fornon-linearity withsmooth transition regression models, rioé
hypothesis is that the relationship among the variables is described by a linear model:

(5) Y, = XTT+ 4.

Initially, y; is defined as before andis the vector ol regressors on the right-hand
side of (2), withthe exception of the trend terms. The alternatiyeothesis is thahe model

is non-linear:
(6) Y =W+ x8H7)+ y,

whereF is a bounded, continuous transition function. The transitatablez can be any
stochastic, stationary econonviariable, belonging onot tox, or time.Two common forms
of F employed in the literature are the following logistic functions:

@) F=(+expty @ —a))*
and
(8) F=(Q1+expty @ -a,)z -a,)”

called, respectively, the LSTR1 and LSTRibdels (Terasvirtal996). They are clearly
bounded between zemnd unity;the coefficienty corresponds to the speed of transition

between théwo parameter regimesyhile the a coefficients indicate when, ime range of

0" Earlier contributions on relatddsues include Bacon amiatts (1971), Farley, Hinicand McGuire
(1975), Tsurumi (1980), Ohtani, Kakimoto and Abe (1990), Varoufakis and Sapsford (1991).
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z, the transition takes place. In the literature on structural change the trawariavie is
typically time, which is also a suitable variable when dealing wlighamic models of a
stronglycyclical variablesuch as industrigilroduction (seeLin and Terasvirta, 1994, for an
application to Dutch data).

Recent developments in the literatin@e shown that somewhat generalizests of
linearity for models like (5), wheithe alternativénypothesis is specified as @éguation (6) -
combined with equations (7(8) or otherogistic functions - can be carriedit through the
estimation ofthe following linear auxiliaryregression (se&in and Terasvirta, 1994, and
Terasvirta, 1996):

9) Vi = XAt (X DA +(XE) A, + (X E) A+ 4.

Linearity - which, in thiscontext corresponds to parameter constancy - caedbed
simply by assessinthe statisticakignificance ofthe vectors A(i=1,2,3) through standard F
tests'’ The testxan be applied tthe wholeset ofvariables or to some subsetsvafiables
only, with a gain inpower. In the latter case, the paramet@rs; equation (6)and the
corresponding parametexsin equation (9) are set to zeaqoriori, and the tests a@&rried
out onthe remainingparameters. lrour case, we focused on thedectricity consumption
variable, which is by a long wake key determinant ofhe dependent variable, ardtA; =

(0,0, 0, ..Aieney --., O)for i = 1,2and 3, where\ ¢ne; IS the parameter corresponding to the

4
variable§ ene] .

We followedthe testing procedure suggested by Terasvirta (18&ftly different
from that proposed byin and Terasvirta, 1994hich is also potentiallyhelpful for
specifyingthe STR model, if linearity isejected. The first step is a rather genéest of
linearity, corresponding to the null hypothesis:

' The distribution of the test statistics related to equation (9) is analyzed in the literature under the
hypothesis of ybeing stationary, which is not tloase in our specificatiotdowever,industrial production
andelectricity consumptiomre clearly cointegratednd theresiduals of equation (2) are stationandwell-
behaved(further evidence, in addition tthe mentioned results of the augmeni@idkey-Fuller test, is
available from the authors).

2 |n the early stages of our research we included lagged valutee alependent variable in the set of
variables to be tested for parameter constancy, and did not reject linearity.
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(10) Hoi)\1=)\2=)\320.

Results are reported in Table 5a. Since this hypothesis is clearly rejected, a specific
form of the transitionfunction has to be chosen. To this end, we performed a sequence of

nested tests corresponding to the following hypotheses:
(11) Hos: A3 =0;
Hox A2 =0 |A3=0;
Ho: A1 =0 ]A2=A3=0.

All these hypotheses artearly rejected by data. W regard to theform of the
transition function, Terasvirta (1996) suggesig anLSTR1 modelunlessthe rejection of
Hos is the strongest. The results obtainechdbconvey anyclearcut indication ithe matter,
sincethe rejection of eaclhypothesis is equallgtrong. We chose th®llowing LSTR1
specification, which seems preferable on account of its increased empirical tractability:

4 2 4 4
_ - Yei :
(12) y=a+BY enel+ Yy, temph+py ==+n0F(t)) enel + dummies u
; Z Z 4 Z

whereF(t) is defined as in (7) andig equal tdime.*

The results of thestimation of equatio(iL2) arevery similar tothose of equation (2)
(see Tables). The model appears correctpecified;the estimates of the parameters of the
non-linear termare highly significantand havethe expectedign. The model is alstairly
stable according to the Chaest ofpredictivepower. The shape of the estimated transition
function F(t) indicates thathe change ofegime is gradual andccursroughly inthe middle

of the sample period (see Figure 2).

It is interesting to compare the role of trend in equat{@snd(12). While the trend
variableenters the former equation as an independent regressor, in eq@alionappears
only as atransition variable. If @arend isincluded in equatiorf12), with polynomials up to
the third order, the correspondingstimates ar@ot statistically significant. Orhe other

13 We also estimated an LSTR2 modeth the constrainti;=a,; the results, including the forecasting
performance, were not substantially different.
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hand, when weested fomon-linearity in (2) - in this case, kt equationg5) through (9) is

the vector ofall regressors appearing () includingthe trend terms - the nuilypothesis of
linearity could not be rejected (Table 5b). Altogether, these results suggest that the
relationship between industrial output and electricity consumption evolves over time in a
way which can be properly described bgraooth transition model. The role of the third-
degreepolynomial of time inequation (2)can be seen as good approximation of this
dynamic relationshipindeed, the approximation is gwod that, when we tested for non-
linearity of energy consumption in equation (2), we did not find it.

These indicationare confirmed onthe forecasting groundvhich is what matters most
for the purposes ofhis paper. As with the tiear model, we evaluatetie forecasting
performance of equatiofi2) over the period 1995.5-1997A8th a rolling regression. The
results are worse than those of the correspondiegiimodel (Table 2, third column). The
one-step and two-step ahead percentage RMSEesgpectively,l.7 and 1.8; thesize of the
mean error is large (respectively, -1.1 and -1.4 per cent) and the fraction of RMSE due to
bias is very high,around fifty per cent.Overall, allowingthe coefficient of electricity
consumption to evolve (increasmjertime seems to result in a clear tendencguerpredict
industrial output. In theremainder of thigaper, therefore, we ilvconsideronly the linear
version of the model based on electricity consumgfion.

