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NONLINEAR VAR: SOME THEORY
AND AN APPLICATION TO USGNP AND UNEMPLOYMENT

by Filippo Altissmo* and Giovanni Luca Violante**

Abstract

A generalization of the endogenous threshold model is developed by extending this
class to a multivariate framework and to cases where the feedback acts at multiple lags. The
feedback is specified, following Beaudry and Koop, by a variable which measures the depth
of recessions. We give conditions for the ergodicity of the model and prove strong consistency
of the maximum likelihood estimator, although the objective function is discontinuous in
the threshold parameter. The model is applied to a bivariate VAR of output growth and
changes in the unemployment rate for the US economy. The nonlinearity is found to be
statistically significant only in the unemployment equation and it transmits to GNP through
the cross-correlation between the series. We affisal that, owing to the nonlinear structure,
shocks hitting the economy in downturns have lower persistence than those occurring during
expansions. Since this dampening effect is stronger for negative than for positive shocks,
the feedback from recessions is found to contribute positively to the long-run growth of the
economy and we estimate this contribution to be about 1/6 of the total growth over the sample
period. We interpret this result as an empirical validation of those economic theories that model
recessions as cleansing times. Finally, we suggest that the state-dependence in persistence is a
possible key to interpret the divergence in the measures of persistence existing in the literature.
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** University College of London, Department of Economics.
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1. Introduction®

Starting from the work by Neftci (1984), a substantial interest has arisen in nonlinear
and asymmetric features of economic time seriedVhile the evidence on GNP and
other production series is rather mixed, generally nonlinearity seems to be present in the

unemployment rate.

One limitation of this literature is that the analysis is exclusively univariate. In a
multivariate framework the shocks interact, producing much richer dynamics, so one might
conjecture that extending the analysis to a multivariatear framework is suicient to
capture what in the univariate world needs a nonlinear structure to be well approximated.
Also, the nonlinearity might be present only in some series and transmit to other series
through their cross-correlation, so the multivariate system would help to identify where the
nonlinearity is originally active. This could represent a useful piece of information for
theoretical model building and for a more complete assessment of the relevance of nonlinear

features in economic time series.

Another large body of literature, following the seminal work of Nelson and Plosser
(1982), has grown around the issue of persistence of shocks in macroeconomic time series.
A commonfinding of this literature is that GNP shows some persistence, but the estimates
provided by the different authors vary across a wide rangrea nonlinear world the nature
of the response of the economy to a given impulse depends on the sign and the size of the
shock hitting the economy and on the history of the system. Hence, potentially a much richer
analysis of persistence can be performed in order to assess whether the restriction of linearity
is truly binding and therefore hides qualitatively interesting properties of the data.

In this paper we explore the interaction between nonlinearities and persistence in a

multivariate environment and we show that allowing for the presence of nonlinear features

L Wearegrateful to M. Hashem Pesaran for helpful discussion and his encouragement. We thank Valentina
Corradi, Frank Diebold, Lutz Killian, Lee Ohanian, Simon Potter and two anonymous refereesfor their comments
and also partecipants in workshops at IGIER, Universita "Ca’ Foscari” and the University of Pennsylvania. We
thank Giancarlo Marra for technical assistence. The usual disclaimer applies.

2 See DelLong and Summers (1986), Falk (1986), Hamilton (1989), Rothman (1991), Brunner (1992), Potter
(1995), Sichel (1993) among others.

3 See Watson (1986), Campbell and Mankiw (1987), Cochrane (1988) and Evans (1989) among others.
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in the series can shed light on several issues: first, the spurious presence of nonlinearities

due to cross-correlation between the serjesecond, the characterization of the propagation
mechanism of impulses and the measurement of persistdnag the potential constraints
imposed by the linear structure on the data, which prevents us from uncovering interesting

dynamics and testing theoretical models which are inherently nonlinear.

To accomplish this task we consider a reduced-form nonlinear bivariate VAR model of
changes in US GNP and unemployment rate. The nonlinear structure we introduce in the VAR
is an endogenous delay threshdidst formalized by Pesaran and Potter (1994) (hereafter
PP). That model is a special case of the more general class of threshold autoregressive models
(TAR).* TAR models specify different regime dynamics according to a given threshold rule
and restrict the process to be of the autoregressive form within each regime.

Even within the relatively restricted class of endogenous delay threshold models, there
are a number of ways to fiee the threshold rule. We followed the sgezation introduced by
Beaudry and Koop (1993) where the regimes are upturns and downturns and the state variable
IS a measure of the current depth of recession. We believe that this type of nonlinearity is
particularly attractive since, in a system with persistence, it captures the link between aggregate
fluctuations and long-run growth, a fact that has been stressed by the recent macroeconomic
literature. In the past few years some authors (for a survey, see Hall, Cé®hllero and
Hammour, 1994 Aghion and Saint-Paul, 1993) have emphasized the idea that recessions
are periods in which aleansing process is activated in the economy. The least productive
firms exit the market, whereas more innovative ones surmareover, the low opportunity
cost of investing resources in production stimuldiess to use resources in order to reduce
organizational indfciencies and restructure their plant. The result of this process is that
recessions might have a positive feedback on the future productivity growth of the economy.
Our model allows us to examine this issue in a very intuitive way and provides a measure
of how much the feedback originating from downturns has contributed to the growth of the
economy. Note that linear models would not be able to uncover this interaction between
recessions and growth, as they would treat symmetrically both phases of the business cycle.

4 The theory of TAR models has a rather long history, starting with the work of Tong and Lim (1980). An
extended survey of the literature on TAR models can be found in Tong (1990).
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The choice of the variables used in the VAR is guided by three considerations. First, as
mentioned above, these are time series for which some evidence of significant nonlinearity
exists in the univariate literature; hence it is of interest to see whether some spurious
nonlinearity induced by correlation arises in our bivariate framework. Second, GNP and
unemployment are a suitable set of variables to investigate the transmission mechanism of
the shocks between the labor market and the goods market, crucial in many policy analysis.
Third, linear VARSs for this pair of variables have been already estimated in the past.> Our
methodology is original in respect to this previous literature and reveals new properties of the

interaction between the two series that may put the existing resultsin a different light.

The rest of the paper is organized as follows. The model is introduced in Section
2. Section 3 presents the estimation method and a discussion of ergodicity of the model
and consistency of the estimator. The model selection, results of the estimation and testing
procedures are contained in Section 4. In Section 5 we characterize and measure the long-run
effect of recessions on the economy and in Section 6 this analysis is deepened by looking at

the impulse response functions and measures of persistence. Section 7 concludes.

2. The endogenous delay threshold model
2.1 Thethreshold principle and the endogenous delay threshold VAR

The traditional approach to the analysis of a stochastic nonlinear dynamic system is to
decompose it into piecewise linear subsystems. This is essentially what is caltbieshel d
principle, which means splitting the dynamics into different regimes through a threshold on
certain key variables in order to fiee a local linear approximation of the stochastic process in
every regime. The general class of linear threshold autoregressive models (TAR) is based on
this principle and uses autoregressive speations for the local approximation. The canonical

form of the TAR, as proposed by Tong and Lim (1980), is

(1) xt = a(Jt) + ®(Jt)xt—l + O-(Jt)gt7

5 See Evans (1989) and Blanchard and Quah (1989).



12

where ¢, is awhite noise with unit standard deviation and the indicator {.J;}, J; € [1, ..., M],

is a stochastic process indicating the dynamic regime which is in effect. The specification

(1) is quite flexible and can be specialized both to the Markov switching model introduced

in Hamilton (1989) and to the self-exciting TAR (SETAR); according to the way in which

{J;} is parametrized. A new specialization of the TAR class is the endogenous delay threshold
(EDTAR) model proposed by PP. The EDTAR model is a framework for modeling feedback
processes from the past realizations of the system to its current dynamics in a more articulated
way than the SETAR. Afirst proposed the EDTAR model was univariate and it did not allow

for feedback effects operating at more than one lag. We will extend that framework to a

multivariate setting with multiple lags in the feedback process.

Consider the time seriefX;}, where X; is a (k x 1) vector, whose dynamics are
modeled with M feedback channels from past values to the current realization. These
feedbacks can be characterized constructidgfeedback index functionsf,,;, m €
[1,..., M], defined as

(2) Fmt — 1(bms(Xta ceey Xt—s) G Am);

whereb,,s : T x R — R, A4,, is an interval on the real line which characterizes the
threshold rule for then — th regime,1(-) is the indicator function and,, is the maximum
memory of them — th feedback and it iginite. In the original speéication of theE DT AR
model, 7 is not restricted to bdinite. Thefiniteness ofr greatly simplfies the proof of
consistency of the maximum likelihood estimator and the requirements for the ergodicity.
The feedback indeX,; is activated when a particular transformatigp, of some lags of

X, satidies the conditions implicitly represented by the 4gt F,,; is only an indicator of the
activation of the feedback and it is used to switch on and off a feedback vakigblehich

enters the dynamics of the process. The feedback variable is recursively built as

(3) Ymt == 1(F’mt > 0) [eym,t—l + Gm(Xt7 (RS Xt—l)] )

6 An extensive discussion on the properties of SETAR models and their estimation procedure are described
in Tong (1990) and an application to the dynamics of the growth rate of US GNP is given by Potter (1995).

