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Abstract

In an econony where entrepreneurs wth unequal
"abilities" face alternative investment projects, which
differ in degree of risk and productivity, we analyse the
Nash equilibrium contracts arising from a banks-borrowers
ame in the context of asymmetric information. W show that,
or a wparticular characterization of the game, one can
determ ne the endogenous distribution of projects and the
"type" of contracts ?oollng or separating) as functions of
the anount of |oanable funds. W set this game in a general
equi l i brium aggregative econonmy wth production, populated by
overl appi ng generations of borrowers and |enders and show
that for a range of the paraneter values equilibria are
characterized by persistent endogenous cycl es.
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1 Introduction®

Many economists have argued that in economies with imperfect financial markets business
cycle fluctuations are likely to be amplified. In particular, when lenders are not well informed
about borrowers’ investment projects, they tend to devise “second-best” contracts that may
induce the borrowers to reveal some information. Typically, these contracts entail collateral
requirements and credit rationing. As a consequence, real investment and consumption
become highly dependent on the borrowers’ balance sheet position, i.e., on the value of his
net assets.

Various authors, including Bernanke and Gertler (1989), Greenwald and Stiglitz (1993)
and Kiyotaki and Moore (1997), have noticed that the equilibrium quantity of lending and the
default rates resulting from these second-best contracts may be highly sensitive to exogenous
shocks. Thus the amplitude of the cycles is far greater than it would be with perfect financial
markets and the effects of a shock to one sector may be more easily propagated to other
sectors.

In general this literature has focused on the role of imperfect financial markets in am-
plifying the propagation and the variability of the business cycle, assuming that the latter
is originated by exogenous disturbances.

In this paper we set up a model in which informational asymmetries and second-best
contracts in financial markets may be responsible for business cycle fluctuations that do not
originate from any exogenous disturbance.

Our approach is different from that of the authors cited above, in whose models the
main sources of business cycle fluctuations are borrowing limits, agency costs or collateral
requirements. Instead, in our model a major role is played by the cyclical variability of the
distribution of investment projects.

In our model entrepreneurs face different technologies to produce a single capital good

1P, Reichlin acknowledges support from the HCM Program of the European Commission, contract
CHRXCT94-0458. P. Siconolfi acknowledges the financial support of the GSB of Columbia University.
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and financial intermediaries are unable to observe both the borrowers’ investment projects
and their ability.

To simplify the analysis we assume the existence of only two types of investment projects,
“good” and “bad”, where the latter are dominated both in terms of risk and social productiv-
ity. The two projects have the same expected gross return, but the bad one is characterized
by a lower probability of success (it is riskier) and it can only be operated by paying a fixed
cost. AS a result, the higher the proportion A of agents undertaking the bad project, the
higher is the loss of efficiency and real resources characterizing the associated equilibria.

Under some conditions, the equilibrium contracts allow for the existence of both types of
project and their distribution is a function of the amount of loanable funds. In particular,
loanable funds and bad projects are, at least in a critical region, positively correlated.

In our model, there is a sort of “cleansing effect of recessions”, a phenomenon documented
by Caballero and Hammour (1994) in a different context. During the cyclical upswing (when
there is a large amount of loanable funds) competitive lenders devise contracts attracting
a high proportion of bad projects; conversely, the opposite occurs during the downswing.
The decline in the average quality of projects during the upswing, in turn, implies a loss of
aggregate resources that may eventually lead to a recession.

The basic reason why cycles may be persistent in our model is that we find the existence
of a fundamental discontinuity in the relation between loanable funds and the proportion of
bad projects. This discontinuity is a consequence of a change in the characteristics of the
second-best contracts that can emerge in financial markets and it may prevent the dynamics
of the model from settling down to a stationary state.

In our model second-best contracts emerge in equilibrium since the relation between
banks and firms is affected by moral hazard and adverse selection. In fact, the borrowers
prepared to pay a higher interest rate are those who choose the riskier projects and this
choice is affected by a costly action (where the cost of the action differs across borrowers).

To understand the banks-borrowers model, it may be useful to compare it to the Roth-

schild and Stiglitz (1976) insurance game (RS). T here, the distribution of borrowers (insured)



is exogenous and thus there is no moral hazard problem. In the RS model, Nash equilibrium
contracts can only be separating and they exist only for a “large” proportion of high risk
agents. AS noted by Hellwig (1987), these two features of the model are a consequence of
assuming that the game has two stages.

Following Hellwig (1987)) we choose a three stage game: lenders move first by offering
loan contracts, borrowers apply for one of these contracts at the second stage and lenders
accept or reject their applications at the last stage.

We define a “credit market equilibrium” as the set of Nash equilibrium contracts that
satisfies the market-clearing conditions in the financial market. We prove that Nash equilibria
always exist, that equilibrium contracts can be pooling and/or separating and that at a Nash
equilibrium financial markets always clear.

Separating contracts can only be compatible with a Nash equilibrium when the interest
rates are sufficiently high. Low rates induce a high proportion of borrowers to choose the safer
projects and, as we know from the RS model, this makes separating contracts vulnerable to
an upsetting deviation (by a pooling contract). The market-clearing condition in the credit
market implies an inverse relation between loan rates and the amount of loanable funds.
Thus, equilibrium separating contracts will only exist when the amount of loanable funds is
small enough.

On the other hand, equilibrium pooling contracts are easily vulnerable to upsetting de-
viations (by separating contracts) when the size of the loan is small (i.e., when the amount
of loanable funds is small). In fact, borrowers are always rationed with pooling contracts.
Since technologies are linear and subject to a capacity constraint, credit rationing implies
that the profits of the borrowers engaged on bad projects are increasing in the amount of the
loan up to the capacity constraint. Thus, if the size of the loan is too small, a deviating bank
can make higher profits by offering a contract at a slightly higher rate for a substantially
bigger loan.

Since the amount of loanable funds is determined by the wage rate, we can say that

separating contracts prevail when wages are low and pooling contracts prevail when wages



are high.

However, there is a range of parameter values and wage levels for which separating and
pooling contracts are both compatible with a Nash equilibrium. In order to eliminate this
multiplicity problem, we introduce a natural selection criterion, i.e., the survival of the type
of‘ contract (separating or pooling) that corresponds to the highest rate on deposits (i.e., the
highest bank revenues).

We then show that there is a unique switching value w® for the amount of loanable funds
w, such that the equilibrium contracts are separating (pooling) when w < w°® (w > w°), i.e.,
separating (pooling) contracts are a credit market equilibrium and they satisfy our selection
criterion when w < w° (w > w°).

Thus, when the amount of loanable funds crosses w° from below, financial intermediaries
replace separating with pooling contracts. This switch implies a sudden increase in the
proportion of bad projects. In fact, the proportion of bad projects is increasing in interest
payments (interest rate times loan) of the safe borrowers and the size of a loan granted to
these borrowers falls short of the average size when contracts are separating and is just equal
to the average size when contracts are pooling. Thus, interest payments deriving from a
separating contract are always lower than those deriving from a pooling contract when the
two contracts are generating the same rate on deposits, i.e., at the switching point w®.

Embedding this framework in an overlapping generations model with two-period lived
agents, we can describe the evolution of the distribution of projects along with output. In
other words, contrary to previous contributions on the subject, we have a model in which
the distribution of projects by degree of profitablity and risk is determined endogenously
and is related to output.