4. Models based on business survey data

The use obusiness survegtata for short-ternfiorecasting has increassinificantly in
recent years. In Italy asefulsource of updateshformation on manufacturing activity is the
Iscomonthly survey among about090 industrial enterpriseBusiness managers are asked
a number of qualitative questions concerning, amotiger things, the currentevel of
production, orders and stocksfofished goods, and short-term forecg8tst months ahead)
of variations inoutputand orders. In order t@uantify the answers to these questions, we

14 This conclusion, of course, may depend on the particspacificationshat weconsidered. Different
results might be obtained by using alternative models. In particular, since industrial produadtsectricity
consumption are cointegratedne mayspecify amodel in first differences which takesto account the
cointegration relationshipetweerthe variables.This is a promisingpic for future research; ware grateful
to Timo Terasvirta for pointing this out to us.
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have used the net percentage balance between positive (“high” level, “increase”) and
negative (“low” level,“decrease”) replies. This isne of the mostommon methods of
extracting quantitative information from qualitative surveys, chdserits robustness and
simplicity; other methoddave been mposed in the literature, bdhbey typically provide

similar results (see foexampleVisco, 1984, and Pesaran, 1987, for a review). In the case of
Italian industrialoutput, theuse of surveylata was introduced odoand Signorin{1985,

1987) andGiovannini (1985). Models based osurveydatacan be particularly useful in
predicting turning pointssince by definitiorthe variablesused react faster tany change in

the business cycle. Econometric models of this Kiypically include a number of survey
indicators, plus seasondummy variablestrend and somealynamics. Wecarried out a
specification search in the usual estimation period, and chose the following model:

¢ (ord + prodex— iny,_, N

t
(13) y=a+B% 3 y > ordex
1=4 i=tg

3
Uy T 4B (Y~ Yig) * dummies:

1=1

whereord is the level ofcurrent ordersprodexis 3-4months ahead expectations concerning
production,inv is thelevel of stockandordexis 3-4months ahead expectations concerning
orders(all variablesare net percentage balancesh@ corresponding replies). Rather than a
trend, in order to capture theng-term behavior of industri@utput wefollowed Gerli and
Petrucci (1995) and used tlaecumulation oforders expectationssiven the definition of
orders expectationgthis variable correspondsroughly to variations inorders), its
accumulatiorover time should contain the palsehavior of demand and, hencapture the
long-term behavior obutput. It does so in a rath#éexible way, unlike a deterministic trend,
which typically has undesired forecasting propertieshiea neighborhood of a turning point.
The null hypothesis of equal coefficients amang laggednoving averages afrd, prodex
andinv (the latter with a negative sign) wastedand largelyaccepted by the data. Asual,
some lagged values of the dependent variable help to capture the short-term dynamics.

The estimates of equatiqth3) are reported ifiable 7. The overalit is goodand the

coefficients of the survey indicators are highly significant, confirntingy importance of
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these variableddowever, the result of the Chawst forpredictivepowerindicates that the
stability of the model is less than optimal. As with previous models, we analyzed the
forecasting performance with rolling regressionsghie out-of-sample period 1995.5-1997.9
(Figure 3). The RMSE andbther statistics based on forecastors arehigher thanthose
featured in themodel based on electricity consumption (TaBle The two-stepahead
forecasting accuracy is fairly similar tbe one-step aheadhich is anactractive feature of
models with survey data (see also Schlitzer, 1993).

A further source ofnformationfor short-term forecasts dfalian industrialoutput is
the monthly survey of mediunand large enterprises carriedt by CsC among 11@rms;
managersare asked the rate ehange of theifirm’s production in the current month, is
compared with the corresponding period of the previous yearddtaeare then elaborated
by CsC through aimple,non-econometric procedure. First, the answers are weighted by the
firms’ salesand aggregated to obtain sectoral estimates ofjtbeth rate of production;
these estimates are then weighted by sect@lake added in order tmbtain the predicted
growth rate of aggregate production. The correspondahge of thelevel of the production
index isfinally adjusted by working days. Wittegard to forecastingbility, the CsCmodel
has a lowepne-step ahead RMSE than the Istadel and aimilar two-stepahead RMSE.
However, most statistics indicate that thedel based othe CsCsurvey is outperformed by
the model based on electricity consumption.

5. Comparison and combination of forecasts and a combined model
5.1 Comparison of forecasts

All the specifications described ithe previous sections show good forecasting
performance according to usual, standard statidflose specifically, theyare characterized
by unbiasedorecasts, withvery low valuesfor RMSE, MAE and thdike. Moreover, the
results of themodel examined@reclearly bettetthan those obtained byumivariate ARIMA
(0,1,1) (0,1,1)model used as a benchméatk Simple inspection ofhe basic statistics based

> The modelhas non-zeranoving average parameters at lagantl 12, withone sequentizand one
seasonal differentiation. It is the so called “airline model”, whiabbeen chosen ahe best specification in
the period of interest according to the Hanmawl Rissanen (1982) procedure (see Gorapd Maravall,
1996, for a description of the procedure employed for the specification search).
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on forecast errors suggests that timedr model based on electricity consumption is to be
preferred (see Tabl2). However,this observation lackegorous statistical .(gpport: in the

case of the RMSE, faexample, it isnot straightforward to assess whether thigerence in

the value of the statistic across specifications is statistically significant. In order to
investigate this issue, we hageemputed a tesstatistic proposed biiebold and Mariano
(1995) andsubsequently modified by Harvey, Leybourne and Newbold (1997 prfail
samples. The advantage of thisst (hereaftercalled MDM) is to provide a statistical
procedure to compare the forecasting accuracy of two models that is robust to the forecasting

errorsbeing non-Gaussiamon-zeromean, seriallycorrelated angimultaneouslycorrelated.