" Intherest of this section we will follow closely the notation in PP
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where G,,, : R x R#* — R, and § isascalar. This representation is very flexible, asthe set
A,,, and the functionsb,,., f,, and G,,, can be specified according to the nature of the feedback

process modeled.

We can now specify the dynamics of X; as

M
(4) (L)X = a+ Y Op(L)Yms 1+ Hi(-Juy,

m=1

with u; ~ N(0, I;,), and H, (-) isageneral functional form for the conditional variance.

We call the specification in (4) EDTV AR(p, qi, ..., qr) Where p is the lag order of ¢
and (¢, — 1) isthelag order of ©,,,(L), m = 1,2, ..., M. Equation (4), together with equations
(2) and (3) and a specification for the conditional variance, defines the genera structure of the
model.

To gain some intuition on the formalized model, consider as an example the case in
which we want to model an autoregressive process with slope 3 if in the previous period the
process assumed a positive value and with slope « in the other case. In this case the process
can be modeled by constructing a single feedback index and a single feedback variable, i.e.
M = 1. Given that the memory of the feedback is one lag, i.e. 7 = 1, then the implied
feedback index is

F, = 1(X, € ®).

Accordingly, the feedback variableis
Yy =1(F = 1) [(B — o) X

where ¢ is identically zero and the function G(X;) = (a — 3)X; and the dynamics of the

process can be written as

Xy = aXy 1 +Yi 1 te
= aXi + U Fa=1)[(8 —a)Xia] e

Note that thisis also a different way of representing a SETAR(1) model.
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Finally it is interesting to note how this kind of approach to nonlinear time series has
a natural interpretation in terms of a state-space model. Th&,,; variables are the states of
the system and equations (3) and (4) are, respectively, the state equation and the measurement
equation of the model, using the terminology of that literature. Notice, however, that here
the state is entirely a function of the observables, while many models that are usefully cast in

state-space form contain a latent state variable.

2.2 A VAR of output and unemployment with feedback from the depth of recessions

Within the framework of theZ DTV AR described above, we focus on a bidimensional
model of changes in log of real output and in the unemployment®raience X, =
(logGNP,U). We introduce a nonlinear feedback process in the dynamics of the variables
AX; through a unique feedback variable intended to capture the effect of recessions on the

economy. Our feedback inde¥ is defined as

T—

(5) F(r) =2

1
=0

[1 — H 1( Xy — Xijporgj > )|,

§=0
hence this index is zero when the current realization of GNP is higher than each of the past

T realizations augmented byand is equal ta when the previous peak of;; occurred at
(t —i). The implied feedback variabl€;DR, is ddined as

1(Ft > 0)<AX1t — 7‘) 'Lf E_l = 0

(6) CDR; (r) = .
1(F; > 0)(CDR;_1 + AXy;) otherwise.

We can déneC'DR; in more compact notation in two alternative ways:

CDR; (r) = Xy —max(Xy, X141+ 7, ..., X147 +7), OF

(7)
CDR; (r) = min(0, AXy; —r, AXy + AXy i — 71, AXp + 0+ AX g — 1)

where 7 is afinite number and thenax (min, respectively) is taken over the+ 1 terms

inside the brackets. The variabléD R measures the current depth of the recession of the

8 The series are Citibase quarterly data of U.S. GNP at 1982 prices (GNP82) and unemployment rate
(LHURR) monthly averaged, from 1952.1 to 1990.4.
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economy. It is clear that C DR will be zero as long as output grows at least at a rate r and
—once it is switched on through,— it will stay activated as long as output is lower than its
previous maximum increased bythat is to say until the economy has recovered the gap of

the recession.

The threshold parameter, which determines the activation af'DR, will be
endogenously estimated. Hence our measure of recession is endogenous as well since it
depends on the estimategf note that our specifation is more general than that of Beaudry
and Koop (1994) since they exogenouskr at zero. In the rest of the paper, we will use the
terminology of PP and refer to the situation in which the dynamics of the system are not under
the effect of any feedback, .87 , CDR,_; = 0, ascorridor regime, while we will speak of
floor regime in the case in which at least one of the diffegdags of theC' D R variable is not

null.

We allow the feedback effect to operate also at lags higher than one, gstothe
dynamics ofA X, follow the spedication:

iid

©) B(L)AX; = a + O(L)CDR:_y (r) + Hiuy with ug 2 N(0, L),

wherep is the order of and(q — 1) the order of©. The conditional variancé/; is modeled

as

i=1
where(2. and(2; are the conditional covariance matrices when the system is respectively in
the corridor regime or in th@oor regime. This structure of the conditional variance is also
known in the literature as qualitative threshold autoregressive conditional heteroskedasticity
(QTARCH)X Note that since&”’ DR depends on the threshold parametethe latter enters
both the conditional mean and the conditional variance.

9 In the next section we contrast our definition of recession as implied by the estimation with the NBER
business cycle dates.

10" See Gourieroux and Monfort (1992) for the theory on QTARCH and French and Sichel (1993) for evidence
on asymmetry in the conditional variance of real GNP in different phases of the business cycle.
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In conclusion, our model is described by equations (??)-(9). To gain some intuition
about the structure of the model, it is helpful to observe fr8@) that C D Rcan be written as
a constant plus the sum of the changeS M P from the date of the previous peak to the current
value, so that by substituting?) into (8) we obtain a linear VAR with time variant parameters
and time variant number of lags determined by an endogenous deterministic threshold rule.
More spedically, when the economy is under the effect of the feedback, at each period the
linear structure of the corridor regime is mfdd with additional lags and different parameter

values.

3. Ergodicity of the model and asymptotics of the ML estimator

The normality assumption on the error term allows us to write the conditional log-

likelihood function of the model as:

€46) = Y 661 = —1 X | +
(10) t=1 t=1
LY (@L)AX: - a — O(LICDR ) H (LAY, — a — O(L)CDR, 1),

2 t=

where$ = {a,®,0,0Q.,Q,r} is the set of parameters to be estimated &npds the

information set at time.

The numerical maximization of this log-likelihood is not a standard problem, given that
the function is discontinuous with respect to the parametehe threshold coétient. It
is clear from simple inspection of (9) and (10) that what generates the discontinuity in the
likelihood is the conditional variance term, which changes discretely between regimes, while
the conditional mean changes smoothlfhe estimation method applied here is the two-step
procedure suggested by Tong (1990) for the casersii’ AR models and also used by PP. In
the first step, we generatefmite grid of points over the domain of the threshold parameter
r and at each point on the grid we estimate the model by maximizing the likelihood function
conditional on a given value of using a standard hill-climbing algorithm. Then we choose
the value ofr on the grid for which the likelihood in (10) attains its global maximum. We

11 The EDTV AR model with homoskedastic disturbances was tested against the one with the QT ARC H
conditional variance, but we rejected the first.
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have worked with a grid of 400 point in the interval (—.013,+.013) *2 and at every point we
alow for 100 iterations over the likelihood function with a convergence criteria of 107> for

each parameter.

This procedure enables us to find the maximum of the sample log-likelihood function,
but it is not sufftient to ensure that the estimated parameter vég}% is consistent for the
true value of the underlying DGP. There are two main problems in proving consistency of the
ML estimator. Theirstis to characterize the conditions under which the model is ergodic. The
second is to control for the fact that the number of discontinuity in the log-likelihood function
is “small” and to show that the unconditional expectation of the log-likelihood function is itself

continuous.

3.1 Ergodicity

The presence of th€ D R variable induces a nonlinearity in the conditional mean of the

process. In a nonlinear environment assessing the ergodicity of a model is a complex matter.

Given some regularity conditions on the disturbances, to prove ergodicity itfisisof
to show that a certain “drifting condition” is safiisd. The latter ensures that, for any initial
value, the process is expected to move towards the “centre” of the spataite aumber of
steps. Tweedie (1975) stated this condition in its simplest form and Tong (1990) contains an
interesting interpretation of Tweedie’s condition through the concept of Lyapunov function,
which establishes a link between the stability of deterministic dynamical systems and the
ergodicity of stochastic systems. In particular, we will follow the approach of Tjgstheim
(1990) in using a generalization of Tweedie’s original result to characterize the ergodicity

of our nonlinear multivariate system.

