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Abstract
We evaluate, through Monte Carlo experiments, the 

econometric performance of seven alternative estimators 
(direct and indirect methods) of the basic parameters of the 
Cox-Ingersoll-Ross single-factor diffusion model of the term 
structure of interest rates. Different generating schemes are 
compared and the unobservability of the state-variable is 
taken into account. The effects of approximating interest 
rates, increased frequency of data and starting values are 
analyzed. A Monte Carlo evaluation of the effects on bond 
prices of biased parameter estimates is provided.
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1. Introduction (1)

Any asset has many characteristics: the issuer (with 
a certain probability of default), the coupon flow, the 
maturity date T, the taxation (of coupon and capital gains), 
other contractual provisions (options, etc.).

The asset price, P(t), is clearly a function of these 
characteristics: P(t, risk, coupon, maturity, taxes,...). The 
relation, ceteris paribus, of the asset price with respect to 
maturity is called the term structure. The ceteris paribus 
clause is specifically expressed as zero default risk, zero 
coupon, unit payment at maturity, fixed, uniform taxation. In 
this case the asset is a default-free zero-coupon unit 
discount bond i.e. a security with (money) price P(t, T) at 
time t, promising, with probability one, a payment of one 
(money) unit at time T>t. In other words, at time t, P(t, T) 
is the present value (discount factor) of one (sure) money 
unit in T. Assuming continuous time, the price function P(t, 
T) can be transformed into

R(t,T) = -log(P)/(T-t)

where R(t,T) is, by definition, the continuously compounded

1 This research has been presented in different phases 
in some seminars and conferences (Erice, Ascona, Firenze, 
Pisa, Milano, Berlin); the participants are all gratefully 
thanked. A special acknowledgment has to be made to Banca 
d'Italia and IBM-Semea as well as to Valentine Genon-Catalot 
and Henri Schurz for their suggestions. Carlo Bianchi has 
written sections 3.2 to 3.5 and section 3.7, Riccardo Cesari 
sections 1, 2, 3.1, 4.1, 4.2, 6 and the Appendix, Lorenzo 
Panettoni sections 3.6, 4.3 and 5. Bianchi and Panattoni have 
also developed the Fortran procedures for main frame and 
personal computer. Eugene M. Cleur has provided substantial 
help in implementing the indirect estimator.
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spot rate of return to maturity of the bond and T-t is the 
bond time to maturity (2) .

As a function of maturity r=T-t, R(t,r) is called the 
term structure of interest rates.

A theory of the term structure is essentially an 
explanation of the difference (risk- or term-premium) between 
short term and long term interest rates or, equivalently, 
between spot and forward interest rates (3) . Classical 
examples of term structure theories are Fisher (1930) pure 
expectations theory, Hicks (1939) liquidity preference, 
Modigliani and Sutch (1966) preferred habitat.

More recently, into the no-arbitrage asset pricing 
literature started up by Black and Scholes (1973) , the theory 
of the term structure has known a new period of successful 
innovation and implementation (4) . Not only the shape of 
the term structure but also the factors affecting its level 
and dynamics have been analyzed in a general equilibrium

2 In discrete time, using the discrete time interval as 
a natural choice for the time unit, the rate of return is 
R (t, n) = (1/P)1/n -1, n being the (possibly fractional) number 
of intervals (periods) between current time t and the bond 
maturity date T.

3 The forward rate Rp(t,S,T) is the rate implied in a 
contract written and completely specified at time t to buy a 
bond at time S with maturity date T>S. The no-arbitrage 
condition implies that forward rates (prices) can be 
specified in terms of spot rates (prices).

4 On previous models and results see e.g. Masera (1972) 
and Dobson, Sutch and Vanderford (1976). A recent survey is 
in Shiller (1990).
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context, showing explicitly the link between agent 
preferences, uncertainty, production technology and term 
premia (see Cox, Ingersoll and Ross (henceforth CIR), 1981).

The new term structure models were developed in the 
typical Black and Scholes framework: continuous time, 
frictionless markets, diffusion processes i.e. intertemporal 
dynamics described by stochastic differential equations, no­
arbitrage condition i.e. prices constrained by the maintained 
hypothesis that equivalent assets (or portfolios) in terms of 
cash flows and other characteristics must earn the same 
return.

These models, and in particular the CIR (1985a, 
1985b) general equilibrium model (s) , have been applied to
financial data in many countries (6) .

Considering this empirical literature, a first point 
to note is that notwithstanding a unified theoretical 
framework behind the various models, different estimation 
methods have been used by different authors'.

s The equilibrium condition (supply=demand) of the CIR 
model implies the no-arbitrage condition. Different models, 
with alternative dynamic specifications, should be mentioned: 
e.g. Dothan (1978), Vasicek (1977), Brennan and Schwartz 
(1979, 1982) .

6 See Barone and Cesari (1986), De Felice and Moriconi 
(1991), Barone, Cuoco and Zautzik (1989) for Italy; CIR 
(1979) , Brennan and Schwartz (1979) , Brown and Dybvig (1986) , 
Gibbons and Ramaswamy (1986) for the US; Fischer and Zechner 
(1984) for the Federal Republic of Germany; Brown and 
Schaefer (1988) for the UK.
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Secondly, in many cases, the elegant, formal 
derivation used in the theoretical development of the model 
is far from being used in the empirical counterpart, to 
develop and justify the adopted estimation method.

Thirdly, almost no analytical or numerical comparison 
has been made to evaluate the various estimators, in 
particular in the case of discrete and small sample data 
(7) .

Our paper is addressed toward these critical points. 
Using the single-factor model developed by CIR (1985b) we 
shall consider the foundations of different estimation 
methods for a diffusion model of the term structure as well 
as the evaluation, through Monte Carlo experiments, of their 
relative performance in the typical case of discrete, finite 
samples.

The paper is as follows: in section 2 the theoretical 
model is sketched; in section 3 different estimation and 
testing methods, are considered, in continuous or discrete 
time; section 4 draws a set up for Monte Carlo simulation of 
continuous (diffusion) processes; section 5 presents the main 
results and section 6 concludes the paper.

7 An important exception is Fournie and Talay (1992) who 
consider only the asymptotic behaviour of estimators.
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2. A univariate model of the term structure

CIR (1985b) is an equilibrium model of a 
production/exchange economy with a single 
production/consumption good (8) , in which the state 
variable describing the system is a univariate diffusion, 
agents have rational expectations and logarithmic 
preferences, markets are perfectly competitive and 
frictionless.

Given that the instantaneous rate of return r(t) on 
instantaneously maturing bonds is, in equilibrium, a linear 
function of the single state variable, it is possible to use 
this very short-term rate as an instrument for the system 
state variable.

It turns out that the short rate - dynamics are given 
by the Feller (1951) stochastic differential equation (SDE):

dr(t) - K(0-r) dt + o^z dwCt) (2.1)

where dw is the Ito differential of the one-dimensional 
standard Wiener process (Brownian motion), defined by:

w(t) ~ N(0,t) (2.2a) 
E(w(t)w(s)) = min(t,s) (2.2b) 
w(0) = 0 a.s. (2.2c)

8 The economic system is 'essentially a real (non 
monetary) economywith prices expressed in terms of the 
single good (or bundle).
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Notice, in particular, that:

E(w(s)[w(u)-w(t)]) = 0 for every sstsu (2.2d)

i.e. non overlapping increments are independent.

For cr,k,0 >0 the process r(t), solution of (2.1) is 
r 

pathwise unique (strong solution), nonnegative and it 
displays mean-reversion toward the long run value 6, k being- 
the speed of the expected short term adjustment. According to 
Feller (1951) Lemma 4, if 2k0 a a2 the origin is inaccessible
(entrance boundary) and the process is ergodic (9) .

Solving the Kolmogorov's backward differential 
equation, the transition probability density from r(t) to 
r(s) is obtained as (Karlin and McGregor, 1960) :

(2, 3 ) 
p(r(s)|r(t)) = ce 2 T—)(ff 1)/2t (/uv)

\ u/

where :

c= —---- , u=2cr(t)
a2 ( 1-e )

v-2 cr ( s) , q-
a2

9 See Ikeda and Watanabe (1981, p. 223) . On entrance 
boundaries and ergodicity see Karlin and Taylor (1981, p. 
241) .
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and Ia is the modified Bessel function of the first kind of 
order a:

i (z)-y <z/2)2k*a (2’4)

“ A.T(k+a+l)

The transition distribution is therefore à stationary (10)
noncentral chi-square x2(v; 2q, u) with 2q degrees of freedom 
and noncentrality parameter u.

Conditional expected value (X1) and variance are 
given by:

E(z(s) | r(t) ) -z(t)

Vaz(r(s) 11 ( t) ) -r ( t) (-^-) (e~*(s-t)-e-2**®-*) ) + (2.5)
k

-26(4^-) (l-e~*(s-t) )2 
2k

Note that : '

10 A Markov process with stationary transition 
distributions is time-homogeneous. In the case of diffusions 
this property follows from the independence of drift and 
diffusion coefficient with respect to time (autonomous SDE).

