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MEAN REVERSION TESTS WITH REFLECTING BARRIERS:

AN APPLICATION TO EUROPEAN MONETARY SYSTEM

EXCHANGE RATES

Clifford A. Ball (*) and Antonio Roma (**)

Abstract

This paper derives a statistical test, based on the first order autocorrelation, to 
ascertain whether a stochastic process evolving within reflecting barriers is mean re- 
verting. Under these conditions the standard unit root analysis does not apply. Since 
the presence of reflecting barriers per se will induce mean reverting behaviour, the 
detection of mean reversion inside the two boundaries requires that the effect of re­
flection be properly accounted for. The test is applied to the exchange rate in terms 
of Deutsche Marks of five currencies participating in the European Monetary System. 
Our methodology is helpful in deciding whether the behaviour of these exchange rates 
inside the barriers may be modeled as a simple reflected Brownian motion, or whether 
a more complex model is warranted.
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1 - Introduction1

Dickey and Fuller [1979,1981] investigated the statistical properties of the sample auto­

correlation coefficient under the null hypothesis of a random walk and under the alternative 

hypothesis of an autoregressive mean reverting process. Their analysis becomes increasingly 

important as the autocorrelation approaches unity and we have a unit root. This research has 

spurred a literature on unit root or mean reversion tests, see for example, Dickey, Bell, and 

Fuller [1986], Evans and Savin [1981,1984], Phillips [1987, 1988], Schwert [1989], and many 

others. These tests have been applied to US dollar exchange rates see, for example, Meese 

and Singleton [1982]. Also, Doukas and Rahman [1987] examine five different freely-floating 

currency futures against the US dollar over the period 1977-1983. They perform Monte 

Carlo simulation experiments to investigate the sensitivity of unit root tests to changing 

volatility. They find no mean reversion in these exchange rates. Perron [1989] examines unit 

root tests when the underlying process is subject to a single shift in regime. Subject to this 

misspecification, he devises alternative tests which are robust.

We focus, in this paper, on the sensitivity of mean reversion tests to misspecification of 

the null hypothesis of the random walk, or Brownian Motion in continuous time, when the 

underlying process is subject to reflecting barrier behavior. The exchange rate mechanism 

of the European Monetary System (EMS) motivates our study of this’problem. The institu­

tional framework of the EMS requires the bilateral exchange rates of participating countries 

to lie within intervention limits which act as reflecting barriers for the exchange rate. The 

^art of this research was carried out while A. Roma was visiting the Anderson Graduate School of 
Management of the University of California at Los Angeles. C.A. Ball acknowledges support from a grant 
from the Dean’s fund at the Owen School of Management, Vanderbilt University. We thank Gordon Bodnar, 
Daniele Terlizzese, and an anonymous referee for useful comments. The Authors are solely responsible for 
errors.
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basics of the mechanism are quite simple: a grid of central bilateral parities is established 

between the participating currencies, and a maximum fluctuation of ±2.25% around the 

central parity is enforced through the obligation of both currencies’ central banks to inter- 

vene whenever a bilateral exchange rate reaches a boundary2. These are called marginal 

interventions. An important characteristic of the system is that central banks’ direct mar­

ket interventions increasingly occur when the exchange rate is still within the EMS band. 

Autoregressive behavior within the reflecting barriers may correspond to such intramarginal 

intervention by the central banks, to stabilizing speculation inside the fluctuation band, or 

to other factors. However, when a fluctuation band cannot be mantained, a ‘realignment’ 

occurs3. The modeling of the exchange rate process, including realignments, requires the 

use of a jump-^diffusion process, see for example Ball and Roma [1991] or Svensson [1991a]. 

Here we focus on the exchange rate behavior conditional on no realignment, i.e. the diffusion 

component of such a model.