To characterize this drifting condition the assumption 6h#ge memory in the feedback
process, i.e. &inite 7, is critical. In fact, given dinite 7 it is possible to show that the model
has a Markovian representation and therefore to apply the well-established theory on stability
of Markov chain& to our spedic case. We exploit thénite 7 in order to write the model

as a multivariates ET AR with a large number of states and constraints across the parameters

12 Thisisthe largest interval for » + such that both 2. and €2+ are nonsingular.

13 Seethe seminal book by Nummelin (1984).
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characterizing the linear dynamics of each different state. In this way we obtain a Markovian
representation of the process and we can therefore apply an argument based on the “ NV —step

ahead drifting condition” along the lines of Tjgstheim (1990). The formal proof of geometric
ergodicity of theEDTV AR is given in Proposition 1 of Appendix 1. Also, note that strict
stationarity of the process is obtained from ergodicity, once we assume that the chain is started

with initial distribution equal to the invariant distribution.

The following example provides some intuition for this stability result in a simple case.

Consider a univariate version of the model in (8) wite= 1, p = 2, ¢ = 2 andr = 0:

AXt = ¢1AXt_1 + ¢2AXt—2 + 91 mln (O, AXt_l)
+05 min (0, AX; o) + uy.

Define Z, = {AX;, AX, 1} andF;_;, ¢ = 1,2 as the feedback indexes in (5). It follows from
that ddinition thatF,_, = 1 whenZ,,_; < 0 andF,_; = 0 otherwise. The potential activation
of the two lags of” D R, generates 4 possible states that create a pariten Py, P;, P, Ps}
on the space aof;_;:

Po={Z1:F_1=0F_5=0}

P = {Zt—l by =1,F_5= 0}

P, = {Zt—l 1 =0,F 5= 1}
Ps={Z1:F,1=1F =1}

This partition is used to build the following Markovian representation of the model:

3
Zt = Z Akl(Zt,1 € Pk)thl + up .
k=0

The (2 x 2) matricesA,, associated to the four states are:

Aozlﬁbll %21’ A1:[¢1‘1F91 9’(5)2 ’

Azzlﬁzil 92523‘92}’ A3:l¢1‘1"91 ¢28‘92}_

The matrix A, describes the dynamics in the corridor regime and the other three matrices
describe how the corridor regime dynamics are miedithrough the activation af D R.
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The key condition for ergodicity is that, independently of the initial state, the process
moves toward the centre of the space in N (finite) periods. This condition requires some
restrictions on the products of the N matrices A which define the dynamics between Z; and
Zy N (see Assumption Al, Appendix 1).

3.2 Consistency and asymptotic distribution

Having characterized the conditions for the ergodicity of the model, we turn now to
the discussion of the consistency of the ML estimator. The key step is to show that the
discontinuity in the sample likelihood triggered by the conditional heteroskedasticity of the
error term does not invalidate the consistency of the estimator. In Appendix 2, a careful
characterization of the properties of the objective function /; is given and it is shown that
the set of realizations of the process that generate discontinuities has measure zero in the space
of histories. Thisfact, with the addition of a set of standard regularity conditions on AX;, and
under the above condition for ergodicity, leads to aproof of strong consistency of the estimator

(see Proposition 2, Appendix 2) which is constructed following Andrews (1987).

Finally, assessing the asymptotic distribution of the estimator requires deriving the
limiting distribution of the threshold parameters, which is likely to be non standard owing
to the discontinuity of the likelihood function. We do not pursue this strategy, but rather
we observe that conditional on r, the asymptotic normality follows from standard asymptotic
theory. Hence, if the speed of convergence of r is sufficiently quick, then the threshold value
can be treated as known in performing inference on the autoregressive parameters and the
standard asymptotic theory will hold. This conjecture is based on the result in Chan (1988)
where the superconsistency of r is proved for a two-regime SET AR and it is supported by

some of our Monte Carlo experiments.

4. Resultsof estimation and testing

The previous literature on VARs of output and unemployment, such as Blanchard and
Quah (1989) and Evans (1989), considers the unemployment rate to be stationary, although
it recognizes that the evidence on this point is not unequivocal. In our model the presence

of the nonlinearity invalidates the standard asymptotic theory of the unit roothesé&fore
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a different route should be pursued in addressing the issue of stationarity for the series.** A
necessary condition for the consistency of the estimator is the ergodicity of the system and
a sufficient condition for ergodicity is ASSUMPTION Al. When we picked the specification
with unemployment in levels, the maximum eigenvalue of the matrix driving the dynamicsin
the corridor regime was found to be outside the unit circle which invalidates ASSUMPTION
A1, whereas when we estimated the model in first differences of both series the condition was
satisfied.

In addition to this point, one should consider that working with a VAR with highly
persistent series may induce alarge small-sample bias of the estimatésThese two arguments
have led us to the choice of a sp@zation infirst differences and in the rest of the paper we
will provide some additional evidence on the validity of this assumption, in particular through

the long-run behavior of the generalized impulse response functions.

4.1 Model selection

The next step in the estimation procedure is the choice of the lag order of the polynomials
® and ©. Note that we need to select the lag order also fordhieR variable, allowing
in principle the presence of delays in the feedback effect from the recession to the current
dynamics of the variables. We start from a maximum lagAo¥ of eight and a maximum
lag for CDR of four and for each combination we compute Akaike Information Criterion
and Schwartz Information Criterion. Table 1 clearly shows that for any given ldg/of
the model with four lags oA X is always preferred. Moreover, it seems that the competing

models are the linear model and the models with one and two lag®ai.

The comparison between models with different ordef'@dfR is not merely a statistical
exercise since th&DTV AR(4,1) gives rise to a very different picture on the way the
nonlinearity operates in the economy compared withAieT'V AR(4,2). In particular, the
nonlinear term is sigficant only in the GNP equation in tH&st case and only in the U
equation in the second case. Tist model would support theories which locate the direct
effect of the feedback in the product market, whereas in the second model the feedback affects

14 Although we are aware of their limited value, ADF tests for unit root have been performed and for both

series we were not able to reject the null hypothesis of first difference stationarity.

15 See Nicholls and Pope (1988).
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first the labor market dynamics and transmits to output mainly through its correlation with
unemployment. Hence, comparing the models with one and two lags of CDR is not only
a matter of model selection but it can also give some insights about the propagation of the
feedback process and the origin of the nonlinearity found by the literature in both series.
This point illustrates the relevance of the two extensions of the EDT AR model that we have
proposed.

From the statistical point of view, a non-nested hypothesis testing procedure is needed
to compare the two speafitions. If we consider the conditional covariance structure of the

two models
Hy; = 1(CDR | = 0)(Qae — Quig) + Quap

and

2
Hyp = 1(2 CDR;?; = 0)(Quae — Quag) + Quay,

=1
we find that there is no combination of the parameter values such that the structures of the
variance of the error terms in the two models are equivalent. This is due to the different
number of lags of th€' DR variable inside the indicator function. Note that the non-nested
tests are actually two, one of tieDTV AR(4,1) versus theE DTV AR(4,2) and the other
of the EDTV AR(4,2) versus the DTV AR(4,1). A Cox type statistics in its multivariate
version as proposed by Pesaran and Deaton (1978) was applied. The proposed statistics for
testingE DTV AR(4, 1) versusE DTV AR(4, 2) is given by

(11) 6'41,42 =2 (541(541) - 542(&2)) )

where /,; and /4 are the log-likelihoods of the two modelsimilarly for the test of

EDTV AR(4,2) versusEDTV AR(4,1). The discontinuity of the log-likelihood function
prevents us from using the asymptotic results proposed by Pesaran and Deaton and obliges
us to resort to resampling technigues in computing the empirical distribution of the two
statistics® The computed standardized statistics and bootstrap p-values are reported in Table
4.1.

16 In Appendix 2, we describe the bootstrap methodology used through out all the paper.
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Table4.1

Cox Test | p-value
EDTVAR(4,1)VSEDTVAR(4,2) | -6.735 | 0.002
EDTVAR(4,2)VSEDTVAR(4,1) | 1.274 | 0.392

When the model with one lag is the null hypothesis we are able to reject it sttamighn the

model with two lags is the null hypothesis, we found a p-value of 39.2 per cent. Therefore,

in the rest of the paper we work withlaA R with two lags in the feedback process. This test
suggests that the feedback process from recessions affects the dynamics of the unemployment
directly, while it operates on output mainly through the cross-correlation of the series. This
point is rather important, since it stresses the danger of miggmn that is implicit in

testing nonlinearity on GNP in a univariate framework.

