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Summary

The present work introduces three conditionally 
heteroscedastic models which allow an asymmetric reaction 
of the conditional volatility to the arrival of news. Such a 
reaction is induced by both the sign of past shocks and the 
size of past unexpected volatility. The three models are 
shown to converge in distribution to absolutely continuous 
Ito diffusion processes, as happens for other heteroscedastic 
formulations. Two out of the three proposed schemes differ 
from the existing asymmetric models, insofar as they are able 
to capture a particular aspect of the behaviour of the 
volatilities, i.e. the inversion of their asymmetric reaction 
to news. Empirical evidence from stock market returns in 
seven countries shows that Sign- and Volatility-Switching 
ARCH models outperform traditional asymmetric ARCH equations.
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1. Introduction1

Since Engle's (1982) and Bollerslev's (1986) seminal 
papers, ARCH (AutoRegressive Conditional Heteroscedastic) 
models have been widely employed in the analyses of financial 
variables observed at high frequencies; in this case, the 
effects of heteroscedasticity are more evident and witnessed 
by the distributions of the rates of change of the variables, 
which are heavy-peaked and tailed.2

The original ARCH model posits the existence of a 
relation between past squared innovations of an observation 
assets returns changes model and their current conditional 
variances. Let £t be the innovation of an observation model; 
then, the GARCH(1,1) model assumes that £t is conditionally 
normal with variance changing through time in a fashion which 
resembles a restricted ARMA process, i.e.:

where ao>0, ai, (3 > 0 are real, non-stochastic parameters and 
It-i is the information set dated t-1 .

A shortcoming of the GARCH model is that the sign of 
the forecast errors does not influence the conditional

1 This paper builds on the initial ideas developed in our 
1994 work, "The Sign Conditional GARCH Model: Theory and 
Applications to International Stock Markets", Quaderni di 
Ricerca dell'Osservatorio e Centro di Studi Monetari, 
LUISS University, No. 41. We wish to thank Michel 
Botomazava (University of Paris X) , Giorgio De Santis 
(University of Southern California at Los Angeles), 
Andrew Harvey (London School of Economics) and a referee 
for very helpful remarks and suggestions given on an 
earlier version of the work. The usual disclaimer 
applies.

2 For an extensive review of ARCH models, see Bera and 
Higgins (1993) .

( 1 . 1 )
(1 .2)
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variance, which may contradict the observed dynamics of 
assets returns. Black (1976), for example, noted that their 
volatility tends to grow in reaction to bad news (excess 
returns lower than expected), and to fall in response to good 
news (excess returns higher than expected). The economic 
explanation given by Black is that positive (negative) excess 
returns make the equity value, hence the leverage ratio, of a 
given firm increase (fall), thus raising (lowering) its 
riskness and the future volatility of its assets. This 
phenomenon has consequently come to be referred to as 
leverage effect, (see, e.g., Campbell and Hentschell, 1992, 
or Pagan and Schwert, 1990).

The basic attempts to include these assets returns 
features into a convenient econometric framework are the 
Exponential ARCH model of Nelson (1991), the Threshold ARCH 
model of Zakoian (1991) and Rabemananjara and Zakoian (1993), 
the Asymmetric Power ARCH model of Ding et al. (1993), and 
the Stochastic Variance model of Harvey et al. (1994), or 
Harvey and Shephard (1993a, 1993b). All such models include 
the sign of past forecast errors as a conditioning 
information for the current values of the conditional 
variance.

The main concern of the paper is to develop 
heteroscedastic formulations which turn out to be useful in 
modeling the statistical properties of financial data. It 
improves over previously developed models for two main 
reasons :

—  first, it develops a class of asymmetric ARCH models in 
which volatility is influenced by the sign of previous 
shocks and the unexpected volatility induced by such 
shocks;
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—  second, it derives their asymptotic properties, useful in 
the estimation of recent (continuous time) theoretical 
models developed in finance.

With concern for the first issue, we propose three new 
models. In the first of them, the intercept of the volatility 
equation (1.2) is allowed to change according to the sign of 
previous shocks, so capturing asymmetries in volatility 
within a simple traditional GARCH structure; since the model 
is closely related to the Sign Conditional (SGN) 
Autoregressive Model in Granger and Terasvirta (1993), it 
will be referred to as Sign-Switching ARCH. However, there 
are reasons to believe that factors other than the sign of 
past shocks be responsible for the asymmetric behaviour of 
volatilities. To examine such an opportunity, we propose two 
models which capture asymmetries via the impact of past 
shocks on the level of the volatility, rather than through 
the unexpected returns; they will be called Volatility- 
Switching ARCH. Unlike previous models, they are able to 
capture an already observed phenomenon, the reversal of 
asymmetry, which will be defined in the next paragraph.

Coming to the second point, it has been widely 
recognised that many of the GARCH models developed so far 
admit a continuous time representation, thus revealing useful 
in the estimation of continuous time models employed in 
finance. Following this stream of research, analogous results 
are presented for the GARCH models hereby developed, as well 
as for other discrete time ARCH models.^
3 This kind of results was pionereed by Nelson (1990), who 

showed that the GARCH(1,1) model of Bollerslev (1986) and 
the AR(1)-Exponential ARCH model of Nelson (1991) 
approach continuous-time AR{1) processes, as the length 
of the sample frequency approaches zero; later, Fornari 
and Mele (1994a) extended his results to the case of the 
Asymmetric Power ARCH model of Ding et al. (1993), and El 
Babsiri and Zakoian (1994) established weak convergence 
theory for the Threshold ARCH model of Zakoian (1991).
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The paper is structured in the following manner. The 
next section deals with the Sign-Switching ARCH model and 
derives the expressions of its first four moments; then, two 
Volatility-Switching models are introduced. We conclude the 
section by presenting weak, convergence results for the Sign- 
Switching ARCH, the two Volatility-Switching models and 
finally, the Glosten et al. (1993; henceforth GJR) model. 
Section 3 presents our empirical results. Evidence from seven 
stock market indices unambiguously shows that the Sign- and 
Volatility-Switching ARCH models successfully detect 
asymmetries in volatility. Section 4 concludes the paper.

2. Sign and Volatility Switching ARCH Models

2.1 The structure of the models

In the Sign-Switching ARCH model we capture the 
asymmetric reaction of the conditional variance to shocks of 
different sign through the sign of such shocks. Let et be a 
(scalar) innovation of a given (unidimensional) observation 
model. The Sign-Switching GARCH(p,q,y) model then assumes:

(2..1) et = zftft/ etUt-i - N ( 0 , CTt 2)
(2 ..2) Ot2 = w + Xi=i,PPi Ct-i2 +

Ij=l,qaj£t- j2 + Xx=l y<DX St-X
(2.. 3 .1) st = + 1, if et > 0
(2..3 .2) st = 0, if et = 0
(2 ,.3 .3) st = - 1, if et < o,

where p, q and y >0, w, aj, j=l,..,q, Pi, i = l,..,p and O x, 
x=l,...,y, are real, non-stochastic parameters, satisfying 
w>0, otj>0, Pi^O and, finally, iXx^x - wl < such constraints 
guarantee that the process {CTt2} remains positive almost 
surely.
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Throughout the paper we will confine to the special 
case p=q=y=l, so that (2.2) reduces to:

(2.4) at2 = w + {J'Ot -12 + a-et-i2 + O'St-i-

It is straight forward to see that (2.1)-(2.4) captures 
asymmetric responses of the volatility to positive and 
negative shocks,-4 in fact, when O<0, negative (positive) 
shocks at t-1 will be associated with an higher (lower) level 
of volatility at t.