The dynamics of this model are trivially monotonic when lenders are informed about
borrowers’ investment choices (and, a fortiori, under symmetric information) but turn out
to be very rich under asymmetric information. We may have multiple steady states (with
separating and/or pooling contracts) which are always associated with a lower income level

than in the full information case.
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Moreover, due to the type of regime switch between separating and pooling contracts,
steady states may not exist and, in this case, the equilibrium dynamics are characterized by
"non-dying” and ”non-exploding” cycles. Thus, our model is able to explain truly endoge-
nous fluctuations, whereas most models of the business cycle based on asymmetric informa-
tion and incentive constraints explain only the propagation mechanism and the amplification

of the cycle initiated by exogenous perturbations.

2 The model

2.1 Basic framework

We consider a two-good economy populated by two-period-lived overlapping generations of
agents. Generations are identical and agents are decomposed into two sets, which we call
the set of lenders and borrowers, each one distributed in the [0, 1] interval and having size
one.

Lenders are endowed with one unit of labor when young, to be supplied to a set of
competitive firms engaged in the production of a good y. Borrowers (or entrepreneurs) are
endowed with the ability to run one of two storage technologies for producing a good z. All
agents save and produce while young and consume in old age only.

The two goods are denoted by y and z. The former can be consumed or used as an input
(capital) for the production of z. The latter can only be used as an input (materials) for the
production of y. Capital and materials are fully depreciating in the production process.

Production of material z takes one period, it uses the good y as the only input and it
is subject to random shocks. Entrepreneurs in this sector (borrowers) are risk-neutral, they
can choose between two projects, a safe project L and a risky project H, and they differ in

their ability to run them. We assume:

Assumption 1 Project j (j = H, L) transforms k units of good y invested at time t into a

random output zI(k) of good z at timet + 1, where:
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0 wp 1-—p

Assumption 2 All projects are subject to the capacity constraint k < 1.

#0) =

Assumption 3 off > o > 0, pLal = pfla > 1.
Assumption 4 9¢’(s)/8s >0 (j = H,L), e¥(s) > eL(s) for all s € [0,1].

Assumptions 3 and 4 are motivated by the fact that, in our model, we need technology L
to dominate technology H, both in the sense that the latter has a higher fixed cost and that
it is riskier (by first order dominance). For this reason, H-projects will be called ”risky”
or "bad”. This dominance would be more robust with p’a’ > pHa¥, but the weaker
assumption p“al = pfafl greatly simplifies the algebra.

Production of y is instantaneous and it requires labor L and materials 2z as inputs. This
technology is represented by a standard constant-returns-to-scale neoclassical production

function:
yy=F (Zt, Lt)

In order to guarantee the existence of non-trivial stationary states for the equilibrium

dynamics of the model, we make the following assumption.

Assumption 5 Fi(z,L) > 0, F;;(2,L) < 0, (i = 2,L) for all (2,L) > 0, F(0,L) =
F(z,0) =0, lim,_ F;(2,L) = oo, lim,_, Fr(2,L)/z = o0.

Under full employment and by the linear homogeneity of F(.) we can write:

Y = F(z,1) = f(2)

and by the properties of F(.):



Letting all prices be measured in terms of the good y, perfect competition in the y sector

insures that, at time ¢, the wage rate w; and the price of the input z, ¢, are given by:

wy = f(z) — 2f'(2:) (2.1)

¢ = f'(z) (2.2)

Equations 2.1 and 2.2 also insure zero profit for all firms producing y.

2.2 Financial intermediation

A finite number of financial intermediaries (banks) collect deposits from lenders and supply
loans to entrepreneurs-borrowers.

In our economy the amount of deposits coincides with the wage rate w. Due to the
presence of a capacity constraint, the total amount of loans that the borrowers can absorb
cannot be greater than 1. In what follows we will always consider the case in which w; < 1
for all t. This is the interesting case, since it implies that the competitive economy solves a
non-trivial problem of allocating scarce resources. If w > 1 there is excess supply of loanable
funds and all firms are producing the good z at full capacity.

There are several ways of insuring wy < 1 for all t. The reader will see later on that the
equilibrium sequence of wage rates is always bounded and thus a sufficiently small initial
value wg and/or a sufficiently small marginal productivity of labor for all z is enough to
guarantee wy < 1.

Banks behave competitively on both sides of the market in the following sense: they set
contracts (specifying both quantities and prices) on the loan side and take the interest rate
on deposits as given. Contracts are designed to maximize expected profits, and competition
guarantees that the expected rate of return on loans equals the rate on deposits.

Contracts are denoted by:

c(i) = (R(:), B(2))

13



where R(7) is the interest factor on the loan and B(%) the amount lent by a bank 7. Each
borrower can apply for a single contract at most.

The set of borrowers applying for any contract is either empty or positive in measure.
By the law of large numbers, banks’ future revenues are deterministic and equal to the ex
ante average revenue.

Since entrepreneurs have no endowment and the technology yields zero output in the bad
state, c(z) is a standard debt contract entailing limited liability: the loan B(%) is repayed if
and only if the investment project does not fail, otherwise the borrower pays nothing to the
bank.

By risk neutrality, type-s borrower’s expected profit with project j is:

If(c) = (¢ — p'R)B — qae’(s)

where g is the relative price of z, @ = pLal = p¥a (for the moment the time subscript has
been omitted from all variables).

It follows that:
I (c) = T (c) = (p* — p")RB — qa(e™(s) — €*(s))

In particular, since €/(s) is small for any small s, entrepreneurs with high ability (small
s) will choose to run the bad project. Thus, if the fixed cost were zero, all entrepreneurs
would choose the bad project H. This is a consequence of limited liability. Then, A < 1
in equilibrium requires that p’ is not much higher than pf and that e(.) is not too close
to eX(.) for all s. In order to get a simpler formalization of this type of conditions, we now

specialize assumption 4 to the following simpler form:
Assumption 6 eX(s) =0 for all s € [0,1], ef(s) = es with e > 0.

By assumption 6, we can ensure that both projects will survive in equilibrium by imposing
lower bounds on the parameter e, as is made clear later on.

Before we characterize the competitive equilibria with asymmetric information, we give
a brief account of the model under the assumption that banks have information about the

borrowers’ technology choice (known action).
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2.3 The benchmark model

The model with ”known action” is trivial, so we only give a quick description of the competi-
tive equilibria and the welfare properties. Note that these properties, as well as the equilibria
of the model, remain unchanged under the stronger assumption that financial intermediaries
have complete information.

If banks know the technology choice of the borrowers, they can make contracts contingent
on it. Since the type s of the borrower does not affect the banks revenues, these contracts

are a pair:
k= (RL,BL)a = (RH,BH)
Let r be the deposit rate. Nash equilibrium contracts are such that:

l) TZPLRL ZpHRH, RL < qaL, RH < an;
ii) Bt = B = 1if R < qo/, and B9 € [0,1]if RY = qod, j = H, L.

Since the total amount of loans must be equal to w < 1, the only Nash equilibrium

compatible with market-clearing in the financial market is:

H

CL = (qaL,w), ¢ = (quH,’UJ)

Evidently, with this contract, all borrowers choose the L-project (recall that borrowers
are assumed to choose the L-project when the profits deriving from the two technologies are
equal) and nobody applies for the contract c.

