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NONLINEAR VAR: SOME THEORY
AND AN APPLICATION TO US GNP AND UNEMPLOYMENT

by Filippo AltissimoW and Giovanni Luca ViolanteWW

Abstract

A generalization of the endogenous threshold model is developed by extending this
class to a multivariate framework and to cases where the feedback acts at multiple lags. The
feedback is speci¿ed, following Beaudry and Koop, by a variable which measures the depth
of recessions. We give conditions for the ergodicity of the model and prove strong consistency
of the maximum likelihood estimator, although the objective function is discontinuous in
the threshold parameter. The model is applied to a bivariate VAR of output growth and
changes in the unemployment rate for the US economy. The nonlinearity is found to be
statistically signi¿cant only in the unemployment equation and it transmits to GNP through
the cross-correlation between the series. We also¿nd that, owing to the nonlinear structure,
shocks hitting the economy in downturns have lower persistence than those occurring during
expansions. Since this dampening effect is stronger for negative than for positive shocks,
the feedback from recessions is found to contribute positively to the long-run growth of the
economy and we estimate this contribution to be about 1/6 of the total growth over the sample
period. We interpret this result as an empirical validation of those economic theories that model
recessions as cleansing times. Finally, we suggest that the state-dependence in persistence is a
possible key to interpret the divergence in the measures of persistence existing in the literature.
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1. Introduction1

Starting from the work by Neftçi (1984), a substantial interest has arisen in nonlinear

and asymmetric features of economic time series.2 While the evidence on GNP and

other production series is rather mixed, generally nonlinearity seems to be present in the

unemployment rate.

One limitation of this literature is that the analysis is exclusively univariate. In a

multivariate framework the shocks interact, producing much richer dynamics, so one might

conjecture that extending the analysis to a multivariatelinear framework is suf¿cient to

capture what in the univariate world needs a nonlinear structure to be well approximated.

Also, the nonlinearity might be present only in some series and transmit to other series

through their cross-correlation, so the multivariate system would help to identify where the

nonlinearity is originally active. This could represent a useful piece of information for

theoretical model building and for a more complete assessment of the relevance of nonlinear

features in economic time series.

Another large body of literature, following the seminal work of Nelson and Plosser

(1982), has grown around the issue of persistence of shocks in macroeconomic time series.

A common¿nding of this literature is that GNP shows some persistence, but the estimates

provided by the different authors vary across a wide range.3 In a nonlinear world the nature

of the response of the economy to a given impulse depends on the sign and the size of the

shock hitting the economy and on the history of the system. Hence, potentially a much richer

analysis of persistence can be performed in order to assess whether the restriction of linearity

is truly binding and therefore hides qualitatively interesting properties of the data.

In this paper we explore the interaction between nonlinearities and persistence in a

multivariate environment and we show that allowing for the presence of nonlinear features

4 We are grateful to M. Hashem Pesaran for helpful discussion and his encouragement. We thank Valentina
Corradi, Frank Diebold, Lutz Killian, Lee Ohanian, Simon Potter and two anonymous referees for their comments
and also partecipants in workshops at IGIER, Università ”Ca’ Foscari” and the University of Pennsylvania. We
thank Giancarlo Marra for technical assistence. The usual disclaimer applies.

5 See DeLong and Summers (1986), Falk (1986), Hamilton (1989), Rothman (1991), Brunner (1992), Potter
(1995), Sichel (1993) among others.

6 See Watson (1986), Campbell and Mankiw (1987), Cochrane (1988) and Evans (1989) among others.
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in the series can shed light on several issues: ¿rst, the spurious presence of nonlinearities

due to cross-correlation between the series� second, the characterization of the propagation

mechanism of impulses and the measurement of persistence� third, the potential constraints

imposed by the linear structure on the data, which prevents us from uncovering interesting

dynamics and testing theoretical models which are inherently nonlinear.

To accomplish this task we consider a reduced-form nonlinear bivariate VAR model of

changes in US GNP and unemployment rate. The nonlinear structure we introduce in the VAR

is an endogenous delay threshold,¿rst formalized by Pesaran and Potter (1994) (hereafter

PP). That model is a special case of the more general class of threshold autoregressive models

(TAR).4 TAR models specify different regime dynamics according to a given threshold rule

and restrict the process to be of the autoregressive form within each regime.

Even within the relatively restricted class of endogenous delay threshold models, there

are a number of ways to de¿ne the threshold rule. We followed the speci¿cation introduced by

Beaudry and Koop (1993) where the regimes are upturns and downturns and the state variable

is a measure of the current depth of recession. We believe that this type of nonlinearity is

particularly attractive since, in a system with persistence, it captures the link between aggregate

Àuctuations and long-run growth, a fact that has been stressed by the recent macroeconomic

literature. In the past few years some authors (for a survey, see Hall, 1991� Caballero and

Hammour, 1994� Aghion and Saint-Paul, 1993) have emphasized the idea that recessions

are periods in which acleansing process is activated in the economy. The least productive

¿rms exit the market, whereas more innovative ones survive� moreover, the low opportunity

cost of investing resources in production stimulates¿rms to use resources in order to reduce

organizational inef¿ciencies and restructure their plant. The result of this process is that

recessions might have a positive feedback on the future productivity growth of the economy.

Our model allows us to examine this issue in a very intuitive way and provides a measure

of how much the feedback originating from downturns has contributed to the growth of the

economy. Note that linear models would not be able to uncover this interaction between

recessions and growth, as they would treat symmetrically both phases of the business cycle.

7 The theory of TAR models has a rather long history, starting with the work of Tong and Lim (1980). An
extended survey of the literature on TAR models can be found in Tong (1990).
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The choice of the variables used in the VAR is guided by three considerations. First, as

mentioned above, these are time series for which some evidence of signi¿cant nonlinearity

exists in the univariate literature� hence it is of interest to see whether some spurious

nonlinearity induced by correlation arises in our bivariate framework. Second, GNP and

unemployment are a suitable set of variables to investigate the transmission mechanism of

the shocks between the labor market and the goods market, crucial in many policy analysis.

Third, linear VARs for this pair of variables have been already estimated in the past.5 Our

methodology is original in respect to this previous literature and reveals new properties of the

interaction between the two series that may put the existing results in a different light.

The rest of the paper is organized as follows. The model is introduced in Section

2. Section 3 presents the estimation method and a discussion of ergodicity of the model

and consistency of the estimator. The model selection, results of the estimation and testing

procedures are contained in Section 4. In Section 5 we characterize and measure the long-run

effect of recessions on the economy and in Section 6 this analysis is deepened by looking at

the impulse response functions and measures of persistence. Section 7 concludes.

2. The endogenous delay threshold model

2.1 The threshold principle and the endogenous delay threshold VAR

The traditional approach to the analysis of a stochastic nonlinear dynamic system is to

decompose it into piecewise linear subsystems. This is essentially what is called thethreshold

principle, which means splitting the dynamics into different regimes through a threshold on

certain key variables in order to de¿ne a local linear approximation of the stochastic process in

every regime. The general class of linear threshold autoregressive models (TAR) is based on

this principle and uses autoregressive speci¿cations for the local approximation. The canonical

form of the TAR, as proposed by Tong and Lim (1980), is

%| ' kEa|� nxEa|�%|3� n jEa|�0|c(1)

8 See Evans (1989) and Blanchard and Quah (1989).
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where 0| is a white noise with unit standard deviation and the indicator ia|j, a| 5 d�c ���c� o,

is a stochastic process indicating the dynamic regime which is in effect. The speci¿cation

(1) is quite Àexible and can be specialized both to the Markov switching model introduced

in Hamilton (1989) and to the self-exciting TAR (SETAR),6 according to the way in which

ia|j is parametrized. A new specialization of the TAR class is the endogenous delay threshold

(EDTAR) model proposed by PP. The EDTAR model is a framework for modeling feedback

processes from the past realizations of the system to its current dynamics in a more articulated

way than the SETAR. As¿rst proposed the EDTAR model was univariate and it did not allow

for feedback effects operating at more than one lag. We will extend that framework to a

multivariate setting with multiple lags in the feedback process.7

Consider the time seriesif|j c wheref| is a E& � �� vector, whose dynamics are

modeled with� feedback channels from past values to the current realization. These

feedbacks can be characterized constructing� feedback index functions,86|, 6 5
d�c ���c� o c de¿ned as

86| ' �EK6rEf|c ���c f|3r� 5 �6�c(2)

whereK6r G ?rn� � ?& $ ?, �6 is an interval on the real line which characterizes the

threshold rule for the6 � |� regime,�E�� is the indicator function and�6 is the maximum

memory of the6 � |� feedback and it is¿nite. In the original speci¿cation of the.(A�-

model, � is not restricted to be¿nite. The¿niteness of� greatly simpli¿es the proof of

consistency of the maximum likelihood estimator and the requirements for the ergodicity.