The second and fourth unconditional moments of the 
innovations of a Sign-Switching model are (see Appendix A):

(2.5) E(e2) = w- (l-a-[5) -1.
(2.6) E(E4) = 3-(w2+<D2) . (i-a-p)+6w2 (a+P) )

(1/( (i-a-P)• (i-a2-3(J2 - 2aP))) .

While the second unconditional moment coincides with 
that of a GARCH(1,1) model (Bollerslev, 1986), the fourth is 
also a function of O; hence, the stronger the asymmetric 
effect, the higher the unconditional fourth moment. Such a 
feature helps capture a widely recognised characteristic of 
the data, i.e. high kurtoses. The coefficient of kurtosis, k, 
derives directly from (2.5) - (2.6) and turns out to be:

(2.7) k = (3-(l-a-p)2-(w2+<D2) + (i-a-p)-6w2 (a+p) )•
(1/(w2 (i-a2-3p2-2ap))).

It is an increasing function of <t>, so that the Sign- 
Switching ARCH model interprets high kurtoses also as the 
consequence of the asymmetric behaviour of the volatility 
(beyond its persistence).

4 Note also that (2.4) is related to the Sign-Conditional 
AR (1) (SGN) model in Granger and Terasvirta (1993, pp. 
137-39) .
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According to recent empirical evidence (Glosten et al. , 
1993), the Sign-Switching ARCH model might reveal 
unsuccessful in detecting some of the non-linear 
characteristics of the volatility dynamics. First, as pointed 
out by a referee, its news impact function, i.e. the relation 
between the sign of £t-i in (2.4) and at2, is discontinuous 
at zero.^ Further, there is a particular feature of the data 
that it is not able to detect. As pointed out by 
Rabemananjara and Zakoian (1993), high negative shocks 
increase future volatility more than high positive ones; at 
the same time small positive shocks too often produce a 
stronger impact on future volatility than negative shocks of 
the same size. Thus, following the occurrence of a shock of a 
certain size, the asymmetric behaviour of the volatility 
might become reversed; the modeling of this feature is the 
focus of the remainder of the paper.

First, we define which is the size of the shock at 
which the reversal occurs, which also helps clarify why the 
asymmetric behaviour of the volatility may eventually come to 
change direction.

As the first issue is concerned, the "size measure" 
which we employ in this paper is the level of unexpected 
volatility generated by a shock at t-1 (£t-i)• Conditionally 
on the information set dated t-2, the expected value of £t-l2 
is at-i2; if, however, £t-l2-°t-l2 (^at-i2), we shall say 
that £fl has generated (at time t-1) a level of volatility 
higher (lower) than expected (at time t-2) . Consider now a 
very small negative shock at time t-1; if it introduces a 
level of volatility at time t-1 lower than the volatility 
expected at time t-2, there should be no reasons to believe 
that volatility at time t will increase as a consequence of
5 However, while such a characteristic may not be plausible 

in financial economics, we do not have strong a priori 
reasons to rule out such an occurrence working with other 
variables (see, e.g., Leland and Gennotte, 1990).



11

the leverage effect. Roughly speaking, a small negative shock 
which generates lower volatility than expected is a piece of 
good news and not a completely bad one. Also, positive shocks 
which generate lower volatility than expected may be regarded 
as relatively good news; this clarifies why reversals should 
occur.

Past research has generally overlooked the impact of 
previous (unexpected or expected) volatility on its current 
expected level. Engle and Ng (1993), for example, propose to 
analyse the impact of news on the current conditional 
heteroscedasticity (i.e. on Ct2)* keeping constant the 
information dated t-2 and earlier, with all the lagged 
conditional variances evaluated at their unconditional 
values.

To define such issues formally, let vt-i = vt-i(et-l) 
denote the (measurable) amount of unexpected volatility at 
time t-1, generated by a shock occurred at time t-1 (Et-i) . 
Let f(vt-i) be some deterministic and measurable function 
mapping vt-i onto the current conditional volatility. Then, 
if g [£t-i, |et-il, sign (Et-i) ] is a deterministic, asymmetric and 
measurable response function of the current, conditional 
volatility with respect to both size and sign of Et-l, other 
things equal, all the asymmetric ARCH models so far proposed 
in the literature focus mainly on modeling g(-), rather than 
f (•) .

In order to take into account the impact of past 
unexpected volatility on future expected volatility, one has 
to build plausible functional forms for f(vt-i), thus 
providing a model for the "response function of the future 
expected volatility to past unexpected volatility"; the 
latter would parallel the notion of "news impact curve" of 
Engle and Ng (1993) .
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In this paper, we will assume that f(vt-i) is 
proportional to vt-i. Consider, for example, the following 
mode1:

(2 .8 ) at2 = w + aet-i2 + P^t-i2 + ^st-i • vt-i»

where st-1 is defined by relations (2.3), and:

(2.8.1) vt = et2 - ct2.

Note, first, that vt measures the difference between 
the observed conditional volatility (£t2) and its estimate, 
based on the available set of information, thus playing the 
role of an error correcting variable. The term vfst-i is by 
construction uncorrelated with both et2 and CTt2, for each t; 
further, conditionally on the information set dated t-1, vt 
has zero mean and conditional standard deviation6 equal to 
1.4142 times CTt2. In the remainder of the paper, we will 
refer to model (2 . 8) - (2 . 8 .1) as Volatility-Switching Model A.

Suppose now that <t> < 0 and, further, a > |<t>|, P > |<t*|. If 
vt-i>0, then, coeteris paribus, negative shocks generate more
volatility than positive ones. However, if vt-i<0, positive
shocks increase volatility more than negative ones. Thus, 
model (2.8)- (2.8.1) is able to detect situations where the 
asymmetric behaviour of the volatility is reversed and 
further illustrates what has to be meant by "size" of a 
shock: "small" shocks are those which produce a level of 
volatility lower than expected, and "high" shocks are those 
which generate a level of volatility higher than expected.

The second and fourth moments of the Volatility- 
Switching model A innovations are (see Appendix A):

As Engle and Mustafa (1992) remark, however, vt is a 
martingale difference, but absolutely not an i.i.d. 
sequence.
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(2.9) E (e2) = w- (l-a-P) _1
(2.10) E (e4) = (3w2-(i-a-p) + 6w2(a+p))

(1/ ((l-a-P) • (l-a2-3p2-2aP-2<D2))) .