Thus, the evolution of the equilibrium value of z is given by the following condition:
2t = QWi

From equation 2.1 and assumption 5, there is a continuous strictly increasing and differ-

entiable function ®(.) such that z = &(w) and:
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®(0) =0, lim ¢ (w)/w = +o0, lim o(w)/w< a
Thus, the dynamics of the equilibrium wage rate are described by:
O (w) = aw—
Now define w* > 0 from ®(w*) = dw* and assume:
Assumption 7 w* € (0,1)

Under this assumption, w* is the unique steady state for the dynamics of the equilibrium
wage rate in the benchmark model for all initial conditions wy < 1 and for all these initial
conditions, the model produces a convergent sequence wy — w*.

Corresponding to the stationary state w*, there are unique stationary values of inputs

and (average) consumption, k*, z*, c*, such that:
2t =ak*, ¢t +k* = f(2*), ¢ = af'(z")w’

Now consider the Pareto optimal allocations. It is obvious that, within these allocations,
the H-technology will never be activated. Hence, the Planner’s resource constraints will

simply read:

et + ke < f2e), 2z < akyq

where c¢; is the time-t average consumption. It follows that a stationary Pareto optimal

allocation implies a value z > 0 such that:
af'(z) = af'(ak) > 1

In the rest of the paper we assume that, given 2* > 0, & is sufficiently large to guarantee
that the competitive allocations of the benchmark model are Pareto optimal. In this way,
we can single out a unique potential source of inefficiency in the model with uninformed

lenders, i.e., the survival of the H-technology.
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3 The banks-borrowers game

3.1 General structure

Now we assume that banks have neither ex-ante nor ex-post information about firms types
and their technological choices. However, they can costlessly observe whether any project
is successful. This implies that the game between banks and borrowers is characterized
by moral hazard and adverse selection. The former arises since the action of the borrower
(technological choice) affects the probability with which a project fails. Adverse selection
arises since, for given technological choices, projects have two different degrees of risk (recall
that p* > pff and aff > at).

Our model differs from most models of asymmetric information since the distribution
of projects by the degree of risk has to be endogenously determined. However, the basic
insights of the pure adverse selection model apply to our case also.

We know from the classic paper by Rothschild and Stiglitz (1976) that all Nash equi-
libria of a two stage game between borrowers and lenders display self-selection of borrowers
according to the contracts offered by the lenders. In particular, the equilibrium contracts
are always ”separating” and they imply credit rationing for the borrowers having the safer
projects.

However, equilibria fail to exist when the proportion of safe borrowers in the total pop-
ulation is sufficiently high. In this case a pooling contract can always upset any pair of
separating contracts. Moreover, within the two-stage game, pooling contracts can always be
upset by a separating pair attracting safe borrowers only.

The possible lack of a Nash equilibrium has led some authors to propose different solution
concepts or different structures for the game (e.g., Wilson (1977), Riley (1979) and Hellwig
(1986, 1987)).

In this paper we follow the approach proposed by Hellwig (1986, 1987) assuming that
banks and lenders play a three stage game. Lenders move first by making contract offers. At

the second stage borrowers can apply for at most one contract and select the project type.
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At the third stage, banks decide on applications after they observe the contract offers and
the set of applications. We make the standard assumption that banks cannot cross-subsidize
contracts.

Within the pure adverse selection model, Hellwig shows that a sequential Nash equi-
librium will aiways exist in the three stage game. In particular, pooling contracts arise as
equilibrium contracts whenever they Pareto dominate the separating pair.

In the next two sections we determine the symmetric Nash equilibria of the game between
banks and borrowers with hidden action, for given wage rate w < 1 and price q. To save
notation, we omit the time subscript from all variables.

Given the structure of the game, we know that there may be only two sets of contracts as
candidates for a symmetric Nash equilibrium: a pair of separating contracts and a pooling
contract.

The pair (c¥,cl), with ¢/ = (R?, BY), ¥ # cF, j = H, L, is a separating contract if firms
adopting the j-project apply for contract ¢/ and B? > 0 for all j = H, L. A pooling contract
is ¢® = (RP, BP).

In fact, banks cannot make contracts contingent on the borrower’s s-type and on the
technology. Moreover, their revenues are clearly independent of the borrower’s s-type, but
not of his technological choice. Thus, banks can at most try to induce self-selection of
borrowers in terms of the technology.

Later on we will impose a condition insuring that, in equilibrium, both projects will be
implemented by the borrowers. Thus, in our model, there is always going to be a marginal
type of borrower A € (0,1) who is indifferent between the H and the L-technology. In
particular, if the equilibrium contracts are separating, the type A is determined by the

condition:

I3 (c") = T} (c") (3.3)

When the equilibrium contract is pooling:
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I () = TI3(<?) (3.4)
Given assumptions 3 and 4, we will always have that, when A € (0,1), any type s < A
will adopt the H-technology and any type s > A will adopt the L-technology.

The purpose of the next four sections is to characterize a credit market equilibrium. To

this end we devide the discussion into the following steps.

1) In section 3.2 and 3.3 we determine when pooling and separating contracts may be com-

patible with a Nash equilibrium of the banks-borrowers game described above.

2) In section 3.4 we define (and show the existence of) market-clearing contracts as the Nash
equilibrium contracts of the game which are verifying the equality between the supply of
loanable funds w and the demand of loans arising in the Nash equilibrium. For some param-
eter values, separating and pooling Nash equilibrium contracts may both be market-clearing

contracts for the same level of w.

3) Finally, in section 3.5 we determine the single type (pooling or separating) of market-
clearing contract satisfying a selection criterion. We select the unique equilibrium contracts
generating the highest rate on deposits. This type of contract, along with the supply of
loanable funds, defines a credit market equilibrium. We show that there is a credit market

equilibrium for all w € (0,1).

From now on, to simplify the notation, the interest rates in any given loan contract will
be normalized by ga’. In particular, for any contract ¢/ = (R7, BY), we define:
7’ = R/ [qa*
Moreover, it will be convenient to introduce the following definitions:

l_
p=p"/pt, o= e“
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3.2 Pooling contracts

By definition, a pooling contract is a contract ¢® = (zP, BP) accepted by all firms, whatever
the technology (project) they choose.
When this contract does not induce specialization, equation 3.4 determines the proportion

of borrowers adopting the H-technology as:

A = ox?BP (3.5)

Since the entrepreneur of type s = 0 has no fixed cost, no pooling contract can implement
technology L only. However, it is possible that ¢? induce all firms to adopt technology H.
In this case the contract will be called H-pooling.

Consider an equilibrium pooling contract ¢ = (2P, B?). Up to a normalization, banks

profits are:
8 = [zP(1 — (1 — p)A) — r|B?P

The zero profit condition implies 7 = 2P(1 — (1 — p)A). Thus, a contract ¢ = (2P, BP) is
a Nash equilibrium when there is no deviating contract é = (z, B) generating higher revenue
per unit of loan.

Since we are only interested in the case of no specialization, we now set a condition ruling
out the existence of the H-pooling contract as a Nash equilibrium of the banks-borrowers
game. In the light of the previous section, it is not surprising that this condition amounts to
setting a lower bound on the fixed cost e. In fact, when technologies are very close to each
other, pooling contracts tend to induce the adoption of bad projects. The next proposition

establishes this claim precisely.

Proposition 1 Let e > 1/2. Then, for all up = p™/p' € (0,1) there cannot exist an H-
pooling Nash equilibrium.