11 The expected value solves the ordinary differential 
equation (deterministic version of (2.1)):

dr=k(0-r)du r(t)=rt.
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lim E(i (s) | r (t) ) -0, lim Var(i(s) | r (t) ) -0
k I «>

and (2.6)
lim E(z(s) | r (t) ) =r(t) 
*10
lim Var(rts) I r(t) ) =o2r(t) (s-t)
klO

The invariant (steady state) distribution is obtained 
as s t oo (12) and it is a gamma distribution with positive 
parameters q and q/0 and density (13) :

(2.7a)
o (r) - (t/^^ ? r t-1 e~zq^p{ } r(q)

The first moments are:

2A (2.7b)
E(r) =6, Var(r)--^0 E(l/r)---

2k 2kQ-<j2

where È denotes expectations with respect to the invariant 
distribution. Note that, in steady state, k and a2 cannot be
separately identified.

In this economy any asset price with no coupon or 
dividend flow must satisfy the following partial differential 
(valuation) equation (PDE):

12 It solves the stationary form of the Kolmogorov's 
forward differential equation.

13 Time-homogeneity and the existence of an invariant 
distribution are necessary and sufficient conditions for the 
Markov process r(t) to be stationary (Arnold, 1974, p. 33),
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., (2.8)
-i-o2rPrr + [k(O-t) - Àr] Pr + Pt - rP - 0

where Xr is the "market price of risk" (covariance between 
percentage change in wealth and change in the short interest 
rate) (14) .

If P(r,t,T) is the time t price of a unit discount 
bond, the appropriate terminal condition is:

P(r,T,T) = 1 (2.9)

so that the solution, dependent only on r and r=T-t, is 
C5) :

P(r,r) = F(r) exp(-rG(r)) (2.10)

where :

14 If A is negative (positive) the rate of return 
contains a risk premium (discount) the market requires to 
compensate for holding a bond whose price has a positive 
(negative) covariance with wealth.

1S See Friedman (1975, p. 147) for a mean-value 
representation of the unique solution of a general parabolic 
boundary value problem.
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r ^expdbjt) l*3
F(T) ~ -J—,------ 7T ( TT—T— c JO,1L<|>2 (exp (^r) -1) +4^

. [ exp^ft) -1 1 (2.11)
<t>2 (exp(<p1r) -1) +<!>!

4>1=v^ (k+X) 2+2o2 , <|)2= (k+X-t-^)/2

<|>3-2à6/o2 > 0

Note that :

(2.12)
o2-24>2 (^-^j, 4>1>4>2>o

The term structure is given by:

R(r,r) = -log(P)/r = r(t) G(r)/r - log(F (t)) / t (2.13)

with a constant infinite-maturity interest rate (consol 
rate) :

2Àtì (2‘14)
lijiSir,,) (♦.-op*,

If:

_< r(t) < (2'15) 
7c+À+<|>1 ' ' k+X

the term structure is humped. It is rising for values of r(t)
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below this interval, falling for values above it (1S) .

Clearly:

limT_0 R(r,r) = r(t) (2.16)

Note that P(r, t) =exp(-R(r, r) r) so that a change in 
the time unit (e.g. time from years to months) implies a 
corresponding change in the interest rates (e.g. from annual 
to monthly rates: t*12, R/12). The price formula is invariant 
to a scale change in time and rates if r is multiplied
(divided) and r, k, 6, a and X are divided (multiplied) by
the scale constant (e.g. 12) (17) .

3. Estimation methods
3.1 Continuous time ML estimation of SDE

Let us assume, for the moment, that the process r(t) 
is observable and that a continuous record of observations is 
available: {r(t), t 6 [0,T] }. Our purpose is to estimate 
the SDE (2.1).

16 Using the approximation R„<=0, for X<0, Barone and 
Cuoco (1991) obtain 01=k-X, 02=k,

17 To show this take the differential of r°=r/m and make 
a deterministic time change t'=mt using dt'=mdt and dz(t')= 
■/m dz(t), obtaining:

dr0 (t ' ) =k° (0°- r° ) dt' +a<Vr°dz (t' ) .

Alternatively, make a change of variables in the PDE (2.8).
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From the quadratic variation property of 
semimartingales (Shiryayev, 1981) we obtain:

T T
fdr(t) dr{t) ( t) dt

0 0

that is :

T

(3.1.1)
O2--°-----------------------

T
fr(t)dt
0

The integral in the numerator (18) is defined 

through the constructive characterization of the quadratic 
variation process : if Tn= ( t0(n), tx(n), . . ., tNn(n) ) is an increasing 
(i.e. nested) partition of [0,T] , i.e. Tn c Tn+1/ 
0=to(n)<t1(n)<. . . .<tNn(n)=T and:

lim max ( tpn) - tp(fi ) =0 
p

then:

18 Remember that a diffusion is a Markov process with 
continuous but nowhere differentiable (and therefore of 
unbounded variation) sample paths. The Stieljes definition of 
integrals does not apply.
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Wn T
lim V [r ( tpn) )-r ( tp(f2 ) ì2 - f [dr(t)]2 =

P-l Jo (3.1.2)

o2 [r ( t) dt = o2 lim £ r ( ) ( tpD> - )
o n’“ p-i

and the convergence is almost sure as n goes to infinity for 
any given T (19) .

This means that considering more and more frequent 
observations over a given interval [0,T] the diffusion 
coefficient a becomes known with probability one.

In order to estimate the drift coefficients we use 
the probability measure induced by r(t,a), where a=(k,6) is 
the parameter vector. If LT(r,a) is the likelihood ratio 
(Liptser and Shiryayev, 1974, ch. 7) , the maximum likelihood 
(ML) estimators are obtained by setting the score vector.
qT(r,a) equal to 0:

□ qT(r, oc) =^-logLr(z, a) oa
T T

-fl-^-A(r,a)\G~2 (r) drs- fl~A(r, a)]G~2 (r) A(r, a) ds-0 (3 1 3) 
J \ oa / s J \ da / \ ,
o' ' o' '

where

A(r,a) - k(0-r) G(r) = a/F

19 An example of nested partitions is Tn=(pT/2n, 
p=0,1, . . ., 2”) . If partitions are not nested as for Tn=(pT/n, 
p=0,l,... ,n) the first convergence is only in quadratic mean. 
See Wong and Hajek (1985, p. 53).
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It can be easily seen that, in the case of Wiener 
noises (exponential families), the ML estimator is equivalent 
to the minimum distance (weighted least squares) estimator:

t (3.1.4)
min f [dr-A(r, a) ds] ' G~2 (r) [dr-A(r, a) ds] 

“ o

Using martingale limit theorems it can be shown that 
the MLE àT is strongly consistent for a and asymptotically 

normal in the sense that (20) :

aD (3.1.5)
I?2 (r, a) (&r-a) ~ N(0,l)

where the process IT (quadratic covariation of qT) is given 
by;

r , x (3.1.6)
IT(r, a) - a)]G~2 (r) —-A{i, a) ds{\ Sa / \da_i J

and, under regularity conditions, it can be considered a 
random Fisher conditional information matrix for dependent

20 McKeague (1984) shows that for stationary ergodic 
processes strong consistency and asymptotic normality (with 
a loss in efficiency) still hold even in the case of a 
misspecified diffusion function (oVr in our case).
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observations (21) .

In the case of an ergodic process with "smooth" drift 
function we have (see Kutoyants, 1978):

ai)
~ N(0,D’1(a))

«bere (3,7)

D(a) =2? | -^-A(r, a) G~2 (r) —^-A(r, a) |
( da da.1 J

=lim —Tr(a) a.s. (by ergodicity)

In our case the ML estimators are (22) :

f ^Udrisl-rL*!*). (3.1.8)
£= o r (s) o________ o r(s)

T2 -fr(s) dsl
o o r (s)

and

21 See Feigin (1976). The optimal asymptotic results 
depend on the factorization of the score as (conditional 
exponential families):

qT(a) =IT(a) (ófT-cn)

in which case I-1T(a) identifies a Rao-Cramér minimum variance 
bound.

22 We used the fact that max L(k,0)= max L(k, kfl/k) s max 
M (k, k0) .
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Tidr ( s) -Jr ( s) dsf S? (3.1.9)
g = o o o r ( s)

0 r (s) o 0 r (s)

where :

Lr(S)-r(T)-r(0), 
0 0 r(s) r (0) 2 o r(s)

and the (symmetric) Fisher matrix is given by:

'? (e;r(s))2ds ^<9;r<°)>dS 1 (j.i.xo)
_ .. A, o a2z(s) 0 o2r(s)TT(k,e) =

I k2 ds
o o2r(s)

Strong consistency of àT can be easily checked using 

(2.7b). Moreover, the Rao-Cramér bound, for large T, is 
obtained using (3.1.7) as:

2k -o2/k (3.1.11)
Ty(a)-An-1(a)-i 

T T
-a2/k 0O2/Jc2.

going to 0, by consistency, as T goes to infinity.