Since <I> measures the impact of vt-i on Ot2, deeper 
asymmetries in volatility will result in more leptokurtic 
distributions for the unconditional innovations. The 
structure of the Volatility-Switching Model A much resembles
that of the GJR.7

The second Volatility-Switching model (model B) that we 
propose is similar to model A, but relation (2.8.1) is 
replaced with:

(2.8.2) Vt-1 = (Et-l2/at-l2) - 1.

It has to be noted that the Volatility-Switching model 
(2 . 8)- (2 . 8 .1) resembles the GJR model. The latter is 
specified as:

(i) CTt2 = W + a-Et-l2 + pat-12 + gi’St-i'-Et-l2'
where St-i“ is a dummy variable which takes the value +1 
if £t-i is negative, and zero otherwise. Note that S t ^ - 
can always be written as:

(ii) St-i~ = (̂ t-l ” let-lD ‘ ̂2‘̂ t-1 ̂ '
so that substituting (ii) into (i) and rearranging, one 
gets:

(iii) at2 = w + go'£t-l2 + P'°t-l2 + ^st-i^t-i2» 
where:

(iv) g 0 = a  + gi/2
(v) d) = - (g-L/2) .
Thus, in the Volatility-Switching model (2 . 8)- (2.8.1) the 
asymmetries of the conditional volatility are captured by 
st_i times vt_i, while in the GJR model (iii)-(iv)-(v) 
they are captured by s^-i times £t-l2-
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In this case vt does not measure the amount of 
unexpected volatility; rather, it is defined as the 
difference, in basis points, from an ideal situation in which 
the expected volatility matches exactly its future 
realisations. However, Model B is not proposed for this 
technical reason; rather, we have introduced it for its 
limiting behaviour, which differs from that of Model A and, 
more relevantly, from that of the Power ARCH of Ding et al. 
(1993) .

Conditionally on the information set dated t-1, vt has 
zero mean and conditional standard deviation equal to 1.4142. 
The second and fourth moments of the Volatility-Switching 
Model B are (see Appendix A):

( 2 . 9 ' ) E(£2 ) = w- (1-a-P) "1 

( 2 . 1 0 ' ) E(e4 ) = (3 (w2 +7<D2 ) • ( l-a-p)  + 6w2 (a+P))- 

( 1 / ( ( l - a - P ) ( i - a 2 - 3 P 2 - 2 a P ) ) ) ,

so that it generates unconditional forecast errors whose 
kurtoses increase with O, the asymmetry parameter.

As already stated, our interest in the model (2.8)- 
(2.8.2) lies in its continuous-time representation. In fact, 
extending Nelson's (1990) results, we will prove that the 
Sign- and Volatility-Switching ARCH models converge in 
distribution to diffusions for Ct2; however, unlike Model A, 
whose diffusion is analogous to that of Nelson (1990) , the 
diffusion of the Sign- and Volatility-Switching Model B are 
more general and collapse to the latter only when O is 
constrained to zero.
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2.2 Continuous time behaviour of the models

The derivation of continuous time limits for the 
asymmetric models developed so far is obtained by 
partitioning time in (2.1)-(2.4) more and more finely, 
according to the following scheme, where h denotes sampling 
frequency:

Such a system is Markov, and we are interested in 
analysing the conditions under which it converges weakly 
(i.e. in distribution) to an Ito diffusion process, as h 
drops to zero. To do this, we retain Nelson's (1990) 
assumptions (1 through 5) omitting, for sake of simplicity, 
more general issues, such as the conditions under which 
stochastic difference equations converge to stochastic 
differential equations.

Before deriving the diffusion limits of the models 
proposed so far, we will present analogous results for the 
Power ARCH model of Ding et al. (1993), since it has quite a 
general structure and encompasses many heteroscedastic 
formulations, including the GJR. The latter seems the best 
parametric model to capture the asymmetry of volatility 
(Engle and Ng, 1993) and, owing to this, its empirical 
performance will be compared to that of both the Sign- and 
Volatility-Switching models.

To start with, let us replace (2.4) and (2.11.5) with 
the respective Power ARCH equations:

(2 .1 1 .1 )
(2 .1 1 .2 )
(2.11.3)
(2.11.4)
(2.11.5)

h£hk = hzhk’h<*hk 
hzhk ~ N (0,h)
sk = zhk/lzhkl
sk - i.i.d.(0,1) 

h^h (k+l) 2 - h<*hk2 =
wh + hChk2(Ph + och'hzhk2'h_1 -1 ) + Oh-sk-
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(2.4') ot + i 5 = w  + a ’ • (|et|-x-et) ̂  + p-at̂

(2 .1 2) (h«Th(k+l) (h) ) 5 - (h<*hk( h ) ) 5 =
wh’ + tph + h_0 -58lhZhk(h) I5- (1 -Tsk)5 ah ' - 1] • (h<*hk (h) )5-

Fornari and Mele (1994a) showed that the diffusion 
limit of (2.12) is:

(2.13) dot5 = (w - 05.ot5) dt + Q5otSdWt, 0>O

where Wt is a standard (scalar) Brownian motion; w is the 
continuous time counterpart (c.t.c.) of w', and:

2° . 5 (5-1) n o  . 5 (5+1) ; 0 . 5]
(2.14) «5 = c.t.c. a' ------------------------ [ (1+1)5+(l-T) 8] + p.!

(27C) 0 - 5

2 (8-0.5) r [5+0.5) ; 0 . 5 ]
(2.15) L is2 = C.t.c. a'. -------------------------• (d+t)2 8+(l-'r)28]

(27t) 0 • 5

20.5(6-l>r[0.5(6+1);0.5]
- ----------------------------- [(l+T)5+ (1-T)6]2 .

(2IC) 0 - 5

where T [ 0 . 5 (8+1) ; 0 . 5 ] = Io,e» (0. 5) ®  ̂(8+l  > (^_ 1) exp (-0 . 5X) dX.

It is now easy to verify that the diffusion limit 
(2.13) collapses to Nelson's (1990) standard one when 5=2 and 
T=0; in the case of the GJR model, which is nested into the 
Power ARCH, (2.4') reduces to

(2 .1 6) Gt2 = w + go‘et-l2 + P'CTt-l2 + ^‘St-l'Et-l2

once that (see also Ding et al., 1993):
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(2.17.1) 5 = 2
(2.17.2) a  = a 1 (l -x) 2

(2.17.3) gx = 40C'T.

Substitution of relations (2.17) into (2.14)-(2.15) 
gives, after tedious but straight forward algebra:

(2.18.1) 02^ r = c. t. c. p + a + (gi/2) - l
(2.18.2) ^2GJR2 = c . t. c . 2go2 + 0.75-gi2,

suggesting that the diffusion limit of the GJR model has the 
following form:

(2.19) dat2 = (w - 02GJRat2) dt + ft2GJRcrt2dwt.

where Wj- is a standard (scalar) Brownian motion.®

At this point, it is important to investigate whether 
the diffusion limit (2.13) is able to generalize the 
diffusion of the Sign- and Volatility-Switching ARCH models; 
in this case, in fact, they would be just particular cases of 
the Power ARCH. It turns out that the answer is negative for 
the Sign-Switching model and the Volatility-Switching Model 
B.