More specifically,the nullhypothesis othe MDM test isgiven by E[g(q)— g(g)] =0, where

e; andey; are the forecast errors wfo different models, and(e) is some function of them;
in particular, by choosing a quadratic loss function, the MDM test may be setssaofthe
difference between the RMSE statistics.

Table2.1 shows the results for tivarious models (including a combined mowssiich
will be discussed later). The striking result is thia predictions of theifferent models do
not appear to be clearly different from each other, withettoeption of those provided by
the ARIMA model. Thefinding of only milddifferences idikely to bedue to the fact that all
forecasts are strongly correlated with tinee value, so that it is statistically difficult to
distinguish among them. To ass#ss superiority of a particulaget ofpredictions a sort of
forecastencompassing analysisay be appliedFor this purpose, we computed the tests
proposed by, respectively, Chong and Hend986) andrFair andShiller (1990); wealso
considered another version the MDM test proposed bidarvey, Leybourne and Newbold
(1998; EMDM hereatfter). In the latter case thststatistic issimilar tothe MDM test, but
the nullhypothesis is given 15{(e, - ¢) @ }=0. In other words, the tesivestigates whether

the covariance between the forecasengrs oftwo different models is equal ero.When

the nullhypothesis idgrue, the forecasts of tHest modelare said to encompagsbosefrom

the second model. The results of the thests,with regard to one-step ahead forecasts, are
shown in Table 3. Therlear model based on electricigta isfound to encompass most of
the othermodels;the mostoticeable exception the CsC model, according to the Chong-
Hendry and EMDMtests.Similar results were obtained wittwo-stepahead forecasts (see
Table 3.1). In this case, the energy-basewdel encompassdbhe othermodels, with the
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exception of the Iscanodel, according to the EMDNest. On the onéand, therefore, the
encompassing analysis seems to contineview thatthe linear model based on electricity
consumption is to be preferred. On tteerhand, however, some of the results sugtiest
gains in terms of forecasting performamoay be obtained by also usitige datafrom the
Isco and CsC surveys. We shall now address this problem.

5.2 Combination of forecasts

It is well know that forecasts obtained bgmbining predictions of different models
based on independent information sets wm@ally superior toindividual forecasts. In other
words, in most cases onean improvethe best single forecast bgombining it with
predictions from different models, everthibse predictions are less accurate on a one-to-one
comparison base (see, fexample, Granger and Newbold986, andClemen, 1989).
Basically, combiningforecasts is onavay to aggregatenformation in order to reduce
uncertainty, or increase accuracy: “just as investoesitediversified portfolios to reduce
risk, a combinedorecast can bthought of as amaller risk of an extremely larggrorthan
an individualforecast” (Winkler,1989, p. 606)Giventhe evidence provided in the previous
section, we considered several combinationshef forecasts provided by the thrbasic
models described above (equation (2), equafitd) and the CsC model), iorder to
maximizethe forecastingability from all the information available. We experimented with
several methods afombiningforecasts, with botlixed and variable weights. Ithe latter
case we used one of thaimweighting schemes pposed in the literature (see Granger and
Newbold, 1986):

l

] /BB eEY

where W is the weight to bapplied tothe forecasts fatime n produced by theth model,

n .0
(14) W(I) _H (I)

e is the forecastingrrorassociated with thieth model andV is thenumber of forecasting
models:®

6 We only report the results obtained witk5, which were better than those obtained witB.



22

The basic statistics relating to one-step ahead predictionsepoeted inTable 8. The
most surprising finding is that combining forecasts yields amdyginal improvements on
the performance of the model based on electricity consumption, in spite of an extensive
search for the mogffective weights. We consideréldreedifferent combinations: equation
(2) with equation(13), equation (2yvith the CsC model, and the thremdelstogether. For
each combination weconducted apreliminary search for the weights thahaximize
forecasting accuracyanalyzing fixedand variable weightsThe results werevery similar
across the threeombinations considerethe best combination is characterized by an RMSE
of 1.3 per cent, i.eonly slightlylower than that featured by equati(®) alone. Also, in most
cases theslightly betterroot meansquare error i@ssociated with and compensated by a
worsemeanerror (ME) orhighest absoluterror (HAE). Interestingly, the results shokat
flexible weighting schemes, such as that of equafial), produce forecasts that, in terms of
predicting accuracy, are equal to worse than those obtainedth the sinple arithmetic
average or other fixed weights.

Overall, therefore, the evidence found suggests that the vacommbination schemes
do notlead to a btter forecastingperformance than the goe linear modelbased on
electricity consumption’ This finding is puzzling irseveralrespects. First, it is contrary to
common results inthe forecasting literature, asentioned above. Second, aar specific
case it is at oddwith some results of thencompassing analysis. To investigateher if
and how theadditional independent information provided ttae Iscoand CsCdatacan be
usefullyexploited, we extendealur analysis in twowvays. First, wedivided the out-of-sample
period into three subperiods, correspondingdifferent phases ofhe business cycle, and
compared the performance of tmeodels in each of them. We chodlee following
subperiods: 1995.5-1995.12, characterizectdaytinuinggrowth; 1996.1-1996.12, a period
of stagnation, and 1997.1-1997.9, a period duvihich production recovered (Figure 1a).
The results differeavidely across periods and shed light thie relative performance of each
model (see Tablg). In general, the edence found shows that forecastimglustrial

17" One possible reason for this result is that multicollinearity amonfptheasts of different models may
result in unstable weights, which farn produce combined predictiotisat areconsistently lower ohigher
than theindividual forecast¢seeWinkler and Clemen1987). Improvements in forecasting accuracy due to
combined predictions were however found in previ@sgarch on the Italian production indsge Bodo and
Signorini, 1987, Annunziato and Malgarini, 1993, and Schlitzer, 1993).
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production ismuch easier during period of continuinggrowth (such as thérst subperiod)
rather than inyears characterized by either stagnation affezwth or recovery after
stagnation. The most interesting result, however, is that in each subperidebsthe
forecasting performance is obtained by a differemividual model. During the first
subperiod, the CsC model provides the most accurate forecasts (with an RMSE 8diial to
although the performance of equati@) is only slightly worse; in the second subperiod the
best predictions, by far, are those of thedel based on electricity consumptidimally,
equation (13) is the most accurate forecastering the recovery. However, imach
subperiod the accuracy cdmbinedforecasts istill equalto, oronly slightly beter than that
of the forecasts of equation (2one. Therefore, on the ohand we found that each of the
individual modelshas forecasting properties that canvieey useful in a particular phase of
the business cycle (this monsistent with the results of tkacompassingests); on the other
hand, it is confirmed thahe simple combination of forecastsnist thebestway to exploit

these properties.