Proof. See the appendix. O
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From now on we will be assuming:
Assumption 8 e > 1/2.
Under the above assumption, it must be that:
B <1, 27 < 1(RP < qot)

In the next proposition we characterize the set of pooling contracts c? that are symmetric
Nash equilibria of the banks-borrowers game.

For some parameter values, these conditions may involve a lower bound on the value of

Br.

Proposition 2 There ezist a continuous decreasing function z? : [0,1] — [0,1] and a value
M (e, ) such that c? is a Nash equilibrium of the banks-borrowers game if and only if 2P =
zP(BP) and:

BP € [0,1] when e > max(1/2,2(1 — p));

B?P € [M(e,un),1] when 1/2<e<2(1—p) (ie, p<3/4);
where M(e,u) € (0,1) for all e € [1/2,2(1 — p)) when p < 3/4.

Proof. The proof of the proposition can be decomposed into two steps.

There are two possible ways of upsetting a pooling contract ¢?: by a pooling and by a
separating deviation. A deviation is separating if it attracts firms s undertaking the same
project only. Otherwise it is called a pooling deviation.

Accordingly, conditions under which ¢? cannot be upset by a pooling and a separating

deviation are given in a first and in a second lemma of the proof respectively.

Lemma 1 There is a continuous decreasing function z? : [0,1] — [0, 1] with zP(0) = 1 such

that a pooling contract c? = (zP, BP) cannot be upset by a pooling deviation iff zP = zP(BP).

Proof. Let é = (2, B) be the pooling deviation. The deviating contract &, in order to be

pooling (i.e., attract all borrowers), needs to generate higher profits to the firms adopting
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the L-project only. In fact, after the deviation, the only borrowers, if any, applying for the
contract ¢ are those adopting the H-project. Thus, ¢® becomes unprofitable for the non
deviating banks, which will reject all applications at the third stage of the game.

Now define the banks expected revenue for a unit of loan as:

VP(z?, B?) = 2P[1 — (1 — p)A] = 2P[1 — (1 — p)ox? BP|
The contract ¢ will upset ¢® if and only if:
(i) v*(&, B)

>
(i) (1-2)B >
(iii) B < 1

V?(z?, BP)
(1 —2P)BP

Condition (i) says that the deviating bank makes higher profits, condition (ii) says that
borrowers undertaking L-projects under the upsetting contract are not worse-off and condi-
tion (iii) guarantees that the upsetting contract satisfies the capacity constraint.

Clearly, we are in the best position to upset the existing contract when B satisfies (i)

with equality, so that the upsetting loan will be chosen to be:

~ 1—2P

B@) = ——

&
Now substitute B(&) in the left hand side of (i) and write:

BP

VP(2, B(2)) = £Q(£)
where:
Q2) =1— (1 - p)ozB(&)

is the repayment probability of the loan.

It is easy to verify that Q(.) and V?(Z, B(Z)) are respectively strictly decreasing and
concave in Z. Hence, as in the standard monopoly case, the expected revenue V?(.) is

maximized when the elasticity:
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n(¢) = -Q'(£)£/Q(#) =1

Evidently, the condition for the absence of a profitable deviation is that this maximizing
condition is satisfied for £ = zP.
One can easily verify that 7(z?) = 1 requires a decreasing relation between z? and B?,

which we define by:

z? = zP(BP) (3.6)

where zP(.) is a continuous decreasing function in [0, 1] such that z?(0) = 1. O

The proof of lemma 1 is sufficiently intuitive to explain the result. However, it may
be worthy to stress the main point. In order to be a Nash equilibrium, a pooling contract
must correspond to the maximum revenue that a deviating monopolistic bank would be able
to make. The relation zP = zP(BP) simply guarantees that the contract c? satisfies this
condition.

Now we turn to separating deviations. In this step we only need to show under what
conditions ¢? cannot be upset by a contract attracting H-projects only.

Let ¢ = (R, B) be the upsetting contract. To save notation we will again normalize
interest rates by ga’. Thus we write & for R/qar.

It follows that the upsetting contract has to satisfy the following conditions:

(") ut > VP(z?, B?) = 2?1 — (1 — p)A]
(i) B(1 — pi) > BP(1 — pa?)

(

(

~

ii") B(1 — ) < BP(1 — x?)
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Condition (i’) says that the deviating contract is more profitable for the bank, conditions
(ii’) and (iii’) say that the deviating contract attracts H-type projects only and condition
(iv’) defines the capacity constraint.

It turns out that the existence of a capacity constraint (B < 1) is crucial for ruling out
an upsetting separating deviation.

In fact, since V? < 1, a deviating bank can pick é = (&, B) such that V? < uz < 1 and
Bis high enough to attract H-type borrowers. Evidently, this is a profitable deviation.

On the contrary, when B < 1 is imposed, the possibility of a profitable deviation attract-
ing only H-technologies may be ruled out when ¢? generates enough profits for the firms

adopting the H-technologies, i.e., when:
BP(1 — pz?)

is high enough. Since the above expression is increasing in BP, any equilibrium pooling

contract must satisfy the following lemma.

Lemma 2 If o < 1/2, a pooling contract ¢® satisfying the condition zP = xP(BP), can never
be upset by a separating deviation. If o > 1/2, there is a value M(e,u) < 1, such that the

same contract cannot be upset by a separating deviation iff:
B? > M(e, 1)

Proof. See the appendix. O

Lemma 2 completes the proof of the proposition. O

3.3 Separating contracts

Separating contracts must satisfy two types of constraint: the participation and the incentive

compatibility constraints. Given the linearity of the technology, the participation constraint
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simply says that the interest rate on a loan contract cannot exceed the exogenous marginal
product of capital for the technology for which the contract has been devised. Recalling our
normalization, i.e., z7 = R7/qa’ and the fact that pLa* = p¥a¥ implies a/afl = pu, we

get the following conditions:

(PC) pz™ <1, 2* < 1;

(IC-1) TIH (M) > TTH (L), for all s < A;

(IC-2) ITE(cH) < TIE(cL) for all s > X

where, we recall, A is such that:

ITH(cH) > TIE(cE) for all s < X; TTE(cE) > T1H () for all s > A

Competition among banks (on the deposit side) guarantees that in equilibrium they make
zero profits. This imposes an extra condition on the set of separating contracts compatible
with an equilibrium. In particular, since at the last stage of the game banks can reject ap-
plications on a specific contract, in a separating equilibrium the two contracts must generate
the same revenue.

Then, zero profits imply p RFf = p’!RL =1 i.e.:

pr =z (3.7)

Clearly, no pair of separating contracts can be a Nash equilibrium if there is a deviating
contract that makes some borrower better off and that does not violate the IC constraints.
This implies that, at a Nash equilibrium, (IC-1) must be satisfied with equality and risky

borrowers must produce at capacity. Formally:
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(1 — pz™)BH = (1 — pz™) B (3.8)

BH =1 (3.9)

From 3.7, 3.8 and 3.9 we get:

1—zL
L— 3.10

Equation 3.10, defined for zX € [0,1], shows that Bl is a decreasing function of z*
ranging from 1 to zero.

From equations 3.3, 3.7 and 3.9 we get:
)= ozl B

Using equation 3.10, the above can be written as:

(3.11)

which is the the proportion of agents undertaking the H-project. One can verify that,
under assumption 8 it is always verified that ¢(z¥) < 1. Thus, there cannot be complete
specialization on any one of the given technologies with separating contracts.