To show this, we first take the expected value per unit 
of time of (hCT(k+l)2 " h<*hk2) i-n (2.11.5), with Oh2 generated 
by (2.1), obtaining:

E[h*1(hOh{k+1)2-hOhk2)lFhkl =

8 Glosten et al. (1993) compute the amount of persistence
of their model by simply regressing the (estimated) Oj-2
on Ot-l2- This procedure, however, lacks for a rigorous
theoretical justification. Relation (2.18.2), instead, 
provides the analytical expression for the amount of 
persistence of the GJR model. Note that this is an 
increasing function of g^.
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h-lwh + h-iOh.sk + h-1 (Ph+h-1ah.zh)c2 - i)ahk2.

To avoid the drift per unit of time explosion, as h—>0, 
we require the following Lipschitz conditions:

(2.20) lim h-»0 h-1Wh = w
(2.21) lim h—>0 h*1(ah+Ph_1) s lim h-»0 h"l0h = _0' 0-° • 

Hence

(2 . 22) lim h—>0 {E [h  ̂(h^h (k+1) 2 _h^hk2 ) l^hk^ } =
lim h—>0 [h_1wh + h_1 (a^+Ph'D 'hCThk2l = w - 0 Ot2.

The evaluation of E[h~l(h^h(k + 1)2 “ hahk2^Fhk^2 gives:

( 2 . 2 3 )  E[ h- 1 (hOh ( k + 1 ) 2 - hahk2 ) 2 |Fhk]

= E [ h-1wh2 + h _1<I)h2 -sk2 + h _1-(ph + h ' l a h'hzhk2_1)  2 'h^hk4 + 

2 h - 1a h 2 h<Jhk4 + 2h-l wh (ph + h _;La h h zhk2 -D- h^ hk2 ]-

Using the Lipschitz conditions (2.20)-(2.21) , and 
assuming the existence of the following limits:

(2.24) lim -̂*0 2h-loth2 = a2
(2.25) lim h—>0 h_1<Dh2 = <D2,

we get:

(2.26) lim h—>0 E [h-1 <h<Jh (k+1) 2 - h<*hk2)|Fhk]2 = ^ 2 + a2at4.

Relations (2.22)- (2.25) suggest that (h^h (k+1) 2 }k=0 , 
converges in distribution to a diffusion limit of the 
following form, as h—>0:

(2.27) dot 2 = (w - 0ot2)dt + (<D2 + a2crt4) °-5dWt< 0>O,



19

where dWt denotes the increments of a (scalar) standard 
Brownian motion. It is straight forward to check that the 
structural form of such diffusion limit equals the same 
expression derived in Nelson (1990, eq. 2.40), when <1> = 0.

Using the same arguments of the present section, it is 
possible to prove that the structural form of the diffusion 
limit for the Volatility-Switching model B (2.8)- (2 . 8.2) is 
essentially the same as (2.27). As regards the model (2.8)-
(2.8.1), however, it turns out that its diffusion limit is:

(2.28) da2t = (v - 9a2t) dt + fla2t dwt

which has the same form as the standard diffusion limit of 
Nelson (1990), though the parameters steering the intensity 
at which the "volatility of volatility" is mapped onto the 
volatility changes are not the same (results are available on 
request from the authors).

2.3 The stationary distribution of the conditional variance

With concern for the GARCH(1,1), Nelson (1990) showed 
that the stationary distribution of the conditional variance 
becomes an inverted Gamma, as h drops to zero. Then, it is 
interesting to analyse what this distribution is in the case 
of both the Sign-Switching and Volatility-Switching B models. 
In Appendix B, we show that such a distribution is:

(2.29) P(v|vq) proportional to: (r2+v2) m e n arcot9 ̂ t

where v^a2, vq the initial condition, r2=(0/a)2, m=(9/a2) +
1, n=2w|0| 1, q^a-(|0|) "1. Note that:

(2.30) lim (jj_+ P(v|v q) = lim^^g- P(v|vg) proportional to:
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v-2m.e-k/v(

where k=2wa-2. The distribution (2.30) is an inverted Gamma, 
consistently with Nelson's (1990) results.

From (2.29), it is easy to find the stationary 
distribution for the standard deviation of the Sign- and 
Volatility-Switching model B innovations:

(2.31) f (a|ao) do proportional to:
2 0 (r2+04) “m.e-n-arcotg(q-02).do.

Relation (2.31) implies that the innovations of the 
Sign-Switching or, alternatively, Volatility-Switching Model 
B, say £*, have a stationary density function, p(e*) , which 
solves:

(2.32) p(e*) =Jo , ooN (£*CT"1) -f (0 )0 _1-dCT,

where N(-) is a standard normal density function. 
Unfortunately we did not manage to solve the integral in
(2.32) analytically; hence a numerical procedure was adopted. 
The adaptive recursive Simpson's rule was employed (see, 
e.g., Abramowitz and Stegun, 1970, formula (25.4.5), p.866), 
and results are reported in Figure 1, which compares the 
density p (-) of (2.32) (labeled "Switching") with a standard 
normal density (labeled "Normal").9 It is easy to note its 
fatter tails compared to the corresponding area of the normal 
variate; such a feature allows one to capture the high number 
of outliers observed in empirical distributions.

9 All the computations were performed with the Quadrature 
Routine of Matlab. The parameters values used in the
numerical integration procedure were w=012, a=0-15, 0 =
0.0045, 0=0.010. The range of variation for E* was -8,+8.
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3. Empirical Analysis

We have employed seven stock market indices to test and 
compare the empirical performances of the Sign- and 
Volatility-Switching ARCH models to the GJR formulation, 
indicated by Engle and Ng (1993) as the best parametric model 
for the conditional variance. The series are the Financial 
Times World Stock Indices (taken from DRI), observed at a 
weekly frequency from January 1, 1986 to July 16, 1993. The 
sample includes 3 90 observations for the UK, the US, Hong 
Kong, Italy, Singapore, Japan, and South Africa.

Let P £ denote the level of the j-th stock index at 
time t; then we evaluate seven series of 'unpredictable' 
returns, ut, which are the residuals of univariate 
regressions of ex-post returns r -̂-1 (r^ = log (P-1 t/P-11) -1 ) on 
a constant and on their lagged values, i.e.:

(3.1) rtj = Ho + Ii = l,pHi-rt_ij + ut, t=l, . . .T,

where (Iq an<̂  Ml (i=l,...,p) are real, non stochastic 
parameters, i is a suitably chosen lag, and T is sample size. 
In all the regressions, i was chosen to be one, with the 
exception of the UK and South Africa, where i was two (the 
Schwarz criterion was employed to select the lags).