The feedback index86| is activated when a particular transformationK6r of some lags of

f| satis¿es the conditions implicitly represented by the set�6. 86| is only an indicator of the

activation of the feedback and it is used to switch on and off a feedback variablet6| which

enters the dynamics of the process. The feedback variable is recursively built as

t6| ' �E86| : f� dwt6c|3� nC6Ef|c ���cf|3,�o c(3)

9 An extensive discussion on the properties of SETAR models and their estimation procedure are described
in Tong (1990) and an application to the dynamics of the growth rate of US GNP is given by Potter (1995).

: In the rest of this section we will follow closely the notation in PP.
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where C6 G ?,n� � ?& $ ?, and w is a scalar. This representation is very Àexible, as the set

�6 and the functions K6rc s6 and C6 can be speci¿ed according to the nature of the feedback

process modeled.

We can now specify the dynamics of f| as

xEu�f| ' kn
�[

6'�

X6Eu�t6c|3� nM|E���|c(4)

with �| � �Efc U&�c and M| E�� is a general functional form for the conditional variance.

We call the speci¿cation in (4) .(AT �-ERc ^�c ���c ^�� where R is the lag order of x

and E^6��� is the lag order of X6Eu�, 6 ' �c 2c ���c� . Equation (4), together with equations

(2) and (3) and a speci¿cation for the conditional variance, de¿nes the general structure of the

model.

To gain some intuition on the formalized model, consider as an example the case in

which we want to model an autoregressive process with slope q if in the previous period the

process assumed a positive value and with slope k in the other case. In this case the process

can be modeled by constructing a single feedback index and a single feedback variable, ��e�

� ' �� Given that the memory of the feedback is one lag, ��e� � ' �, then the implied

feedback index is

8| ' �Ef| 5 ?n��

Accordingly, the feedback variable is

t| ' �E8| ' �� dEq � k�f|o

where w is identically zero and the function CEf|� ' Ek � q�f| and the dynamics of the

process can be written as

f| ' kf|3� n t|3� n 0|

' kf|3� n �E8|3� ' �� dEq � k�f|3�o n 0|�

Note that this is also a different way of representing a SETAR(1) model.
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Finally it is interesting to note how this kind of approach to nonlinear time series has

a natural interpretation in terms of a state-space model. Thet6| variables are the states of

the system and equations (3) and (4) are, respectively, the state equation and the measurement

equation of the model, using the terminology of that literature. Notice, however, that here

the state is entirely a function of the observables, while many models that are usefully cast in

state-space form contain a latent state variable.

2.2 A VAR of output and unemployment with feedback from the depth of recessions

Within the framework of the.(AT �- described above, we focus on a bidimensional

model of changes in log of real output and in the unemployment rate,8 hencef| �
E*L}C��cL�. We introduce a nonlinear feedback process in the dynamics of the variables

{f| through a unique feedback variable intended to capture the effect of recessions on the

economy. Our feedback index8| is de¿ned as

8| Eo� '
�3�[
�'f

%
��

�\
�'f

�Ef�| �f�c|3�n� : o�

&
c(5)

hence this index is zero when the current realization of GNP is higher than each of the past

� realizations augmented byo and is equal to� when the previous peak off�| occurred at

E|� ��. The implied feedback variable,�(-c is de¿ned as

�(-| Eo� '

+
�E8| : f�E{f�| � o� �s 8|3� ' f

�E8| : f�E�(-|3� n{f�|� J|�eo��re�
(6)

We can de¿ne�(-| in more compact notation in two alternative ways:

�(-| Eo� ' f�| �4@ Ef�|cf�c|3� n oc ���c f�c|3� n o�c or

�(-| Eo� ' 4�?Efc{f�| � oc{f�| n{f�c|3� � oc ���c{f�| n ���n{f�c|3�n� � o�

(7)

where� is a ¿nite number and the4@ (4�?, respectively) is taken over the� n � terms

inside the brackets. The variable�(- measures the current depth of the recession of the

; The series are Citibase quarterly data of U.S. GNP at 1982 prices (GNP82) and unemployment rate
(LHURR) monthly averaged, from 1952.1 to 1990.4.
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economy. It is clear that �(- will be zero as long as output grows at least at a rate o and

–once it is switched on through8|– it will stay activated as long as output is lower than its

previous maximum increased byo, that is to say until the economy has recovered the gap of

the recession.

The threshold parametero, which determines the activation of�(-, will be

endogenously estimated. Hence our measure of recession is endogenous as well since it

depends on the estimate ofo�9 note that our speci¿cation is more general than that of Beaudry

and Koop (1994) since they exogenously¿x o at zero. In the rest of the paper, we will use the

terminology of PP and refer to the situation in which the dynamics of the system are not under

the effect of any feedback, i.e.
S^

�'��(-|3� ' f, ascorridor regime, while we will speak of

Àoor regime in the case in which at least one of the different^ lags of the�(- variable is not

null.

We allow the feedback effect to operate also at lags higher than one, up to^, so the

dynamics of{f| follow the speci¿cation:

xEu�{f| ' knXEu��(-|3� Eo� nM
�
2
| �| with �|

��_� �Efc U2�c(8)

whereR is the order ofx andE^ � �� the order ofX� The conditional varianceM| is modeled

as

M| ' �E

^[
�'�

�(-|3� ' f�ElS � ls � n ls c(9)

wherelS andls are the conditional covariance matrices when the system is respectively in

the corridor regime or in theÀoor regime. This structure of the conditional variance is also

known in the literature as qualitative threshold autoregressive conditional heteroskedasticity

(QTARCH).10 Note that since�(- depends on the threshold parametero, the latter enters

both the conditional mean and the conditional variance.

< In the next section we contrast our de¿nition of recession as implied by the estimation with the NBER
business cycle dates.

43 See Gourieroux and Monfort (1992) for the theory on QTARCH and French and Sichel (1993) for evidence
on asymmetry in the conditional variance of real GNP in different phases of the business cycle.
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In conclusion, our model is described by equations (??)-(9). To gain some intuition

about the structure of the model, it is helpful to observe from (??) that �(-can be written as

a constant plus the sum of the changes inC�� from the date of the previous peak to the current

value, so that by substituting (??) into (8) we obtain a linear VAR with time variant parameters

and time variant number of lags determined by an endogenous deterministic threshold rule.

More speci¿cally, when the economy is under the effect of the feedback, at each period the

linear structure of the corridor regime is modi¿ed with additional lags and different parameter

values.

3. Ergodicity of the model and asymptotics of the ML estimator

The normality assumption on the error term allows us to write the conditional log-

likelihood function of the model as:

�EB� �
AS
|'�

�|EBmI|� ' ��
2

AS
|'�

*? mM|mn

��
2

SA
|'�ExEu�{f| � k�XEu��(-|3��M

3�
| ExEu�{f| � k�XEu��(-|3��

�c

(10)

where B ' ikcxcXclScls c oj is the set of parameters to be estimated andI| is the

information set at time|�

The numerical maximization of this log-likelihood is not a standard problem, given that

the function is discontinuous with respect to the parametero, the threshold coef¿cient. It

is clear from simple inspection of (9) and (10) that what generates the discontinuity in the

likelihood is the conditional variance term, which changes discretely between regimes, while

the conditional mean changes smoothly.11 The estimation method applied here is the two-step

procedure suggested by Tong (1990) for the case of7.A�- models and also used by PP. In

the¿rst step, we generate a¿nite grid of points over the domain of the threshold parameter

o and at each point on the grid we estimate the model by maximizing the likelihood function

conditional on a given value ofo using a standard hill-climbing algorithm. Then we choose

the value ofo on the grid for which the likelihood in (10) attains its global maximum. We

44 The HGWY DU model with homoskedastic disturbances was tested against the one with the TWDUFK
conditional variance, but we rejected the ¿rst.
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have worked with a grid of 400 point in the interval E��f��cn�f��� 12 and at every point we

allow for 100 iterations over the likelihood function with a convergence criteria of �f3D for

each parameter.

This procedure enables us to ¿nd the maximum of the sample log-likelihood function,

but it is not suf¿cient to ensure that the estimated parameter vector	B�u. is consistent for the

true value of the underlying DGP. There are two main problems in proving consistency of the

ML estimator. The¿rst is to characterize the conditions under which the model is ergodic. The

second is to control for the fact that the number of discontinuity in the log-likelihood function

is “small” and to show that the unconditional expectation of the log-likelihood function is itself

continuous.

3.1 Ergodicity

The presence of the�(- variable induces a nonlinearity in the conditional mean of the

process. In a nonlinear environment assessing the ergodicity of a model is a complex matter.

Given some regularity conditions on the disturbances, to prove ergodicity it is suf¿cient

to show that a certain “drifting condition” is satis¿ed. The latter ensures that, for any initial

value, the process is expected to move towards the “centre” of the space in a¿nite number of

steps. Tweedie (1975) stated this condition in its simplest form and Tong (1990) contains an

interesting interpretation of Tweedie’s condition through the concept of Lyapunov function,

which establishes a link between the stability of deterministic dynamical systems and the

ergodicity of stochastic systems. In particular, we will follow the approach of Tjøstheim

(1990) in using a generalization of Tweedie’s original result to characterize the ergodicity

of our nonlinear multivariate system.