Within the EMS we do not expect the standard unit root analysis for detection of 

autoregressive behavior to remain valid. In fact, the whole structure of the problem is altered 

by the presence of reflecting barriers which provide the added regularity of stationarity of 

limiting distributions. Recall that it is precisely the nonstationarity of Brownian Motion 

which causes the unit root problem. However, recent authors, for example, Edison and 

Fisher [1991] and Svensson [1991b], have applied the standard Dickey Fuller analysis to EMS 

exchange rates. Svensson [1991b], applying Dickey Fuller tests, rejects a random walk for 

these exchange rates. We propose a new statistical test which is appropriate for the detection 

of mean reversion inside reflecting barriers, against the null hypothesis of Brownian Motion 

2A wider fluctuation band (±6%) was enforced for the Italian Lira until January 1990, and it is currently 
enforced for the Spanish Peseta, and Portoguese Escudo.

3See Van Hypersele and Koeune [1985] for details of the European Monetary System.
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with reflecting barriers.

In section 2, we examine the Dickey-Fuller analysis when the underlying process is mis­

specified by reflecting barrier behavior. For plausible parameter values, we argue that the 

standard analysis is no longer valid. Section 3 establishes the asymptotic normality of the 

sample autocorrelation coefficient under reflecting behavior and also establishes a numerical 

algorithm to compute the asymptotic moments. In section 4, we discuss some of the esti­

mation problems in implementing our statistical methods. We introduce in section 5 a new 

statistic for detecting mean reversion beyond that caused by reflecting barrier behavior. We 

also apply our analysis to EMS exchange rate data and discuss the economic implications. 

Section 6 contains our conclusions.

2 - Misspecification of the Unit Root Tests

In a Markov framework, the presence of mean reverting behavior is often tested by ex­

amining the first order autocorrelation. Such tests commonly include a deterministic trend 

and/or an estimated mean of the process, see Fuller [1976]. However, for EMS exchange 

rates, due to the presence of bilateral limits, a time trend is inappropriate and the mean 

of the process, the official central parity, has been assumed known. Under a null hypothe­

sis of Brownian Motion against an alternative hypothesis of the Ornstein-Uhlenbeck (OU) 

process in continuous time, based on discrete observations, a standard statistical test may 

be performed. The usual test statistic is the sample first order autocorrelation pn defined 
y^r»—1

by pn = m where for EMS rates Xm is the deviation of the logarithm of the

exchange rate from its mean at period m and n is the number of observations. When there 

is no ambiguity we will drop the n subscript on pn. Dickey and Fuller [1979, 1981] and 

others, have examined this statistical problem in some detail. In summary, for values of p
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less than unity the distribution of \/n(p — p) is asymptotically normal with mean zero and 

variance a? = (1 — p2). For p = 1, when the underlying process is no longer stationary, the 

asymptotic normality breaks down and the order of convergence changes. In fact, n(p — p) 

has a limiting distribution and we have a unit root problem. This distribution is nonnormal 

(Fuller [1976]) and markedly skewed to the left. Furthermore, for values of p close to one, 

Phillips [1988] has shown that the sample autocorrelation coefficient behaves very much as 

in the nonstationary p = 1 case.

Consider, however, representing the EMS exchange rate behavior as a Brownian Motion 

between reflecting barriers. In this case the Dickey-Fuller analysis, which assumes unbounded 

Brownian Motion as the null hypothesis, will no longer be valid. Suppose we perform a stan­

dard Dickey-Fuller unit root test when the true process is Brownian Motion with reflecting 

barriers. For parameter values similar to those estimated from real EMS exchange rate data 

(i.e. a volatility <7 ~ 0.003 on a weekly basis and a ±2.25% fluctuation band, see for example 

Ball and Roma [1991]), Monte Carlo simulation experiments indicate that the probability of 

observing p < 1 with samples of more than 100 observations is practically 1.0 rather than 

0.6826, the number determined under the standard unit root analysis.