Notice that, from Ito formula, the transformation
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y="/r has dynamics (23) :

(3.1.12) 
dy ( t) - [ (4XP q ) -ky/2] dt + o/2 dw

8y

so that

T
a2-^f ldy( t)]2

0

Comparing the last equation with (3.1.1) we obtain:

4 f [d/zTtT] 2 L ( t) dt (3.1.13)
IJT = O' 0

f[dr.(t)]2 
0

In practice, the assumption of a continuous record of 
observations is not satisfied and, usually, only a set of 
discrete observations is available at the partition 
0=to<t1<. . . . <tn=T of [0,T] , where 5n=tp+1-tp is independent of 
p (constant step) and refining to 0, i.e. limn 5n = 0 for n-wo. 
The suggestion is then to replace continuous integrals with 
discrete sums (e.g. Cauchy approximations).

In particular, take tp=pT/n ® p5n, p=0,l,...,n and 
define a2niTr as the discretized version of (3.1.1):

23 It can be shown that, for regular transformations 
y=h(r) the ML estimators are unaffected, being 
qT(r,a) =qT(h(r) ,a) and IT(r,o!) =I±(h(r) ,a) .
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y? [r(tp)-r(tp-1) ]2 (3.1.14)
A2 = P"1Ón.T.r -

«.Ero,.)
p-1

We have :

1.1. m. (anfT#r-02) - 0
n-,oo

where l.i.m. means limit in mean square (and therefore in
probability). Moreover, the following limit in distribution

I 
can be proved (Genon-Catalot and Jacod, 1993):

T
J.T (s) dW(s)

1.1. d. /n (On.^r-o2) - J2<j2 —----------
n-oo * T

fr(s)ds

0

where W is a Brownian motion independent of {r(s), s s T}.

At the same time, from (3.1.12):

. n (3.1.15)

1 p-1

which is consistent (in mean square) and recursive (Banon,
1978, p. 392):

_______ (3.1.16)
^n+l,T+8,7z ” n+1®n,r,vfr + y+fi )2
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Analogously, define àn T as the discretized version of 

the ML estimator aT (Cauchy approximating sums instead of 
integrals). Then, as in Le Breton (1976):

(3.1.17) 
plim (&nT—u T ) =0, (&niT-&T)=O (0 ^ )

where 0p( ) means "same order in probability as".

This means that as n ^ <», for given T, i.e. as the
frequency of observations per unit time increases (5n 4 0) 
toward the limit of a continuous record, the discretized 
estimator àn>T is consistent for aT (but not for a) (24) .

Note that in the case of sample-path integrals, more 
refined approximations (trapezoidal, Simpson's, etc.) can be 
used. In particular, for any smooth function f( ):

n-1
6nJ^F(tp) Cauchy

p-0 

t f ( t } +f( t }
ff(t)dt - 6 n E--- trapezoidal
0 ^4 f(t„)+4f(t 1)+f(t 2) 8n £ --- -------F1----- Simpson

p-0 
p even

In the first case the approximation error is of order 
0(5) (we omit the subscript n of 6n) , in the second case it

24 Marsh and Rosenfeld (1983, p. 639) observe that in 
most markets data are not generated in real time so that as 
the interval 6 shrinks observation or missing errors 
increase. Non-trading time is a leading example.
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is of order O(52) and for Simpson's formula it is of order
O(54) (2S) .

3.2 Estimation of the discrete equivalent of linearized SDE

It is well known that the linear SDE:

dx(t) = (Ax + a) dt + bdw(t) (3.2.1)

has solution, for x(s)=xs (Arnold, 1974, p. 130):

.... . c (3.2.2)z—\ A ( c fi?)_
x(t) - x„e-a(t-s) + a—------- + bl eA(t'u}dw(u)

s A J
s

so that, for t=p5, s=p5-5 (Sargan, 1974):

At **
xp = ej4dxp_1 + a——— + b f eA<p6-u)dw(u) (3.2.3)

A pò-6

-c1Xp_1+co+up

where :

• Aft *i 2AÒ . *ia-=eAÒ, c0 = a~----, u~N(0, v2) , v2«jb2-------
1 0 A. p 2A

that is

n_ 1O0C1 Colossi ^2_„2 2109^
----------- ------  f d-----—---------—---------- - ---------6 S(s-l) 6(c12-i)

2S See McShane (1983, p. 66). In the case of stochastic 
integrals, the limit of trapezoidal approximations is Used in 
the definition of the Stratonovich integral.
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The error term is normal i.i.d. and the ordinary­
least squares (OLS) estimator has optimal properties in large 
as well as small samples.

For a nonlinear SDE such as (3.1.12) a popular 
estimation procedure (Fischer and Zechner, 1984; Barone and 
Cesari, 1986; De Felice and Moriconi, 1991) is to linearize 
the drift around a mean value y obtaining a linear SDE 
(approximation of (3.1.12)) for which the exact discrete 
equivalent (3.2.3) is known.

Linearizing 1/y, the following SDE is obtained:

(4ke~°2) (3.2.4)
\ Sy2 2 ) 4y 2

= [ Ay+a ]dt + bdw(t)

and the above procedure can be applied giving:

. (3.2.5)d2-4É2, £— 2À- X, 6 =
y

3.3 Conditional-mean estimation

Using the conditional expected value in (2.5) we can 
write :

rp - 0 (l-e"k6) +e~k6rp_:L+ep (3.3.1)

E(ep)~O, E(e2p\ip_1)-xp_1026
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where the innovation term is not normal ' (its conditional 
distribution is in fact a non central x2) and its variance, 
from (2.5), is approximately r^c^ó so that a weighted LS 
transformation gives (26) :

-E" ~ = 0 (l-e’kò) 1 + e~k6 + up

s A —+ B + up (3.3.2)
Vrp-1

E(up)=0, E(up) ~(J20

g_ logB , q_ A g2_ Var(i?)
8 ' 1-b' 6

3.4 OLS estimation of naive discretization of SDE

Let us consider an approximate discrete-time 
specification of the basic SDE (2.1):

rp-rp-xHa+pr^JS+e,,
(3.4.1)

a^kO, P=-k, F(ep)=0, E(e2p | -a2rp_1b

26 The parameter ó represents the observation frequency­
in terms of the chosen time unit. For example, for annual 
rates (i.e. time unit = 1 year) and monthly observations 
5=1/12; for monthly rates (time unit = 1 month) and monthly 
observations 5=1.
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where the disturbance term is not necessarily normal.

Using a weighted LS transformation we obtain (see for 
example Brennan and Schwartz, 1982):

r^-Tp-1 +B^V+Up

Vrp-i Vrp-i Vrp-i (3 4 2)

E(up)=0, E{up)-020

£-é/t>, 8-A/b, o2- Va\{ù) o

Note that the regression coefficients are the linear 
approximation of the coefficients in the previous case.

Moreover the estimates for 6 and a2 are clearly 
numerically equivalent.

3.5 GMM estimation of naive discretization of SDE

Under the assumption of stationary, ergodic processes 
Hansen's (1982) generalized method of moments (GMM) can be 
used to estimate the above given naive discretization:

rp-rp-i= (a+Prp-i) (3.5.1)

a=k0, P=-k, E(ep)~0, E(e2p-o2rp_1b}-0

The idea under the GMM procedure is to impose a set 
of orthogonality conditions on the variables involved, 
choosing as estimates the values that minimize (in a certain 
optimal metric) the relevant distance. Various forms of LS,
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quasi-ML and nonlinear instrumental variables (IV) estimators 
can be viewed as special cases of GMM.

In our case (see Chan, Karolyi, Longstaff and 
Sanders, 1992) the orthogonality condition is (27) ;

eP
Gprp-i (3.5.2)

F(fp(I))-0, where fp«)= 2 2 .
° rp-l°

<€p“°2-rp-i8)rp-i
C-(a6,p6,o2S)

and the GMM estimator is obtained as:

(3.5.3)
* aigmin gn(r) Dngn(c)

that is :

É£d£Lpng,n(C=o (ficic.)
d;

n nwhere <7n(C) fp«)
np-i

and Dn is a positive semi-definite weighting matrix.