The function ¢ is unimodal with ¢(0) = ¢(1) = 0 and there is a value 6 € (1/2,1) such
that:

(") >0zt <0

The reason for the non-monotonicity of ¢(.) is easy to grasp. By equation 3.7 a rise of

.'L‘L

implies a rise of the interest rates on loans for both projects. Since B¥ =1 > BZL, the
profit from the H-technology falls more than the profit from the L-technology when z¥ goes

up and this would imply a fall in .
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By the incentive compatibility constraint and equations 3.7 and 3.9, a rise of ¥ implies
a fall in BL for any given value of X. In fact, the profit from the L-project falls more than

the profit from the H-project when z¥ goes up, since:
dl* = —p~Bldzt < dI¥ = —p" BYdz"

for all s. In turn, a fall in BE, by decreasing the profits from the L-project, has a positive
effect on A.

Therefore the final effect on ) of a rise in z%

is ambiguous.

The following proposition shows conditions under which a separating pair (¢, ct) with
A < 1 is a symmetric Nash equilibrium of the banks-borrowers game. By equations 3.7,
3.9 and 3.10, the separating contracts can be uniquely defined in terms of the variable %,

and the proposition shows that we can always find a separating pair (c¥,ct) as a Nash

equilibrium, provided that z* is not too small.

Proposition 3 A separating pair of contracts (c¥,ct) is a Nash equilibrium of the banks-

borrowers game if and only if:

z¥ > (e, p)
where y(e,u) =1 for e > max(1/2,4(1 — p)) and it is in (0,1) otherwise.

Proof. See the appendix. O

Here we give a sketch of the proof to convey some of the underlying intuition.

A separating pair (cf,cl) is a Nash equilibrium if there are no deviating contracts such
that at least one set of borrowers are not worse off and the deviating bank is making higher
revenues with these contracts. Since there are three stages in the game, the profitability of
the deviation must be judged by taking into account that, as a response to the deviating
contracts, non-deviating banks can reject the borrowers’ applications.

There are two types of deviations in this game since the deviating bank can design a

separating or a pooling contract. Since separating contracts satisfy both the IC constraints
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and B¥ = 1, a simple argument shows that they are immune to separating deviations. Thus,
in order for a deviating contract to upset the separating pair (¢, cl), it has to be a pooling

contract ¢P satisfying:
(a) 1 = (1= wA)z? > 2%,
(b) I (¢7) > I (™), TIF(eP) > TIF(cP).

where )\ is the proportion of borrowers undertaking the bad project with the upsetting
contract after the unprofitable contracts have been withdrawn.

Condition (a) basically requires the proportion of bad projects ) after the deviation to be
small enough. Thus, a Nash equilibrium with separating contracts will only exist when this
proportio'n is sufficiently high. This condition looks like the basic condition for the existence
of separating contracts in the Rothschild and Stiglitz (1976) insurance game. However, in
our framework, the proportion of risky projects is not an exogenous parameter but a function

of the interest rates. In particular, by equation 3.4, any pooling deviation satisfies:

A= oiPBP

The next step is to define the value BP for which banks profits are higher and condition
(b) is not violated.

We can get a more immediate intuition of this proof when the capacity constraint is
not binding. In this case the most profitable deviation is characterized by the highest loan
compatible with conditions (b), i.e., by the loan B?(2?, L) at which ITX(¢) = ITX(cL).

Evidently, such ¢ is strictly preferred to ¢ by any borrower adopting the H technology.

Working out this condition, we obtain:

L
B”(i‘p,xL) _ 1=

1—zP

Under this specific contract we can derive that:
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. #P(1 — zL
j=Plz2)
zL(1 — £P)
Plugging this value into equation (a) and using these results, one can show that the
condition for the non-existence of an upsetting deviation reduces to a simple relation between

zl and X. In particular, when the capacity constraint is not binding we need A > u(z%),

where:
_1-zf
4(1 - p)

The reason why u(z’) is decreasing can be derived from equation (a) and from the

u(z?)

definition of A. In particular, when z’ goes up, we need a more profitable deviation in order
to upset the separating contract and this requires a smaller value of .

Finally, using the fact that, with separating contracts, A = ¢(z*), we can reduce the
condition for the existence of a Nash equilibrium to a lower bound for z~.

Figure 1 can illustrate the situation. The hump-shaped curve ¢(x’) mapping the interest
rate z’ onto the proportion of bad projects A describes a relation to be satisfied by the
potential equilibrium contracts (equation 3.11). The region above the decreasing line u(zt)
defines the combination of ¥ and A such that no profitable deviation from a separating
contract exists and < is the intersection between the two curves. Thus, a Nash equilibrium
separating contract must be one such that z¥ > 4, i.e., one for which the curve A = ¢(z%)

and the region above the curve u(z’) intersect.

3.4 Market-clearing contracts

In the previous section we characterized the set of equilibrium separating and pooling con-
tracts. In this section we impose that these contracts satisfy a market-clearing condition for

each exogenously given level of saving (wage) w € [0,1].

Definition 1 For w € (0,1), a ”"market-clearing” (MC) contract is a Nash equilibrium

contract (separating pair or pooling) such that the total amount of loans is equal to w.
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The next proposition establishes the existence of MC contracts, either of the separating

or of the pooling type (or both).
Proposition 4 A market-clearing contract ezists for all w € (0, 1].

Proof. The proof has three steps. In the first step we will find a condition for the existence
of pooling MC contracts, in the second step we will find a condition for the existence of
separating MC contracts and in the final step we will examine these conditions at the same
time.

Consider the market-clearing condition in the credit market when the contract is pooling.
In this case the equality between demand and supply of loanable funds simply requires

B? = w. Then, we can state the following:

Lemma 3 Ife > max(1/2,2(1— pu)) a pooling contract is an MC contract for allw € (0,1).
If1/2 < e <21 —pu) (i.e, p > 3/4), a pooling contract is an MC contract provided that
1>2w>M(e,p) <1.

Proof. The proof simply follows from proposition 2. O
Now consider a pair of separating equilibrium contracts. Then, the proportion of high

risk projects is A* = ¢(z%), where ¥ = RF/qal, B# =1 and B’ is determined by equation

3.10, i.e.:

Therefore, with separating contracts, the market-clearing condition in the credit market

is:

¢(z") + (1 - ¢(z"))B (") = w (3.12)

Equation 3.12 defines implicitly z¥ as a function of w, i.e.:



where z%(.) is strictly decreasing in [0, 1], ££(0) = 1 and zZ(1) = 0.
By proposition 3, ¥ is compatible with a Nash equilibrium only if it is greater then or

equal to (e, ). Then we have the following:

Lemma 4 If1/2 < e < 4(1 — u), (i.e.,, u < 7/8) there is a value L(e,p) € (0,1) such that
a separating pair (c¥,cl) is an MC contract for all w € (0, L(e, 1)).

Proof. Market clearing in the credit market with separating contracts requires rf(w) >

v(e, 1), ie.

w < L(e, p)

L

for some value L(e,u) € (0,1). By proposition 3, ¥ < 1 in a Nash equilibrium only if

1/2 < e < 4(1 — p). Then, this assumption implies L(.) > 0 and the proposition follows. O

The proof is completed by oserving that L(.) > M(.) for all ux € (0,1) and e > 1/2 (which
is verified by assumption 8). Then, there is at least one market-clearing contract for each

level of saving w € (0,1). O.