4.2 Results of the estimation

The results of the estimation procedure described in the previous section are shown in
the following table'’

Table 4.2
ESTIMATES FORA In GNP ESTIMATES FORAU

parametern t-value parameter t-value
CONST. 0.0046 | 2.3127 CONST. 0.0013 | 2.5107
AInGNP_; | 0.0583 | 0.5376 AInGNP_; | -0.0531 | -1.8169
AU_, -1.0898 | -3.0396 AU_, 0.3924 | 3.7822
CDR_; -0.1161 | -0.5212 CDR_; -0.1295 | -1.7782
AInGNP_, | 0.1906 | 1.8203 AInGNP_, | -0.0803 | -2.9213
AU_, 0.5810 | 1.6534 AU_, -0.1295 | -1.3071
CDR_, -0.1214 | -0.5566 CDR_, 0.1623 | 2.2916
AInGNP_3 | 0.0225 | 0.2204 AInGNP_3 | -0.0421 | -1.5971
AU_3 0.2086 | 0.5995 AU_3 -0.0911 | -0.9554
AInGNP_, | 0.0373 | 0.3705 AInGNP_, | -0.0042 | -0.1626
AU_4 0.1122 | 0.4230 AU_4 -0.0865 | -1.2269

The t-values are based on the asymptotic standard errors conditional on the estimated value of
the threshold parameter. We regard these values as good approximations of the unconditional
standard errors, as argued in the previous section.

17 For the estimation, we have initialized the feedback effect to be null.
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Table 4.3

Q, Q,

5.1952e-5 | -7.2639e-6 1.1805e-4| -3.2413e-5
-7.2639e-6/ 2.2988e-6 -3.2413e-5 1.6167e-5

As expected, the estimated variance of the innovations isfgigntly higher in downturns

hence recessions appear as times of strong volatility and uncertainty (see Table 4.3).

Table 4.4

OTHER PARAMETERS

r -0.0016
Times in corridor 97
Times infloor 55

Notice that the estimated valueofs very close to zero, which implies that roughly 1/3 of the
observations belongs to tfieor regime® Figure 1 shows the values f6tD R implied by the
estimation and the NBER chronology for business cycles from the quarter following the peak
to the quarter of the trough. Interestingly, in most case$thdk variable activates at a point
corresponding to the NBER firition of peak and starts decreasing at one corresponding to
the trough. Therefore its timing coincides with the “conventional wisdom” about recessions

and, in addition, it provides a measure of their depth.

The C' DR variable enters the equation of the GNP with a negative sign in both lags,
but it is not signficant, and the equation of the unemployment with a negative sign in the
first lag and with a positive sign in the secdfd he latter combination of signs offers a very
intuitive interpretation of thelirect effect of the feedback on unemployment. When the system
is sliding into a recession, the effect is in the direction of worsening unemployment, since the
first lag of C DR has a bigger magnitude than the second. On the contrary, when the economy

is in the recovery process, the total effect of the feedback on unemployment is positive.

It is also interesting to note that, when we looked at the deterministic dynamics of

the system implied by the estimated parameters, we found that all the steady-states of the

18 Thisfinding is consistent with the fact that in the past the NBER Business Cycle Dating Committee has
dated recessions as if the appropriate cutoff is approximately zero growth in real GNP,

19 Recall that the variable C D R is negative by definition.
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different linear dynamics of the model are located in the corridor regime. Therefore, when the
deterministic version of the model is started in the floor regime, it is attracted into the corridor
regime, which suggests the existence of a positive feedback effect that contributes moving the
economy out of recession. At this point of the analysis, though, the net total effect of the
feedback on the economy appears ambiguous; it will be investigated further in the following

sections.

4.3 Testing nonlinearity

At this point, having picked the best nonlinear model, one has to test the significance
of the nonlinearity itself. Thistest is amed at understanding whether a specification of the
dynamics of AX; with a nonlinear term but also with a possibly induced heteroskedasticity
in the error term fits the data better than the best possible linear model, an homoskedastic
linear VAR with four lags. The drawback of this testing procedure is that under the null of
linearity and homoskedasticity, the threshold parameter r vanishes. This problem isknown in
the statistical literature as Davies problem. One possible solution, proposed by Davies (1977)

himself, isto fix the nuisance parameter » and to compute the likelihood ratio test
(12) LR(T’) = 2 (1642(04, (I), @, Qc; Qf"l“) — 64()(()5, CI), Q)) 5

where /4, isthelog-likelihood of the nonlinear model given a value for the nuisance parameter
r, while /4 is the log-likelihood of the alternative linear model. Davies suggested the statistics

(13) SupLR = sup,(LR(r)).

The distribution of theSupL R is unknown and has to be computed by simulation. Andrews
and Ploberger (1994) pointed out that thep L R test lacks asymptotical optimal properties

and proposed the use of two other statistics:

ExpLR = E, exp(3 LR(r))

(14) AvgLR = E,LR(r),

where the expectation is taken with respect to the nuisance parameter. For computing the
critical value of these three test-statistics, we again used bootstrap methods. Table 4.5 reports



25

the bootstrap p-values for the three statistics and shows that all these tests largely rejected the

linear model.

Table 4.5

Test | p-value
SUP-LR | 27.704| 0.001
AVG-LR | 16.293| 0.000
EXP-LR | 5.0391| 0.001

Although we are aware that we picked just one sfiegiion of nonlinearity among many
possibilities, the evidence against the linear dpeation is surprisingly strongeven if the

true unknown DGP may not be DTV AR, it seems to be much closer to this nonlinear
model than to a linear one. Hence, using a linear VAR in this context may induce misleading
conclusions about the general dynamic behavior of the series, the pattern of the impulse
responses and the persistence of the shocks and may in the end lead to poor forecasting ability.

5. Thelong-run effect of recessions

Although the estimation provided useful information on where the nonlinearity
originates, it did not make explicit the role of recessions in the dynamics of the system. In
particular the sign and the magnitude of the effect of the C'D R variable on the long-run growth
are still ambiguous at this point of the analysis. The objective of this section is to resolve this
ambiguity.

Assuming that the roots of the(L) polynomial are inside the unit circle, the linear part
of theV AR can be inverted to give

(15) AX, = M + B(L)CDR,_, + ¥(L)e,,

where:
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V(L) = &H(L),
M = d7(1)a,

Notethat B(L)C' DR, represents the nonlinear feedback which affects the current dynamics
of the variablesin first differences and cumulatesits effect over time on the variablesin levels.
Theideaisto subtract this component from the series and compare the pair of series excluding
the cumulation of the C DR polynomia with the actua pair: the difference in the drift of
the series can be interpreted as a measure of how recessions have contributed to the long-run
behavior of the variables over the sample period.

From Figures 2a and 2b it can be seen that this difference amounts approximately to
0.5 per cent per year for the growth of GNP —which means slightly more than one sixth
of its sample average yearly growth rate— and roughly to -0.15 per cent per year for the
unemployment rat&. We therefore conclude that the contribution of the feedback is positive
and large. A useful way to interpret Figure 2a is that if the economy were hit by negative
recessionary shocks but did not b&niom the positive feedback (especially strong in the exit
from recession), in the subsequent periods output would have grown at a lower rate. Likewise,
looking at the actual series for unemployment, it appedissaglance that the unemployment
rate rises abruptly at the very beginning of a recession and decreases at a much slower pace
when the downturn ends, so it never catches up with the pre-recessioft l&veloser look
at this series shows in fact that as soon as the recovery starts the unemployment rate usually
decreases sharply and then keeps declining, but at a much slower rate. When the feedback from
recessions is not present, the linear part of the dynamics of unemployment lacks exactly that
sharp decreaséence the corresponding series after each recession remains at a higher level
than the actual series. Therefore, although the total effect of recessions on unemployment
iS negative, since it never recovers its starting level, the feedback goes in the direction of

reducing unemployment. In the next section we provide more insight into the reasons why the

20 The two series, with and without the cumulation of the feedback, are started from the same initial point,
athough, in principle, even the cumulation of the C' D R that occurred before the beginning of the sample should
be considered.

21 Blanchard and Summers (1987) used the term hysteresis to label this apparent path-dependence of the
equilibrium unemployment rate.
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nonlinear feedback yields thislong-run positive effect on the economy, through the persistence

of the impulse response functions.

Finally, as mentioned in the introduction, although ours is not a structural approach, we
believe that these results give empirical support to economic theories that model recessions as

times of cleansing and reorganizations.