27 The number of orthogonality conditions must be not 
less than the number of parameters. As Hansen (1982, p. 1048) 
observes, his result "is limited in that it takes the 
specification of the orthogonality conditions as given and 
does not discuss how to construct optimally orthogonality 
conditions".
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The optimal GMM estimator (Hansen, 1982, theorem 3.2) 
is obtained using Dn = Sn-1 where Sn is a consistent estimator 
of the covariance matrix S(f)=E(fp(£) f 'p(f)) so that:

n ( ra a i-i'l (3.5.4)
^(C„-C) wb, 

«-<• \ vQ J ;

A consistent, positive semi-definite estimator of 
S(f) is given by Newey and West (1987):

m. n (3.5.5)
j-X 111+ X U p_jtl

where m is the number of nonzero autocorrelations of fp(f) 
(28) .

A goodness-of-fit test for the model is obtained by 
the result (Hansen, 1982, lemma 4.2):

aD (3.5.6)
ng'(o S^grn(^) ~ X2V v=dim(f (<) ) -dim(C')

3.6 Discrete-time ML estimation

Let us consider a set of n observations, possibly not

28 In general (Newey and West, 1987, theorem 2) m(n) may 
be a function of n going to infinity with n more slowly than 
n°,2S. In our Monte Carlo experiments we used the largest 
integer less than n0 24.
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equally spaced (29) , of the process r(t), i.e. (r(tt) , 
r(t2) , . . ,r(tp) , . . ,r(tn) ) . The likelihood function, given an 
initial value r(t0) is:

, r(t2) , . . |r(t0) ,£)-

p(r(tj |z(t0) ,0 p(r('t2) | r(tj ,r(t0) ,0....
(3.6.1)

.... p(z(tn) I r(tn_r) ,r(tn_2) , . . ,r(t0) ,o

= IlPu(tp) |r(tp_1) ,<) 
p-i

where the last equality comes from Markov's property and 
p(r(tp) IrItp.i)) is the transition density from r(tp_1) to 

r(tp), in our case a non central x2 (see (2.3)).

It is well known that the ML estimator has optimal 
asymptotic properties. It is given by:

t =argmax £,(<) =
c

n -_l(u tv'll v \(«r-D/2argmax fl ce 2 P |—Iq_^up_rvp}
p-1 \ up-l /

(3.6.2) 
where

c=(k,0,o2), c------2-■ —, u 1-2cz(tp.1)e'k6p
c2(l-e~kip) P P

vp = 2cr(tp),

29 See Marsh and Rosenfeld (1983), Lo (1986, 1988), 
Robinson (1977) . When the observation interval is small (day, 
hour, etc.) not equally spaced data is often due to non­
trading time which generates missing observations.
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and it is consistent and asymptotically normal (3°) :

plim - C (true value)

aD
yn (Cn-o ~ ,

(3.6.3)
Z({) -limif -E , |r(^,),C)1

— n h. P L W ]

-lim—y Ep, Irt^) ,;) ]2
n-~ 11 Fl L dC J

For the discount bond price P(r,t,T,f,X), if X were 
known :

pn-p(r,t,r,tn,1) (MLE) (3.6.4)

^(Pn-P)

3.7 Indirect estimation by simulation (31)

A different estimation approach has been recently 
proposed by Gourieroux, Monfort and Renault (1993) (see also 
Gourieroux and Monfort, 1993).

30 See Bar-Shalom (1971) and Bhat (1974) where the result 
is obtained for the general case of dependent observations.

31 We would like to thank Eugene M. Cleur for his help 
in the implementation of this method.
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Let us suppose that the true model is given by:

(3.7.1) 
rp = f(rp-i'up'to>

where f is a known function, up is a noise with known 
probability distribution and £0 is a parameter vector.

In general, because of the function f, the likelihood 
of rp is untractable or even unknown and one has either to 
approximate the exact likelihood or (equivalently) to use the 
exact likelihood of an approximated model.

Let (3.7.2) be the approximated or auxiliary model 
(for example a naive discretization of SDE):

(3.7.2)
rp - gCrp-iinp.P)

where ep is a residual noise and 13 is a parameter vector,
generally different, for value and interpretation, from f0.

t
The indirect method is given by four steps :

i) using the observed values rp estimate /3 in (3.7.2) 
obtaining j3n;

ii) generate the noise up from the known distribution and
simulate (3.7.1) assuming a particular obtainibg the 
simulated data rsp(f) ;
iii) using the simulated data estimate 13 in (3.7.2) obtaining
£°n(r);
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iv) calibrate f in order to have /?°n(f) close to $n:

, . (3.7.3)
tn = argmin[pn(<)-0J/H„[Pn(C)

where I is a positive definite matrix (the identity matrix 

in our case).

Essentially, we know that $n is "wrong" and we find 
a value for £ making |6°n(f) as "wrong" as $n.

4. Monte Carlo simulations of continuous processes
4.1 Introduction

Quoting Talay (1990) "the numerical analysis of 
stochastic differential systems is at its very beginning". A 
major critical point is the fact that the concept of white 
noise (posing no problem in discrete time) in continuous time 
means a process independent at every time point t with 
respect to any other time point s however close to t:

i— <J2 for t=s 
Cov(£(t),(s))=

— 0 for t*s

This discontinuity of £ (t) (for example in the mean 
square sense) suggests the definition of stochastic processes 
of a more general type (see for example Yaglom, 1952, p. 210) 
for which a generalized differential and a generalized 
calculus can be defined.
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These general processes are abstract concept with no 
direct real counterpart (32) and this implies a second 
trouble whenever the theory has to be compared with data, 
real or empirically simulated. Roughly speaking, one could 
say that real data imply only discrete, colored noises and 
the link with a model driven by continuous, white noises is 
not clear.

A trade-off, however, comes out due to the fact that 
continuous time is theoretically very appealing and 
manageable and the white noise hypothesis (if not a 
theoretical result (33) ) is a very economic 
parametrization of the model.

Graphically, the situation may be depicted as follow;

REAL DATA 
discrete time

white noise colored noise

white n. colored n. white n. colored n.
white noise colored noise continuous time discrete time

SIMULATED DATA THEORY/MODEL
discrete time -------- ----------

32 "The point is that in practice one must always use 
some physical device to measure £(t), and since the device 
always has 'inertia' (or 'memory'), corresponding to its 
nonzero 'time constant', the input process £(t) will 
inevitably be subjected to some time averaging." (Yaglom, 
1952, p. 208).

33 A fundamental result of finance is that under the no­
arbitrage condition the asset price vector is a martingale 
(orthogonal increments). See for example Harrison and Kreps 
(1979) and Harrison and Pliska (1981) . This is also a 
property of Ito integrals.
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There are many possible combinations between real 
data, simulated data and the theoretical or model data. In a 
performance analysis, if the real data generating mechanism 
(real DGM) was known (its features, not its parameters) the 
simulation task would be just to replicate it "in vitro".

However, the real DGM is unknown and the question is 
whether the student has to follow his or her "a priori" on it 
or, instead, just to accurately replicate the theoretical DGM 
assumed in the model, or also to take an average position 
between the two alternatives. Depending on the taken 
position, (more near to the "a priori" real DGM or to the 
model DGM) the distance between simulated and theoretical 
points may change significantly as in the figure below 
(34) .

SIMULATE} DATA 1 8MULATED DATA 2

REAL OTA MODEL DATA

PONIS-ESTMATCRS

34 In principle, the best position should be where an 
isometry exists between simulated and theoretical data on one 
hand and real and theoretical data on the other.
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Moreover, when the theoretical model is time 
continuous a problem is raised concerning the convergence of 
discrete (simulated) data to a continuous theoretical 
process.

It is well known, for example, that differential 
equations of linear interpolations of brownian motion paths 
at discrete time points converge (in mean square) to 
Stratonovich (not Ito) stochastic differential equations 
(Stratonovich calculus).

4.2 Some simulation data-generating mechanisms

Let [0,T] be a time interval and 0=to<t1<....<tn=T a 
partition of [0,T] such that 5n=tp+1-tp is independent of p 
(constant step) and refining to 0, i.e. limn = 0 for n-^oo. 
For simplicity take tp=pT/n = p6n, p=0,l,...,n and consider 
the one dimensional diffusion x(t) solution of the Ito SDE:

dx(t) = a(x(t)) dt + a(x(t)) dw(t) (4.2.1)

or the corresponding equivalent Ito stochastic integral 
equation:

t t (4.2.2)
x( t) -x(v) + Ja (x(s) ) ds+Jo (x(s) ) dw(s)
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A simple simulation approach (strong approximation) 
is to approximate the diffusion x(t) by a discrete process 
x°p=x°(pÓn) , p=0,l,...,n such that, omitting the subscript n 
for fin:

, (4.2.3)
E [sup |x(pS) -x° | ] <; c6Y

p

where y is the order of strong convergence.

A different approach (moment or weak approximation) 
is suggested by a different intuition: given that x(t) is a 
stochastic process, its moments or certain quantities 
depending on the law of x(t) may be more interesting than 
some particular path (Talay, 1990).