3.5 Credit market equilibrium

At this stage of the model separating and pooling market-clearing contracts may coexist for
the same level of w. In particular, proposition 4 says that there is an open interval [ in (0, 1)
such that both a pooling and a separating pair of contracts are MC contracts associated
with the same w € I. In order to resolve this multiplicity problem, we impose the following

selection criterion.

Definition 2 A contract (separating pair or pooling) is a ”credit market equilibrium” (CME)
contract for some w € (0,1) if it is the MC contract that, among the MC contracts compatible

with the same value of w, generates the highest deposit rate r.
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For each w € (0,1), define r*(w) and rP(w) as the unique deposit rates arising from a

separating and a pooling Nash equilibrium contract respectively. Then:

r’(w) = gazt(w), rP(w) = qazP(w)[1 - (1 - L3 (w)]
where M\P(w) = owzP(w) is the equilibrium proportion of high risk projects with pooling
contracts.

Proposition 5 For o < (31/2 — 1)/2 all CME contracts are pooling. Otherwise there ezists
a value w® € (0,1) such that, for w < w®, CME contracts are separating and, for w > w°,

CME contracts are pooling.

Proof. See the appendix O
The above proposition says that:

A) when w < w°, CME contracts are separating either because m*(w) > rP(w) or because

w < M(e, u), i.e., pooling contracts are not MC;

B) when w > w°, CME contracts are pooling either because ?(w) > r*(w) or because

w > L(e,p), i.e., separating contracts are not MC.

Since we know that L(e,u) > M(e, p), there may exist a value w' € (M(.), L(.)) such
that 7*(w') = 7?(w'). In this case w® = w'. Simple calculations show that L(.) > w' for all
values of e and p in the relevant range. Thus w° = max{w’, M (e, u)}. Figure 2 shows the
case w' > M(e, p).

In order to ensure the existence of both pooling and separating CME contracts, from

now on it will be assumed:

Assumption 9 e < g%—;—_’%

The above assumption implies e < 4(1 — p), i.e., it implies the existence of equilibrium

separating contracts for some w > 0.
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3.6 Efficiency

A natural question to raise at this point is whether credit market equilibria are efficient.
For given w € (0,1) (supply of loanable funds) and rw > 0 (lenders’ consumption), a
pair of contracts w = (wf,w’) with w? = (p?, 87) (j = H, L) is feasible if it satisfies:

(£-1) Aw)B" + (1 = Mw))B* < w;

(£2) Mw)p"p"BH + (1 = Mw))p*p*B" > rw;

the incentive compatibility constraints (IC-1), (IC-2), the participation constraints (PC) and
the capacity constraints 87 < 1 (j = H, L), where, as usual:

(a —p"p")pH — (a — p*p")B"
ea

AMw) = min{1, }

It is straightforward to verify that A can never be zero under the incentive compatibility

constraints.

Definition 3 For given w € (0,1) and rw > 0, a feasible pair of contracts w? = (p?, %)
(i = H,L) is efficient if there is no other feasible pair ¢ = (cf,cl) with & = (R?, BY)
(7 = H, L) such that:

max{TT' (), TTg (¢")} > max{IT]' (™), IT7 (w")}, s € [0,1]

Me)p"pH BH + (1= Me)ptpt " 2 Mw)p™ p" B + (1 — Mw))p"p"B*
with at least one strict inequality.

This definition of efficiency takes into account the fact that the Planner cannot directly
run the technology and has the same information as the lenders.

It is straightforward to show that all CME contracts are efficient. In fact, if there were
a pair of contracts dominating the CME contract for given w and r, then this pair would

define an upsetting deviation, contradicting the Nash property of the CME contracts.
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3.7 The equilibrium share of bad projects

The proportions of borrowers undertaking the H-project with separating and pooling con-

tracts respectively are given by:
X (w) = ¢(z" (w)) = 2" (w) B* (z*(w)), I(w) = oz”(w)w

It is readily verified that zP(w)w is increasing in w. Moreover, since the loan for L-
projects with separating contracts is less than the average loan w (B¥ = 1 > w > BL),

then:
zF(w) < 2P (w) = M (w) < WP (w)

Thus an increase in saving w will always bring about an increase in the proportion of
”bad” projects when the contract is pooling, while it may or may not have this same effect
when the contract is separating.

We now define the equilibrium share of the ”bad” projects H as A(w). By proposition 5,

we have:

Aw) = M (w) for w < w° Mw) = N(w) for w > w°.

From the previous section we know that w® > w/’, i.e., the wage rate at which deposit
rates are equal under the two types of contract is higher than or equal to the switching point

w°. Hence:
gt (w’) < 2 (w’)[1 - (1 = p)N] < 2”(w’)
and the following proposition can be established without proof:

Proposition 6 The function A(w) has a discontinuity in w°® where it makes a sudden jump

to a higher value when w crosses w® from the left, i.e.:

AMw?) = X (w°) < lim M (w)

w—wo"
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4 Equilibrium dynamics

To determine the general equilibrium of the model we concentrate on the market for materials
2. By Walras law, an equilibrium in this market implies an equilibrium in the entire economy.
Let & (j = H, L) be the amount of the loan used to finance project j under either one of
the two types of equilibrium contract, i.e., ¥ = B? (j = H, L) when contracts are separating
and b’ = B? = w for j = H, L when contracts are pooling.
To simplify the computation, assume that entrepreneurs are uniformly distributed in

[0,1]. Then the supply of materials z at time ¢ + 1 is given by:
At
prmmw+u—M&—/ewq
0

Since A + (1 — A)bE = wy, Ay = Mw;) and [ esds = £AZ, we have:

W(w) = alwr - 5Mw)?)

The dynamic structure of the model implies that market-clearing for the materials 2z can

be written as:
zZt = \I/(wt_l)

From equation 2.1 and assumption 5, there is a continuous strictly increasing and differ-
entiable function ®(.) such that z = ®(w). The dynamics of the equilibrium wage rate are

thus described by the following equation:

®(w,) = U(ws_1) (4.13)

A sequence {wy;t > 1} satisfying equation 4.13 for all ¢ > 2 uniquely defines the equilib-
rium dynamics of the model for a given initial condition w;.

Recall that, by assumptions 5 and 7, the benchmark model produces a unique positive
asymptotically stable stationary wage rate w* € (0,1). For this model, the corresponding

map Y(w) is simply the linear function aw.
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When we have asymmetric information, the map ¥(.) is nonlinear. In the previous section
we showed that A(w) has a discontinuity in the switching value w®. The equilibrium share of
bad projects A jumps up (the value ¥(w) falls) as w goes through w° from the left. Additional
properties of the map W(.) can also be derived from the analysis of the equilibrium contracts,

and they are summarized in the following proposition.

Proposition 7 The map V(w) has the following characteristics:

1) ¥(0) = 0;

2) V(.) is increasing and piecewise continuous;

3) W(.) has a unique discontinuity at w® where ¥(w®) > limy,_yo- ¥(w);
4) V'(0) = a;

5) V' (w) < a for allw > w°;

6) there is a value w™ < 1 such that ®(w) > V(w) for all w > w™.

Proof. See the appendix. O

From property 6 of proposition 7, it follows that the equilibrium sequence of wage rates
{wy;t > 1} is bounded. In fact, ®(w) > ¥(w) for w > w™ implies that w41 < wy whenever

wy > w™. Other dynamic properties of the model can be easily derived from proposition 7.