To characterize this drifting condition the assumption of a¿nite memory in the feedback

process, i.e. a¿nite � , is critical. In fact, given a¿nite � it is possible to show that the model

has a Markovian representation and therefore to apply the well-established theory on stability

of Markov chains13 to our speci¿c case. We exploit the¿nite � in order to write the model

as a multivariate7.A�- with a large number of states and constraints across the parameters

45 This is the largest interval for ui such that both 
f and 
i are nonsingular.

46 See the seminal book by Nummelin (1984).
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characterizing the linear dynamics of each different state. In this way we obtain a Markovian

representation of the process and we can therefore apply an argument based on the “��step

ahead drifting condition” along the lines of Tjøstheim (1990). The formal proof of geometric

ergodicity of the.(AT �- is given in Proposition 1 of Appendix 1. Also, note that strict

stationarity of the process is obtained from ergodicity, once we assume that the chain is started

with initial distribution equal to the invariant distribution.

The following example provides some intuition for this stability result in a simple case.

Consider a univariate version of the model in (8) with� ' �, R ' 2, ^ ' 2 ando ' f:

{f| ' ��{f|3� n �2{f|32 n w�4�? Efc{f|3��

nw24�? Efc{f|32� n �|�

De¿ne~| ' i{f|c{f|3�j and8|3�c � ' �c 2 as the feedback indexes in (5). It follows from

that de¿nition that8|3� ' � when~�c|3� � f and8|3� ' f otherwise. The potential activation

of the two lags of�(-| generates 4 possible states that create a partitionz � i�fc ��c �2c ��j
on the space of~|3�:

�f � i~|3� G 8|3� ' fc 8|32 ' fj
�� � i~|3� G 8|3� ' �c 8|32 ' fj
�2 � i~|3� G 8|3� ' fc 8|32 ' �j
�� � i~|3� G 8|3� ' �c 8|32 ' �j

This partition is used to build the following Markovian representation of the model:

~| '
�S

&'f

�&�E~|3� 5 �&�~|3� n �| �

TheE2� 2� matrices�& associated to the four states are:

�f '

�
�� �2

� f

�
, �� '

�
�� n w� �2

� f

�
,

�2 '

�
�� �2 n w2
� f

�
, �� '

�
�� n w� �2 n w2

� f

�
.

The matrix�f describes the dynamics in the corridor regime and the other three matrices

describe how the corridor regime dynamics are modi¿ed through the activation of�(-.
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The key condition for ergodicity is that, independently of the initial state, the process

moves toward the centre of the space in � (¿nite) periods. This condition requires some

restrictions on the products of the � matrices � which de¿ne the dynamics between ~| and

~|n� (see �rr�6R|�J? ��, Appendix 1).

3.2 Consistency and asymptotic distribution

Having characterized the conditions for the ergodicity of the model, we turn now to

the discussion of the consistency of the ML estimator. The key step is to show that the

discontinuity in the sample likelihood triggered by the conditional heteroskedasticity of the

error term does not invalidate the consistency of the estimator. In Appendix 2, a careful

characterization of the properties of the objective function �| is given and it is shown that

the set of realizations of the process that generate discontinuities has measure zero in the space

of histories. This fact, with the addition of a set of standard regularity conditions on {f|c and

under the above condition for ergodicity, leads to a proof of strong consistency of the estimator

(see Proposition 2, Appendix 2) which is constructed following Andrews (1987).

Finally, assessing the asymptotic distribution of the estimator requires deriving the

limiting distribution of the threshold parameters, which is likely to be non standard owing

to the discontinuity of the likelihood function. We do not pursue this strategy, but rather

we observe that conditional on o, the asymptotic normality follows from standard asymptotic

theory. Hence, if the speed of convergence of o is suf¿ciently quick, then the threshold value

can be treated as known in performing inference on the autoregressive parameters and the

standard asymptotic theory will hold. This conjecture is based on the result in Chan (1988)

where the superconsistency of o is proved for a two-regime7.A�- and it is supported by

some of our Monte Carlo experiments.

4. Results of estimation and testing

The previous literature on VARs of output and unemployment, such as Blanchard and

Quah (1989) and Evans (1989), considers the unemployment rate to be stationary, although

it recognizes that the evidence on this point is not unequivocal. In our model the presence

of the nonlinearity invalidates the standard asymptotic theory of the unit root test�therefore
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a different route should be pursued in addressing the issue of stationarity for the series.14 A

necessary condition for the consistency of the estimator is the ergodicity of the system and

a suf¿cient condition for ergodicity is ASSUMPTION A1. When we picked the speci¿cation

with unemployment in levels, the maximum eigenvalue of the matrix driving the dynamics in

the corridor regime was found to be outside the unit circle which invalidates ASSUMPTION

A1, whereas when we estimated the model in ¿rst differences of both series the condition was

satis¿ed.

In addition to this point, one should consider that working with a VAR with highly

persistent series may induce a large small–sample bias of the estimates.15 These two arguments

have led us to the choice of a speci¿cation in¿rst differences and in the rest of the paper we

will provide some additional evidence on the validity of this assumption, in particular through

the long-run behavior of the generalized impulse response functions.

4.1 Model selection

The next step in the estimation procedure is the choice of the lag order of the polynomials

x andX� Note that we need to select the lag order also for the�(- variable, allowing

in principle the presence of delays in the feedback effect from the recession to the current

dynamics of the variables. We start from a maximum lag for{f of eight and a maximum

lag for �(- of four and for each combination we compute Akaike Information Criterion

and Schwartz Information Criterion. Table 1 clearly shows that for any given lag of�(-

the model with four lags of{f is always preferred. Moreover, it seems that the competing

models are the linear model and the models with one and two lags of�(-.

The comparison between models with different order of�(- is not merely a statistical

exercise since the.(AT �-Eec �� gives rise to a very different picture on the way the

nonlinearity operates in the economy compared with the.(AT �-Eec 2�. In particular, the

nonlinear term is signi¿cant only in the GNP equation in the¿rst case and only in the U

equation in the second case. The¿rst model would support theories which locate the direct

effect of the feedback in the product market, whereas in the second model the feedback affects

47 Although we are aware of their limited value, ADF tests for unit root have been performed and for both
series we were not able to reject the null hypothesis of ¿rst difference stationarity.

48 See Nicholls and Pope (1988).
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¿rst the labor market dynamics and transmits to output mainly through its correlation with

unemployment. Hence, comparing the models with one and two lags of �(- is not only

a matter of model selection but it can also give some insights about the propagation of the

feedback process and the origin of the nonlinearity found by the literature in both series.

This point illustrates the relevance of the two extensions of the .(A�- model that we have

proposed.

From the statistical point of view, a non-nested hypothesis testing procedure is needed

to compare the two speci¿cations. If we consider the conditional covariance structure of the

two models

Me�| ' �E�(-e�
|3� ' f�Ele�S � le�s � n le�s

and

Me2| ' �E
2[

�'�

�(-e2
|3� ' f�Ele2S � le2s � n le2s c

we ¿nd that there is no combination of the parameter values such that the structures of the

variance of the error terms in the two models are equivalent. This is due to the different

number of lags of the�(- variable inside the indicator function. Note that the non-nested

tests are actually two, one of the.(AT �-Eec �� versus the.(AT �-Eec 2� and the other

of the.(AT �-Eec 2� versus the.(AT �-Eec ��. A Cox type statistics in its multivariate

version as proposed by Pesaran and Deaton (1978) was applied. The proposed statistics for

testing.(AT �-Eec �� versus.(AT �-Eec 2� is given by

	�e�ce2 � 2
�
�e�E	Be��� �e2E	Be2�

�
c(11)

where �e� and �e2 are the log-likelihoods of the two models� similarly for the test of

.(AT �-Eec 2� versus.(AT �-Eec ��. The discontinuity of the log-likelihood function

prevents us from using the asymptotic results proposed by Pesaran and Deaton and obliges

us to resort to resampling techniques in computing the empirical distribution of the two

statistics.16 The computed standardized statistics and bootstrap p-values are reported in Table

4.1.

49 In Appendix 2, we describe the bootstrap methodology used through out all the paper.
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Table 4.1

Cox Test p-value
EDTVAR(4,1) VS EDTVAR(4,2) -6.735 0.002
EDTVAR(4,2) VS EDTVAR(4,1) 1.274 0.392

When the model with one lag is the null hypothesis we are able to reject it strongly� when the

model with two lags is the null hypothesis, we found a p-value of 39.2 per cent. Therefore,

in the rest of the paper we work with aT �- with two lags in the feedback process. This test

suggests that the feedback process from recessions affects the dynamics of the unemployment

directly, while it operates on output mainly through the cross-correlation of the series. This

point is rather important, since it stresses the danger of misspeci¿cation that is implicit in

testing nonlinearity on GNP in a univariate framework.