This implies to approximate the mean of a smooth 
function g() of the process according to the criterion:

(4.2.4) 
max | E(g(x(p6) ) ) - F(g(x° p) ) | £ c?Sp 
p

where /? is the order of weak convergence.

Let us now consider the following simulation schemes. 
Euler scheme (Maruyama, 1955):

x°p+1 = x°p + a(x°p)5+ a(x°p)up+1 p=0,1, . . .,n-1
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where up+1sw (pd + ó)-w (p5) is normal N(0,5) 
Milstein (1974) scheme:

x°p+1 = Euler + a'(x°p) a(x°p) ^[up+12-<5]

where a prime ' means first derivative.
Talay (1984) scheme:

x°p+1 = Milstein + [a'ce+^a"^] + [a' a+a' a2] ^up+1ó

where a double prime " means second derivative and, as 
before, the functions are evaluated at x°p.

The stochastic foundation of the schemes and their 
approximation errors are sketched in the Appendix, using a 
stochastic Taylor formula. It can be shown (Milstein, 1974) 
that the Euler scheme is of order 7=0.5 of strong convergence 
and the Milstein scheme is of order y=l. In terms of weak 
convergence they are both of order /3=1 while Talay scheme is 
of order 0=2 (3S) .

4.3 The Monte Carlo experiment

The first point to stress is that in actual markets 
the instantaneous interest rate r(t) is not observable. In 
fact, the rate r(t) is defined as the interest rate on a loan 
obtained at time t and maturing in the next instant, i.e. at

35 See Kloeden and Platen (1992, p. 465 and chapters 10- 
15) for more refined strong and weak approximation schemes.
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time t+dt. It is, therefore, a limit concept (see (2.16)), 
not observable in real markets.

What is in fact observable is a particular, short 
maturity interest rate R(t,r°)=R°(t), for r° fixed. More 
precisely, at any given time t, the term structure is known 
at a small number of maturities, for example 1 day to 
maturity (so called overnight rate), 2, 3 days, 1, 2, 3 
weeks, 1, 3, 6, 12 months as in the following picture.

OBSERVABLE MATURTIES AT TIME t

MONTHS TO MATURITY

We tried to replicate this situation in which only- 
interest rates with positive maturities are available at 
discrete-time observation intervals.

The basic set up is given as follows. We assumed the 
time unit is equal to 1 year. The instantaneous rate r(t) has 
been generated using the three given DGMs assuming 5 equal to
1 hour (5=1/8760) and parameter values k=0.3, 0=0.1, o=0.06.

The observable process R(t) has been obtained using 
definition (2.13), A=-0.03 and assuming a positive fixed
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maturity (t° equal to 3 months). Finally, the data have been 
sampled at fixed interval A (1 observation every month: 
A=l/12). The parameter values are similar, by and large, to 
real data estimates (3S) . The starting value r(0) is set 
to 0, the long run mean.

The usual estimation procedures do not recognize that 
available observations concern discount bonds with a given 
non-zero maturity t° and use these data as an approximation
of the instantaneous rate (r=0) . Our experiment evaluates the 
effects of this approximation.

We considered 200 simulations over a sample time span 
up to 200 years (2, 5, 10, 20, 50, 100, 200 years) (37) . 
A few examples of generated interest rates R(t,T°) over 20 
years of sample time span, for t°= 3 months, are given in 
Fig. 1. The dotted line is the long run mean 0 of the 
instantaneous rate r(t) . A real time series of 3 months 
Italian Treasury Bill rates over the last 20 years is 
displayed in Fig. 2 and compared with a similar simulated

36 Fournie and Talay (1992) use 6=1/365 (one day), 
k=0.75, 0=0.1 (10%), a=0.105 and T up to 110 years (365x 110= 
40150 simulated data). They are interested only in the large 
sample properties of estimators and simulate just one sample 
path.

Barone and Cesari (1986) and De Felice and Moriconi 
(1991) use 3-months Treasury bills and estimate for the 
period 8106-8411 (monthly data) k=0.39341, 0=0.146844, 
0=0.05611 and X=0.065296.

Barone, Cuoco and Zautzik (1989) for daily data 8312- 
8903 find k=0.25118, 6=0.1117, a=0.0627 and X=-0.00783 
(calculated under the assumption fl=R(oo)) .

37 In the case of small samples (2 years of monthly 
observations) 13 simulations were rejected because of the 
influence of large outliers.
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path (Fig. 2 bis).

5. Monte Carlo results

In this section we shall present first our results 
for the direct estimation methods (sections 3.1 to 3.6 above) 
and then some preliminary outcomes concerning the indirect 
method (section 3.7 above). The main results, in the given 
Monte Carlo set up, are the following (38) .

A) The three simulation schemes, for the chosen 
parameter values, generates very similar processes in terms 
of interest rates and estimates (equal up to the fifth 
decimal figure). We may, therefore, confine ourselves to the 
simpler Euler scheme. Of course, this does not imply that the 
differences are irrelevant also in the case of different 
parameter values and in particular in the case of larger 
diffusion coefficient a and non ergodic processes. This point
may be object of further investigation.

B) The performance of estimators is different for
different estimated parameters (k, 6, a).

38 We use the abbreviations: CTML for continuous time 
maximum likelihood estimator (§3.1), LDE for linearized 
discrete equivalent estimator (§3.2), CME for conditional 
mean estimator (§3.3), OLS for ordinary least squares 
estimator of crude discretization (§3.4), GMM for generalized 
method of moments (§3.5), DTML for discrete time maximum 
likelihood estimator (§3.6), IES for indirect estimation by­
simulation (§3.7).
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In the case of our basic set up of monthly 
observations (see Table 1 and Figures 3 to 5) (39) , the 
best estimators for a are LDE and DTML which, in the case of
small samples (in particular 5 to 20 years), gives estimates 
not significantly different from the true values (40) . The 
bias is about 2-3 per cent of the true value. The root mean 
square error (rmse, in percentage of the true value) is below 
10 per cent (16 per cent in 2 year samples) . In samples up to 
5 years the GMM for a performs poorly with a bias over 10 per
cent.

In the case of the lung-run mean 6 the best estimator
(in terms of rmse) in small as well as large samples is CTML. 
The bias is 1.3 per cent, not significantly different from 
zero, and the rmse is 13 per cent. The GMM has a 
statistically not significant bias of 2.7 per cent and it is 
the second best estimator. There is no significant bias also 
asymptotically (41) .

For the parameter k, all the estimators are grossly 
upward biased for small samples and converge to the true 
values only for very large sample time span: with 20 years of 
monthly observations the bias is 80 per cent of the true

39 In Figures 3 to 11 the time span axis is in logs. The 
values displayed correspond to 1, 2, 5, 10, 20, 50, 100, 200 
years.

40 To judge significance we use a Student's t test given 
by the bias over the standard error of the estimates.

41 Only the LDE bias for 6 is increasing with the time
span, indicating that for this method there is a cumulating 
error effect in the long run mean estimation.
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value (0.3); with 50 years of monthly observations the 
estimators reach from above the first decimal figure of the 
true parameter value, with a percentage bias as large as 30 
per cent.

The biases and rmse of a and 6 are small and decrease
only slightly as the time span increases. The bias (and rmse) 
of k is viceversa quite large and decreasing to zero over 
very large time periods.

Asymptotically, also the standard errors of the 
estimates decrease so that the bias significance for k is 
decreasing and not significant in large samples. For a, 
viceversa, the bias becomes more and more significant.

As the number of observations increases (42) , the 
costs of DTML in terms of computation time becomes too high 
with respect to its performance. In particular, for 100 
replications of a 20 years sample of monthly data the DTML 
requires 7530 seconds of cpu time (on a IBM 3090) with 
respect to 2/100 sec. for CTML, 4/100 sec. for LDE, 7/100 
sec. for CME, 1.38 sec. for GMM. For large samples this 
method has been dropped.

C) The increased frequency of observations per unit
time (from monthly to daily data) for a given time span and 
a given maturity t° implies a general reduction of the bias
for a to 3-4 per cent as well as a reduced dispersion of

42 The bias for k 
of the modified Bessel

is also important in the computation 
function (2.4) .
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results for different methods in small samples. In 
particular, LDE displays a slight increase of the bias (from 
2.2 to 3.4 per cent in samples up to 5 years) whilst GMM 
presents a large bias reduction from above 10 to below 4 per 
cent (see Table 2 and Figures 6 to 8). LDE is still the best 
estimator for o (DTML is too costly with daily data) but now
the larger number of observations leads to smaller standard 
errors and to significant bias already in 5 years samples. 
The asymptotic bias is persistent. Moreover, the difference 
with the other estimators is negligible.

The best estimator for 6 is again CTML, with a not
significant bias of 1.6 per cent in 2 year samples, half as 
large as the bias (3.2 per cent) of the GMM. This one and OLS 
are the second best estimators, whilst LDE displays again an 
increasing significant bias (2.8 per cent for a 20 years 
sample against 1.3 per cent for CTML) . The effect on k of 
higher frequency observations is a worsening of the finite 
sample bias.