Further evidence of the potential contribution of eautividual model to the
prediction of industriaproduction come$rom the analysis of anore comprehensiveet of
evaluation criteria. In particular, we considertdte performance of eachmodel (and
combination of forecasts) wittespectto: (i) the number of absolutrecast errors greater
than a given size; (iifhe prediction of thesign of variation ofthe dependent variable
(seasonally adjusted) the neighborhood of a turning point, aig) the prediction of the
sign of variation ofthe dependent variable the whole out-of-sample period. The results
obtained conveignificant additional information othe merits of each model (s@éble
10). With regard to thdirst criterion, equation(2) is found to outperform thether two
individual models, but is on turnclearly outperformed by the combinerecast, which
includesthe predictions oéll three single models. Consider, xample, forecastingrrors
equal to or greater than 2 per cent ofirean ofthe dependent variable the out-of-sample
period. The number of forecastiegrors ofthis size associated with the energy-basedel
is six; the correspondingumber is lower byne third if the forecasts of the thremdels are
combined.Similarly, if the critical size ofthe error is set to 2.5 per cent, thember of
forecastingerrorsequal to or greater than tloeitical size associated with equati¢?) is
double that of therrors associatewith the combinedforecast. On the contrary, the second
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criterion, i.e. theability to predict turning points, shows rfferences amonghe forecasts
compared. Thesimulations performedgshow thatall the individual modelswould have
correctly predicted theign of the variation inndustrial output in theneighborhood of the

two most recent turning points (January 1996 and February 198#ally, we analyzed the
ability to predict thesign of the variation on average, over the wisample. Although the
percentage of corregiredictions is quitéhigh (around eighty per cent or more) for all
models, equatiol3) performs considerably better than the others (it correctly forecasts the
sign of variation in ninetyper cent of the periods). On@gain,the performance of the
combined forecasts isonly slightly betterthan that of themodel based on electricity
consumption (and is worse than that based on Isco data).

Overall, the evidence reported ihis section suggests tHellowing. As one would
expect, a sufficientlyargeset ofevaluation criteria showthat, consistently with some of the
findings of the encompassing analys$ige information contained ilscoand CsC survegata
is potentially very useful tpredict the futurdehavior of industrigbroduction. However, the
results also show thabmbiningthe forecasts of thiadividual models isiot thebestway to
exploit all the information available, irspite of theusual and well-known properties of
combinedforecasts. The forecaster has thereforefind an alternative way touse the
information provided byall the different sources. An attempt ihis direction is described in
the next section.

5.3 A combined model

Exploring alternative forecasting strategies, eaenbined electricity consumption and
Isco data in thesame mode(at this stage we couldot include the CsCdata, since they
correspond to non-econometric estimates of the depemdeable itself).The speification
is the following:

ord,_
3

4 2 6
(15) y=a+BY enel+ Yy, temph+d timeo +1ny,, +dummies y

18 With regard to the shamecovery inindustrial output ofFebruary 1997the sign of variation isorrectly
predicted by all models but the size is underestimated.



25

whereall variablesare defined asefore. The results of thestimationare reported iTable

11. Theoverall fit of the equation is better than that of equation (2), and the @stwor
predictivepower shows &lear improvement. This result is confirmedthe statistics about

the forecasts (see the corresponding row of Table 8). With regard to ordrstap forecasts,

over the whole out-of-sample period the RMSE.& per cent, i.e. as low as that of best
combinedforecasts, and the HAR.4 per cent) igonsiderablyiower than that oany other

single or combined forecast; the two-step ahead RMSE is also remarkable, being equal to
just 1.3 per cen{Table 2b).Also in this casehe MDM test on the eality of the RMSE

does not showany significant differencevith respect to themodel based on electricity
consumption. However, at least where one-step ahead predictions are concerned, the latter
model is encompassed by equatj@b). Thegeneral improvement is confirmed by looking at
both the three different subperiods and the alternative evaluation criteria previously
described (Tables 9 ariD). The RMSE associatedth equation(15) is lower than both

other models and combinations of forecasts in the second and, especially, the third
subperiod, while it is slightly worse in the first subperiod. None of the foreob&imed

with this combined model generates an error equal to or greater than 2.5 per centezfrthe

of the dependent variable.

To useall the information available, wdinally combinedthe forecasts obtainedith
equation (15with those of the Cs@odel. The results weextremely satisfactory. Over the
whole out-of-sample period, the one-step ahead RMSE is as lbvt agr cent; in thérst
and second subperiods it is dowm) respectively,0.7 and 0.8 per centwhile in the third
subperiod it is highebut still among the best performances for thaécific samplethe sign
of variation of the dependentriable is correclypredicted in ninety-threper cent of the
periods.

The above exercise should be interpreted as an effort to showallttieg information
provided by independent sources orgizen phenomenomay be ofsome value and
therefore should be used. The particulaanmer in which we combined electricity
consumption, Iscand CsCdata isconditional onthe period we considered. Tleeucial
point is thattypical problemsencountered in forecasting practi@llinearity, uncertainty,
instability) may besomehow counteracted by a propgembination of different predictions.
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The combination rule has to lbebust to thesg@roblems and should change according to
circumstances; in this regard, the experience of the forecaster may play a crucial role.

6. Conclusions

Forecasters of Italiamdustrialproductionfacethe problem offully exploitingthe rich
information provided by several independsatirces. Wh respect to thexisting literature,
our main contribution is two-fold. First, wénave focused orthe functional relationship
between industrigbroduction ancelectricity consumption. This relationship has been found
to be highlynon-linear. In particular, we show that it canvial approximated by a smooth
transition regression modal la Terasvirta (1994, 1996Although we obtained no gains in
predictive power, the results suggest that some improvement may indeed be obtained by
other specifications within that class of model or by varying coefficient estimators (e.g.
Kalman filter). Another promising area for future research is the interaction between
seasonality and thieusiness cycle. We ontpuched orthis issue by includingomead hoc

dummy variables in the regressions.