Despite the problems with the standard Dickey-Fuller analysis, extensive simulations 

show that it may still be useful for moderate sample sizes (less than 100) when the barriers 

are relatively wide (15-20 standard deviations apart) and the likelihood of reaching a limit 

is small. In general, however, for the modelling of exchange rates within the EMS both 

the null and alternative hypotheses should recognize the barrier conditions. Paralleling the 

unit root analysis, the simplest candidate for the alternative hypothesis would be the OU 

process with reflecting barriers. Significantly, this alternative hypothesis would imply the 
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existence of additional mean reversion inside the EMS bands over and above that induced by 

the barriers imposed on a Brownian Motion process. Considering explicitly this alternative 

hypothesis is computationally challenging since the transition density of reflected OU is not 

known and can be represented only as the solution of a particular partial differential equation 

with specific boundary conditions. More general alternatives would be computationally more 

demanding. In response to these difficulties, we propose a simple test based on the sample 

autocorrelation coefficient p. The test is not designed specially for a particular alternative 

specification but, rather, to detect mean reversion not already accounted for by reflecting 

barrier behavior.

3 - Asymptotic Normality of the Sample Autocorrelation

In this section we examine carefully the asymptotic properties of the sample autocorre­

lation under the misspecification of Brownian Motion with reflecting barriers. The Dickey- 

Fuller analysis, which assumes unbounded Brownian Motion as the null hypothesis, will no 

longer be valid. We show that the asymptotic distribution of the scaled autocorrelation 

coefficient, p, is normal. Moreover, we compute the asymptotic mean and variance of this 

coefficient without recourse to Monte Carlo simulation experiments. In addition, our pre­

cise calculations are supported by simulation analysis. For ease of exposition, we assume 

the process is in probabilistic equilibrium, that is, the initial distribution of the process is 

its equilibrium distribution which is uniform. However, the results follow regardless of the 

initial distribution. We observe the process in discrete time.

Theorem: Let X(.) be reflected Brownian Motion with zero drift, variance rate cr2, 

and barriers at ±6, b > 0. The scaled sample autocorrelation coefficient based on n ob­

servations, y/n(pn — p), converges in distribution to TV/O,^), where the asymptotic mean

9
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__ 1 (2fc+l)2<y2
p = || Sfcto (2fc+i)4 ' e w3 < 1. Both p and a2 are functions of y only.

Proof: First note that the stationary distribution of X(.) is uniform [—b, b], Define the 

three functions:

An = n-°-5^(Xm+1-pXm)Xm 
m=l

Bn = 
m=l 

n
Qn = n 1 52 Xm+lXm- 

m=l

By the strong law of large numbers for stationary Markov processes, see Doob [1953] Theorem

6.1, Bn converges almost surely to the constant E[X,] = &2/3, and Qn converges almost surely 

to the constant, EfA'iA’j]- Note E[AiX2] = E[XiE[X2 | X,]] Hence,

E[XiX2] = [ (x/2b) [ yf(y | x)dydx. (1)
Jr=—b Jy=—b

Here, /(. | .) is the one-period transition density of reflected Brownian Motion. We have, 

according to Feller [1971], a Poisson expansion for the (j — i)-period transition probability 

density function given by:

00 — k2 lev Ic'ir
f(yj I ®i) = (20 1 + b~l £ exp(—<r2(j - i}ir2Yos—(yj 4- b)cos—(x,- + b). (2)

Observe that the term a2(j — i) reflects the underlying Brownian volatility over a 

time interval of length j — i. Recall, pn = Xm. Clearly, as n —> oo E[pn] —>

E[XiX2]/E[Xf]. Integrating expression (1) by parts using the transition density (2), and 

dividing by 62/3, we find the asymptotic mean: p = ’ e~ • This func­

tion is of interest in its own right since it captures the reversion induced by reflection at the 

barriers.
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To establish normality, under regularity conditions we may apply standard central limit 

theorem results for strictly stationary Markov processes. Since the transition density is 

bounded and converges geometrically to its limiting distribution, we may apply Doob [1953],

Theorem 7.5’:

Let fm = /(Xm+i, Xm) where X(.) is reflected Brownian motion with zero drift, variance 

rate a2, and barriers at ±6. Let E[/m] = JSm.