6. Impulseresponse analysis

6.1 The generalized impulse response

In the last section we began to set out the argument that the model offers rich interaction
between the nonlinearity represented by the feedback from downturns and the persistence
embedded in the fact that our variables are nonstationary on the levels. A complete analysis
of this interaction requires the estimation of the empirical impulse response functions (IR)
implied by the model.

In a nonlinear environment the IR analysis is a complex matter. The theory of nonlinear
IR has been developed in the last few yearés clearly stated in Koop, Pesaran and Potter
(1996), the main difference between linear and nonlinear IRs is that the lattsiatrand
shock dependent. The state dependence means that IRs are sensitive to the history of the
system up to the point in which the model is shocked. Shock dependence is a twofold concept.
First, if we take the nonlinear IR as function of the shock perturbing the economy, this function
is nonlinear and not symmetric around zero. Second, in thaitien of IR the treatment of
future shocks matters. Whereas in the linear case turning off all the shocks gives the same
result as keeping the stochastic structure activated over all the time horizon and averaging out
the different futures, in the nonlinear case this equivalence does not hold. Hence it is necessary
to explicitly consider the future realizations to evaluate the IR.

Our model being multivariate, we face the additional problem of ¢bposition
dependence of the disturbance, also encountered in linear VARs. We will not try to exploit
the theoretical framework to which we referred in the introduction in order to identify the

"structural” sources of the shocks, but rather we follow a reduced-form approach in which we

22 See Potter (1991), Gallant, Rossi and Tauchen (1993), Koop, Pesaran and Potter (1996).
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use the empirical distribution of the residuals to shock both equations at the same time. Note

that these two methods are designed to answer different questions. While the first can uncover

the propagation pattern of disturbances originating from different specific sources, the second

allows us to study the effect of representative economy-wide shocks on the two dependent
variables and, in general, has the advantage of generating IRs that are unique, whereas in the

structural approach uniqueness is obtained only up to somefidatitin restrictions.

Our IR function is déined as the generalized impulse response in KPP:
(16) IRAx(N,e; =10, Fio1) = BE(AXyynler =0, Fio1) — E(AXt+N’ Fi1),

whereN is the horizon at which the effect of the innovations is examinad,the vector of
shocks hitting the system at timandF;_, is a history until time — 1.2 Being an economy-

wide shock,n is a draw from the joint distribution ofe,,, <., }. Moreover, in the baseline
forecast —the second expectation in expression (16)— we do not condition on a null realization
of the current shock, but rather we average over all possible realizations. The rationale for
this choice comes directly from the meaning of the baseline which is to represent the average
behavior of the system.

From the representation in equation (15), and from tHmiien of IR in (16) we obtain

the IR for AX implied by our model

(17) IRax(N,et=n,F1) = Ynn+ Z;VZO{BJ‘ [E(CDRyn-1-jler =1, Fi1)
—E(CDRyin_1-j|Fi21)]}-

Thefirst term in (17) is the linear part of the IR, while the lag polynomial in the difference
between the two expectations conditional on different information sets comes from the
nonlinearity. ASN — oo, the model infirst differences should not show persistence since,
given its ergodicity,¥';, — 0 and therefore also the cdeients of B(L) quickly go to zero

and the two expectations become arbitrarily close, because the effect of the different initial
conditions dies off. In levels of the variables, the IR cumulates to

23 All therelevant information at timet — 1 isgivenby CDR,_;, AX,_; withi = 1,2and j = 1,2, 3,4.



29

(18) IRX(Na E =1, ft—l) = lecvzo{‘l’kﬂ + Z?:o B; [E(CDRt+k—1—j|5t =, Ft—l)
—E(CDRysp1-j|Fi1)]}-

Therefore, the persistence now arises not only from ¥(1) asin the linear case, but also
from the nonlinear structure. In particular, the difference in the realizations of C DR, in the
two expectations composing the IR (due to the non equal initial shock) permanently affectsthe
level of the variables. Intuitively, being at time ¢ in the floor regime or in the corridor regime
will make a sharp difference in the fina persistence and so will the magnitude of the shock
and its sign. We will analyze these issues in the final part of this section, after describing the

methodology for computing the empirical IR functions.

6.2 Computation of impulse response functions

Our computation of the IRs follows closely the procedure of Koop, Pesaran and Potter
(1996) who suggest a resampling technique to numerically integrate the expectationsin (18).

The three main steps in the implementation of the procedure are:

— choice of the historiest;_;;
— calibration of the shocksy;
— treatment of the future.

Regarding histories, we have only used the observed histories, without generating any
new one. Altogether, we have 97 sample paths that end up in the corridor regime and 55
leading to theloor regime at time for ¢t = 5,6, ..., 156. Our main interest is in measuring the
asymmetry in persistence across the two regimwestherefore estimate the IR conditional on
the regime by averaging over the histories that end up in the same regime. Moreover, since
we have some realization of tHi®or which is very mild (in the sense that the model at that
point is very close to the linear model), we discard all the histories in which eitiheR,
or CDR, 5 are below their mean conditional on the system beinfiaar. Following this
strategy we are able to identify 15 histories in which the econoragdsubtedly in a phase of

recession and this allows us to compare two potentially sharply different situations.

The calibration of the shock is a problem when dealing with multivariate non
orthogonalized disturbances since the contemporaneous correlation of the innovations has to
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be taken into account. Asin Gallant, Rossi and Tauchen, we have adopted a graphical method
consisting of scattering the residuals for the two time series and, by inspection, determining
what could be regarded as a typical shock to the system. These plots suggest that we pick
the pair (.008, —.002) respectively for InGNP and U as a representative positive shock. By
changing the sign of this shock and doubling its magnitude we can explore the sign-effect and

the size-effect, so altogether we have the four cases in Table 6.1.

Table 6.1
Shocks| AInGNP | AU
POS 0.008 | -0.002
NEG -0.008 | 0.002

PPOS 0.016 | -0.004
NNEG -0.016 | 0.004

Once the initial shock is chosen from the four cases above, the futures sample paths of
the system are generated by bootstrap as discussed in Appendix 3. The maximum horizon of
the IR has been set to 28 quarters, which turns out to gt for the long-run behavior to
set in. The regime-dependent empirical IR is computed averaging over the realizations of the

future conditional on the history and over the histories in each regime, i.e.

Hp

M
(19) IRx(N,n, R) :HLRZ{%Z (Xin (0, F5) — Xy (ﬂ)}},
=1

J=1

whereR = { floor, corridor}, Hg indicates the number of histories fdor and corridor.F;

is the observed — th history for regimeR associated with the realizations until tihe- 1,

M is the number of replications. The law of large numbers for i.i.d. random variables ensures
convergence of the sample mean in (19) —for each history— to the time invariant expé&ctation

characterizing the true IR conditional on the same history, i.e. the right hand side of (18).

24 Time invariance of the true impulse response function follows from the strict stationarity of our process

(ASSUMPTION A2 a) ).
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6.3 Results of the impulse response analysis

The empirical IRs are presented® in Figures 3 and 4. Here we anayze the issue of
dependence of the IR on the regime of the system, the sign and the size of the shock.

A strongly regime-dependent pattern of persistence stands out of our results: shocks
are muchless persistent when they hit in a recession. This is true independently of the sign
and the magnitude of the shock. For example, if we consider the GNP hit by a Neg shock
(—.008,.002) , we observe that when the system is in fleor regime it responds through
an initial negative effect that drives the IR well below its initial point, but after only four
quarters the upward pressure deriving from the downturn offsets all the initial drop and quickly
brings the IR above its starting point. In the corridor regime this effect is weaker —as it is
evident from the less sharp and delayed hump— so the IR levels off below its initial value. An
analogous argument holds for unemployment. It is also interesting to note that in both regimes
unemployment has a similar abrupt rise in the following 2-3 quarters after the ;stierk
depending on the regime, the IR drops quickly or dies out at a higher level. Thus a sharp short-
run peak in unemployment following a negative shock is a common feature of both regimes
only its timing differs slightly.

If we turn to positive shocks, the same regime-dependent pattern of persistence is found.
It might seem counterintuitive that even in the occurrence of a positive sho@lotheegime
is associated with a lower rate of persistence. To see why this happens one has to recall that
the IR is the difference between the response of the shocked economy and that of the baseline
economy. In theloor regime, the shocked economy is pushed out of the recession quickly,
while in the baseline economy the feedback is likely to stay activated longer and its positive
effect contributes to reduce the difference between the shocked and the baseline systems, hence
reducing the persistence.

Another interestindinding is that, independently of the regime, the positive shocks show
more persistence than the negative shocks. This result is in line with the univariate model in
Beaudry and Koop (1994), although the magnitude of the relative persistence is very different.
This clear sign asymmetry is the crucial factor in explaining why in the long run the effect of
the feedback from recessions enhances growth. Indeed, although the feedback from downturns

25 Inall the Figures, the Impulse Responses have been normalized so that their starting value is always 1.
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tend to reduce the persistence of all shocks, this dampening effect islarger for negative shocks,

which induces a net positive contribution to the long-run growth of the system.