The other main result of thispaper concerns theptimal use ofall the available
information. We compared threenodels thatuse, respectively, data on electricity
consumption andiatafrom Isco and CsC business surveys. Otlee whole out-of-sample
period, simple statistics based on forecasén®rs indicate that theodel with electricity
data is to be preferred. On the othand, the results of the forecastcompassingnalysis
suggest that the information content of Isco and CsC datAetano improvehe forecasting
performance. Quite surprisinglyiowever, a combination dhe predictions of the three
models was found tgield only marginalimprovements, contrary to common results in the
forecasting literature. We therefore further investigateddfagive merits of each model. For
this purpose, welivided the out-of-sample period into three subperiods; we atstyzed a
larger set ofevaluation criteria. The resultdearly show that the data from Isand CsC
surveysmay provide asignificant additionalcontribution to the prediction oindustrial
output. They also confirmedhat, in spite of the search for the mesfective weights, a
simple combination of forecasts wast thebestway to exploit this potential contribution, at
least in the period considered. In the search for an alternaideelling and forecasting
strategy, we found that theptimal use of althe information availablevas achieved by
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specifying aneconometric modelvhich includesdata onelectricity consumption andata
from the Iscosurvey and thesombiningthe forecasts othis model withthose of the non-
econometric CsC model.



Table 1

LINEAR MODEL WITH ELECTRICITY CONSUMPTION - EQUATION (2)
ESTIMATION AND DIAGNOSTICS
(1986.1-1995.4)

Variables Coefficients t-statistics
>enel 0.008 12.5
time 1.480 35
time? -0.011 -4.0
time® 0.001 4.2
tempn 1.088 55
temprf -0.048 -6.3
moving average of y 0.284 4.12
R?=0.99
S.E.=1.19

number of obs. =112

Misspecification tests
(percent p-value in parentheses)

Autocorrelation Heteroskedasticity
DW 1.87 ARCH;, 9.94 (62.1)
LMy.1o 1.04 (42.4)
LB1, 28.65 (23.4)
General specification Predictive power
RESET 0.35 (70.5) CHOW 1.69 (8.0)
Unit root test on residuals
ADF -6.9

Note The dependent variablend electricity consumptiordata areadjusted fortrading days.

Regression also includes a constant and seasonal dummy variables.

Legend S.E. standard error of regression; DW Durbin-Watson statistig;;kModified Lagrang
multiplier test for residual autocorrelation of ordethtough 12, F(12,79); LBjung-Box test for
residual autocorrelatiory’(24); CHOW Chowtest of predictive power ovehe period 1995.5
1996.4, F(12,103); RESET test of functional form, F(2,88CH;.1, autoregressive conditional
heteroskedasticity test for residuals of ordehrbugh 12 x%(12); ADF augmented Dickey-Fuller

test (1% critical value: -5.8).

1%




Table 2

ANALYSIS OF FORECASTING PERFORMANCE
(1995.5-1997.9)

a) One-step ahead

Statistics (percentage values) Arima Eqg. (2) Eq. (12) Isco CsC Eq. (15)
RMSE 2.9 1.4 1.7 2.0 1.7 1.3
ME -0.5 -0.3 -1.1 -0.1 -0.8 0.6
MAE 2.0 11 1.4 15 1.4 1.0
HAE 7.6 3.2 4.0 5.4 3.5 2.4
Regression coefficient of actual 1.013 1.013 1.015 1.019 1.00 1.01

on predicted

Fraction of RMSE due to:

bias 0.02 0.05 0.48 0.00 0.22 0.25
difference of slope from unity 0.01 0.03 0.02 0.02 0.00 0.01
residual variance 0.97 0.92 0.50 0.98 0.78 0.74

b) Two-step ahead

Statistics (percentage values) Arima Eq. (2) Eq. (12) Isco CsC Eq. (15)
RMSE 3.1 15 1.8 2.1 2.1 1.3
ME -0.5 -0.4 -1.4 -0.1 -0.9 0.7
MAE 2.4 1.2 1.6 1.6 1.9 1.1
HAE 7.2 3.3 4.1 5.4 3.6 2.6
Regression coefficient of actual 1.013 1.008 1.012 1.017 .995 1.007

on predicted

Fraction of RMSE due to:

bias 0.03 0.07 0.57 0.00 0.19 0.29
difference of slope from unity 0.00 0.01 0.01 0.02 0.00 0.01
residual variance 0.97 0.92 0.42 0.98 0.81 0.70

Legend: RMSE root mean square error; ME mean error; MAE mean absolute error; HAE highest absolute error.




Table 2.1

Arima
Eqg. (2)
Eq. (12)
Isco
CsC

Arima
Eqg. (2)
Eq. (12)
Isco
CsC

Note According to Harvey, Leybournend Newbold (1997), in small samples the statistic is distributed
Student t with n-1 degrees of freedom, where n is the number of forecast periods.

MODIFIED DIEBOLD-MARIANO (MDM) TEST
(1995.5-1997.9)

a) One-step ahead

Arima Eq. (12) Isco CsC
- - 2.4 2.2
-2.4 -15 -1.6 -1.8
-2.0 - -0.7 -0.3
- - - 0.7

b) Two-step ahead

Arima Eq. (12) Isco CsC
- - 2.7 2.1
-2.8 -1.1 -15 -1.9
2.1 - -0.5 -1.0
- - - -0.1

Eq. (15)

2.5
0.7
1.7
1.7
24

Eq. (15)

2.6

-2.3
-0.5
0.3
0.3

as a




Table 3

Eqg. (2) and Arima
Eqg. (12) and Arima
Eqg. (2) and eq. (12)
Isco and Arima
Isco and eq. (2)
Csc and Arima

Csc and eq. (2)
Csc and Isco

Eqg. (15) and eq. (2)
Eqg. (15) and Isco
Eqg. (15) and Csc

Eqg. (2) and Arima
Eqg. (12) and Arima
Eqg. (2) and eg. (12)
Isco and Arima
Isco and eq. (2)
Csc and Arima