If

Um E[n-1 £ (fm - Em)]2 = a2 
m=l

exists; if af is positive and for any initial distribution,

è (A. - E„) => N(0rf).

m=l

Set

fm — “ (-^Gn+l ~ pXm)Xm

with p =

Under the uniform distribution and the specification of p, E[/m] = Em = Ó. By Doob’s 

theorem, An converges in distribution to a normal random variable if the limiting variance 

exists and it is positive. Since,

■s/n(p - p) = An/Bn,

we can establish the asymptotic normality of the scaled autocorrelation by determining the 

limiting variance aj. We now furnish the necessary technical analysis.

By choice of p, £[An] = 0 for all n, and,

N
Var{An] = n-War[YSXm+iXm-pX2m}\

m=l
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m=l m=l
n n n n

= Xm+1Xm)2 - 2p(£ Xm+1Xm)(£ X’) + (p)2(£ X2m)2].
m=l m=l m=1 m=l

Define

C(j) =

P(j) = Eprjx’j,

F,(j) = EpGAXfJ,

F20) = E[X?X1+jXJ+J,

for all j. Using the strict stationarity of the process and expanding the quadratic form, with

some algebra we can show that:

E[(è )2] = nC'(0) + 2£(n-j)C(j), 

m=l j=l

E[(£x’)2] = nP(0) + 2£(n-j)P(j), 
m=l j=l

E[£X„,+iXm£Xi] = „Fi(0) + £(n-;)[F,(j) + F2(j)]. 
m=l m=l j=l

Combining these results,

Var[An] - n-^nfCXO) - 2/>Fi(0) + (p)2Z>(0)] + 2 £(n - j)[C(j) - pfF^j) + F2(j)) + (p)2]) 
j=l

= Z(0) + 2ni-j7n)£(j), 
j=i

where for each j,

Li) = C0) - p^j) + F2(j)) + (p)2D(j).

For fixed j, consider C(j) more carefully. Note that

E[X1X2X1+iX2+i] = 
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r6 rb rb fb
/ I II x2+jxi+jx2xif(x2+jx\+jx2x'i^dx\dx2dxi^jdx2+jy 

JX2^.j=-r~b Jxi+j——b Jx2=—b J x\——b

where f(x2+jXi+jX2Xi) represents the joint density of the four random variables (Xi, X2i Xi+j, ^2+j) 

at (x2+jXi+jX2Xi). However, due to the Markov property of the underlying process we may 

rewrite this as:

f6 (b fb fb
/ / / / ®2+,/(®2+i | Zl+jFl+j/Fl+j I Xl)

V£2+j=:-o Vn^.j=—b JX2=—b J x\——b

x2f(x2 | x1)xif(xi)dx1dx2dxi+jdx2+j. (3)

Note that /(xi+,, |x2) represents the transition density over (J — 1) time periods. As 

j increases this transition density converges to the uniform distribution geometrically fast. 

According to (2), the transition density /(zi+jjo^) is given by a constant plus a sum of terms 

for k — 1,2,.., oo. We can therefore write the quadruple integral C(j) as a sum of quadruple 

integrals, each term of the sum corresponding to a term of the transition density /(a:i+j|x2). 

However, for k odd the contribution of the term to C(j) is 0. For j sufficiently large, we may 

truncate the expansion at k = 2 with higher order terms being arbitrarily small and hence 

neglected.

We have

/(zi+,|z2) = (26)-1 + ft-1 cos f(xi+,- + b) cos f(x2 + b)63 

where 6 = exp{ ~^F).

Substituting this expansion into (3) and integrating we obtain

C(;j = E[X,X2]2 + KÓC

where If is a bounded constant which can be determined as a simple quadruple integral, 

independent of j. Consequently, C(j) converges to its easily calculated limit at the geometric
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rate 8. Directly similar arguments can be made for the limiting behavior of D(.), Fi(.), and 

F2(.). As j -> oo, D(j) -> E[JCf]2, Fi(j) -> EpGXgjEfXfl, i = 1,2. Each of the limits is 

achieved at the same geometric rate 8. Combining these results and noting the choice of p, 

we see that as j —> oo, L(j) —► 0 at the geometric rate 8. Recall

Var[An] = Z(0) + 2^(1 
j=l

Hence

N oo

Jim Var[An] = 1(0) + 2 £ Z(j) + 2 U ~j/nW)- 
5=1 i=7V+l

However, we see that by summing the appropriate geometric series, the second sum is 

bounded by | I • In summary, the limiting variance exists, and furthermore, we

may compute the limiting value to any fixed level of accuracy. □

The standard convergence results we employ are useful only when we can establish that 

the limiting variance exists. For this application not only do we establish the existence of 

the limiting variance, but we are also able to compute it to an arbitrary degree of accuracy. 