4.2 Results of the estimation

The results of the estimation procedure described in the previous section are shown in

the following table.17

Table 4.2

ESTIMATES FOR{*?GNP ESTIMATES FOR{U

parameter t-value
CONST. 0.0046 2.3127
{*?GNP3� 0.0583 0.5376
{U3� -1.0898 -3.0396
CDR3� -0.1161 -0.5212
{*?GNP32 0.1906 1.8203
{U32 0.5810 1.6534
CDR32 -0.1214 -0.5566
{*?GNP3� 0.0225 0.2204
{U3� 0.2086 0.5995
{*?GNP3e 0.0373 0.3705
{U3e 0.1122 0.4230

parameter t-value
CONST. 0.0013 2.5107
{*?GNP3� -0.0531 -1.8169
{U3� 0.3924 3.7822
CDR3� -0.1295 -1.7782
{*?GNP32 -0.0803 -2.9213
{U32 -0.1295 -1.3071
CDR32 0.1623 2.2916
{*?GNP3� -0.0421 -1.5971
{U3� -0.0911 -0.9554
{*?GNP3e -0.0042 -0.1626
{U3e -0.0865 -1.2269

The t-values are based on the asymptotic standard errors conditional on the estimated value of

the threshold parameter. We regard these values as good approximations of the unconditional

standard errors, as argued in the previous section.

4: For the estimation, we have initialized the feedback effect to be null.
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Table 4.3

lS ls

5.1952e-5 -7.2639e-6
-7.2639e-6 2.2988e-6

1.1805e-4 -3.2413e-5
-3.2413e-5 1.6167e-5

As expected, the estimated variance of the innovations is signi¿cantly higher in downturns�

hence recessions appear as times of strong volatility and uncertainty (see Table 4.3).

Table 4.4

OTHER PARAMETERS

o -0.0016
Times in corridor 97
Times inÀoor 55

Notice that the estimated value ofo is very close to zero, which implies that roughly 1/3 of the

observations belongs to theÀoor regime.18 Figure 1 shows the values for�(- implied by the

estimation and the NBER chronology for business cycles from the quarter following the peak

to the quarter of the trough. Interestingly, in most cases the�(- variable activates at a point

corresponding to the NBER de¿nition of peak and starts decreasing at one corresponding to

the trough. Therefore its timing coincides with the “conventional wisdom” about recessions

and, in addition, it provides a measure of their depth.

The�(- variable enters the equation of the GNP with a negative sign in both lags,

but it is not signi¿cant, and the equation of the unemployment with a negative sign in the

¿rst lag and with a positive sign in the second.19 The latter combination of signs offers a very

intuitive interpretation of thedirect effect of the feedback on unemployment. When the system

is sliding into a recession, the effect is in the direction of worsening unemployment, since the

¿rst lag of�(- has a bigger magnitude than the second. On the contrary, when the economy

is in the recovery process, the total effect of the feedback on unemployment is positive.

It is also interesting to note that, when we looked at the deterministic dynamics of

the system implied by the estimated parameters, we found that all the steady-states of the

4; This ¿nding is consistent with the fact that in the past the NBER Business Cycle Dating Committee has
dated recessions as if the appropriate cutoff is approximately zero growth in real GNP.

4< Recall that the variable FGU is negative by de¿nition.
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different linear dynamics of the model are located in the corridor regime. Therefore, when the

deterministic version of the model is started in the Àoor regime, it is attracted into the corridor

regime, which suggests the existence of a positive feedback effect that contributes moving the

economy out of recession. At this point of the analysis, though, the net total effect of the

feedback on the economy appears ambiguous� it will be investigated further in the following

sections.

4.3 Testing nonlinearity

At this point, having picked the best nonlinear model, one has to test the signi¿cance

of the nonlinearity itself. This test is aimed at understanding whether a speci¿cation of the

dynamics of {f| with a nonlinear term but also with a possibly induced heteroskedasticity

in the error term ¿ts the data better than the best possible linear model, an homoskedastic

linear T �- with four lags. The drawback of this testing procedure is that under the null of

linearity and homoskedasticity, the threshold parameter o vanishes. This problem is known in

the statistical literature as Davies problem. One possible solution, proposed by Davies (1977)

himself, is to ¿x the nuisance parameter o and to compute the likelihood ratio test

u-Eo� ' 2 E�e2EkcxcXclScls mo�� �efEkcxcl�� c(12)

where �e2 is the log-likelihood of the nonlinear model given a value for the nuisance parameter

o, while �ef is the log-likelihood of the alternative linear model. Davies suggested the statistics

7�Ru- ' t�ToEu-Eo���(13)

The distribution of the7�Ru- is unknown and has to be computed by simulation. Andrews

and Ploberger (1994) pointed out that the7�Ru- test lacks asymptotical optimal properties

and proposed the use of two other statistics:

.%Ru- ' .o i TE
�
2
u-Eo��

��}u- ' .ou-Eo�c
(14)

where the expectation is taken with respect to the nuisance parameter. For computing the

critical value of these three test-statistics, we again used bootstrap methods. Table 4.5 reports
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the bootstrap p-values for the three statistics and shows that all these tests largely rejected the

linear model.

Table 4.5

Test p-value
SUP-LR 27.704 0.001
AVG-LR 16.293 0.000
EXP-LR 5.0391 0.001

Although we are aware that we picked just one speci¿cation of nonlinearity among many

possibilities, the evidence against the linear speci¿cation is surprisingly strong� even if the

true unknown DGP may not be a.(AT �-, it seems to be much closer to this nonlinear

model than to a linear one. Hence, using a linear VAR in this context may induce misleading

conclusions about the general dynamic behavior of the series, the pattern of the impulse

responses and the persistence of the shocks and may in the end lead to poor forecasting ability.

5. The long-run effect of recessions

Although the estimation provided useful information on where the nonlinearity

originates, it did not make explicit the role of recessions in the dynamics of the system. In

particular the sign and the magnitude of the effect of the �(- variable on the long-run growth

are still ambiguous at this point of the analysis. The objective of this section is to resolve this

ambiguity.

Assuming that the roots of thexEu� polynomial are inside the unit circle, the linear part

of theT �- can be inverted to give

{f| ' � n�Eu��(-|3� n[Eu�0|c(15)

where:
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0| ' M
�
2
| �|c

[Eu� ' x3�Eu�c

� ' x3�E��kc

�Eu� ' x3�Eu�XEu��

Note that �Eu��(-|3� represents the nonlinear feedback which affects the current dynamics

of the variables in ¿rst differences and cumulates its effect over time on the variables in levels.

The idea is to subtract this component from the series and compare the pair of series excluding

the cumulation of the �(- polynomial with the actual pair: the difference in the drift of

the series can be interpreted as a measure of how recessions have contributed to the long-run

behavior of the variables over the sample period.

From Figures 2a and 2b it can be seen that this difference amounts approximately to

0.5 per cent per year for the growth of GNP –which means slightly more than one sixth

of its sample average yearly growth rate– and roughly to -0.15 per cent per year for the

unemployment rate.20 We therefore conclude that the contribution of the feedback is positive

and large. A useful way to interpret Figure 2a is that if the economy were hit by negative

recessionary shocks but did not bene¿t from the positive feedback (especially strong in the exit

from recession), in the subsequent periods output would have grown at a lower rate. Likewise,

looking at the actual series for unemployment, it appears at¿rst glance that the unemployment

rate rises abruptly at the very beginning of a recession and decreases at a much slower pace

when the downturn ends, so it never catches up with the pre-recession level.21 A closer look

at this series shows in fact that as soon as the recovery starts the unemployment rate usually

decreases sharply and then keeps declining, but at a much slower rate. When the feedback from

recessions is not present, the linear part of the dynamics of unemployment lacks exactly that

sharp decrease� hence the corresponding series after each recession remains at a higher level

than the actual series. Therefore, although the total effect of recessions on unemployment

is negative, since it never recovers its starting level, the feedback goes in the direction of

reducing unemployment. In the next section we provide more insight into the reasons why the

53 The two series, with and without the cumulation of the feedback, are started from the same initial point,
although, in principle, even the cumulation of the FGU that occurred before the beginning of the sample should
be considered.

54 Blanchard and Summers (1987) used the term hysteresis to label this apparent path-dependence of the
equilibrium unemployment rate.
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nonlinear feedback yields this long-run positive effect on the economy, through the persistence

of the impulse response functions.

Finally, as mentioned in the introduction, although ours is not a structural approach, we

believe that these results give empirical support to economic theories that model recessions as

times of cleansing and reorganizations.

6. Impulse response analysis

6.1 The generalized impulse response

In the last section we began to set out the argument that the model offers rich interaction

between the nonlinearity represented by the feedback from downturns and the persistence

embedded in the fact that our variables are nonstationary on the levels. A complete analysis

of this interaction requires the estimation of the empirical impulse response functions (IR)

implied by the model.