Note that Gali and Hammour (1991) and Hall (1991) found that a negative aggregate
shock has a long-run positive effect on productivity, which they take as a validation of theories
that assign a positive role to bad times. Our model predicts that shocks keep their sign even
in the long run, but the key role of recessions is to reduce the persistence of negative more
strongly than positive shocks. Wmnd this sign-asymmetry view more appealing than the

sign-reversion in explaining the positive role of the feedback from recessions on growth.

Figure 4 shows the result of hitting the system with a shock of double magnitude. Here
the asymmetry in signs is more visible, especially for the corridor regime: the IR for NNeg has
a much steeper hump compared with the PPos case since the disturbance is so negative that the
economy falls immediately into a recessitrence the upward push occurs early and is more
intense. Interestingly, if we contrast IRs across magnitude of the shocks, the size-asymmetry
is rather weak. Indeed, it seems that the only case in which it is relevant is for the negative
shock in corridor. In this case, doubling the magnitude induces the system to fall in a deeper

recession and substantially increases the probability and the size of the feedback effect.

In relation to the issue of stationarity of the unemployment rate, it is also important to
note that the IR computed on the levels does not die off at zero in any of the cases considered.
This is an additional piece of evidence in support of our choidestfdifferencing both series.

One of the objectives of this paper is to explore the type of misBpaton which arises
in IR analysis from omitting the nonlinearity. For this purpose we compare our IRs with
the analogous functions computed for a linear VAR(4) estimated on the same series. Braun
and Mittnik (1993) point out that in a linear VAR excessive lag-length truncation has serious
consequences in terms of missgmetion of the IR. Since the nonlinearity is a function of past
lags of A X;, its omission roughlyits into this category, but as additional lags enter the model
only when thefloor regime is activated, we expect the misspeaiion to be worse for the
floor regime and for negative shocks. This is indeedfouting, as documented in Figure 5.
For the PPos case, the linear IR is an average of the two, while for the NNeg case it completely

misses the positive effect 6fD R and greatly overstates the measure of persistence.
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6.4 Theissue of persistencein GNP

Following the influential paper of Nelson and Plosser (1982), many other authors have
tried to measure the persistence of shocks in economic time series. Campbell and Mankiw
(1987), using univariate parsimonious ARMA modelsfor GNP, found a persistence coefficient
of about 1.5. Cochrane's (1988) nonparametric approach provides estimates between 1.1 and
1.4, according to the window-size selected. Watson’s (1986) decomposition of the process
into stochastic trend and cycle, using the assumption of orthogonality of the shocks to the two
components, gives a measure of persistence between .36 and .57. Lippi and Reichlin (1992)
showed that this latter method provides measures that are constrained to be below unity. Evans
(1989), using a multivariate approach, yields an estimate between .26 and .55, hence close to
Watson’s results, although his VAR is not subject to the same criticism. Evans reconciles his
finding with the previous literature by arguing that his VAR sfieation implies a high order
ARMA process for the GNP, so that his measure of persistence does include the dampening
effect of higher lags, all entering with a negative sign. On the contrary, the low order ARMA
models as in Campbell and Mankiw miss this effect and overestimate persistence, producing

measures above the random-walk level.

Since our model is nonlinear, we cannot adopt one of the standard methods in the
literature, but we can easily generalize the Campbell and Mankiw measurefioynge
persistence as that number at which the IR levels off, once it is normalized to one at the initial
period. Persistence measurements for the log real GNP in our model are summarized in Table
6.2.

Table 6.2

COEFFICIENTS OF PERSISTENCE

Shocks INnGNP
POS CORR. 1.5
PPOS CORR. 1.5
NEG CORR. 1.3
NNEG CORR. 0.9
POS FLOOR 0.8
PPOS FLOOR 0.9
NEG FLOOR 0.6
NNEG FLOOR 0.5




As already noted in Section 6.3, persistence is fairly asymmetric across regimes. One
striking fact is that the coefficient isin the range .5-.9 for thefloor regime and between .9 and
1.5 in the corridor regime and these are roughly the two sets of numbers over which the debate
in the literature has developed. Our model suggests that there is not a unique optimal lag order
and therefore not a unique céiefent of persistence, and can reconcile the two different set of
measures in the literature through the nonlinearity. Using Evans’ argument, during expansions
GNP can be well approximated by a low order ARMA process and the persistence of the shock
is high. During downturns, to capture correctly the dynamics of the system, more lags of GNP
should enter the speation, and this is done in our model through ¢® R variable, with
the effect of decreasing the persistence of the innovations.

7. Conclusions

An extension of thew DT’ AR model to the multivariate framework and to the case in
which the feedback operates at multiple lags is proposed in this paper. Although the model
presents some di€ulties induced by the nonlinear structure and the discontinuity of the log-
likelihood function, we could state a set of simple assumptions under which the model is
ergodic and we could prove the strong consistency of the ML estimator.

The model is applied to a bivariate VAR of output growth and changes in the
unemployment rate for the US economy, where the nonlinearity is introduced through a
variable which measures the depth of recessions afidedeacorridor and affoor regime.

The two extension we propose turn out to be relevant since, depending on the lag order of the
feedback process, the nonlinearity is found to be ficgmt in one equation or the other but not

in both. The appropriate testing procedures and the estimation suggest that the relevant model
is that where asymmetries are strongly present on the unemployment dynamics and transmit
to output through the cross-correlation of the series. Tiniding points at the danger of
misspedication that can heavily affect tests aiming at detecting nonlinearities in the univariate

framework.

The generalized impulse response analysidioos the presence of rich interaction
between persistence and nonlinearity. Indeed, it emerges that asymmetries in persistence

are clearly present across different regimes and shocks of different sign. Shockslaothe
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regime are aways less persistent than in the corridor. Negative shocks are less persistent

than positive shocks. We argue why these asymmetries explain our finding that the feedback

from the downturns has a permanent positive effect on the long run growth process of the
economy. Quantitatively, this fact —which we interpret as a cleansing effect of recessions
following some recent contributions to macroeconomics— accounts for more than one sixth of
the average growth of GNP over our 40-years sample. Moreover, our estimates of regime-
dependent persistence for GNP provide a new way of looking at the wide range of persistence

measures existing in the literature.

To conclude, we believe we have shown, through our application, that there are
cases in which nonlinearities do matter in characterizing the dynamic properties of relevant
macroeconomic time series. At the current state of the art, a great amount of theoretical work
has been developed on nonlinear time series models. In parallel, there has been a fast decline
in the computational time needed to estimate and test these models. Both facts have clearly
reduced the advantage of working with linear VAR models. As we have argued, the neglect
of nonlinearities may induce wrong inference on the propagation mechanism and persistence
measures of the shocks and may hide interesting properties of the data. Therefore, in many

cases there is a large net gain in adopting nonlinear framewaorks for time series analysis.

The issue of forecasting precision of these models versus their linear counterpart is
another important dimension along which the two approaches should be compared. Although
this issue has not been explicitly the focus of this paper, it deserves attention and will be object

of future work.



Appendix |

In thisappendix we will give aMarkovian representation of the model in Section 2.2 and
we will then use it to state some sufficient conditions for its geometric ergodicity (Proposition
1).

We start with some notation. Let {AX;} be a sequence of :?-valued random variables
(r.v.’s) that are déned on the complete probability spac8ax, Fax,iiax) Where
is someo—finite measure ofyx. Let alsoZ, = {AX,, AX; 1,...AX; , ..o} be a
(¢g+7—1)—tuple defined on the product spa¢8z, Fz,u,). Z; is needed for the vectorization
used to construct the Markovian representation of the model.

We can generate different partitionsp® , i = 1,...,q, of the space of/,_; through
the feedback indexek;_; defined in (5), based on the different ways in which th®R;_;
variable can be activated. The partitiphis composed by + 1 elements and the generic
elementP! (j)={Z,_,: F;_;=j}.