The result hinges on the geometric convergence of fourth order moments of this process. 

Furthermore, due to the Markovian structure of the process, we can compute the quadruple 

integral by means of a string of double integrals where each double integral is determined by 

the extended Simpson’s rule. In effect, the computation of the integral reduces to a string 

of matrix multiplications where the dimension of the matrix corresponds to the number of 

steps in the Simpson rule integration.

Table 1 examines, by simulation analysis using 10,000 replications, the statistical proper­

ties of pn for various sample sizes, based on the null hypothesis of reflected Brownian Motion 

with different a. For each replication, we generated a time series beginning at Xq = 0.0

14 



subject to the null hypothesis, and computed pn. We took advantage of the reflection prin­

ciple to perform the simulation of reflected Brownian motion, see Karlin and Taylor [1975]. 

Specifically, we generate unrestricted Brownian Motion from its increments which are inde­

pendent and normally distributed. For reflected Brownian Motion about a single barrier at b 

say, we generate the increments as in the unrestricted case except when the new value of the 

process X exceeds b. In this case, the value of the reflected process becomes b — (X — 6), its 

reflection about b. We have two reflecting barriers in this application. From the simulation, 

we see that very large samples are needed for convergence to normality to take place. Also, 

the convergence is faster for larger cr/b.

Table 2 computes E[/>n] = EfXjJGj/EfXj ] = p and by numerical integration 

ap, for various plausible values of <7 and barriers at b = 0.0225 which we see in practice. 

Of course, the results depend on the ratio j only, so that the Table may be applied for 

alternative values of b and cr by simple scaling. For example, Lindberg and Soderlind [1991] 

analyze exchange rate target zones for Swedish exchange rates where the band limit is set at 

b — 0.015. Table 3 describes some calculations when a = 0.003. In this case, 6 = 0.91600833. 

The quadruple integrals are computed using a 101 point Simpson extended double integration 

rule which, for these parameter settings, gives accuracy to at least 8 significant digits. For 

j = 1,300, we computed L(j) and from these the estimate of the asymptotic variance of 

An, Z(0) + 252^., L(j), as well as a bound on the error of the approximation | L(N)^ |. 

Finally, we compute the approximation to ap, the limiting standard deviation of y/npn. The 

Table clearly identifies the accuracy of our approximations. Inspection of Tables 1 and 3 also 

reveals that the simulated standard error of vnpn matches its computed asymptotic value 

for large sample sizes.

15



4 - Estimation Problems

Table 2 may be useful for carrying out statistical tests on EMS exchange rates. For a 

fixed barrier 6, both p and ap are functions of a only. In empirical applications, the true 

standard deviation of the process under the null hypothesis of reflected Brownian Motion, 

a, is not known, and hence must be estimated. Given this parameter, the mean value of p 

and its scaled standard error can be computed. The residuals of the OLS regression provide 

one estimator of a2:
1 n~2

»2 = —-^yxM-px,r.
n -2 .=1

In fact, we may apply maximum likelihood estimation (MLE) on the volatility parameter 

under the reflective barrier hypothesis. The corresponding transition density may only be 

represented by an infinite series expansion but, following Lo [1988], with appropriate trun­

cation MLE may be implemented numerically4. See Ball and Roma [1991] for details. Table 

4 reports the two estimates of volatility for selected EMS bilateral exchange rates. Although 

the estimate based on the residuals is slightly biased it is easier to compute which makes it 

quite useful in practical applications. Given an estimate a, Table 2 may be used to obtain 

the mean and scaled standard deviation of p when the sample is sufficiently large.