D) In order to assess the effect of approximating
r(t) with R(t,T°) we have directly used monthly data of the 
instantaneous rate r(t) (see Table 3 and Figures 9 to 11) . 
For a the best estimator is now DTML with a bias of about 2
per cent for 2 years samples, practically negligible (-0.2 
per cent) from 5 years samples onward. Quite good results are 
obtained with CTML and, when samples are not too short (10 
years or more), with LDE. In any case the decreasing bias is 
never significant, indicating that the asymptotic bias was 
due to the assumed approximation.
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For k all the estimators display a large bias in 
small samples. The same results for CTML can be found in 
Fournie and Talay (1992).

The best estimator for 0 is CTML with a (not 
significant) bias of 1 per cent and a rmse of 14 per cent (2 
years of data) . LDE has a bias of 2.6 per cent in 20 years 
samples. GMM and OLS have similar performance in large 
samples (the rmse gets 9.7 per cent for 50 year samples) and 
biases are always not significant.

If, instead of monthly data, we use high frequency 
observations for r(t), for example hourly observations, with 
an observation step A (1 hour) equal to the generation step 
6, we obtain, for a 2 years sample, a rmse of 0.55 per cent
for o using LDE and of 13.8 per cent for 6 using CTML. Even
in this case, the bias and standard error for k are quite 
large for every method, showing definitely that the relevant 
information to efficiently estimate the speed of adjustment 
k can be obtained only from a large sample time span (the 
range [0,T] in continuous time), almost independently from 
the frequency of observation: we could say that in order to 
correctly estimate k, 100 monthly observation are better than 
1000 daily data.

E) In order to better appreciate the effect of the
approximation R(r°)«r we have used different values for r°:

0, 1 day, 1 week, 1 month, 3 months, 6 months, 1 year. The 
results for the various methods (DTML excluded) are displayed
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in Fig. 12 (43) . For r°= 1 month or greater the estimation 
bias is increasing for o and 6. For k, only CTML is sensitive
to an increasing r° whilst the other estimators are not.

A similar exercise was made to assess the effect of 
the "price of risk" parameter X (see equation (2.8)). For 
t°=3 months and X=-0.1, -0.03, 0, 0.03 we obtained the 
results in Fig. 13. We can see that an increasing X has small 
reducing effect (i.e. increasing bias in this case) on the 
estimates for a, almost no effect for k and sensible reducing
effect for 0 (decreasing bias). The simultaneous effects of
t° and A are one-sided and reciprocally reinforcing for a and
k whilst they tend to compensate for 6 when the maturity r°
is relatively large (3 months or greater).

F) As expected, the staring point r(0) has important
effects in small samples. A starting point 25 per cent below 
the long run value (0.1) implies a bias for 6 as large as 17
per cent in 2 year samples and 11 per cent in 5 years 
samples. The estimators are not equally affected. CTML is no 
longer the best estimator when the starting point is out of 
equilibrium. For this method the bias is still at 8 per cent 
when the sample has been increased to 10 years of monthly 
data. Better estimators are LDE and OLS.

We also note that the effects of initial values above 
or below the long run value are not symmetric. The bias is 
larger and more persistent starting the process from above 6

43 The exercise consists of 2 00 replications of monthly­
data over 10 years of time span.
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(1.25 0) than from below (0.75 0) : for LDE with a 2 years
sample we have in the former case a bias of 17.3 per cent and 
in the latter case a bias of -12,7 per cent; with a 5 years 
sample the two biases are 11.8 and -4.8 per cent 
respectively; with a 10 years sample they reach 4.1 and -0.9 
per cent, a value not significant at the 5 per cent level 
(see the following table).

(*) not significant at 5 per cent level.

Time span r(0)=0.75 0 r(0)=1.25 0

CTML (bias per cent)
2 years -17.0 19.3
5 years -11.0 14.3

10 years -7.3 8.2
20 years -2.7 5.4

LDE (bias per cent)
2 years -12.7 17.3
5 years -4.8 11.8

10 years -0.9 (*) 4.1
20 years 1.9 (*) 3.8

The estimation for a is not affected by r(0) whilst
the identification of the speed of adjustment k, always very 
poor in finite samples, seems slightly improved by a staring 
value out of long run equilibrium.

G) The preliminary results concerning the indirect
estimation are promising. First of all, we have found a 
substantial reduction of the bias for k (from 76 to 29 per 
cent) even in small samples (25 years of monthly data) ; 
secondly, the bias for a has been eliminated:
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Parameters
OLS ESTIMATES (*) IES ESTIMATES (*)

k (=0.3) 0.529 (0.25) 0.386 (0.28)
6 (=0.1) 0.100 (0.01) 0.099 (0.02)
a (=0.06) 0.057 (0.00) 0.061 (0.01)
(*)standard errors in parenthesis.

This method, however, requires further investigation, 
in particular because of convergence problems during the 
simulation and calibration phases. It may also gain in 
efficiency from the expected enhancement in computational 
levels (parallel computers) so that it could really 
outperform all direct methods.

H) Finally, given the distortion of the considered 
estimators, we have investigated the effect of simulating the 
bond price dynamics using wrong parameters, in order to 
assess the financial effects (for example in portfolio 
strategy) of inferential problems.

We have, therefore, simulated the bond price (2.10) 
for a single maturity t= 3 months, using alternatively the 
"true" parameter set (control series) and a different set 
with biased parameter values (biased series) (44) . 
According to our previous results in the case of 20 years of 
time span, a has been reduced by -5 per cent, k increased by

44 We have run 500 replications using hourly data over 
one year of time span. Note that simulation (direct and 
indirect effects) is required instead of partial derivatives 
dP/da because r(t) is endogenous, function of the basic 
parameters. If r(t) were known the effect of a bias would be 
smaller.
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+100 per cent and 6 increased by +2 per cent. The price 
difference, calculated as biased price less control price, 
results to be small and not significant for o and k: after 
1 month it is, in absolute value, about 0.0000013 (1.3 $ per 
million); after 12 month it reaches -0.0000096 for a and
0.000031 (31 $ per million) for k.

In the case of 6 the difference is larger and stable
over time at about -0.00049 (490 $ per million) . The negative 
sign indicates that increasing 6 reduces the bond price. The
long run mean d seems therefore a crucial parameter to
estimate, whilst biased values for a and k have minor effect
on the asset price.

6. Conclusions

We have investigated the relative performance of 
alternative estimators of a popular diffusion model of the 
term structure óf interest rates, characterized by a single 
state-variable with Feller (square root) dynamics (see 
section 2).

A number of different estimators, reviewed in section 
3, has been proposed in the empirical literature: the 
continuous-time ML estimator (CTML) , the linearized discrete 
equivalent (LDE), the conditional mean estimator (CME) and 
the estimator of the naive discretization of the SDE (OLS), 
the generalized method of moments estimator (GMM), the 
discrete-time ML estimator (DTML), the indirect estimator
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(IBS). However, no general evaluation of their econometric 
performance and relative behaviour, particularly with small 
samples of data, was available.

In order to attack this problem we built a set of 
Monte Carlo experiments (see section 4) designed to simulate 
continuous-time (diffusion) processes and replicate the 
typical situation of empirical applications. In particular, 
we set the time unit to 1 year, the generation time interval 
to 1 hour, the observation time frequency from 1 to 30 days, 
the time span from 1 to 200 years. The state-variable 
parameters (k, 6, a) were set to values approximately equal
to published empirical estimates. Different simulation 
schemes (Euler, Milstein and Talay schemes) were used without 
finding important differences in the estimators results.

Particular attention has been paid to the 
unobservability of the state variable, the instantaneous 
(zero maturity) interest rate r(t), and the consequences of 
using observable rates R°(t), for a given positive maturity 
t°, as a proxy variable for r(t).

For a, the diffusion parameter, we have found a
general downward distortion of the direct estimators. This 
persistent asymptotic bias is due to the approximating rate 
R° and it would disappear if the (unobservable) instantaneous 
rate r(t) (or a very short maturity rate: see Fig. 12) were 
used. Using data of higher frequency (e.g. from monthly to 
daily) the estimator variance is reduced, not the bias. LDE 
and DTML appears to be the best estimators, but the latter is 
computationally more demanding. The worst performance, in
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small samples, comes from GMM. Viceversa, IES seems able to 
eliminate the bias.

For k, the speed of adjustment parameter, there is no 
bias asymptotically but large upward bias in finite samples. 
No estimator clearly outperforms the others but IES seems to 
present the smaller bias. Increasing the frequency of the 
observations has a worsening effect on the already bad finite 
sample results. It appears that to confidently estimate the 
speed of adjustment a time series is needed much longer than 
usually available data.