Let p* be the join® of the p?,i = 1, ..., ¢, partitions. This joint partition has maximum
dimension(1 + 7)? and we can denote its generic elementibyK) = N?_, P’ (k;) where
Pi(k;) € ', ki =0,..,7andK = {ky,..., k,}. Hereafter,’, = N’_, P"(0) corresponds to
that region of the space where the model is in the linear regime, i.e. the region were all the
feedback are zeros. The joint partitipndivides the space af; ; into sub-regions? (K)
in which the dynamics of the model are mfield with respect to those of the linear regime
through a matrix\ (K) . This matrix can be written as (K) = >_7 | A’ (k;), whereA® (k;) is
associated with the elemeht (k;) € o’ and it is a square matrix of dimensiafy + 7 — 1) :

| 0 o, 0o
A (kz) = (2x2871)) (2% 2k;) (2x2(g+7—k;—1)

(2(g+7-2)x2(i=1)) (2(q+7—2)x2k;) (2(g+7—2)x2(q+T—ki—1))
where the matri®; is

@126@)[@1 O},

26 Given two partitions F;and F,, F* is an element of the joint partition ;U F if for some F;, € F; and
for Fy € F», F* C Fy N F, and thereis no other element £ of thejoint suchthat F* C Fy N F» and F* C F.



37

eisa(l x k;) unit vector and ©; isthe (2 x 1) vector of coefficientsof CDR;_; in (8).

Using Z; and the defined partition, the model can be rewritten in avectorized form as

1+7)?

(
a Oy, P, 0

+r Zq: 0:1(Zi_y ¢ PP (0) + Uy

=1

1,
where U, = {(H?u;)',0, ..., 0}.

Even if the partition P has (1 + 7)? elements, this does not imply that the process Z
can move among all elements of the partitions owing to the way the feedback effect has been
constructed. Two elements, P (K) and P (K*), of the partition P will be defined adjoin from
KtoK*if Z, € P(K)and Z;, € P (K*)whichisthecaseif £}, , = k;fori=1,...,(¢ — 1)
and |k — k3| < 1. Given two elements, P (K') and P (K*), of the partition P they will be
defined as reachable if there is a sequence of adjoin elements of the partition P which alow
to move from P (K') to P (K*). So the subset of the partition P of interest will be the set of
element of P which are reachable form F,.

Given that a Markovian representation of the model exists, the proof of geometric
ergodicity can be based upon the theory on stability of Markov chains asin Nummelin (1984)
and Tjgstheim (1990). If the process s, —irreducible and aperiodic, this proof essentially
requires verifying the drift conditions for a given power functionff For a non negative
measurable functiopand R > 1, the N—step ahead drift conditions are

DC1 RE(g9(Zy)|Zi—n = 2z) < g(z)ONnz € K°
DC2 E(9(Z)|Zi-n=2) <M <ooo0Onz €k

wherek is a small set. In our framework the continuity of the conditional mean function and
the following regularity conditions on the error temp ensure that every compact set on the
space ofZ; is a small set. For the formal fieitions of irreducibility, aperiodicity and small
set, the reader can refer to Nummelin (1984fjrdons 2.2, 2.4 and 2.3 respectively.

The geometric ergodicity of the process is based on the following assumption:
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ASSUMPTION Al: Janinteger N > 0 sit.

fif] 5% 8w}

=1

max <1,

where the max operator istaken over al the possible finite number of combinations of A (K)
such that P (K;) for j = 1,..., N belongs to subset reachable from F, and P (K;) and

P (K1) areadjoinfor j =1,..., N — 1, and where ||-|| stands for the euclidean norm.

This assumption is meant to capture that, independently of all its possible paths, the

process after N steps always tends to return towards the centre. We are now ready to state:

PROPOSITION 1: If ASSUMPTIONS A1 holds and the marginal pdf of the error term w;

is absolutely continuous and positive on )2 then the process A X is geometricaly ergodic;

PROOF: The aperiodicity and ., —irreducibility follow directly from definitions under
the assumptions on the marginal pdf of the error term u,. Define the power function g (-) as
the Euclidean norm ||-|| in the space of Z;. We can now verify DC1 and DC2. The norm of
the constant vector, the r; term and the covariance of the errors can be bounded by a positive
constant C'. Furthermore, by Assumption Al, it is easy to see that thereisan o < 1 st. the
following inequality holds:

E(Z| | Ze-ny =2) <C+all.

Soitispossibleto find an R > 1 such that Ra. < 1 and to rewrite that previous condition as

RE(|Zi|| | Ziw =) < RC+ Rallz|
< |l2]l + RC+ (@R = 1) ||

Let usnow definethesmall set x = {2 : [|z|| < r} andtaker > - then:

R(E\||Zi|||Zi-n = 2) < ||z|| onk®and
R(E||Z|||Zi—-y =2) <M < oo onk,
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where the second condition derives from the fact that « is compact and the conditional mean of
the processis continuous. Given that the drift conditions hold, the result follows by Proposition
5.21 of Nummelin (1984). m

Given the geometric ergodicity property, if we also assume that the initial distribution
of the process was the invariant distribution, then thisimpliesthat A X, isastrictly stationary
process.
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Under the conditions of Proposition 1 in Appendix 1, we can establish the geometric
ergodicity of our EDTV AR model. We are now ready to look at the properties of the M L
estimator.

Let us define W, = {AX,, Z;, 1} on the probability space (Sw, Fw, iy ) - We is the
history of AX; up to its maximum relevant past, i.e. time (¢t — ¢ — 7 + 1), and it will be used
to express the likelihood in compact notation. Denote by B, the Borel o —algebra generated
by the space :t*. Recall that the conditional likelihood function for observation AX; is:

0,(8) = L(W,, 6) =
-1 [m \H,| + (& (L)AX, — a— © (L) CDR,) Hy* (® (L) AX, — a — © (L) C’DRt)] ,

where 6 is the vector of parameters which liesin a metric space D. The dependence of /(-)
from W, reflects that we allow the variable C'D R, to contain up to 7 lags of AX; and that the
polynomial © (L) has order q. Define also

Z(I/Vb 6*7 p) = SUuDPs (K(Wta 6) . d(6*7 6) < :0)
LW, 6%, p) = infs (L(W, 6) = d(6%,6) < p),
where d(.,.) isametric on D and p is a positive number. We shall refer to Syre as the
maximizer of the sample likelihood, = le (W, 6), on D. For the proof of Proposition 2,

we need four Lemmas in which we characterize the continuity of ¢ and the measurability of ¢
and Z.

LEMMA 1A: Forany 6* € D, {(-,6") iscontinuousin 1V, amost everywhere (a.e.) under
Hw s

PROOF: Take any arbitrary 6* € D. By simple inspection it turns out that the function
¢(-,6) is discontinuous only if for somej = 1,2,...,(¢+7—1), AXy,_; = r* where r*
is the last element of 6*. Define now the set G = {W; € X, 1 R? 1 AXy, ;= 75}. It
contains the set of histories of AX; which induce adiscontinuity of ¢(-,¢*) at timet — j. This

isa x,.,_1B,-measurable set and it has measure zerdinBeowG* = Ugi{_lGj.. This set

is larger than the set @l histories up to time which induce discontinuities @f -, 6*). Being
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a countable union of measure-zero sets(z* has measure zero and the conclusion follows for

the arbitrariness of* and the completeness @y, Fw, 1iyy). B

LEMMA 1B: For anyfixedW;, ¢ (W, -) has at most one discontinuity with respectto

PrROOF: Supposé (W, -) is discontinuous at*. Denote byB,(r*) an open ball around

r* of radiusp. Then, for every- € B,(r*) the following two conditions are veied

(i) if r > r*, thendi* € {1,2,...q} suchthaCDR;_;- (r) < 0;
(i) if r <r* thenCDR;_;(r) =0, forVi € {1,2,...q} .

Hence, from the dinition of CDR,_;~ and (i) it follows thatdj > i* such thatX,_ ;- —(X;_; +

r) < 0. So for everyr > r*, CDR;_;» < 0 and it is not possible to have a new discontinuity
since for any other > r* the system at time will be always in thefloor regime. Similarly,
for everyr < r*, CDR,;_; = 0 and we cannot have a new discontinuity. Given tHaandp
are arbitrary, the conclusion followa.

REMARK: A simple corollary of Lemma 1b is that, onck is equipped with some
appropriater—algebra and measure, the set of discontinuities(of;, -) has measure zero.

LEMMA 2: /(-,6) is aF'/ B-measurable function.
PROOF: It follows from Lemma 1a and the completenesg S, Fiv, 1y). B
LEMMA 3: For anys* € D, {(-,6*, p) and{(-, 6*, p) are '/ B-measurable functions.