Multiple steady states
A steady state of the dynamics generated by equation 4.13 is a value w > 0 such that:
®(w) = ¥(w)

Although the steady state of the benchmark model is always unique, we cannot exclude
the existence of a multiplicity of steady states when there is asymmetric information. These

may be associated with either pooling or separating contracts.
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By the properties of the maps ®(.) and ¥(.), at least one of these steady states is stable.

Moreover, since:
¥(w) < aw

whenever A > 0, it follows that w < w*. Thus, a first obvious claim that can be derived
from the dynamics of the model is that asymmetric information produces poverty traps, in
terms of wage and output levels.

If the stable steady state W < w° (@ > w®) then the economy converges asymptotically
to a stationary equilibrium where contracts are separating (pooling). Clearly, the steady
state associated with pooling contracts has a higher value, i.e., it implies a larger output and

consumption level.

Persistent cycles

Due to the discontinuity of the map ¥(.) at w®, there is an open set of parameter values such
that steady states are non-existent in the model with asymmetric information. Note that
this possibility may occur precisely because of the particular nature of the discontinuity, i.e.,
the fact that A(w) jumps up at w°.

Recall that W(.) is piecewise continuous in [0, 1] and the discontinuity is unique. We can

then partition the positive real line into the following two intervals:
I = (0,w°], I = (w° o0)
Since there is no w > 0 such that ®(w) = ¥(w), we have:
wel = d(w)>V(w), wel, = d(w) < ¥(w)

Thus, if w; € [;, the equilibrium sequence is initially monotonically increasing and there
is a T > 0 such that w; € I} = wr € Is.

When w; € I, the equilibrium sequence becomes monotonically decreasing and there is
a k > 0 such that wr € I = wry, € 1.

Thus, we can state the following:
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Proposition 8 Assume that there is no w € (0,1) such that ®(w) = V(w). Then the
equilibrium dynamics of the wage rate is cyclical and it does not converge to any steady

state.

Figure 3 illustrates the case of a periodic cycle.

5 Appendix

Proof of proposition 1. Assume that the H-pooling contract ¢ = (Z, B) is a Nash equi-

librium of the game. Hence, it satisfies the following conditions:

(H1) II{(
(H2) TIf(

O

) > 1I5(2)
0.

o
IV

The two inequalities state that all firms s € [0, 1] make non zero profits with ¢. It is clear
that no H-pooling contract can survive a profitable deviation if it only attracts a subset of
firms s € [0,s'] with 8’ < 1. In fact, in such a case the deviating contract é = (:i:,B) with
Z =1 would upset, for a suitable choice of B , the H-pooling contract.

Banks’ revenue per unit of loan with the contract ¢ is equal to p R = gqauz, i.e., it is
linearly increasing in Z. Thus, in seeking conditions under which ¢ is a Nash equilibrium, we
can set B = 1. In fact, by (H1), this value maximizes banks’ revenue per unit of loan with
¢, making the existence of the upsetting contract more problematic.

Now consider a family of deviating contracts ¢ satisfying:
I*(e) > I{'(9), IL'(8) = I/ (2)

The above family attracts L-projects only, thereby generating a revenue (per unit of loan)
equal to gaz for the deviating bank. Since a contract in this family attracts L-projects only,
it does not modify the banks’ revenue generated by the contract é. Therefore, a deviation é

does not induce the non-deviating banks to reject applications for ¢ at the third stage of the

38



game. One can easily show that, if ¢ survives this deviation, then it will survive any other
deviation, i.e., ¢ is a Nash equilibirum contract.

The deviating contract ¢ upsets ¢ if it generates higher profits for the banks than ¢, i.e.,
% > uz, where T < (1 —e)/u by (H2). For the family of deviating contracts defined above,
we have:

1—puzx
1— pus’

B= (1-%)B>(1—puz)—e

Using the above equations, the condition for the deviating contract to upset ¢ can be

written as:

A~

Nz, z) = (1 — pz)(1 —p) <e

1—puz
Thus, ¢ is a Nash equilibrium under the condition that, for some z, I'(Z,Z) > e for all

% € (uZ,1]. Since I'(.) is increasing in £, this condition reduces to:
I'(uz,z) > e

for some Z < (1 — e)/u. Trivial calculations show that this condition is verified only if
<(1-w)/(2-p).

Hence, e > (1 — u)/(2— p) implies that no H-pooling contract can be a Nash equilibrium

contract of the game. In turn, this condition can only be verified for all x € (0,1) when

e>1/2. 0

Proof of lemma 2. Here we consider the possibility that the pooling contract can be upset
by a separating contract attracting H-projects only.

Inspection of conditions (i’)-(iv’) shows that we are in the best position to upset the
existing contract if (ii’) is satisfied with equality and B = 1. These two conditions determine

a unique value for the interest rate in the upsetting contract, such that:

5= %[1 ~ (1= pa®)B?)
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Substituting this value of £ into (i’), we directly find conditions under which deviating
contracts cannot upset ¢?. In particular, the expected revenue from the deviating contract

defined in the left hand side of (i’) becomes the function:
VH(zP, B?) =1 — (1 — paP)BP

Consider the set of pooling contracts characterized by lemma 1. Since the function z?(.)
defined by equation (15) is decreasing, we can find its inverse. Let BP(.) = (z®)"!(.) and
write BP = BP(zP) to characterize the unique family of pooling contracts which cannot be
upset by a pooling deviation.

Thus this family of pooling contracts is compatible with a Nash equilibrium if it is immune

to separating deviations as well, i.e., if:
V?(a?, B*(a”)) 2 V¥ (a”, B*(2”))

It is verified that the above inequality will only hold under the condition:

1
p+20(1 — p)

P <m

Thus, when p+20(1 —p) < 1,ie., 0 <1/2, then m > 1 and any pooling contract which
cannot be upset by a pooling deviation, it cannot be upset by a separating deviation either.
On the other hand, when ¢ > 1/2, then m < 1 and ¢? is immune to both a pooling and

a separating deviation if and only if 27 < m. Now define M(e, ) from:
m = z?(M(e, p))

It is verified that M (e, u) < 1 for all values of € > 1/2. Recalling that z?(.) is decreasing,

we get the proposition. O.

Proof of proposition 3. First we show that separating deviations cannot be profitable.
Let ¢ be the separating deviation attracting H-projects only. Since B = 1, the deviating
bank will only attract borrowers with H-projects under the condition 2¥ < z¥. However,

this generates losses for the bank.
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Now let &~ be a deviating contract attracting borrowers adopting the L-technology. Then:
(1-zY)BY > (1 - z*)B*

In this case the deviating contract is incentive compatible only if II(c#) > 11 (¢L) and
these two inequalities together imply that Z° < zL. Hence, this deviation is not profitable.
Thus, in order for a deviating contract to upset the separating pair (¢, cl), it has to be

a pooling contract ¢?. Then:

i) é produces higher profits for the bank than the existing contracts when all applications
with which banks make negative profits ”after” the deviation are withdrawn;
ii) with é a non-trivial fraction of borrowers undertaking both projects make at least the

same profits than they used to make with the existing contracts.

Let A be the proportion of borrowers undertaking the bad project with the upsetting
contract after the unprofitable contracts have been withdrawn. Then conditions (i) and (ii)

above imply:
() [1 = (1 = wAjE? > %
(b) I (&7) > I (M), TIE(e?) > TIH(¢&P).