In a nonlinear environment the IR analysis is a complex matter. The theory of nonlinear

IR has been developed in the last few years.22 As clearly stated in Koop, Pesaran and Potter

(1996), the main difference between linear and nonlinear IRs is that the latter arestate and

shock dependent. The state dependence means that IRs are sensitive to the history of the

system up to the point in which the model is shocked. Shock dependence is a twofold concept.

First, if we take the nonlinear IR as function of the shock perturbing the economy, this function

is nonlinear and not symmetric around zero. Second, in the de¿nition of IR the treatment of

future shocks matters. Whereas in the linear case turning off all the shocks gives the same

result as keeping the stochastic structure activated over all the time horizon and averaging out

the different futures, in the nonlinear case this equivalence does not hold. Hence it is necessary

to explicitly consider the future realizations to evaluate the IR.

Our model being multivariate, we face the additional problem of thecomposition

dependence of the disturbance, also encountered in linear VARs. We will not try to exploit

the theoretical framework to which we referred in the introduction in order to identify the

”structural” sources of the shocks, but rather we follow a reduced-form approach in which we

55 See Potter (1991), Gallant, Rossi and Tauchen (1993), Koop, Pesaran and Potter (1996).
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use the empirical distribution of the residuals to shock both equations at the same time. Note

that these two methods are designed to answer different questions. While the ¿rst can uncover

the propagation pattern of disturbances originating from different speci¿c sources, the second

allows us to study the effect of representative economy-wide shocks on the two dependent

variables and, in general, has the advantage of generating IRs that are unique, whereas in the

structural approach uniqueness is obtained only up to some identi¿cation restrictions.

Our IR function is de¿ned as the generalized impulse response in KPP:

U-{fE�c 0| ' #c I|3�� ' .E{f|n� m0| ' #c I|3���.E{f|n� m I|3��c(16)

where� is the horizon at which the effect of the innovations is examined,# is the vector of

shocks hitting the system at time| andI|3� is a history until time|� ��23 Being an economy-

wide shock,# is a draw from the joint distribution ofi0+|c 0�|j. Moreover, in the baseline

forecast –the second expectation in expression (16)– we do not condition on a null realization

of the current shock, but rather we average over all possible realizations. The rationale for

this choice comes directly from the meaning of the baseline which is to represent the average

behavior of the system.

From the representation in equation (15), and from the de¿nition of IR in (16) we obtain

the IR for{f implied by our model

U-{fE�c 0| ' #cI|3�� ' [�# n
S�

�'fi��d.E�(-|n�3�3�m0| ' #cI|3��

�.E�(-|n�3�3�mI|3��oj�
(17)

The¿rst term in (17) is the linear part of the IR, while the lag polynomial in the difference

between the two expectations conditional on different information sets comes from the

nonlinearity. As� $ 4, the model in¿rst differences should not show persistence since,

given its ergodicity,[� $ f and therefore also the coef¿cients of�Eu� quickly go to zero

and the two expectations become arbitrarily close, because the effect of the different initial

conditions dies off. In levels of the variables, the IR cumulates to

56 All the relevant information at time w� 4 is given by FGUw�l, �[w�m with l @ 4> 5 and m @ 4> 5> 6> 7=
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U-fE�c 0| ' #cI|3�� '
S�

&'fi[&# n
S&

�'f��d.E�(-|n&3�3�m0| ' #cI|3��

�.E�(-|n&3�3�mI|3��oj�
(18)

Therefore, the persistence now arises not only from [E�� as in the linear case, but also

from the nonlinear structure. In particular, the difference in the realizations of �(-| in the

two expectations composing the IR (due to the non equal initial shock) permanently affects the

level of the variables. Intuitively, being at time | in the Àoor regime or in the corridor regime

will make a sharp difference in the ¿nal persistence and so will the magnitude of the shock

and its sign. We will analyze these issues in the ¿nal part of this section, after describing the

methodology for computing the empirical IR functions.

6.2 Computation of impulse response functions

Our computation of the IRs follows closely the procedure of Koop, Pesaran and Potter

(1996) who suggest a resampling technique to numerically integrate the expectations in (18).

The three main steps in the implementation of the procedure are:

– choice of the histories,I|3�(

– calibration of the shocks,0|(

– treatment of the future.

Regarding histories, we have only used the observed histories, without generating any

new one. Altogether, we have 97 sample paths that end up in the corridor regime and 55

leading to theÀoor regime at time| for | ' Dc Sc ���c �DS. Our main interest is in measuring the

asymmetry in persistence across the two regimes�we therefore estimate the IR conditional on

the regime by averaging over the histories that end up in the same regime. Moreover, since

we have some realization of theÀoor which is very mild (in the sense that the model at that

point is very close to the linear model), we discard all the histories in which either�(-|3�

or �(-|32 are below their mean conditional on the system being inÀoor. Following this

strategy we are able to identify 15 histories in which the economy isundoubtedly in a phase of

recession and this allows us to compare two potentially sharply different situations.

The calibration of the shock is a problem when dealing with multivariate non

orthogonalized disturbances since the contemporaneous correlation of the innovations has to
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be taken into account. As in Gallant, Rossi and Tauchen, we have adopted a graphical method

consisting of scattering the residuals for the two time series and, by inspection, determining

what could be regarded as a typical shock to the system. These plots suggest that we pick

the pair E�ffHc��ff2� respectively for ,?GNP and U as a representative positive shock. By

changing the sign of this shock and doubling its magnitude we can explore the sign-effect and

the size-effect, so altogether we have the four cases in Table 6.1.

Table 6.1

Shocks {lnGNP {U
POS 0.008 -0.002
NEG -0.008 0.002
PPOS 0.016 -0.004
NNEG -0.016 0.004

Once the initial shock is chosen from the four cases above, the futures sample paths of

the system are generated by bootstrap as discussed in Appendix 3. The maximum horizon of

the IR has been set to 28 quarters, which turns out to be suf¿cient for the long-run behavior to

set in. The regime-dependent empirical IR is computed averaging over the realizations of the

future conditional on the history and over the histories in each regime, i.e.

	U-fE�c #c-� '
�

M-

M-[
�'�

+
�

�

�[
�'�

�
f �

|n� E#cI���f�
|n� EI��

�,
c(19)

where- ' is,JJoc SJoo�_Joj, M- indicates the number of histories forÀoor and corridor,I�

is the observed� � |� history for regime- associated with the realizations until time| � �,

� is the number of replications. The law of large numbers for i.i.d. random variables ensures

convergence of the sample mean in (19) –for each history– to the time invariant expectation24

characterizing the true IR conditional on the same history, i.e. the right hand side of (18).

57 Time invariance of the true impulse response function follows from the strict stationarity of our process
(ASSUMPTION A2 a) ).
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6.3 Results of the impulse response analysis

The empirical IRs are presented25 in Figures 3 and 4. Here we analyze the issue of

dependence of the IR on the regime of the system, the sign and the size of the shock.

A strongly regime-dependent pattern of persistence stands out of our results: shocks

are muchless persistent when they hit in a recession. This is true independently of the sign

and the magnitude of the shock. For example, if we consider the GNP hit by a Neg shock

E��ffHc �ff2� c we observe that when the system is in theÀoor regime it responds through

an initial negative effect that drives the IR well below its initial point, but after only four

quarters the upward pressure deriving from the downturn offsets all the initial drop and quickly

brings the IR above its starting point. In the corridor regime this effect is weaker –as it is

evident from the less sharp and delayed hump– so the IR levels off below its initial value. An

analogous argument holds for unemployment. It is also interesting to note that in both regimes

unemployment has a similar abrupt rise in the following 2-3 quarters after the shock� then,

depending on the regime, the IR drops quickly or dies out at a higher level. Thus a sharp short-

run peak in unemployment following a negative shock is a common feature of both regimes�

only its timing differs slightly.

If we turn to positive shocks, the same regime-dependent pattern of persistence is found.

It might seem counterintuitive that even in the occurrence of a positive shock theÀoor regime

is associated with a lower rate of persistence. To see why this happens one has to recall that

the IR is the difference between the response of the shocked economy and that of the baseline

economy. In theÀoor regime, the shocked economy is pushed out of the recession quickly,

while in the baseline economy the feedback is likely to stay activated longer and its positive

effect contributes to reduce the difference between the shocked and the baseline systems, hence

reducing the persistence.

Another interesting¿nding is that, independently of the regime, the positive shocks show

more persistence than the negative shocks. This result is in line with the univariate model in

Beaudry and Koop (1994), although the magnitude of the relative persistence is very different.

This clear sign asymmetry is the crucial factor in explaining why in the long run the effect of

the feedback from recessions enhances growth. Indeed, although the feedback from downturns

58 In all the Figures, the Impulse Responses have been normalized so that their starting value is always 1.
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tend to reduce the persistence of all shocks, this dampening effect is larger for negative shocks,

which induces a net positive contribution to the long-run growth of the system.