4The transition density of Brownian motion {%(/) : t > 0} with reflecting barriers at a and —b and 
instantaneous variance a2 is given also by Feller [1971, p.341] as:

too

f(X(t) I X(0)) = (2%<72t)-° 5 £2 [exp{-[X(t) - X(0) + 2k(a + 6)]2/2<r2Z} 
fc = — oo

4-ezp{—[X(Z) 4- X(0) + 2b 4- 2k(a + b)]2/2<r2t}].
However, for our parameter values, the following approximation, based on a mixture of densities for the case 
of a single reflecting barrier, proves extremely accurate:

f(X(t) I X(0)) ~ (27r<r2t)-0'5[erp{—[X(l) - X(0)]2/2a2i}

+erp{-[X(1) + X(0) - 2a]2/2<r2t]■ + exp{-[X(t) + X(0) + 2b]2/2a2t}].
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Suppose that the standard error of \/np is computed as \/l — p2, that is, directly from 

the OLS regression. This approach, based on an inappropriate assumption, will lead to 

a strongly upward biased standard error. From Table 2 we see that when <r = 0.003 the 

expected value of p ~ 0.9752 and the standard error of \/np — 0.1206. The estimate of this 

standard error as \/l — 0.97522 = 0.2213 would be almost two times too large.

Given reflecting barrier behavior, one should not use the usual standard error of p but, 

rather, an estimate based on the null hypothesis. We demonstrate our mean reversion tests 

on EMS exchange rate data in the following section.

5 - Application to EMS Exchange Rates

Our data source is the Italian Stock Exchange in Rome and Milan which has a daily 

fixing of exchange rates against the Italian Lira. These rates are actual transaction prices 

and the whole fixing process for a variety of foreign exchange rates lasts approximately 15 

to 30 minutes. Our bilateral exchange rate data are obtained by crossing the rates in terms 

of the Italian Lira. The fixing process creates a slight error in variables problem due to lack 

of perfect synchronization of cross rates5. There may also be day of the week effects and 

weekend effects in the foreign exchange markets. For these reasons, we decided to use weekly 

data and to concentrate on the most heavily traded exchange rates6. We used 5 exchange 

rates in terms of the Deutsche Mark and time series of weekly observations spanning the 

period March 1979 when the EMS began through November 1991. In total, we have 662 

weekly observations for each bilateral exchange rate. We perform our test on the deviation 

5This latter problem amounts to an increase of cross rates standard deviations, a, of the order of mag­
nitude of the lira exchange rates standard deviations over 30 minutes. Compared to the weekly standard 
deviation, this is negligible. The effect on p may infact be evaluated by increasing a appropriately, i.e., with 
weekly data, by using <r(336 + l)/336 instead of a.

6 We used exchange rates in terms of the Deutsche Mark which are subject to a 2.25% fluctuation band. 
The Italian Lira moved from the ±6% band to the ±2.25% band in January 1990.
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of the logarithm of the exchange rate from the central parity, X, which is constrained to the 

±2.25% band. Figures 1-5 display the deviations from central parity graphically. During 

this period there were a small number (at most seven for any particular bilateral exchange 

rate) of realignments of central parities. We eliminated any observations corresponding to 

theses shifts in parity since the focus here is mean reversion of exchange rates within the 

EMS bands.

Table 4 reports the least squares analysis including the standard T-Statistics for testing 

the null hypothesis p = 1. Observe that p is always significantly < 1. However, this result 

is not surprising since due to the presence of reflecting barriers on X, following our theorem 

we would expect p < 1. From Table 2, we may compute the expected value of p and its 

scaled standard error, given the estimated volatility of the process. A sharper question is 

whether p is sufficiently small to indicate additional mean reversion beyond that induced by 

reflection at the bilateral limits, i.e. by marginal central bank intervention. To detect this 

additional mean reversion, we propose the statistic Z = which has, according to our 

theorem under the null hypothesis of reflecting Brownian motion, an asymptotic standard 

normal distribution. However, as Table 1 shows, in a finite sample of 662 observations Z 

may be left-skewed. Therefore, we also performed a small sample analysis (Small Sample 