Csc and eq. (2)
Csc and Isco

Eq. (2), Isco and Csc
Eqg. (15) and eq. (2)
Eqg. (15) and Isco
Eqg. (15) and Csc

Eqg. (2)
Eq. (12)
Arima
Isco
CsC
Eqg. (15)

(1) The table shows White-consistent t-values of the estimates of the coeffigiesutsla, in the regression:
(YY) Yro = constant +a; (PREVA-Yi19)/Yio + 0o (PREVZ2-Yy19)/Y112, Where PREV1 and PREV2 are 1

(1995.5-1997.9)

Arima Eq. (2) Eq. (12) Isco
(a) Fair-Shiller test
0.8 13.7 - ;
-0.2 - 11.6 -
] 2.4 0.3 ;
2.2 - - 5.7
- 8.0 - 0.1
0.1 - ] ;
; 4.6 ; -
- - - 1.6
- 0.5 - -
: - - -0.8
(b) Chong-Hendry test
0.1 (09) 09 (10.2) - -
0.1 (0.4) - 1.0 (11.3) -
- 03 (8 0.8 (2.4) ;
-0.5 (-1.9) - - 15 (6.1)
. 0.8 (6.2) - 0.2 (1.5)
-0.2 (-1.5) - - -
- 0.7 (3.9) ; -
- - ; 0.2 (0.8)
0.7 (3.7) 0.1 (.4)
- -0.1 (-0.1) - .
- - ; 0.1 (0.5)
(c) Encompassing test (EMDR1)
0.7 - 0.4 1.9
1.0 2.5 - 2.3
- 2.9 3.0 2.7
-1.5 2.3 2.3 -
-0.8 2.5 2.7 1.6
1.1 2.0 2.4 1.1

COMPARISON OF ONE-STEP AHEAD FORECASTS

CsC

1.2 (8.5)
0.3 (1.9)
0.8 (4.2)
0.3 (1.2)

0.2 (1.8)

2.0
15
2.6
1.9

2.2

forecasts produced by the two models being compared (see Fair and Shiller, 1990).

(2) The tableshows estimates (White-consistent t-values in parenthes#sg obefficientsa; anda; in the

regression: Y= constant ;*PREVY; + a,*PREV2 (see Chong and Hendry, 1986).

(3) See Harvey, LeibournendNewbold (1998). In small samples the test statistic is distributed as a Sty
with n-1 degrees of freedom, where n is the number of periods for which forecasts are available.

Eq. (15)

1.0 (3.3)
1.0 (7.7)
0.8 (5.6)

3.5
4.6
2.8
2.4
2.8

he

dent t




Table 3.1

COMPARISON OF TWO-STEP AHEAD FORECASTS

Eqg. (2) and Arima
Eqg. (12) and Arima
Eqg. (2) and eq. (12)
Isco and Arima
Isco and eq. (2)
Csc and Arima

Csc and eq. (2)
Csc and Isco

Eqg. (15) and eq. (2)
Eqg. (15) and Isco
Eqg. (15) and Csc

Eqg. (2) and Arima
Eqg. (12) and Arima
Eqg. (2) and eg. (12)
Isco and Arima
Isco and eq. (2)
Csc and Arima

Csc and eq. (2)
Csc and Isco

Eq. (2), Isco and Csc
Eqg. (15) and eq. (2)
Eqg. (15) and Isco
Eqg. (15) and Csc

Eqg. (2)
Eq. (12)
Arima
Isco
CsC
Eq. (15)

(1) The table shows White-consistent t-values of the estimates of the coeffigiesutsla, in the regression:
(Y¢-Y12)/Y112 = constant 40, (PREVL-Y12)/Y 12 + 02 (PREVZ2-Y12)/Y 12, Where PREVIand PREV2 are
the forecasts produced by the two models being compared (see Fair and Shiller, 1990).

(2) The tableshows estimates (White-consistent t-values in parenthes#sg obefficientsa; anda; in the
regression: Y= constant ;*PREVY; + a,*PREV2 (see Chong and Hendry, 1986).

(1995.5-1997.9)

Arima Eq. (2) Eq. (12) Isco
(a) Fair-Shiller test
-1.8 12.4 - -
-1.0 - 11.0 -
- 1.7 1.2 -
-4.0 - - 9.6
- 8.1 - -0.1
-0.2 - - -
- 5.1 - -
- - - 2.7
- 6.8 - -
- - - -04
(b) Chong-Hendry test
0.1 (05 1.0 (9.2) - ;
0.0 (0.1) ] 1.0 (11.7) -
- 0.1 (0.3) 0.9 (3.6) .
0.4 (-1.8) - - 1.4 (6.1)
- 0.8 (5.3) - 0.2 (1.4)
-0.2 (-1.0) - - -
- 0.7 (4.8) - ;
- - - 0.4 (2.0)
- 0.7 (4.0) - 0.1 (0.6)
- 0.8 (4.7) ; -
- - - 0.2 (0.4)
(c) Encompassing test (EMDR1)
0.4 - 0.7 3.2
1.2 2.4 - 2.7
- 3.4 3.4 3.1
-1.9 2.3 2.4 -
-0.5 2.7 3.3 2.3
-1.2 3.0 2.2 0.5

CsC Eq. (15)
7.9 -
-0.2 -

3.2 -
- 0.2
- 1.9
2.5 2.9

1.2 (6.4) -

0.3 (1.8) -

0.6 (2.9) -
0.2 (1.1) -

- 0.2 (1.0)
- 0.8 (1.4)

05 (2.6) 05 (2.2
1.6 1.4
1.3 2.4
2.8 3.2
1.5 1.3

- 2.1
1.7 -

(3) See Harvey , LeibourrendNewbold(1998). In small samples the test statistic is distributed as a Student t
with n-1 degrees of freedom, where n is the number of forecast periods.