Note that Gali and Hammour (1991) and Hall (1991) found that a negative aggregate

shock has a long-run positive effect on productivity, which they take as a validation of theories

that assign a positive role to bad times. Our model predicts that shocks keep their sign even

in the long run, but the key role of recessions is to reduce the persistence of negative more

strongly than positive shocks. We¿nd this sign-asymmetry view more appealing than the

sign-reversion in explaining the positive role of the feedback from recessions on growth.

Figure 4 shows the result of hitting the system with a shock of double magnitude. Here

the asymmetry in signs is more visible, especially for the corridor regime: the IR for NNeg has

a much steeper hump compared with the PPos case since the disturbance is so negative that the

economy falls immediately into a recession� hence the upward push occurs early and is more

intense. Interestingly, if we contrast IRs across magnitude of the shocks, the size-asymmetry

is rather weak. Indeed, it seems that the only case in which it is relevant is for the negative

shock in corridor. In this case, doubling the magnitude induces the system to fall in a deeper

recession and substantially increases the probability and the size of the feedback effect.

In relation to the issue of stationarity of the unemployment rate, it is also important to

note that the IR computed on the levels does not die off at zero in any of the cases considered.

This is an additional piece of evidence in support of our choice of¿rst differencing both series.

One of the objectives of this paper is to explore the type of misspeci¿cation which arises

in IR analysis from omitting the nonlinearity. For this purpose we compare our IRs with

the analogous functions computed for a linear VAR(4) estimated on the same series. Braun

and Mittnik (1993) point out that in a linear VAR excessive lag-length truncation has serious

consequences in terms of misspeci¿cation of the IR. Since the nonlinearity is a function of past

lags of{f|, its omission roughly¿ts into this category, but as additional lags enter the model

only when theÀoor regime is activated, we expect the misspeci¿cation to be worse for the

Àoor regime and for negative shocks. This is indeed our¿nding, as documented in Figure 5.

For the PPos case, the linear IR is an average of the two, while for the NNeg case it completely

misses the positive effect of�(- and greatly overstates the measure of persistence.
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6.4 The issue of persistence in GNP

Following the inÀuential paper of Nelson and Plosser (1982), many other authors have

tried to measure the persistence of shocks in economic time series. Campbell and Mankiw

(1987), using univariate parsimonious ARMA models for GNP, found a persistence coef¿cient

of about 1.5. Cochrane’s (1988) nonparametric approach provides estimates between 1.1 and

1.4, according to the window-size selected. Watson’s (1986) decomposition of the process

into stochastic trend and cycle, using the assumption of orthogonality of the shocks to the two

components, gives a measure of persistence between .36 and .57. Lippi and Reichlin (1992)

showed that this latter method provides measures that are constrained to be below unity. Evans

(1989), using a multivariate approach, yields an estimate between .26 and .55, hence close to

Watson’s results, although his VAR is not subject to the same criticism. Evans reconciles his

¿nding with the previous literature by arguing that his VAR speci¿cation implies a high order

ARMA process for the GNP, so that his measure of persistence does include the dampening

effect of higher lags, all entering with a negative sign. On the contrary, the low order ARMA

models as in Campbell and Mankiw miss this effect and overestimate persistence, producing

measures above the random-walk level.

Since our model is nonlinear, we cannot adopt one of the standard methods in the

literature, but we can easily generalize the Campbell and Mankiw measure by de¿ning

persistence as that number at which the IR levels off, once it is normalized to one at the initial

period. Persistence measurements for the log real GNP in our model are summarized in Table

6.2.

Table 6.2

COEFFICIENTS OF PERSISTENCE

Shocks lnGNP
POS CORR. 1.5
PPOS CORR. 1.5
NEG CORR. 1.3
NNEG CORR. 0.9
POS FLOOR 0.8
PPOS FLOOR 0.9
NEG FLOOR 0.6
NNEG FLOOR 0.5
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As already noted in Section 6.3, persistence is fairly asymmetric across regimes. One

striking fact is that the coef¿cient is in the range .5-.9 for theÀoor regime and between .9 and

1.5 in the corridor regime and these are roughly the two sets of numbers over which the debate

in the literature has developed. Our model suggests that there is not a unique optimal lag order

and therefore not a unique coef¿cient of persistence, and can reconcile the two different set of

measures in the literature through the nonlinearity. Using Evans’ argument, during expansions

GNP can be well approximated by a low order ARMA process and the persistence of the shock

is high. During downturns, to capture correctly the dynamics of the system, more lags of GNP

should enter the speci¿cation, and this is done in our model through the�(- variable, with

the effect of decreasing the persistence of the innovations.

7. Conclusions

An extension of the.(A�- model to the multivariate framework and to the case in

which the feedback operates at multiple lags is proposed in this paper. Although the model

presents some dif¿culties induced by the nonlinear structure and the discontinuity of the log-

likelihood function, we could state a set of simple assumptions under which the model is

ergodic and we could prove the strong consistency of the ML estimator.

The model is applied to a bivariate VAR of output growth and changes in the

unemployment rate for the US economy, where the nonlinearity is introduced through a

variable which measures the depth of recessions and de¿nes acorridor and aÀoor regime.

The two extension we propose turn out to be relevant since, depending on the lag order of the

feedback process, the nonlinearity is found to be signi¿cant in one equation or the other but not

in both. The appropriate testing procedures and the estimation suggest that the relevant model

is that where asymmetries are strongly present on the unemployment dynamics and transmit

to output through the cross-correlation of the series. This¿nding points at the danger of

misspeci¿cation that can heavily affect tests aiming at detecting nonlinearities in the univariate

framework.

The generalized impulse response analysis con¿rms the presence of rich interaction

between persistence and nonlinearity. Indeed, it emerges that asymmetries in persistence

are clearly present across different regimes and shocks of different sign. Shocks in theÀoor
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regime are always less persistent than in the corridor. Negative shocks are less persistent

than positive shocks. We argue why these asymmetries explain our ¿nding that the feedback

from the downturns has a permanent positive effect on the long run growth process of the

economy. Quantitatively, this fact –which we interpret as a cleansing effect of recessions

following some recent contributions to macroeconomics– accounts for more than one sixth of

the average growth of GNP over our 40-years sample. Moreover, our estimates of regime-

dependent persistence for GNP provide a new way of looking at the wide range of persistence

measures existing in the literature.

To conclude, we believe we have shown, through our application, that there are

cases in which nonlinearities do matter in characterizing the dynamic properties of relevant

macroeconomic time series. At the current state of the art, a great amount of theoretical work

has been developed on nonlinear time series models. In parallel, there has been a fast decline

in the computational time needed to estimate and test these models. Both facts have clearly

reduced the advantage of working with linear VAR models. As we have argued, the neglect

of nonlinearities may induce wrong inference on the propagation mechanism and persistence

measures of the shocks and may hide interesting properties of the data. Therefore, in many

cases there is a large net gain in adopting nonlinear frameworks for time series analysis.

The issue of forecasting precision of these models versus their linear counterpart is

another important dimension along which the two approaches should be compared. Although

this issue has not been explicitly the focus of this paper, it deserves attention and will be object

of future work.



Appendix I

In this appendix we will give a Markovian representation of the model in Section 2.2 and

we will then use it to state some suf¿cient conditions for its geometric ergodicity (Proposition

1).

We start with some notation. Let i{f|j be a sequence of ?2-valued random variables

(r.v.’s) that are de¿ned on the complete probability spaceE7{f c 8{f c >{f� where >{f

is somej�¿nite measure on8{f . Let also~| ' i{f|c{f|3�c ���c{f|3^3�n2j be a

E^n�����|�R,e de¿ned on the product spaceE7~ c 8~ ,>~�. ~| is needed for the vectorization

used to construct the Markovian representation of the model.

We can generatê different partitionsz� , � ' �c ���c ^, of the space of~|3� through

the feedback indexes8|3� de¿ned in (5), based on the different ways in which the�(-|3�

variable can be activated. The partitionz� is composed by� n � elements and the generic

element� � E�� � i~|3� G 8|3� ' �j �

Let zW be the joint26 of thez�c � ' �c ���c ^c partitions. This joint partition has maximum

dimensionE� n ��^ and we can denote its generic element by� Eg� � _^
�'��

� E&�� where

� � E&�� 5 z�c &� ' fc ���c � andg ' i&�c ���c &^j. Hereafter,�f � _^
�'��

� Ef� corresponds to

that region of the space where the model is in the linear regime, i.e. the region were all the

feedback are zeros. The joint partitionz divides the space of~|3� into sub-regions� Eg�

in which the dynamics of the model are modi¿ed with respect to those of the linear regime

through a matrix\Eg� � This matrix can be written as\Eg� '
S^

�'�\
� E&��, where\� E&�� is

associated with the element� � E&�� 5 z� and it is a square matrix of dimension2E^ n � � �� G

\� E&�� '

57 f
E2f2E�3���

X�
E2f2&��

f
E2f2E^n�3&�3��

f
E2E^n�32�f2E�3���

f
E2E^n�32�f2&��

f
E2E^n�32�f2E^n�3&�3���

68
where the matrixX� is

X� ' e
 �
X� f

�
c

59 Given two partitions I4and I5, I � is an element of the joint partition I4^ I5 if for some I4 5 I4 and
for I5 5 I5, I � � I4 _ I5 and there is no other element I

3
of the joint such that I

3 � I4 _ I5 and I � � I
3
.
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e is a E�� &�� unit vector and X� is the E2� �� vector of coef¿cients of �(-|3� in (8).