Analysis). In Table 4 we report the estimates of volatility, a, based on the null hypothesis 

of reflected Brownian motion and based on the least squares residuals. Based on this value, 

we computed by simulation the empirical distribution of y/npn under the null hypothesis of 

Brownian motion with reflecting barriers in a sample of 662 observations. We then evaluated 

the p-value of the Z statistic estimated from empirical data based on this small sample 

distribution.
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By applying incorrectly the standard unit root tests with the critical values for the T- 

Statistic (Fuller [1976], Table 8.5.2) we see evidence at at least the 5% significance level 

of autoregressive behavior for the French Franc, Danish Kroner, Dutch Guilder and Irish 

Pound. The results for the Belgian Franc are not significant. In contrast, when we apply 

our modified analysis using the Z Statistic and account for reflection at the barriers, we see 

evidence of additional mean reversion only for the Dutch Guilder. In summary, except for 

the Dutch Guilder, the autocorrelation we see in these time series may be accounted for by 

the reflecting barrier behavior alone.

6 - Conclusions

We have examined tests of mean reversion on time series which are subject to reflect­

ing barrier behavior. The institutional arrangements of the EMS place such restrictions 

on the bilateral exchange rates of its member currencies. Under these circumstances, the 

standard Dickey Fuller analysis of the unit root problem no longer applies. We establish 

the asymptotic distribution of the sample autocorrelation coefficient, p under these condi­

tions. Significantly, we provide a simple expression for the mean and a numerical algorithm, 

which provides arbitrary accuracy, for the standard deviation of p. Based on this analysis, 

we introduce a simple /-Statistic test for detecting mean reversion beyond the effects of 

reflecting barriers. Furthermore, we provide a table which allows the implementation of this 

test without extensive numerical calculations.

We apply this analysis to EMS exchange rate data. We might expect additional mean 

reversion when the central banks engage in intramarginal intervention or perhaps when mar­

ket participants expect the exchange rate band to be fully credible and engage in stabilizing 

speculation. However, reflection at the intervention limits induces an autocorrelation below
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unity even when the underlying process is Brownian Motion and our statistical analyses con­

firm this result in the observed exchange rates. In 4 out of 5 cases examined, our statistical 

test rejects the hypothesis that the process for this exchange rate is subject to additional 

mean reverting behavior inside the fluctuation band. In summary, the empirical observed 

mean reversion can, in most cases, be accounted for by the presence of reflecting barriers 

alone.
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Table 1

Simulation of pn for various sample sizes n, and standard deviation <r7.

a = 0.002

Sample Size 
(n)

Mean
Z’n

Std. Deviation 
\/npn

Skewness 
vnpn

Kurtosis

250 0.9860 0.165 -2.799 12.768
500 0.9877 0.111 -1.885 6.859
1000 0.9882 0.095 -1.158 2.498
5000 0.9886 0.090 -0.509 0.510
10000 0.9887 0.082 -0.482 0.397

a = 0.003

Sample Size 
(n)

Mean 
Pn

Std. Deviation 
ynpn

Skewness 
x/npn

Kurtosis 
\/npn

250 0.9733 0.162 -1.704 5.938
500 0.9744 0.139 -1.139 2.732
1000 0.9748 0.130 -0.793 1.560
5000 0.9752 0.122 -0.287 0.226
10000 0.9752 0.121 -0.224 0.095

a = 0.004

Sample Size 
(n)

Mean 
Pn

Std. Deviation 
y/npn

Skewness 
y/npn

Kurtosis
Vnpn

250 0.9553 0.195 -1.068 2.251
500 0.9564 0.177 -0.693 0.910
1000 0.9567 0.177 -0.495 0.474
5000 0.9571 0.176 -0.198 0.144
10000 0.9571 0.166 -0.101 0.014

7This table provides sample mean and sample standard deviation of pn for various sample sizes n and 
standard deviation a. The experiment is based on 10,000 replications. 6 = 0.0225.
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Table 2

Computation of p and ap for Various Parameter Settings.