Table 4

LOG-LINEAR MODEL WITH ELECTRICITY CONSUMPTION-EQUATION (3)
ESTIMATION AND DIAGNOSTICS
(1986.1-1995.4)

Variables Coefficients t-statistics
>lene| 0.738 10.3
time 0.016 3.4
time? -0.0001 -3.9
time® 0.000 4.1
tempn 0.011 4.6
temprf -0.001 -5.1
moving average of ly 0.321 4.9
R%=0.99
S.E. =0.0134

number of obs. =112

Misspecification tests
(percent p-value in parentheses)

Autocorrelation Heteroskedasticity
DW 1.92 ARCH,.;, 3.85 (98.6)
LMy.1o 0.83 (61.8)
LB1, 30.00 (18.5)
General specification Predictive power
RESET 0.35 (70.9) CHOW 1.95 (1.2)
Unit root test on residuals
ADF -6.3

Note The dependent variablend electricity consumptiordata areadjusted fortrading days.
Regression also includes a constant and seasonal dummy variables.

Legend S.E. standard error of regression; DW Durbin-Watson statistig;;kModified Lagrang
multiplier test for residual autocorrelation of ordethtough 12, F(12,79); LBjung-Box test for
residual autocorrelatiorg’(24); RESET test of functional form, F(2,89)CHOW Chowtest of
predictive power over the period 1995.05-1997.04, F(24,115); ARCHitoregressive condition

heteroskedasticity test for residuals of ordehrbugh 12 x%(12); ADF augmented Dickey-Fuller

test (1% critical value: -5.8).

1%

al



Table 5

LINEARITY TESTS

Vi = XAt (X DA +(XE) A, +(XE) N+

Null hypothesis

Ho: >\1:)\2:)\3:0
H03: )\3:0

Hoaz: An=0 |>\3: 0
H01: >\1:O|>\2:)\3:0

Null hypothesis

Ho: >\1:)\2:)\3:0
Hos: )\3:0

Hoaz: An=0 |>\3: 0
H01: >\1:O|>\2:)\3:0

)\i = (0, O, 0, --)\i,eneb ey O)
(1986.1-1995.4)

(a) % does not include cubic trend

F-statistic (d.f.) p-value (per cent)
46.3 (2,92) 0.00
13.9 (1,91) 0.03
25.9 (1,92) 0.00
45.5 (1,93) 0.00

(b) % includes cubic trend

F-statistic (d.f.) p-value (per cent)
0.42 (3,88) 74.26
0.14 (1.88) 70.67
0.10 (1.89) 75.41
1.03 (1,90) 31.40




Table 6

NON LINEAR MODEL WITH LSTR1 SPECIFICATION - EQUATION (12)
ESTIMATION AND DIAGNOSTICS
(1986.1-1995.4)

Variables and parameters Coefficients t-statistics
>enel 0.008 13.3
tempn 1.048 5.6
temprf -0.047 -6.5
moving average of y 0.394 7.5
n -0.001 -5.2
y 0.059 5.9
o 139.1 29.4
R?=0.99
S.E.=1.28

number of obs. =112

Misspecification tests
(percent p-value in parentheses)

Autocorrelation Heteroskedasticity
DW 1.89 ARCH; 1> 12.76 (38.7)
LMy.1o 1.04 (42.2)
LB 27.21 (29.5)
General specification Predictive power
RESET 0.77 (46.4) CHOW 1.80 (5.8)
Unit root test on residuals
ADF -7.0

Note The dependent variablend electricity consumptiordata areadjusted fortrading days.
Regression also includes a constant and seasonal dummy variables.

Legend S.E. standard error of regression; DW Durbin-Watson statistig;;kModified Lagrang
multiplier test for residual autocorrelation of ordethtough 12, F(12,81); LBjung-Box test for
residual autocorrelatiory’(24); CHOW Chowtest of predictive power ovehe period 1995.5
1997.4, F(12,105); RESET test of functional form, F(2,94RCH; 1, autoregressive conditional
heteroskedasticity test for residuals of ordehrbugh 12x%(12); ADF augmented Dickey-Fuller
test (1% critical value: -5.8).

1%




Table 7

MODEL WITH ISCO SURVEY DATA - EQUATION (13)
ESTIMATION AND DIAGNOSTICS
(1986.1-1995.4)

Variables Coefficients t-statistics
s (ord + prodex- iny 0.077 5.1
3
> ordex 0.006 4.8
moving average of y 0.369 3.1
Ye7 - Yr12 -0.192 -2.8
R? =0.99
S.E. =179

number of obs. = 112

Misspecification tests
(percent p-value in parentheses)

Autocorrelation Heteroskedasticity
DW 1.95 ARCH; 1> 8.08 (77.9)
LMy.1 0.98 (47.3)
LB 22.6 (54.3)
General specification Predictive power
RESET 0.78 (46.2) CHOW 2.23 (1.5)
Unit root test on residuals
ADF 71

Note The dependent variabland electricity consumptiordata areadjusted fortrading days.
Regression also includes a constant and seasonal dummy variables.

Legend S.E. standard error of regression; DW Durbin-Watson statistig;;kModified Lagrang
multiplier test for residual autocorrelation of ordethtough 12, F(12,83); LRjung-Box test for
residual autocorrelatiorg?(24); CHOW Chow test of predictive power owviae period 1995.5
1996.4, F(12,107); RESET test of functional form, F(2,%5CH,.,, autoregressive conditional
heteroskedasticity test for residuals of ordehrbugh 12,x%(12); ADF augmented Dickey-Fuller
test (1% critical value: -5.8).

1%




Table 8

COMBINATION OF ONE-STEP AHEAD FORECASTS

(1995.5-1997.9)

RMSE
Individual modelgfrom Table 2a)
Equation (2) 1.4
Equation (12) 1.7
Isco 2.0
CsC 1.7
Combined forecasts
Equation (2) - Isco (fixed weights} 13
Equation (2) - Isco (changing weight$) 14
Equation (2) - Csfixed weightsj 1.3
Equation (2) - CsCchanging weight®) 13
Eq. (2) - Isco - CsC(fixed weights} 1.3
Eg. (2) - Isco - CsC(changing weight8) 1.4
Combined model
Equation (15) 1.3
Equation (15) - Cs@ixed weightsj 11

ME

-0.3
-1.1
-0.1
-0.8

-0.2
-0.1
-0.5
-0.4
-0.4
-0.3

0.6
0.1

MAE

1.1
1.4
15
1.4

1.0
11
11
1.0
1.0
1.0

1.0
0.8

HAE

3.2
4.0
5.4
3.5

3.8
3.6
3.3
3.3
3.6
3.4

24
2.3

(a): Weights equal tagespectively2/3 and 1/3Simple arithmetic averaggave slightlyworse

results. (b): Weights change according to equation (14) in the text. (c): Weights ed
respectively2/3 and 1/3Simple arithmetic averaggavethe same results. (d): Weights equa

0.50 (Eg. 2), 0.28Isco)and 0.25CsC). Simple arithmetic averagave slightly worseesults.