Table 1 shows a number of preliminary statistics for 
the seven unpredictable returns. Residual autocorrelation (of 
the mean) was ascertained by means of the Box and Pierce's Q 
test evaluated up to the fifth and tenth lag. Under the null 
of no autocorrelation, such statistics are asymptotically 
distributed as chi-squares with five and ten degrees of 
freedom, respectively; their 95 percent critical levels are
11.1 and 18.3. The hypothesis of autocorrelation in the 
second order moments was tested via the TR2 (Engle, 1982) 
evaluated up to the fifth lag; it is asymptotically
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distributed as a chi-square with five degrees of freedom. As 
far as the unconditional distribution of the unpredictable 
returns is concerned, the coefficients of skewness and 
kurtosis, along with the Jarque and Bera's (JB) test are 
computed; the latter is asymptotically distributed as a chi- 
square with two degrees of freedom under the null that the 
data come from a normal distribution. Its 95 percent critical 
level is 5.99.

The tests for the presence of asymmetric behaviour of 
the volatility developed by Engle and Ng (1993) are also 
performed. These are the Sign Bias test (SBT) , the Negative 
Sign Bias test (NSBT) , the Positive Sign Bias Test (PSBT) , 
and the Joint test ( T R 2 )  . SBT, NSBT and PSBT are the t- 
statistics for the coefficients of a linear regression of the 
squared innovations of regression (3.1) on S^-i , Ŝ -.! 
and St_3_+-ut-i, respectively (where Ŝ- is a dummy variable 
which equals plus one if sign(ut)=-l, and zero otherwise; St + 
= 1-St"), i.e.:

(3.2) ut 2 = c0 + cr St-i~ + c2-St-l‘-ut _1 + c3-St._1+'Ut _1 + zt,

where cj. (i = 0,l,2,3) are real, non stochastic parameters and 
zt is a white noise process. The Joint test is simply the TR2 

of (3.2), asymptotically chi-square distributed with three 
degrees of freedom; its critical 95 percent level is 7.81.

All the unpredictable returns are not significantly 
autocorrelated. Their unconditional distributions are not 
normal since the coefficients of skewness and the kurtoses 
diverge from those typical of a Gaussian distribution, and 
the JB test rejects the normality hypothesis at any 
reasonable level of confidence. The evidence for ARCH effects 
is clearly supported by the TR5 2 test.1® Asymmetries in

10 However, three out of the seven unpredictable returns 
(the UK, Singapore and Hong Kong) do not display the
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volatility exist in all the series, expecially the US, 
Singapore and Japan. 11 As regards the Italian unpredictable 
returns, no evidence of asymmetric behaviour emerges from 
this preliminary analysis. Table 2 shows the values of the 
parameters of both the Sign-Switching GARCH(1,1,1) and the 
GJR models. All the Sign-Switching GARCH(1,1,1) models have 
the following structure:

(3.3.1) rtJ = (i0 + + ut
(3.3.2) ut | It - 1 ~ N(0,CTt2)
(3.3.3) Ct 2 = w + a-Ut-1 2 + P-Ct_i2 + ^o'St-l/

where [io > M-i, w, a, P and Oo are real, non stochastic 
parameters, r -̂-1 is the ex-post return of the j-th index, st 
is the sign of the forecast error (û-) dated t. The structure 
of all the GJR models is the same as (3.3), but (3.3.3) is 
replaced with:

(3.3.4) Of-2 = w + aut-i2 + P<3t-l2 + ^l'St-l’Ut-i2, 

where is a real, non-stochastic parameter.

Tables 3 and 4 contain the estimates of the Volatility- 
Switching models A and B. The structural form of these models 
is also the same as (3.3), but (3.3.3) is replaced with:

(3.3.5) Ct2 = w + a-ut-l2 + p-C(-_i2 + O'St-i'Vt-i, 

where:
presence of ARCH effects. Nevertheless, the absence of 
autocorrelation in variance for such returns should be 
mainly due to the presence of a few outliers, which 
amplify considerably the range of the series. When they 
are removed the TR2 become unequivocally significant.

11 Again, the loss of significance of asymmetric tests in 
the UK is likely to be related to the presence of two 
outliers; in fact, when they are excluded, the tests 
become highly significant.
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(3.3.5.1) 
(3.3 . 5 . 2)

vt = ut2 - Ct2 (Model A) 
vt = Ut2-CTt” 2 - 1 (Model B) .

Our empirical results confirm the outcome of the 
preliminary tests. All the series display both high ARCH and 
asymmetric effects, with the significant exception of the 
Italian returns (see, also, De Santis, 1991), where a Wald 
test, under the null of no asymmetry, rejects the four 
asymmetric models against the symmetric GARCH(1,1), at any 
level of confidence12. The models have successfully captured 
asymmetries in volatility, as highlighted by the diagnostic 
tests. Based on a likelihood ratio test, the Sign- and 
Volatility-Switching models fit the patterns of the data 
better than the GJR for the UK, the US and Japan, while the 
GJR outperforms them in the remaining cases. When the models 
and ranked according to the kurtosis of the standardised 
residuals, the Volatility-Switching B outperforms the GJR for 
Italy, Japan, Singapore and the US; Volatility-Switching A 
outperforms the GJR for Hong Kong, Singapore and the United 
Kingdom. Sign-Switching ARCH are not very successful for the 
UK and Hong Kong, if compared with Volatility-Switching 
models and the GJR.

However, asymmetries in volatility can be reverted, 
though the GJR model is not able to discriminate among such 
different patterns. On the contrary, Volatility-Switching 
models allow a more detailed analysis of the asymmetric 
behaviour of the volatility enabling, by construction, shifts 
in its direction, by switching between low and high values of 
past shocks.

12 In the estimated models, the lags chosen in the 
conditional mean equation coincide with those employed in
the preliminary analysis, and w, a and (3 have been
estimated (and reported) in square roots. The likelihood
has been maximised by means of the Berndt et al. (1974) 
procedure.
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In this respect, the estimation results on our sample 
unambiguously indicate that for the UK, Hong Kong, Singapore 
and South Africa, high negative shocks induce more volatility 
than high positive shocks, while low negative shocks induce 
less volatility than positive shocks of the same size. Such 
results are fully consistent with those from the GJR ones, 
since <Dl (in equation (3.3.4)) turned out to be negative for 
all the analysed returns. However, Volatility-Switching 
models also show the opposite to hold for the US and Japan 
where, further, is not highly significant.

As regards the normality of the residuals standardized 
with the conditional standard deviation, a disturbing feature 
of the four estimated models is evidenced by high values of 
the JB test. At a very least, this suggests to modify the 
distributional assumptions made for the conditional 
distribution of the innovations. It may turn out that other 
hypotheses, such as the Generalized Error Distribution, or 
the Student's-t, could improve the results achieved so far.