By equation 3.4, any pooling deviation satisfies A= ogiPBP.
The next step is to define the value BP? for which banks profits are higher and condition
(b) is not violated. This value is clearly a function BP(#?,zL) provided that the capacity

constraint B? < 1 is not binding. In particular, we need:
(1-2P)B? > (1 — z*)B*t

with B? < 1. Checking for a deviating contract that satsfies the above equation with equality

is enough to guarantee the existence of a profitable deviation. Then, we will write:
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L
1=z,

1—2zP

Br

for 27 < m(zl) =1 - (1 — L) BL (capacity constraint).

Under this specific contract we can derive that:

N 2P(1 — zt)

Tel(1-4P)
Plugging this value into equation (a) and using these results, one can show that the
condition for the non-existence of an upsetting deviation reduces to a simple relation between
zl and ). In particular, a profitable deviation will not exist if:

#P(1 — t)

.’i‘p[l - (1 - /L))\m

| <#?

for all 27 € (zX, m(zL)). Simple manipulations of the above expression show that a profitable

deviation does not exist if and only if the polynomial in P defined below:
P, (2P) = Ay(2P)% — A1 + A

with Ay = 2% + (1 — )A(1 — zL), A; = zF(1 + 2L), Ay = (2¥)? is greater than or equal to
zero for all % € [zL, m(zh)].

Observe that for all 27 € [zF,1], P,i(.) is strictly convex; it is positive for 27 < zL and
decreasing for 27 = zr.

Let y*(z¥) = arg min{P,.(&?); 3P € [zL,m(z)]}. Clearly, either y*(zL) < m(zL) and
P, is increasing in m(z*), or y*(z) = m(z') and P,: is non increasing in m(z?).

Hence, for the existence of a separating equilibrium, we need to find conditions guaran-

teeing that either one of the following is verified:

T

(A) Pl.(m(z%)) > 0 and P,c(y*(z*)) > 0;
(B) P..(m(z%)) <0 and P,c(m(zt)) >0
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Now define y(zl) = arg min{P,.(£?); 2° € R}. It is verified that:

i) Pl.(m(z*)) > 0 implies:

_ 1—(2— p)zt
21-p)(2—-p—2t)

A > g(z) =€(a)

ii) P,c(y(z¥)) > 0 implies:

1—2zf
A> u(zh) =
= i0—w
iii) Pyr(m(xl)) > 0 implies:
1—zL
Ly — 2
A2 = [

Thus, case (A) reduces to finding conditions under which:
A > £(zh), A > u(xh)
and case (B) reduces to finding conditions under which:
§(z") 2 A 2 v(z")
Now recall that A = ¢(z¥). Then, the following facts can be readily verified:

i. if o > 1/4, ¢(zb) > u(zl) iff ¥ € [p!, 1], where p = 1/[40(1 — p) + u), if 0 < 1/4,
é(zt) < u(zl) for all £ € [0,1];

i &(p) = u(p) = v(w), &(zt) > u(zl) > v(zl) for zL € (0, ), £(zF) < v(z?) < u(zl) for
zt € (u,1);

iii. @) > &(p) =v(p) =up) iff 0 > (1 + p)/4p;

iv. the curves ¢(z”) and v(z*) have a unique interesection p? € (0, p!) such that v(z) >

¢(z*) for all L € (0, p?).
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From the above, it follows that case (B) cannot be verified under the assumption o <
(1 + p)/4u. Thus, only case (A) can hold.

Moreover, under the assumption o < (1 + u)/4u, case (B) implies case (A).

Finally, notice that p! <1iff o > 1/4.

These remarks lead to the following conclusions:

if o < (14 ) /4u, the existence of a separating equilibrium requires =¥ € [p',1] when o > 1/4
and z£ = 1 when o < 1/4;
if ¢ > (1 + p)/4p, the existence of a separating equilibrium requires z* € [p?,1].

By defining (e, 1) = p* when o > (1 + p)/4p,

1 if 0<1/4
(e, p) =94 pb if 1/4 <0 < (14 p)/dp
p? if o> (1+p)/4p

Proof of proposition 5. To save notation, let 27 = ri/qa, (j = s,p).

When contracts are separating, we have 2°(w) = z£(w). When contracts are pooling:
27 =zP(w)[l = (1 = p)A]

From the proof of proposition 2 we derived that:

1—2aP
o(1 — p)z?(2 — z?)

@) =

Then, (1 — p)A = (1 — zP)/(2 — zP) and we obtain:

z* (w)

7 = W)

Note that both 2°(w) and 2P(w) are decreasing functions of w. From now on it will be

convenient to invert these functions in order to simplify the problem.
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The inverse of z°(.) is just equal to the inverse of z%(.), which we know from the proof

of proposition 3. Thus, we define:

1—pz+0(1—p)2?
(1 - p2)?

as the unique saving level that is compatible with a given value z of the rate on deposits for

w'(2) = (") 7 (2) = (1 - 2)

a separating MC contract (provided the latter exists).
Similarly, from the definition of (z?)~!(.) and the relation between z? and 2 found above,

we can define:

1+2
wP(z) = (1- z)m
as the unique saving level which is compatible with a given value 2z of the rate on deposits
for a pooling MC contract (provided the latter exists).
Now we study the two functions w*(.) and w?(.) to see whether they have one or more
intersections.

Note that w®(1) = wP(1) = 0, w®(0) = 1 and w?(2) tends to +oo for z — 0. Thus, a

sufficient condition for the two functions to have an intersection point is:
lixr% ow’®/0z > lin} ou? [0z
z— z—

which is verified when 202+ 20 —1> 0, ie., 0 > (31/2-1)/2.
Now we show that w®(.) and w?(.) cannot have more than one intersection in (0,1). In
fact, w®(z) = wP(z) in (0,1) implies:
l—pz+o(l—p)z?2 14z
(1 — pz)? ~ 4o(1—p)z

One can verify that the left hand side of the above equation is increasing and the right

hand side is decreasing in 2. Therefore, there cannot be more than one intersection point 2°
between w?(.) and w?(.) in (0,1).
Now recall that there is an MC contract for all w € (0,1) and that the MC contract can

be separating for w < L(e, 1) and it can be pooling for w > M (e, ), with M (e, p) < L(e, p).
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Hence, we get the proposition. O

Proof of proposition 7. Property 1 in the proposition follows from the fact that the
equilibrium contracts are separating for w small and that zZ(0) = 1, i.e., A*(0) = 0.

For property 2 we need to show that:
eA(w)N(w) <1
for all w € (0,1). When contracts are pooling, we have:
A(w) = ¢zt w))

where zl(w) is implicitly defined by the condition:

w(l — pz*) — (1 —z*)
(1—p)zt

¢(z") = ¥(z*, w)

Then:

Y
=9

Evidently, eA(w)\ (w) < 1 whenever ¢’ > 0. Then, let ¢’ < 0 and define ¢' = —7. Then:

N (w)/Ow = —¢'

eXON [Ow = e,\s77 :wwa <eNty,=1-zL <1

When contracts are pooling, we can derive the following expression for the derivative of

A with respect to w:

0N [Ow = 0%5
where:
5= 2(1 — p)2A2
1-2(1—p)A
Thus:
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eNFON Jow < eXPo=(1—-p)A <1

Property 3 in the proposition follows from the discussion in section 6.
Properties 4 and 5 follow from the observation that A’(0) > 0 and that A(w) is increasing
when contracts are pooling.

Property 6 follows from having assumed w* < 1, i.e., ®(w) > aw > ¥(w) for all w > w*.
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