(e): Weights equal to, respectively, 2/3 and 1/3.

Legend RMSE root mean square error; ME mean error; MAE nadmoluteerror; HAE highest

absolute error.

ual to,
| to



Table 9

ONE-STEP AHEAD FORECASTING PERFORMANCE IN DIFFERENT SUBPERIODS

Continuing growth
(1995.5 - 1995.12)

RMSE
ME
MAE
HAE

Stagnation
(1996.1 - 1996.12)

RMSE
ME
MAE
HAE

Recovery
(1997.1-1997.9)

RMSE
ME
MAE
HAE

Eag. (2)

0.9
-0.6
0.8
14

1.4
-0.4
11
3.3

1.7
0.1
1.4
24

Isco

2.1
0.5
1.4
53

2.3
-0.8
1.8
4.8

15
0.3
13
2.5

CsC Eq.(2)-
Iscd
0.8 0.9
-0.3 -0.3
0.7 0.7
1.5 2.0
2.2 1.4
-1.9 -0.5
1.9 1.0
3.3 3.8
1.8 1.6
0.1 0.1
1.4 1.4
3.5 2.4

Eq.(2)-
CsC

0.8
-0.5
0.7
1.2

1.4
-0.9
1.1
3.3

1.6
0.1
13
2.6

Eq.(2), Isco
é

and Cs

0.9
-0.3
0.7
1.7

14
-0.9
1.1
3.7

1.6
0.1
1.3
2.4

Eq. (15)

1.0
0.8
0.8
21

13
0.8
11
24

14
0.2
1.2
2.3

Eqg. (15)-
CsC

0.7
0.4
0.6
1.6

0.8
-0.1
0.6
2.1

15
0.1
11
2.3

Legend RMSE rootmean square error; ME mean error; MAE mednsoluteerror; HAE highestabsoluts
error. Forecasting statistics in tlygay areaare those associated witthe bestindividual model in eac

subperiod.

Note (a): Weights equal taespectively2/3 and 1/3(b): Weights equal to 0.50 (Eq. 2), 0.@5co)and0.25

(CsC).




Table 10

ALTERNATIVE EVALUATION CRITERIA OF ONE-STEP AHEAD FORECASTS
(1995.5-1997.9)

(a) Number of absolute forecast errors greater than a given threshold

Eq. (2) Isco CsC Eq.(2)- Eqg.(2- Eq.(2),lIsco Eg.(15) Eg. (15)%
Iscd CsC and CsC CsC
# of forecas 6 7 7 6 4 4 4 4
errors= 2%
# of forecas 2 6 5 1 2 1 0 0
errors2,59%
# of forecas 1 4 4 1 1 1 0 0

errors= 3%

(b) Prediction of sign of variatidn

Eq. (2) Isco CsC Eq.(2)- Eqg.(2- Eq.(2),Isco Eg.(15) Eg. (15)%
Iscd* CsC and Cs¢ CsC
% of periods
with correct 79 90 76 83 83 83 90 93

prediction

(a): Weights equal taespectively2/3 and 1/3(b): Weights equal to 0.50 (Eg. 2), 0.@5co)and 0.25CsC).
(c): The percentagealue is computed with respect tile mean of the dependent variable. @@asonally
adjusteddata. The prediction is correct if the sign(BREDQ-Y1)/Y1 is equal to the sign of (1)/Y¢1,
where Y and PRED are, respectively, actual and predicted values.




Table 11

COMBINED MODEL - EQUATION (15)
ESTIMATION AND DIAGNOSTICS
(1986.1-1995.4)

Variables and parameters Coefficient t-statistic
>enel 0.008 15.6
time -0.076 -6.0
tempn 1.09 6.2
temprf -0.048 71
moving average of ord 0.090 6.5
Vi1 0.077 15
R? =0.99

SE. =112

number of obs. =112

Misspecification tests
(percen p-value in parentheses)

Autocorrelation Heteroskedasticity
DW 2.01 ARCH; 1> 11.42 (49.3)
LMy, 0.94 (51.4)
LB 30.07 (18.2)
General specification Predictive power
RESET 0.51 (60.2) CHOW 0.79 (65.6)
Unit root test on residuals
ADF 71

Note The dependent variable and electricity consumption are adjusted for trading days. Regression
also includes a constant and seasonal dummy variables, whose coefficients are not reported.
Legend S.E. standard error of regression; DW Durbin-Watson statistig;;kModified Lagrange
multiplier test for residual autocorrelation of ordethtough 12, F(12,80); LB jung-Box test for
residual autocorrelatiory’(24); CHOW Chowtest of predictive power ovehe period 1995.5
1996.4, F(12,104); RESET test of functional form, F(2,203CH;.1, autoregressive conditional
heteroskedasticity test for residuals of ordehrbugh 12 x%(12); ADF augmented Dickey-Fuller
test (1% critical value: -5.8).
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INDUSTRIAL PRODUCTION, ACTUAL AND PREDICTED VALUES

a) Actual values, seasonally adjusted
(3 - term centered moving average)

Figure 1
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b) One-step ahead forecasts obtained with equation (2)
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c) One-step ahead forecast errors with equation (2)
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Note Data refer to industrial production adjusted by working days.



Figure 2
TRANSITION FUNCTION F(t)
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Figure 3
FORECASTING PERFORMANCE OF DIFFERENT MODELS

Linear model with electricity data - Equation (2) Non-linear model with electricity data - Equation (12)
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