The parameter 6, the steady state mean of the 
instantaneous rate, is in general estimated with no 
significant bias. The best estimator is CTML and the worst is 
LDE. This result, however, depends on the starting point 
r(0)=fl. Starting values out of equilibrium reduce the 
relative performance of CTML and make LDE more efficient. 
Moreover, starting values below equilibrium are more quickly 
absorbed than starting values above 6.

Finally, we have investigated the financial effect 
(in terms of bond price) of using biased parameters. 
Considering the typical distortion found in the case of data 
over 20 years of time span, we obtain no significant effect 
from a and k but a more sensible price gap even from small
bias (2 per cent) for 6. This parameter seems therefore a
crucial one to estimate.



APPENDIX
A stochastic Taylor formula

In this appendix we shall give an euristic derivation 
of a stochastic Itó-Taylor formula (Platen and Wagner, 1982; 
Kloeden and Platen, 1992, ch. 5) which generalizes ltd 
formula and is useful to understand the discrete data schemes 
used in the text (see section 4.2) .

Let us consider the one dimensional diffusion x(t) 
solution of the Ito stochastic integral equation:

t e (A.l)
x( t) -x(v) + Ja (x(s) ) ds +Ja (x(s) ) dw(s)

V V

Let f(x) be a real function with continuous partial 
derivatives f', f'', etc. Writing xs for x(s), <xa for a(xs),
crB for a(xB) , ltd formula, in integral form, is:

t t
f(xt} - f (x) + f [fz(x ) a +^-f"(xs) a2Jds + [f'(xs)osdws (A.2)

Ls V J £> & & a-* 1 O O O
V L J V

For f(x)=x, (A.2) reduces to (A.l). For f(x)=a(x) and
f(x)=a(x) we obtain two expressions for the drift and 
diffusion functions:
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s s
«s " «,+ f [«'unu+^o'uaildu+feIo,^ = TS/X(av)

V 2 < (A.3)
s s

O s- °v+f a'u« u+ -i <’/u<’2u du+f udwu - ISi x ( u v)

V V

so that, substituting in (A.l):

t t s t s
xt - xv+ a v [ds+ff a'ua u+ A c2u duds + ff a'uo udwu ds+

V VV L J VV 'A'

t t s ts
avfdws+/f a'^ u+ y a" o2u du dws+y*ju'ua udwu dws 

v w ■* V V

This is the simplest stochastic Taylor formula for 
x(t) and could be written as:

t t (A.5)
xt - xv+a v fds+ av j'dws + J?1

V V

where Rx is the remainder. This formula suggests the Euler 
scheme given in the text.

More elaborate expressions can be obtained 
substituting again the integrand functions in (A.4) with 
their Itò expansions IU/X, obtaining expressions with 
deterministic and stochastic1 triple integrals. In particular :

Using ltd formula for w2t we notice that :
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t t t s
xt - xv+av fds + avfdws + vfJ'dwudws +

V V vv

ts (A.6)
a^a v+ -t aIo2v j'j'duds +

t s t s
a'yO vj'j'dwuds + o7^ v+-1aIo2v j’J'dudws + R2

VV L V V

f'f , <.wt-w)2- ( t-v) (A-7>
Jjd^dw,----l—2--------
V V

which is the term in the Milstein scheme.

Moreover, using Ito formula for twt:-

t t (A.8)
twt - vwv + fwsds + Jsdws

V V

we have :

t s t t s
J1Jdwuds = (t-v) J*dws - ff dudws
V V V vv

'ts \ its \ (A. 9)
with E ffdudws-O, Var ^dudws = -|-(t-v)3

\vv / \vv /

(t t s \
fdws, f JduduU = A (t-v)2
V V V /
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so that the two double integrals in (A.9) have the same mean, 
variance and covariance with the Wiener increments.

The last two integrals in (A.6) justify the last 
component in the Talay scheme.

The remainder of the stochastic Taylor formula allows 
to assess the order of strong and weak convergence of 
different approximating schemes.

Applying the same token to (A.2) we can obtain a 
stochastic Taylor formula for f (xt) as an extension of Ito 
formula.



TABLE 1

PERCENTAGE RELATIVE BIAS, ROOT MEAN SQUARE ERROR AND STUDENT T: SIMULATED MONTHLY DATA FOR 3 MONTH T-BILLS

years=2 bias rmse t student

187 sigma k theta sigma k theta sigma k theta

CTML -5,76 732,69 1,34 14,25 842,39 13,14 -0,44 1,76 0,10

LDE 2,16 843,91 5,72 15,95 1034,72 36,84 0,14 1,41 0,16

CHE -8,68 845,49 4,92 15,76 1036,55 33,65 -0,66 1,41 0,15

OLS -8,68 707,28 4,92 15,76 846,88 33,65 -0,66 1,52 0.15

GMM -14,05 723,62 2,71 19,65 859,88 26,72 -1,02 1,56 0,10

DTML ■2,04 848,20 5,34 15,25 1031,80 35,20 -0,13 1,44 0,15

years=5 bias rmse t student
199 sigma k theta sigma k theta sigma k theta

CTML -6,38 366,95 1,74 10,20 465,64 15,82 -0,80 1,28 0,11

LDE -2,18 397,27 3,15 8,95 535,04 31,36 -0,25 1,11 0,10

CME -7,85 396,32 2,47 11,23 533,98 30,03 -0,98 1,11 0,08
OLS >7,85 353,23 2,47 11,23 462,86 30,03 -0,98 1,18 0,08

GMM -10,53 370,27 2,15 13,58 483,36 25,64 -1,23 1,19 0,08

DTML -3,81 395,92 3,14 9,33 533,36 30,20 -0,45 1,11 0,10

years=10 bias rmse t student

198 sigma k theta sigma k theta sigma k theta

CTML -4,89 181,39 0,64 8,24 236,86 14,34 -0,74 1,19 0,04
LDE -2,40 177,30 2,97 7,26 247,01 25,33 -0,35 1,03 0,12

CME -5,60 177,27 1,81 8,60 246,57 21,49 -0,86 1,03 0,08

OLS -5,60 164,61 1,81 8,60 227,36 21,49 -0,86 1,05 0,08
GMM -6,88 172,07 1,56 9,62 235,80 19,81 -1,02 1,07 0,08
DTML -3,21 177,23 1,96 7,52 246,95 22,85 -0,47 1,03 0,09
years=20 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -4,79 82,91 1,34 6,56 122,94 12,51 -1,07 0,91 0,11
LDE -3,36 80,30 2,90 5,53 127,46 17,07 -0,77 0,81 0,17
CME -5,43 79,57 1,82 6,92 127,07 16,32 -1,27 0,80 0,11
OLS -5,43 74,51 1,82 6,92 119,06 16,32 -1,27 0,80 0,11
GMM -6,13 81,75 1,84 7,52 126,41 18,26 -1,41 0,85 0,10
DTML •3,75 79,79 1,80 5,76 127,23 16,50 -0,86 0,81 0,11
years=50 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -4,44 31,66 0,48 5,24 51,77 8,80 -1,59 0,77 0,05
LDE ’3,53 31,05 1,86 4,47 52,60 9,46 -1,28 0.73 0,20
CME -5 29,58 0,69 5,70 51,53 9,18 -1,83 0,70 0,08
OLS -5 27,32 0,69 5,70 49,09 9,18 -1,83 0,67 0,08
GMM -5,38 32,64 0,51 6,09 54,29 9,26 -1,89 0,75 0,05
DTML -3,69 29,69 0,69 4,59 51,68 9,18 -1,34 0,70 0,08
years=100 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -4,16 14,52 0,45 4,63 33,01 6,59 -2,04 0,49 0,07
LDE -3,52 14,74 1,81 4,07 34,54 7,09 -1,73 0,47 0,26
CME -4,82 13,84 0,53 5,22 33,55 6,79 -2,41 0,45 0,08
OLS -4,82 12,14 0,53 5,22 32,01 6,79 -2,41 0,41 0,08
GMM -4,98 15,41 0,28 5,38 35,37 6,79 -2,47 0,48 0,04
DTML
years=200 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -3,93 5,50 0,74 4,17 18,78 4,66 -2,79 0,31 0,16
LDE -3,39 6,01 2,09 3,67 19,65 5,17 -2,42 0,32 0,44
CME -4,60 5,49 0,74 4,79 19,36 4,73 -3,40 0,30 0,16
OLS -4,60 4,09 0,74 4,79 18,54 4,73 -3,40 0,23 0,16
GMM -4,68 6,24 0,51 4,87 19,90 4,63 -3,43 0,33 0,11
DTML