Using ~| and the de¿ned partition, the model can be rewritten in a vectorized form as

~| '

�
k
f

�
n

�
x�c ���cxR f

U f

�
~|3� n

E�n��^[
g'�

\Eg�~|3��E~|3� 5 � Eg��

no

^[
�'�

X��E~|3� *5 � � Ef�� n L|�

where L
�
| ' iEM

�
2
| �|�

�
c fc ���c fj�

Even if the partition � has E� n ��^ elements, this does not imply that the process ~

can move among all elements of the partitions owing to the way the feedback effect has been

constructed. Two elements, � Eg� and � EgW�, of the partition � will be de¿ned adjoin from

g to gW if ~| 5 � Eg� and ~|n� 5 � EgW� which is the case if &W�n� ' &� for � ' �c ���c E^ � ��

and m&W� � &W2m � �. Given two elements, � Eg� and � EgW�, of the partition � they will be

de¿ned as reachable if there is a sequence of adjoin elements of the partition � which allow

to move from � Eg� to � EgW�. So the subset of the partition � of interest will be the set of

element of � which are reachable form �f�

Given that a Markovian representation of the model exists, the proof of geometric

ergodicity can be based upon the theory on stability of Markov chains as in Nummelin (1984)

and Tjøstheim (1990). If the process is>~�irreducible and aperiodic, this proof essentially

requires verifying the drift conditions for a given power function of~|. For a non negative

measurable function} and- : �, the��step ahead drift conditions are

DC1 -.E}E~|�m~|3� ' 5� 	 }E5� on5 5 VS

DC2 .E}E~|�m~|3� ' 5� � � 	 4 on5 5 V

whereV is a small set. In our framework the continuity of the conditional mean function and

the following regularity conditions on the error term�| ensure that every compact set on the

space of~| is a small set. For the formal de¿nitions of irreducibility, aperiodicity and small

set, the reader can refer to Nummelin (1984), de¿nitions 2.2, 2.4 and 2.3 respectively.

The geometric ergodicity of the process is based on the following assumption:
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ASSUMPTION A1: < an integer � : f s.t.

4@ 

�����
�\
�'�

��
x�c ���cxR f

U f

�
n\Eg��

������ 	 �,

where the 6@% operator is taken over all the possible ¿nite number of combinations of \Eg��

such that � Eg�� for � ' �c ���c � belongs to subset reachable from �f and � Eg�� and

� Eg�n�� are adjoin for � ' �c ���c � � �, and where n�n stands for the euclidean norm.

This assumption is meant to capture that, independently of all its possible paths, the

process after � steps always tends to return towards the centre. We are now ready to state:

PROPOSITION 1: If ASSUMPTIONS A1 holds and the marginal R_s of the error term �|

is absolutely continuous and positive on ?2 then the process {f| is geometrically ergodic�

PROOF: The aperiodicity and >~�irreducibility follow directly from de¿nitions under

the assumptions on the marginal R_s of the error term �|� De¿ne the power function } E�� as

the Euclidean norm n�n in the space of ~|� We can now verify DC1 and DC2. The norm of

the constant vector, the os term and the covariance of the errors can be bounded by a positive

constant �. Furthermore, by Assumption A1, it is easy to see that there is an k 	 � s.t. the

following inequality holds:

. En~|n m ~|3� ' 5� � � n k n5n �

So it is possible to ¿nd an - : � such that -k 	 � and to rewrite that previous condition as

-. En~|n m ~|3� ' 5� � -� n-k n5n
� n5nn-� n Ek-� �� n5n

Let us now de¿ne the small set V � i5 G n5n � oj and take o : -�
�3-k

, then :

- E. n~|n m~|3� ' 5� 	 n5n on VS and

- E. n~|n m~|3� ' 5� 	 � 	 4 on V,
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where the second condition derives from the fact that V is compact and the conditional mean of

the process is continuous. Given that the drift conditions hold, the result follows by Proposition

5.21 of Nummelin (1984).

Given the geometric ergodicity property, if we also assume that the initial distribution

of the process was the invariant distribution, then this implies that {f| is a strictly stationary

process.



Appendix II

Under the conditions of Proposition 1 in Appendix 1, we can establish the geometric

ergodicity of our .(AT �- model. We are now ready to look at the properties of the �u

estimator.

Let us de¿ne `| � i{f|c ~|3�j on the probability space E7` c 8` c >` � � `| is the

history of {f| up to its maximum relevant past, i.e. time E|� ^ � � n ��c and it will be used

to express the likelihood in compact notation. Denote by �& the Borel j�algebra generated

by the space ?&. Recall that the conditional likelihood function for observation {f| is:

�|EB� � �E`|c B� '

��
2

k
*? mM|mn Ex Eu�{f| � k�XEu��(-|�

�
M3�

| Ex Eu�{f| � k�XEu��(-|�
l
c

where B is the vector of parameters which lies in a metric space (. The dependence of �E��
from `| reÀects that we allow the variable �(-| to contain up to � lags of {f| and that the

polynomial XEu� has order ^. De¿ne also

�E`|c B
Wc 4� � t�TB E�E`|c B� G _EB

Wc B� 	 4�

�E`|c B
Wc 4� � �?uB E�E`|c B� G _EB

Wc B� 	 4� c

where _E�c �� is a metric on ( and 4 is a positive number. We shall refer to eB�u. as the

maximizer of the sample likelihood, �
A

SA
|'� �E`|c B�c on (. For the proof of Proposition 2,

we need four Lemmas in which we characterize the continuity of � and the measurability of �

and �.

LEMMA 1A: For any BW 5 (, �E�c BW� is continuous in `| almost everywhere (a.e.) under

>` �

PROOF: Take any arbitrary BW 5 (. By simple inspection it turns out that the function

�E�c BW� is discontinuous only if for some � ' �c 2c ���c E^ n � � ��, {f�c|3� ' oW where oW

is the last element of BW. De¿ne now the set CW
� � �

`| 5 �^n�3�?2 G {f�c|3� ' oWs
�

. It

contains the set of histories of {f| which induce a discontinuity of �E�c BW� at time |� �. This

is a �^n�3��2-measurable set and it has measure zero. De¿ne nowCW � ^^n�3�
�'� CW

� . This set

is larger than the set ofall histories up to time| which induce discontinuities of�E�c BW�. Being
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a countable union of measure-zero sets,CW has measure zero and the conclusion follows for

the arbitrariness ofBW and the completeness ofE7` c 8` c >` �.

LEMMA 1B: For any¿xed`|, � E`|c �� has at most one discontinuity with respect too.

PROOF: Suppose� E`|c �� is discontinuous atoW. Denote by�4Eo
W� an open ball around

oW of radius4. Then, for everyo 5 �4Eo
W� the following two conditions are veri¿ed

(i) if o : oWc then<�W 5 i�c 2c ���^j such that�(-|3�W Eo� 	 f(

(ii) if o � oW, then�(-|3� Eo� ' fc for ;� 5 i�c 2c ���^j �

Hence, from the de¿nition of�(-|3�W and (i) it follows that<� : �W such thatf|3�W�Ef|3�n

o� 	 f. So for everyo : oW, �(-|3�W 	 f and it is not possible to have a new discontinuity

since for any othero : oW the system at time| will be always in theÀoor regime. Similarly,

for everyo � oW, �(-|3� ' f and we cannot have a new discontinuity. Given thatoW and4

are arbitrary, the conclusion follows.

REMARK: A simple corollary of Lemma 1b is that, once{ is equipped with some

appropriatej�algebra and measure, the set of discontinuities of� E`|c �� has measure zero.

LEMMA 2: �E�c B� is a8*�-measurable function.

PROOF: It follows from Lemma 1a and the completeness ofE7` c 8` c >` �.

LEMMA 3: For anyBW 5 (, �E�c BWc 4� and�E�c BWc 4� are8*�-measurable functions.

PROOF: To prove measurability of�E�c BWc 4� we will construct a sequence of measurable

functions that converges to it. Denote the set` of histories such that�?u� m{f�|3� � oWm :
4. By construction, the function�E`|c B� is jointly continuous oǹ � �4EB

W�. This

implies that �E�c BWc 4� is continuous oǹ � Now, de¿ne the smooth switching-function

8�2

�3S^
�'� �(-|3�

b?