4. Conclusions

The Sign- and Volatility-Switching models have been 
presented in the paper. They allow for an asymmetric 
behaviour of the conditional volatility with respect to 
negative and positive shocks, since they map the sign of past 
forecast errors onto the current, conditional volatility. 
Volatility-Switching models are also able to capture 
"reversions" in the asymmetric behaviour of the volatility. 
Weak convergence results have been presented for the Sign- 
and Volatility-Switching models; they converge in 
distribution to Ito diffusion processes, and are shown to 
have a stationary distribution function, for which we have 
found a closed form solution. Numerical procedures were 
employed to compute the stationary distribution of the
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innovations of these models. Empirical analysis has shown 
that the proposed models provide the same interpretative 
results as the GJR giving, at the same time, further insights 
regarding the reversion of the asymmetries in volatility.

Two issues seem to deserve further research: the 
hypothesis of conditional normality for the innovations of 
the model needs be modified; second, the response function of 
the two Volatility-Switching ARCH models employed in this 
work is just a linear specification in vt-i# the size of 
previous unexpected volatility times the sign of past 
forecast errors. Other (non-linear) specifications appear 
plausible, though the weak convergence analysis for such 
specifications is likely to become more intricate.



Table 1

PRELIMINARY TESTS ON THE UNPREDICTABLE RETURNS*

05 QlO TR5 2 SKEW KU JB

UK 6.2190 13.6770 8.5600 -2 .6500 31.8800 13794.01
US 0 .6920 8.0320 42.1300 -1 . 2 0 0 0 8.6300 599.31
HK 3.7950 9.5670 5.1200 -4 . 2 1 0 0 44.7300 28957.02
IT 7.4360 9.9140 36.0300 -0 .1900 4.4500 35.95
SI 9.4580 14.8960 8.2020 -3 . 4400 41.8500 24720.10
JA 4.0850 15.7680 37.3010 -0 .2600 5.4600 101.15
SA 7.6970 12.2380 37.4400 -1 .0500 8.0800 483.46

SBT NSBT PSBT JOINT (TR2)

UK 0.5919 -0.6295 -0.0540 2 .02

us -1.0080 -6.8515 1.3700 47. 55
HK -0.0305 -3.2310 0.1232 1 1 .96
IT 0.0045 1.4900 -1.4300 6 .55
SI 0.6330 -2.7033 0. 3482 51. 94
JA 1 . 0 2 0 0 -3.7684 3.0410 25. 78
SA -0 . 3420 -3 . 3250 0 .2905 1 2 .82

Countries are coded as follows: UK (United Kingdom), US 
(USA), HK (Hong Kong), IT (Italy), SI (Singapore), JA 
(Japan) , SA (South Africa) . and Q1Q are the Box and 
Pierce's Q tests up to 5 and xO lags, respectively; TR5 2 
the is Engle's TR2 computed up to the fifth lag; SKEW is 
the coefficient of skewness; KU the coefficient of 
kurtosis; JB is the Jarque and Bera's test, SBT is the 
sign bias test; NSBT is the negative size bias test; PSBT 
is the positive size bias test; JOINT (TR2) is the 
Lagrange Multiplier test that the squared unpredictable 
returns are not simultaneously explained by S , S"u, and 
S+u, respectively.



Table 2
SIGN-SWITCHING ARCH MODELS*

Parameters estimates (t-ratios in parentheses)

Ho Hi w a P O q Log of Likel

UK: 2.60E-3 0.108 0.0140 0.309 0.524 -2.78E-4 1260.86
(2.173) (0.919) (7.813) (2.991) (7.737) (-10.405)

US: 2.18E-3 -0.039 0. 017 0.554 0.257 -7.48E-5 1333.67
(2.096) (-0.628) (12.162) (8.881) (1 .2 1 0 ) (-3.481)

HK: 6.70E-3 0.109 0.015 0.618 0.710 -4.260E- 5 1155.02
(4.163) (1.463) (5.239) (25.906) (12.520) (-0.939)

IT: -1.10E-4 0.115 5.82E-3 0.384 0. 980 -2.22E-5 1167.06
(-0.080) (2.054) (3.523) (6.366) (32.412) (-0.832)

SI: 4.83E-3 0 . 1 0 1 2.516E-2 0.750 0.288 -1.95E-4 1114.17
(2.842) (1.513) (16.172) (15.980) (3.979) (-3.222)

JA: 2.55E-3 -0.038 1.38E-2 0.557 0 . 2 2 2 -7.82E-5 1329.60
(2.075) (- 1.681) (12.374) (8.839) (12.970) (-3.399)

SA: 3.08E-3 0.109 1.51E-2 0.439 0.757 -1.16E-4 1160.36
(1.910) (1.521) (5.944) (5.741) (10.938) (-2.989)

GJR MODELS
Parameters estimates (t-ratios in parentheses)

Mo Ml w a P <D0 Log of Likel

UK: 2.27E-3 0.117 0.016 0.651 0.489 -0.477 1267.78
(1.628) (2.161) (10.239) (13.351) (5.465) (- 8.364)

US: 2 .45E-3 - 0.060 0.  0 1 1 0.446 0.737 -0.087 1332.02
(2.417) (- 1.015) (7.946) (7.113) (15.296) (-1.648)

HK: 4.25E-3 0.095 0.018 0.534 0.659 -0.357 1169.74
(2.614) (1.547) (10.318) (13.766) (11.994) (-9.328)

IT: 7.41E-5 0.117 5.64E-3 0.382 0. 910 -1.69E-2 1166.89
(0.051) (2.058) (3.352) (6.450) (33.412) (-0.613)

SI: 3.23E-3 0.108 0.0206 0.744 0. 541 -0.419 1119.80
(1.722) (1.565) (12.847) (17.467) (13.Ill) (-7.105)

JA: 2.43E-3 -0.051 1.13E-2 0.447 0.741 -8.85E-2 1327.94
(2.982) (-1.754) (7.718) (7.269) (15.699) (- 1.936)

SA: 3.52E-3 0.117 1.44E-2 0.397 0.792 -0.360 1166.66
(2.550) (1.921) (5.225) (5.648) (12.240) (-9.309)

continued



TESTS ON STANDARDIZED RESIDUALS

Sign-Switching ARCH GJR modelUK: Skewness - 1 . 4 6 0 0 - 0 . 9 4 0 0Kurtosis 1 4  . 0 0 0 0 1 0 . 7 2 0 0Jarque and Bera 2 0 7 2 . 4 0 0 0 8 4 0 . 5 5 0 0Sign bias test 0 . 1 9 8 7 0 . 0 6 8 8Negative size bias test - 0 . 3 4 8 2 0 . 4 8 3 3Positive size bias test - 0 . 2 6 8 4 0  . 0 3 4 9Joint test ( T R 2 ) 0 . 7 1 8 9 0 . 2 5 2 5

US: Skewness - 0 . 4 6 0 0 - 0 . 5 5 0 0Kurtosis 4 . 4 1 0 0 4 . 6 7 0 0Jarque and Bera 4 5 . 3 5 0 0 6 3 . 9 8 0 0Sign bias test - 0 . 7 7 9 2 1 . 1 3 6 9Negative size bias test - 0 . 5 3 8 9 - 0  . 1 4 1 8Positive size bias test - 0 . 5 2 8 1 0 . 7 9 2 6Joint test ( T R 2 ) 0 . 6 1 8 9 1 . 9 4 4 4