Standard Deviation: a Mean: p <Tp

0.0020 0.9887 0.0778
0.0022 0.9864 0.0861
0.0024 0.9839 0.0945
0.0026 0.9812 0.1031
0.0028 0.9783 0.1118
0.0030 0.9752 0.1206
0.0032 0.9720 0.1296
0.0034 0.9685 0.1386
0.0036 0.9649 0.1477
0.0038 0.9611 0.1570
0.0040 0.9571 0.1664

Table 3

Asymptotic Behavior of L(j)8

N 1 | i(O) + 2EJ"1i0') Estimated ap
50 7.235*10“12 4.2092244*10-1° 0.12157863
100 9.004*10-14 4.1437697*1O-10 0.12062964
150 1.120*10-15 4.1429551*1O"10 0.12061778
200 1.394*10~17 4.1429450*10-1° 0.12061763
250 1.699*10-19 4.1429449*1O-10 0.12061763
300 3.939*10-21 4.1429449*1O-10 0.12061763

8For (T =0.003, this table provides for different truncation points N, L(0)+2 L(j), the approximation
to the limiting variance of An, | L(7V)—^ |, the bound on the error of the approximation, and the estimate 
of <Tp, the limiting value of the standard deviation of \/npn.
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Table 4: Analysis by Exchange Rate9

Currency y*103 Ao aou P T — Stat
DM.FFR 2.569 3.123 0.963 1.070 -3.458
DM.DKR 3.913 3.589 0.955 1.172 -3.840
DM.BFR 7.334 2.604 0.990 0.805 -1.242
DM.DFL 4.105 2.268 0.933 1.460 -4.589
DM.IRP 0.257 3.079 0.963 1.179 -3.138

Asymptotic Analysis
Currency iT*103 aBM P P

n-o.5(T.l(? Z — Stat
DM.FFR 3.156 0.963 0.9732 0.5016 -2.034
DM.DKR 3.644 0.955 0.9651 0.5855 -1.725
DM.BFR 2.634 0.990 0.9811 0.4108 2.167
DM.DFL 2.223 0.933 0.9856 0.3538 -14.87
DM.IRP 3.085 0.963 0.9739 0.4939 -2.207

Small Sample Analysis
Currency A*10’aBM P P

n-0.5a.1(? Z - Stat
DM.FFR 3.156 0.963 0.9721 0.5441 -1.68

(0.062)
DM.DKR 3.644 0.955 0.9635 0.6218 -1.37

(0.092)
DM.BFR 2.634 0.990 0.9801 0.4702 2.09 

(0.99)
DM.DFL 2.223 0.933 0.9855 0.4158 -12.6 

(0.00001)
DM.IRP 3.085 0.963 0.9733 0.5324 -1.93 

(0.044 )

9In this Table, all currencies have 662 weekly observations. Here, Xo is the initial value of the deviation 
from central parity measured as the natural logarithm of the exchange rate minus the natural logarithm of 
the central parity in Deutsche Marks. The symbols iiou and &bm designate the estimates of the volatility 
assuming an OU process and a Brownian Motion with reflection and p is the estimated autocorrelation 
parameter. The standard error of p ignoring reflecting barriers is designated se(p) while the mean and 
standard error of p accounting for reflecting behavior are p and The T — Stat is the standard T-
statistic for testing the null hypothesis that p = 1 ignoring reflecting behavior while the Z — Stat is the 
Z-transform of p accounting for reflection. Small sample statistics are also reported, where p, <rp and Z are
computed according to the appropriate small sample distributions, derived by simulation. In parenthesis are
reported the P-values of the small sample Z statistic (one-sided test).

23



Figure 1: Deviation from Central parity
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Figure 2: Deviation frrm Central Ferity

Weekly Data: EM.DKR
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Figure 3: Deviation from Central Parity

Weekly Data: EM.BER
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Figure 4: Deviation from Central Parity

Weekly Data: EM.EFL
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Figure 5: Deviation frmm Central Ifcrity
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