�
as the cumulative distribution of a chi-squared random variable and let

ib?j be a sequence of scalars converging to zero. Note that in our de¿nition the variable

�(-| is nonpositive, so if the process is in the corridor regime, i.e. all�(-|3� ' f for

� ' �c ���c ^, then8�2 will be identically zero. If the process is in theÀoor regime, i.e.< �W

such that�(-|3�W 	 f, then the function8�2 will be greater than zero and approach one as
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b? goes to zero. Now we introduce the following function

�
�
E`|c Bc b?� '

��
2

k
*? mlSmn Ex Eu�{f| � k�

�
l3�

S Ex Eu�{f| � k�
l

n

�
��

2
*?

mls m
�lS� � �

2
EX Eu��(-|�

�
l3�

s EX Eu��(-|�

��
2
Ex Eu�{f| � k�

� �
l3�

s � l3�
S

�
Ex Eu�{f| � k�

n EX Eu��(-|�
�
l3�

s Ex Eu�{f| � k�
r
8�2

�3S^
�'� �(-|3�

b?

�
�

Being a sum of jointly continuous functions, this function is jointly continuous with respect to

E`|c B�. Moreover, the sequence of functions
�
�
�
E`|c Bc b?�

�
converges to �E`|c B� as b? goes

to zero. Denote

�
�
E`|c B

Wc 4c b?� � t�T
B

�
�
�
E`|c Bc b?� G _EB

Wc B� 	 4
�
�

For the same argument as above, the function �
�

is continuous on all ��?2� This allows the

following sequence of functions to be constructed

e�E`|c B
Wc 4c b?� '

+
�E`|c B

Wc 4� if `| 5 `

�
�
E`|c B

Wc 4c b?� if `| 5 ��?2*`c

Since the function e� is continuous a.e., the sequence converges to �E`|c B
Wc 4� and BW is

arbitrary, we have established the measurability of �E�c BWc 4�. The proof goes through similarly

for �E�c BWc 4�.

For the main proposition we also need the following assumptions:

ASSUMPTION A2: ( is a compact metric space.

ASSUMPTION A3: @�
U
t�TBM( m� E`|c B�m�E`|�_>` � � 	 4

where �E`|� is the probability density function of `|.

K� �E`|� 	 4 almost everywhere (a.e.) under >` �



43

ASSUMPTION A4: . E�E`|c ��� attains its unique global maximum on {

at B ' B��

We are now ready to prove the consistency of eB�u. . We will follow, with minor

modi¿cations, the argument in the main Theorem of Andrews (1987).

PROPOSITION 2: If Assumptions A1-A4 hold, then

(a). E�E`|c B�� is continuous on(�

(b) t�TBM{
��� �A SA

|'� �E`|c B��. E�E`|c B��
��� $ f

asA $ 4c almost surely (a.s.) under>`

(c)eB�u. $ B� a.s. under>` .

PROOF: For;B 5 (, we have that

*�44<f

��U �
�E`|c Bc 4�� �E`|c B�

�
�E`|�_>`

��
� *�44<f

U ����E`|c Bc 4�� �E`|c B�
�
�E`|�

�� _>`

'
U
*�44<f

����E`|c Bc 4�� �E`|c B�
�
�E`|�

�� _>` ' fc

where the¿rst equality holds by the Lebesgue Dominated Convergence Theorem using

Assumption A3 a) and the last equality holds by Lemma 1a and Assumption A3K�. The

same is true if we replace� by �. Given this, part (a) follows.

By (a), for any0 : f, we can choose4 EB� so that

. E�E`|c B��� 0 � . E�E`|c Bc 4 EB��� � .
�
�E`|c Bc 4 EB��

� � . E�E`|c B�� n 0�

The collection of ballsi�EBc 4 EB�� G B 5 (j is an open cover of the compact set(, hence

there is a¿nite subcoveri�EB�c 4 EB���j, � ' �c ���c U. For anyB 5 �EB�c 4 EB���, we have

�E`|c B��. E�E`|c B��

� �E`|c B�c 4 EB���� . E�E`|c B�c 4 EB����

� �E`|c B�c 4 EB����.
�
�E`|c B�cc 4 EB���

�
n 20c

and
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�E`|c B��.�E`|c B�

� �E`|c B�c 4 EB����.
�
�E`|c B�c 4 EB���

�
� �E`|c B�c 4 EB���� . E�E`|c B�cc 4 EB����� 20�

From A.7 and A.8, averaging over T observations and subsequently taking the minimum and

the maximum over i, we obtain:

4�?�$U
�
A

SA
|'� �E`|c B�c 4 EB���� . E�E`|c B�cc 4 EB����� 20

� �
A

SA
|'� �E`|c B��. E�E`|c B�� �

� 4@ �$U
�
A

SA
|'� �E`|c B�c 4 EB����.

�
�E`|c B�cc 4 EB���

�
n 20�

The min and max operator are de¿ned because I is ¿nite. By Proposition 1 and Lemmas 2

and 3, �, � and � are stationary and ergodic (see Stout, 1974, p. 182) hence the expectations of

these functions do not depend on |. By Assumption A3 @� the ¿rst moment of �, � and � exist,

so we can apply the Strong Law of Large Number for stationary and ergodic sequences to the

three terms of A.9. The two bounds converge then to �20 and 20. Since 0 does not depend on

B and it is arbitrary, the uniform convergence of the central term follows. This establishes part

(b) of the Proposition.

By (a) and Assumption A2 B� exists and by Assumption A4 it is unique. Part (b) of

Proposition 1 ensures that the sequence
qeBAr will converge to B�almost surely under >` , so

part (c) is also proved.



Appendix III

Due to the nonstandard asymptotics of the nonlinear model, we make extensive use of

bootstrap techniques throughout all the paper. Recall that in our model the variance of the

error term follows a qualitative threshold type of process of the form:

0| ' M
�
2
| �|

M| ' �E
S^

�'� �(-|3� ' f�ElS � ls � n ls �

We adapt the method of resampling proposed by Lamoureux and Lastrapes (1990) for models

with conditional heteroskedastic errors. From the estimation procedure we have consistent

estimators for e0| and for fM| at every |, hence the adjusted-homoskedastic errore�| can be

computed as

e�| ' eM3 �
2

| e0|�
For the errorsie�|j we tested and could not reject the null hypothesis of no serial correlation.

A test of serial correlation has also been performed on the series of errorse0| to make sure that

there is no dependence left in the residuals, since this would also affect the consistency of the

estimates. The test in this case is nonstandard due to the conditional heteroskedasticity and

has to be performed following the modi¿cation of the Box-Pierce test proposed by Diebold

(1987). Again the test does not signal the presence of autocorrelation.

In bootstrapping, we used the following procedure. At every replication, we draw with

replacement a new series
q
�
E��
|

r
from the homoskedastic and uncorrelated residuals. Given

this new sample and assuming the original initial conditions, we generate the new sampleq
{f

E��
|

r
c using the recursive structure of the model speci¿ed in equations (??)-(9).

In the non-nested test for the order selection on the�(- variable and in the test for

linearity, we use this resampling strategy to compute the empirical distribution of the statistics

under the null. For both tests at each replication, we regenerate the data under the null of the

test and then compute a new value of the statistics given the bootstrap sample. For each test,

2,000 bootstrap replications were performed.

The same resampling methodology has also been used in the computation of the impulse

responses. For each history, we draw�c fff � 2H realizations of the homoskedastic residuals
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for the baseline model and �c fff � 2. for the shocked model, since the initial shock is ¿xed

at the calibrated values.27 For each of the �c fff replications, a future of length 2H for {f and

�(- is recursively built both for the shocked and the baseline economies. We then average

over the replications to compute the value of the two expectations in the right-hand side of (16),

so the IR conditional to the given history is obtained. To induce a negative correlation between

the sample estimates of the two expectations in (16) and reduce the experimental variance, we

use the same set of random numbers in generating the 27 period futures for the shocked and

the baseline model. The regime-dependent impulse response is computed by averaging over

all the observed histories in a given regime� hence, in all, we have 97,000 realizations in the

corridor and 15,000 in theÀoor regime.

All computations have been performed using GAUSS 3.1 for UNIX running on IBM

RISC 6000.

5: 28 is the maximum horizon chosen for the IR analysis.



Table 1

MODEL SELECTION CRITERIA FOR THE VAR ORDER

Lag CDR Lag Linear AIC SIC
0 4 246.14 192.19
0 5 239.37 173.43
0 6 231.85 153.92
0 7 224.49 134.57
0 8 217.92 116.01
1 4 249.86 189.92
1 5 242.55 170.62
1 6 235.99 152.07
1 7 228.48 132.57
1 8 225.37 117.47
2 4 250.95 185.01
2 5 244.17 166.24
2 6 237.44 147.52
2 7 230.40 128.49
2 8 225.08 111.19
3 4 246.89 174.96
3 5 240.85 156.93
3 6 234.39 138.48
3 7 227.51 119.61
3 8 223.90 104.01
4 4 244.33 166.40
4 5 237.16 147.24
4 6 230.30 128.39
4 7 223.51 109.62
4 8 218.83 92.65

Number of observations: 148

Legenda: AIC, Akaike Information Criterion� SIC, Schwartz Information Criterion.
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