HK: Skewness - 0 . 7 6 0 0 - 0 . 4 9 0 0Kurtosis 7 . 2 2 0 0 4 . 3 1 0 0Jarque and Bera 2 0 2 . 8 6 0 0 4 2 . 8 2 0 0Sign bias test - 0 . 0 4 9 2 - 0 . 3 1 1 8Negative size bias test - 1 . 4 4 5 1 - 0  . 3 1 6 3Positive size bias test - 1 . 8 8 2 8 - 0  . 4 0 6 2Joint test ( T R 2 ) 6 . 5 9 1 2 0 . 2 6 6 4

IT: Skewness - 0 . 2 5 0 0 - 0 . 2 6 2 6Kurtosis 3 . 6 0 0 0 3 . 7 2 0 0Jarque and Bera 6 . 0 7 0 0 1 2 . 6 2 0 0Sign bias test - 0 . 6 1 4 2 - 0 . 1 9 3 8Negative size bias test 0 . 0 9 2 0 0 . 2 8 6 8Positive size bias test - 0 . 8 6 7 6 - 0 . 6 6 0 1Joint test ( T R 2 ) 0 . 3 9 0 0 0 . 4 2 0 0

SI: Skewness - 1 . 5 9 8 0 - 1 . 0 6 0 0Kurtosis 1 7 . 5 0 0 0 1 3  . 3 2 0 0Jarque and Bera 3 5 2 5 . 8 0 0 0 1 7 7 5 . 9 0 0 0Sign bias test 0 . 0 5 9 1 0 . 7 8 0 2Negative size bias test - 0 . 3 2 1 9 0 . 1 8 0 2Positive size bias test - 0 . 5 8 2 3 0 . 1 0 2 0Joint test (TR2) 0 . 9 2 0 0 0 . 8 4 0 0

JA: Skewness - 0 . 4 5 0 0 - 0 . 5 5 0 0Kurtosis 4 . 3 8 0 0 4 . 6 6 0 0Jarque and Bera 4 2 . 3 0 0 0 6 3 . 4 5 0 0Sign bias test - 0 . 0 7 5 4 1 . 1 1 5 4Negative size bias test - 0 . 0 5 1 7 - 0 . 1 4 7 9Positive size bias test - 0 . 0 5 3 5 0 . 7 9 5 0Joint test ( T R 2 ) 0 . 6 2 2 4 1 . 8 7 8 1

SA: Skewness - 0 . 6 0 8 7 - 0 . 9 5 0 0Kurtosis 7 . 6 2 0 0 8  . 2 6 0 0Jarque and Bera 3 6 5 . 3 2 0 0 5 4 0 . 4 4 0 0Sign bias test 0 . 0 8 6 9 1 . 2 6 1 2Negative size bias test 0 . 5 1 8 7 0 . 6 2 3 0Positive size bias test 0 . 4 0 2 0 0 . 1 9 1 6Joint test ( T R 2 ) 0 . 4 8 0 0 2 . 3 0 0 0

* For country codes, see the note at Table 1



Table 3
VOLATILITY-SWITCHING MODEL A*

(t-ratios in parentheses)
UK US HK IT SI JA SA

Logarithm of the likelihood:
1269.92 1332.89 1165.75 1168.11 1110.42 1331.82 1158.53

2.72E-3 2.71E-3 6 .10-3 1.66E-4 4.69E-3 2.86E-3 6.05E-4
(3.472) (3.117) (4.568) (0.129) (2.831) (2.895) (4.520)

0 . 112 -0.068 0. 077 0.092 0.109 -0.028 0.079
(2.772) (-1.097) (1.160) (2 .0 0 1 ) (1.732) (-0.427) (1.198)

5.84E-3 9.74E-3 1.517E- 2 8.02E-3 1.39E-2 1.518E-2 1. 517
(4.588) (8.352) (9.276) (5.829) (5.677) (9.286) (9.286)

0.321 0.510 0.5567 0.432 0.4648 0.6568 0.455
(4.169) (9.184) (8.487) (7.304) (7.313) (10.274) (8 .449)

0.932 0.738 0.746 0. 874 0.803 0.743 0.746
(43.822) (17.166) (19.025) (29.136) (13.703) (2.673) (19.031)

-0.108 0. 042 -0.204 -0.007 -0.152 0.148 -0.203
-3.416) (2.747) (-4 .263) (-0.196) (-3.776) (2.630) (-4.269)

Tests on standardized residuals

UK US HK
Skewness: -0.6112 -0.5079 -0.6453
Kurtosis: 12.5678 4.5393 5.3817

Jarque and Bera: 1114.6000 40.0900 366.9900
Sign bias test: 0.6348 0.4912 0.9182

Negative size bias test: -0.0766 -0.7817 -0.8788
Positive size bias test: -0.1897 -0.1616 -0.8066

Joint (TR2): 1.3200 1.9200 6.7400

IT SI JA
Skewness: -0.2245 -2 . 1 1 2 1 -0.5201
Kurtosis: 3.8803 15.0700 4.6072

Jarque and Bera: 11.6100 1961.9000 43.6900
Sign bias test: -0.0708 1.0736 0.2851

Negative size bias test: 0.5315 -0.3410 -0.4316
Positive size bias test: -0.6607 0.1576 -0.5500

Joint (TR2): 0.6320 2.3220 1.9350

SA
Skewness: -0.6435
Kurtosis: 5.3948

Jarque and Bera: 82.2000
Sign bias test: 0.9275

Negative size bias test: -0.8922
Positive size bias test: -0.7966

Joint (TR2): 3.5400

* For country codes, see the note at Table 1.



Table 4

UK

Volatility-Switching Model B*
(t-ratios in parenteses)

US HK IT SI JA

Logarithm of the likelihood
SA

1263.32 1333.73 1160.61 1166.70 1110.30 1328.48 1160.65

Ho 2.317E-3 0.003 0.006 2.902E-4 5.273E-3 2.913E-3 3.392E-4
(2.085) (3.139) (4.518) (0.218) (3.258) (3.025) (2.4132)

Ml 0 . 1 1 2 -0.074 0.095 0.117 0.128 -3.727E-3 0.1238
(2.099) (-1.160) (1.329) (2.097) (1.941) (-0.597) (2.1636)

w 5.525E-3 0 . 010 0.016 5.732E-3 0.016 1.704E-2 0.0172
(4.390) (0.557) (9.104) (3.321) (7.783) (14.308) 5.2072

a 0.167 0.535 0.446 0.038 0.591 0.610 0.5380
(2.506) (11.645) (14.390) (6.739) (12.056) (11.029) 6.8889

P 0.9540 0.7030 0.7277 0.908 0.718 0. 334 0.6678
(55.2654) (15.214) (18.848) (33.730) (14.929) (6.042) 6.0053

a> -3.209E-5 3.67E-5 -1.473E-4 3.50E-6 -1.50E-4 5.801E-2 -1.599E-4
(-3.3685) (2 .0 0 0 ) (- 5.7552) (0.0173) (-2.892) (2.4301) (-3.6766)