TABLE 2

PERCENTAGE RELATIVE BIAS, ROOT MEAN SQUARE ERROR AND STUDENT T: SIMULATED DAILY DATA FOR 3 MONTH T-BILLS

years=1 bias rmse t student

196 sigma k theta sigma k theta sigma k theta

CTRL -3,76 1823,80 1,38 4,90 2248,97 9,88 -1,19 1,39 0,14

LDE -3,26 1845,73 2,61 4,52 2306,06 20,15 -1,04 1,32 0,13

CME -4,03 1844,59 2,58 5,12 2313,97 20,43 -1,27 1,32 0,13

OLS -4,03 1821,31 2,58 5,12 2277,08 20,43 -1,27 1,33 0,13

GMM -4,61 1888,54 3,31 5,70 2361,90 23,37 -1,37 1,33 0,14

DTML
years=2 bias rmse t student

193 sigma k theta sigma k theta Sigma k theta

CTML -3,62 909,39 1,65 4,36 1123,21 12,70 -1,49 1,38 0,13

LDE -3,37 934,59 4,61 4,15 1179,29 26,46 -1,39 1,30 0,18

CME -3,78 934,22 4,31 4,49 1179,48 26,55 -1,57 1,30 0,16

OLS -3,78 927,74 4,31 4,49 1168,77 26,55 -1,57 1,31 0,16

GMM -4,09 963,45 3,18 4,77 1210,49 22,33 -1,66 1,31 0,14

DTML
years=5 bias rmse t student

198 sigma k theta sigma k theta sigma k theta

CTML -3,53 401,30 1,66 3,86 518,73 15,85 -2,27 1,22 0,11

LDE -3,41 400,22 3,24 3,75 530,86 27,75 -2,16 1,15 0,12

CHE -3,60 398,59 2,63 3,93 529,97 26,32 -2,29 1,14 0,10
OLS -3,60 397,07 2,63 3,93 527,39 26,32 -2,29 1,14 0,10

GMM ‘3,77 425,81 2,51 4,09 549,63 23,21 -2,39 1,16 0,11
OTML

years=10 bias rmse t student
199 sigma k theta sigma k theta sigma k theta

CTML -3,62 187,10 0,35 3,78 245,86 14,33 -3,34 1,17 0,02

LDE -3,61 171,39 1,69 3,76 238,35 19,75 -3,38 1,03 0,09
CME -3,71 170,80 0,94 3,86 237,92 19,46 -3,50 1,03 0,05

OLS “3,71 170,38 0,94 3,86 237,29 19,46 -3,50 1,03 0,05
GMM -3,78 177,87 1,14 3,93 246,40 20,06 -3,53 1,04 0,06
DTML
years=20 bias rmse t student

200 sigma k theta Sigma k theta sigma k theta
CTML -3,56 88,27 1,31 3,66 129,88 12,51 -4,24 0,93 0,11

LDE -3,59 80,71 2,84 3,68 126,81 15,96 *4,37 0,83 0,18
CME -3,66 79,90 1,83 3,75 126,39 15,47 -4,46 0,82 0,12
OLS -3,66 79,72 1,83 3,75 126,11 15,47 -4,46 0,82 0,12
GMM -3,71 84,40 1,73 3,79 130,70 15,17 -4,52 0,85 0,11
DTML

years=100 bias rmse t student
200 sigma k theta sigma k theta sigma k theta

CTML -3,49 31,87 0,42 3,53 54,10 9,04 -6,61 0,73 0,05
LDE ■3,55 28,41 1,70 3,59 52,54 9,56 -6,94 0,64 0,18
CME -3,60 27,48 0,51 3,64 52,04 9,31 •7,06 0,62 0,06
OLS -3,60 27,40 0,51 3,64 51,96 9,31 -7,06 0,62 0,06
GMM -3,61 30,42 0,45 3,65 54,53 9,35 -7,03 0,67 0,05
OTML

years=100 bias rmse t student
200 sigma k theta sigma k theta sigma k theta

CTML •3,49 16,24 0,43 3,51 34,21 6,56 -9,02 0,54 0,07
LDE -3,56 14,82 1,80 3,58 34,19 7,06 -9,62 0,48 0,26
CME -3,60 13,94 0,52 3,62 33,12 6,76 -9,74 0,46 0,08
OLS ■3,60 13,89 0,52 3,62 33,07 6,76 -9f74 0,46 0,08
GMM -3,60 15,50 0,49 3,62 35,45 6,74 -9,81 0,49 0,07
DTML



TABLE 3

PERCENTAGE RELATIVE BIAS, ROOT MEAN SQUARE ERROR ANO STUDENT T: SIMULATED MONTHLY DATA FOR INSTANTANEOUS T-BILLS

years=2 bias rmse t student

187 sigma k theta sigma k theta sigma k theta

CTML -2,03 751,30 1,10 13,35 877,61 13,84 -0,15 1,66 0,08

LDE 6,70 901,56 6,27 17,79 1103,18 38,16 0,41 1,42 0,17

CME -5,30 903,48 5,47 14,29 1105,92 35,39 -0,40 1,42 0,16

OLS -5,30 749,39 5,47 14,29 888,34 35,39 -0,40 1,57 0,16

GMM -10,91 764,95 3,46 17,72 899,99 27,22 -0,78 1,61 0,13

DTML 2,21 902,37 5,21 15,86 1101,91 37,04 0,14 1,43 0,14

years=5 bias rmse t student

199 sigma k theta sigma k theta sigma k theta

CTML -2,96 363,20 1,51 8,72 462,62 16,62 -0,36 1,27 0,09

LDE 1,48 400,72 3,50 9,03 536,14 32,06 0,17 1,13 0,11
CME -4,43 399,79 2,79 9,37 535,12 30,49 -0,54 1,12 0,09

OLS -4,43 356,48 2,79 9,37 463,79 30,49 -0,54 1.20 0,09

GMM -7,28 373,91 2,43 11,44 484,30 25,49 -0,82 1,21 0,10

DTML -0,23 398,54 2,89 8,75 534,43 31,31 -0,03 1,12 0,09

years=10 bias rmse t student

198 sigma k theta sigma k theta s i gma k theta
CTML -1,40 179,09 0,13 6,96 234,73 14,92 -0,20 1,18 0,01

LDE 1,24 177,95 2,60 7,16 247,20 25,92 0,18 1,04 0,10

CME -2,08 177,99 1,39 7,04 246,79 22,03 -0,31 1,04 0,06

OLS -2,08 165,31 1,39 7,04 227,57 22,03 -0,31 1,06 0,06
GMM -3,47 172,73 1,10 7,75 236,01 20,40 -0,50 1,07 0,05
DTML 0,41 177,74 1,54 7,01 247,02 23,45 0,06 1,04 0,07
years-20 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML •1,35 81,67 0,98 4,84 121,94 12,93 -0,29 0,90 0,08
LDE 0,21 80,33 2,65 4,56 127,49 17,62 0,05 0,81 0,15
CME -1,94 79,66 1,49 4,86 127,13 16,81 -0,43 0,80 0,09
OLS -1,94 74,60 1,49 4,86 119,12 16,81 -0,43 0,80 0,09
GMM -2,69 81,97 1,51 5,28 126,75 19,06 -0,59 0,85 0,08
DTML -0,20 79,65 1,46 4,55 127,16 17,07 -0,04 0,80 0,09
years=50 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -0,72 28,92 0,04 2,93 51,73 9,35 -0,25 0,67 0
LDE 0,21 28,37 1,44 2,85 52,76 9,83 0,07 0,64 0,15
CME -1,30 27,30 0,15 3,08 52,14 9,62 -0,46 0,61 0,02
OLS -1,30 25,08 0,15 3,08 49,67 9,62 -0,46 0,59 0,02
GMM -1,70 31,28 -0,16 3,42 54,53 9,70 -0,57 0,70 -0,02
DTML 0,05 27,45 0,16 2,85 52,37 9,62 0,02 0,62 0,02
years-100 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -0,70 13,96 0,08 2,22 32,70 6,80 -0,33 0,47 0,01
LDE 0,07 14,79 1,55 2,12 34,53 7,26 0,03 0,47 0,22
CHE -1,29 13,86 0,17 2,44 33,52 7,01 -0,62 0,45 0,02
OLS -1,18 12,17 0,17 2,44 31,99 7,01 -0,62 0,41 0,02
GMM -1,49 15,47 -0,14 2,57 35,44 7,02 -0,71 0,49 -0,02
DTML
years=200 bias rmse t student

200 sigma k theta sigma k theta sigma k theta
CTML -0,47 5,01 0,38 1,55 18,65 4,78 -0,32 0,28 0,08
LDE 0,19 6,07 1,84 1,48 19,66 5,22 0,13 0,32 0,38
CME -1,06 5,53 0,39 1,77 19,38 4,85 -0,75 0,30 0,08
OLS -1,06 4,13 0,39 1,77 18,56 4,85 -0,75 0,23 0,08
GMM -1,17 6,23 0,11 1,84 19,83 4,75 -0,82 0,33 0,02
DTML
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