PROOF: To prove measurability of(-, §*, p) we will construct a sequence of measurable
functions that converges to it. Denote the Bétof histories such thaif; |AXy,_; —r* >
p. By construction, the functio(W,,$) is jointly continuous onW x B,(6*). This
implies that/(-, 6%, p) is continuous onl¥. Now, deine the smooth switching-function
Fe (‘%&) as the cumulative distribution of a chi-squared random variable and let
{\.} be a sequence of scalars converging to zero. Note that in dunitaben the variable
C DR, is nonpositive, so if the process is in the corridor regime, i.e.CdlR;_; = 0 for
i = 1,...,q, thenF,. will be identically zero. If the process is in t®or regime, i.e.3 i*
such thatU DR, _;- < 0, then the functionF,. will be greater than zero and approach one as
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A, goesto zero. Now we introduce the following function

(W, 6,\,) =
-1 [1n Q] + (2 (L) AXy — @) Q1 (D (L) AX, — O‘ﬂ

C

—31(6(L)CDR,) ;' (6(L) CDRy)

(@ (L) AX, —a) (7' — Q) (2 (L) AX, — )

C

+(6(L)CDR,) Q7" ( (L) AX, — a)} Fia (*Zj&) .

Being a sum of jointly continuous functions, this function isjointly continuous with respect to
(W, §). Moreover, the sequence of functions {¢' (W3, 6, A,) } convergesto (W, §) as A, goes

to zero. Denote

_/

T (W89 An) = sup (£(Wiy8, M) - d(67,6) < p)
i)

For the same argument as above, the function 7 is continuous on all x,.R2. This alows the

following sequence of functions to be constructed

. (W, 6%, p) if W, eWw
LWy, 6%, p, M) =

-/

14 (Wt,é*,p, )\n) if Wt c XTéRz/W,

Since the function 7 is continuous ae., the sequence converges to (W, 6%, p) and & is
arbitrary, we have established the measurability of 4(-, §*, p). The proof goes through similarly
for (-, 6", p). W

For the main proposition we also need the following assumptions:

ASSUMPTION A2: D isacompact metric space.

ASSUMPTION A3: a) [ supsep [€(Wy, 8)| R(We)duy < M < oo
where h(WW;) isthe probability density function of ;.
b) h(W;) < oo dmost everywhere (a.e.) under py; .
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ASSUMPTION A4: E (£(W;, -)) attains its unique global maximum on A
ad=6°

We are now ready to prove the consistency of /(S\MLE. We will follow, with minor
modifications, the argument in the main Theorem of Andrews (1987).
PROPOSITION 2: If Assumptions A1-A4 hold, then

(@) E (¢(Wy, 6)) is continuous orD;

(D) supsen |7 Zt 1 ((Wy,0) — E(E(W3,0))] — 0

asT — oo, almost surely (a.s.) under;,

(c) Sure — 6° a.s. undefiy, .
PROOF: ForVé € D, we have that
lim, g | [ (€(W4, 6, p) — £(Wy, 8)) h(Wy)dpuyy |

< hmp—>0_”( (Wi, 6, p) — L(W, )) (VVt)}dMW
= [lim,_ |(€(VVt7 8,p) — L(W;,6)) h(Wt)‘ dpiyy = 0,

where thefirst equality holds by the Lebesgue Dominated Convergence Theorem using
Assumption A3 a) and the last equality holds by Lemma 1a and Assumptioh.A3he
same is true if we repladeby ¢. Given this, part (a) follows.

By (a), for anye > 0, we can choosg (6) so that
E (((W;,8)) — & < B(UW,6,p(8)) < B ({(W1,8,p(6))) < E (W, 6)) +¢

The collection of balls{B(6,p(6)) : 6 € D} is an open cover of the compact gt hence
there is dinite subcovef B(6;,p (6:))}, i =1,...,I. Foranys € B(6;, p (6;)), we have

LWy, 6) — E (L(W, 6))
< UWi, 63, p(8:)) = E (L(Wh, 63, p (6:)))

< U(Wy, 63, p(6:)) — E (€W, 85, p (6:))) + 2e,

and



LWy, 6) — EL(W, 0)
> LWy, 85, p(6:)) — E (E(We, 63,0 (53)))
2 L(Wh, 6i,p(8:)) — E (L(Wh, 63, p (63))) — 2¢.
From A.7 and A.8, averaging over T observations and subsequently taking the minimum and

the maximum over i, we obtain:

In1n1<1 T Zt 1 (Wt> iy p (6 )) (E(I/Vh 61 P (6 ))) — 2

<Y W ) E (W, 6)) <
< max;<s 7 Zt (W, 84,0 (8 E( (Wi, 65, p (6 ))) + 2¢.

The min and max operator are defined because | is finite. By Proposition 1 and Lemmas 2
and 3, £, ¢ and £ are stationary and ergodic (see Stout, 1974, p. 182) hence the expectations of
these functions do not depend on ¢. By Assumption A3 a) the first moment of ¢, 7 and £ exist,
so we can apply the Strong Law of Large Number for stationary and ergodic sequences to the
three terms of A.9. The two bounds converge then to —2¢ and 2¢. Since e does not depend on
6 and it isarbitrary, the uniform convergence of the central term follows. This establishes part
(b) of the Proposition.

By (a) and Assumption A2 6° exists and by Assumption A4 it is unique. Part (b) of
Proposition 1 ensures that the sequence {ST} will converge to 6°amost surely under iy, SO

part (c) isalso proved. B
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Due to the nonstandard asymptotics of the nonlinear model, we make extensive use of
bootstrap techniques throughout all the paper. Recall that in our model the variance of the
error term follows a qualitative threshold type of process of the form:

1
&t = Ht2 Uy

H, = (X0, CDR,_; = 0)(Q — Q) + Q.

We adapt the method of resampling proposed by Lamoureux and Lastrapes (1990) for models
with conditional heteroskedastic errors. From the estimation procedure we have consistent
estimators for &; and for fl\t at every t, hence the adjusted-homoskedastic errai; can be

computed as

o= H 3,
For the errordu, } we tested and could not reject the null hypothesis of no serial correlation.
A test of serial correlation has also been performed on the series of @rtonmake sure that
there is no dependence left in the residuals, since this would also affect the consistency of the
estimates. The test in this case is nonstandard due to the conditional heteroskedasticity and
has to be performed following the mdédiation of the Box-Pierce test proposed by Diebold

(1987). Again the test does not signal the presence of autocorrelation.

In bootstrapping, we used the following procedure. At every replication, we draw with
replacement a new serie{m@} from the homoskedastic and uncorrelated residuals. Given
this new sample and assuming the original initial conditions, we generate the new sample

{AXt(i)} , using the recursive structure of the model sfiediin equations (72(9).

In the non-nested test for the order selection ond@ti2R variable and in the test for
linearity, we use this resampling strategy to compute the empirical distribution of the statistics
under the null. For both tests at each replication, we regenerate the data under the null of the
test and then compute a new value of the statistics given the bootstrap sample. For each test,
2,000 bootstrap replications were performed.

The same resampling methodology has also been used in the computation of the impulse
responses. For each history, we draw00 x 28 realizations of the homoskedastic residuals
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for the baseline model and 1, 000 x 27 for the shocked model, since the initial shock is fixed

at the calibrated values.?” For each of the 1, 000 replications, afuture of length 28 for AX and

C DR isrecursively built both for the shocked and the baseline economies. We then average

over thereplicationsto compute the value of the two expectationsin theright-hand side of (16),

so the IR conditional to the given history is obtained. To induce a negative correlation between
the sample estimates of the two expectations in (16) and reduce the experimental variance, we
use the same set of random numbers in generating the 27 period futures for the shocked and
the baseline model. The regime-dependent impulse response is computed by averaging over
all the observed histories in a given regirhence, in all, we have 97,000 realizations in the

corridor and 15,000 in th@oor regime.

All computations have been performed using GAUSS 3.1 for UNIX running on IBM
RISC 6000.

27 28 isthe maximum horizon chosen for the IR analysis.



MODEL SELECTION CRITERIA FOR THE VAR ORDER

Lag CDR

Lag Linear

AlC

SIC

246.14
239.37
231.85
224.49
217.92

192.19
173.43
153.92
134.57
116.01

249.86
242.55
235.99
228.48
225.37

189.92
170.62
152.07
132.57
117.47

250.95
244.17
237.44
230.40
225.08

185.01
166.24
147.52
128.49
111.19

246.89
240.85
234.39
227.51
223.90

174.96
156.93
138.48
119.61
104.01

A DRARDMDIMDIMNOWWWWWOINNNNDNPEPRPEPRPRPRPRPOOOOO

O~NOUThhO~NOUIAOONOOOTRARONOOOI AONO O

244.33
237.16
230.30
223.51
218.83

166.40
147.24
128.39
109.62
92.65

Number of observations; 148

Table 1

Legenda: AIC, Akaike Information Criterion; SIC, Schwartz Information Criterion.
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Figure 1
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EFFECT OF RECESSION ON OUTPUT
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Figure 3
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Figure 4

IMPULSE RESPONSE
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Figure 5

. LINEAR IMPULSE RESPONSE
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