Testa on standardized residuals

UK US HK
Skewness: -0.7416 -0.4771 -0.7435
Kurtosis: 13.1200 4.4291 6.1258

Jarque and Bera: 1673.7000 46.4000 190.8000
Sign bias test: 0.4943 0.1340 0.5084

Negative size bias test: -0.3214 -0.0215 -1.2838
Positive size bias test: -0.2169 -0.5701 -0.7484

Joint (TR2): 1.3200 2.6200 4.3900
IT SI JA

Skewness: -0.2400 -1.1524 -0.4800
Kurtosis: 3.6600 15.1776 4.4300

Jarque and Bera: 10.6500 2454.4000 35.5900
Sign bias test: -0.1244 1.1587 0.0835

Negative size bias test: 0.2777 -0.2079 -0.5144
Positive size bias test: 0.5102 0 . 1 0 2 0 -0.7026

Joint (TR2): 0.2800 2.6400 1.9300
SA

Skewness: -0.7581
Kurtosis: 3. 4885

Jarque and Bera: 71.0500
Sign bias test: 0.2394

Negative size bias test: 0.3282
Positive size bias test: -0.7509

Joint (TR2): 1.5400

* For country codes, see the note at Table 1.
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Fig. 1

RESIDUALS' STATIONARY DISTRIBUTIONS

Normal Implied by the Volatility-Switching ARCH model



Derivation of the first unconditional moments of 6 
for the Sign-Switching GARCH(1,1,1)

Given that £tllt-l ~ N(0,Ot2), and:

(Al) E(e^2m|j^ _ (w + po£_^2 + ae^-.^2 + Ost_i) m,h2m»

where h2m = FI j =i f m (2 j-1 ) , setting m=l in (Al) yields:

E (£j- 2 111 -1 ) = w + PcT{--]_2 + Cx£j- _î  + Os^-i,

when t is allowed to tend to infinity, so that the dependence 
of the current values on their past realisation becomes 
negligible, we get:

E(e2) = w + pE(cr2) + aE (e2) + <De(s) = w/(i-p-a).

Setting m=2 and letting time go to infinity in (Al)
gives:

E(£4) = 3-E[w 2 + p2o4 + oc2e4 + (J)2 + 2aPo2e2 + 2Pw(j2 + 2aw£2]

= 3w 2 + 3P2E(04) + 3a2E(£4) + 302 + 6aPE(C4) + 6pwE(a2) +
+ 6awE(£2)

= 3w 2 + 3p2E(E4 )/3 + 3a2E(£4 ) + 302

+ 6aP(1/3) E (e4) + 6pw(w/ (l-p-a) ) + 6aw(w/(l-a-P) )

= [3 (w2+d)2) (i-p-a) +6w 2 (a+p) ]•[ (l-p-a) (i-p2-3a2-2pa) ] _1.

The last expression collapses to the standard result 
of Bollerslev (1986) when 0=0.

APPENDIX A
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Derivation of the first unconditional moments of E 
for the Volatility-Switching model A

Let Et be zero mean conditionally normally 
distributed, with conditional variance at2. Hence:

(A2 ) E (Ê 2mI It-l) = (w + + CC£(-_22 + ^ st-lvt- 1 ̂ m ̂ 2m
= (w + (a+<J>st _!) et _ 1 2 + (j5-a>St: .jJ ot-i2)m'h2m#

where h2m = rij = i, m (2 j-D • Setting m=l in (A2) gives:

E(et2|lt_1) = W + (a+Ost-l) et-1 2 + <P -<I>st:_1 )ot:_12.

Recursive substitution yields:

E(e2) = w/(i-P-a) .

Setting m=2, and letting time go to infinity in (A2) , 
so that the dependence of current values on past is 
negligible, gives:

E (e4) = 3w2 + 3 (a2+a>2) e (e4) + 3(p2+a>2)a4 
+ 6w2 (a+|i) / ( l -a-P)  + 6(ap-<l>2)a4

= 3w2 + 3 <a2+<t>2) E (e4) + (p2+d>2) E(e4)
+ 6w2 (a+P) / (l-a-p) + 2 (aP-cD2) E (e4)

= [3w2 (l-a-P) +6w2 (a+P) ] • [ (l-a-p) (l-3a2 -P2-2aP-2<l>2) ] _1.

Derivation of the first unconditional moments of £ 
for the Volatility-Switching model B

As usually, £(• is zero mean conditionally normally 
distributed, with conditional variance 2, and its moment of 
the 2m-th order is given by:
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(A3) E(et2m|it_1) = (w + pat. ! 2 + a£t_x2 + ™-h2m =
(w + aet. ! 2 + pat _ ! 2 + <̂>st.1Zt.12 - 0>st_x)m h2m>

where h2m = n j =1 m (2 j -1) . Setting m=l in (A3), and 
substituting recursively, yields:

E (e2) = w/ (l-P-a) .

Setting m=2, letting time go to infinity in (A3), 
hence making negligible the dependence of current values on 
past, gives:

(A4) E(e4) = 3w2 + 3p2E(e4) + 3a2E(e4) + 21-<D2 +
6w2 (a+p) / (l-a-P) + 2aPE(e4).

Rearranging terms in (A4) gives relation (2.10') of 
the text.



APPENDIX B

The stationary distribution of G2 
in the Sign-Switching and Volatility-Switching Model B

Let v=0 2, and rewrite (2.27) as:

(Bl) dv = (w - 0v)dt + (<l>2+a2-v2) 0 • 5dW.

Let p(s, t,v(t)|v(0) ) be the probability density 
function of v, given v(0) and 0<s<t<°°. The Fokker-Planck- 
Kolmogorov forward diffusion equation (see, e.g. Papoulis 
(1965)) associated with (Bl) is:

d (p (s, t, v|v0) / (9t)
= 0 . 5-32 { [ (<!>2+a2v2) -p (s, t, v|v0) ] } / (3v2)

- 3{ [ (w-0v)-p(s, t|v0) ] }/Ov) ,

where 3(-) denotes the derivative operator.

As Nelson (1990) remarks (see also Papoulis, 1965, 
Wong, 1971), an invariant density function (given it exists) 
must satisfy:

(B2 ) 0 . 5 - 5 { v  [ (<I>2 + a 2 v 2 ) -p  ( v | v q )  } /  ( 3 v )  = ( w - 0 v ) ' p  ( v |v 0 ) ,

w h e r e  p ( v | v 0 ) = l i n ^ ^ p  (s, t, v ,  |v  ) .

Developing explicitely (B2) yields:

[ (5p) / (9v) ]/P = 2w- (<J>2+a2v2) “l - 2 (0+a2)-v-(O2+a2v2) “l .

Hence

(B3) ln(P) -2w- (a|0|) _1-arcotg (cxv/|<E>|) - (0+a2) -a'2-
In (<J>2 a_2+v2) .
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Taking the exponent of both sides of (B3) gives directly the 
density in (2.31) of the text.
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