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IMPLEMENTING STOCHASTIC OPTIMAL CONTROL OF NONLINEAR MODELS: 
A COMPARISON WITH ALTERNATIVE SOLUTION METHODS 

by Andrea Cividini and Stefano Siviero (*)

Summary

Solving stochastic optimal control problems with a quadratic 
objective function for nonlinear models has attracted 
increasing attention in recent econometric literature. 
However, algorithms that implement the solution in its full 
form are very complex and require a large amount of computing 
resources. Consequently, optimal control problems are usually 
solved either by neglecting the stochastic nature of 
econometric models (i.e., by means of standard deterministic 
control), or by using algorithms that give approximate 
solutions.
This paper explores the full stochastic approach, presenting 
an operational iterative procedure that implements the full 
stochastic optimal control solution. This is done by using 
stochastic simulations to compute the multiplier matrix that 
maps changes of the control variables into changes of the 
objectives and of the variances of the objectives.

(*) Banca d'Italia, Research Department.





1. Introduction1

Optimal control techniques have received increasing 
attention in the economic literature, as economic policy 
design can be carried out by maximizing the policymaker's 
objective function subject to a set of constraints given by 
an estimated macroeconometric model.

Owing to the stochastic nature of models of this kind, 
optimal control techniques should be designed in such a way 
as to take this aspect into account. Only for linear models 
and quadratic cost functions does the certainty equivalence 
theorem apply, ensuring that the deterministic and stochastic 
solutions coincide.

Most econometric models are nonlinear, so that economic 
policy design should, in general, be carried out with 
stochastic optimal control techniques.

Algorithms of this kind usually work by iterating over 
linearizations of the entire model, using standard dynamic 
control theory to optimize the stochastic linearized model at 
each iteration: see for instance Chow (1976).

In view of the above-mentioned complexity of full 
stochastic solutions, optimal control problems are usually 
solved by neglecting the stochastic nature of the problem,
i.e., by means of standard deterministic control.

Hall and Stephenson have recently (l990a, l990b) 
proposed a simplified algorithm that transforms the original 
stochastic problem into a sequence of deterministic ones: an 
iterative procedure solves, at each iteration, a 
deterministic optimal control problem, where the objective 
function is modified to include the bias of the deterministic 
simulation, computed around the solution to the previous 

1. Thanks for helpful suggestions go to Carlo Bianchi, 
participants in the Conference "Econometric Inference Using 
Simulation Techniques" (Rotterdam, June 1992), and an 
anonymous referee. The usual disclaimer applies.
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deterministic problem. It is necessary to iterate because the 
bias is a function of the control variables.

In this paper we present an operational iterative 
procedure that implements the full stochastic optimal control 
solution. This is done by computing, by means of stochastic 
simulations, the multiplier matrices that locally map changes 
of the control variables into changes of the objectives and 
into changes of the variances of the objectives.

We then compare the properties of the three algorithms 
listed above (standard deterministic, Hall and Stephenson's, 
and our operational version of full stochastic).

We chose to carry out these comparisons with a simple 
two-equation dynamic nonlinear model having a closed-form 
solution.

This approach has two important consequences:
(i) We are able to find the exact solution of the full 

stochastic optimal control problem simply by minimizing the 
objective function subject to the closed-form of the 
nonlinear model rather than the nonlinear model itself. 
Analogously, we are able to find the exact solution of the 
Hall-Stephenson optimal control problem, which corresponds to 
the full stochastic algorithm being applied to an objective 
function where the variance of the objectives does not show 
up.

(ii) The operative versions of the two stochastic 
algorithms (i.e. those based on stochastic simulations) can 
then be compared with their respective exact solutions. This 
allows us to evaluate the consequences of increasing the 
number of replications.

The remainder of the paper is organized as follows: 
section 2 briefly describes the algorithms compared in this 
paper, and examines the approximation introduced by Hall and 
Stephenson. Section 3 discusses the exact solution to the 
problem, obtained by means of a blend of analytical and 
numerical techniques. Section 4 compares the performances of 
the operative versions of the stochastic algorithms.
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Finally, three appendices discuss the following 
technical details: complete description of optimal control 
algorithms, closed-form solution of the model, empirical 
measurement of deterministic bias.

2. Alternative approaches to the solution of stochastic 
optimal control problems

In this paper we are concerned with the standard 
finite-horizon optimal control problem with a quadratic 
objective function and a set of constraints specified by a 
stochastic nonlinear model.

To simplify the exposition, this paragraph describes the 
simple one target - one instrument case; it is also assumed 
that the instrument can be moved at no cost. The general case 
(n targets, m instruments) is fully described in Appendix A.

The problem can thus be written as follows:

F ( T - 2Ì
min J - min E £ a. (y.-y. ) ? [11Lt=l r J

subject to the nonlinear model f. ( Y. ,X. , x. , 0, e^. ) = 0 [2]
I* W W W Lm

where = objective variable, yt £
Yt = set of endogenous variables

= target value for
= instrument variable
« set of predetermined variables, other than

(including lagged endogenous variables)
e^. = set of structural disturbances
0 = set of parameters

= non-negative weights, exogenously given
[1, T] = time horizon of the optimization problem
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Given that the set of constraints is specified as a 
nonlinear model, the Certainty Equivalence Theorem does not 
apply, and therefore deterministic optimal control is 
suboptimal with respect to stochastic techniques.

However, algorithms that implement the solution in its 
full form are very complex: the recent literature on this 
topic has therefore focused on finding approximated solution 
methods.

In this paper we give a detailed description of a 
procedure that implements the full stochastic solution and is 
still computationally tractable.

In this paragraph we highlight some basic relationships 
between our algorithm, the deterministic one, and the 
approximated algorithm recently proposed by Hall and 
Stephenson (l990a, l990b). A detailed discussion of these 
three algorithms is given in Appendix A.

Making use of the well-known relationship

E(y2) = (E(yt))2 + Var(yfc) [3] 

the objective function can be written as:

F T _ 2 TJ - E a. (E(y. )-y. )z + E a Var(y. ) [4] 
t=l t=l Z

The objective function can thus thought of as being made 
up of two parts:
- a quadratic component penalizing the deviations of the 

expected values of the objective variable from its target;
- a linear component penalizing the variability of the 

objective, i.e., the deviation of the variance from zero.

The full stochastic algorithm thus minimizes an 
objective function where the number of targets exceeds that 
of the instruments: hence, none of the targets will be 
exactly reached.
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Without going into the details, it is worth noting that 
our full stochastic algorithm works by linearizing the 
relationships between the instruments and the expected value 

2 and the variance of the objectives.

The algorithm proposed by Hall and Stephenson can be 
proved to give the solution of the optimal control problem 
where the objective function (4) is replaced with (5) below:

JHS = E a. (E(y. )-y. )2 [5]
t=l €

In order to prove this claim, we shall briefly describe 
Hall and Stephenson's algorithm.

They define dfc as the deterministic simulation bias, 
i . e. :

dt = E(yt) - yt [6]

where yfc is the deterministic model solution implicitly 
defined by f^(Y^,X^,x^,0,0) = 0.

Substituting eq. [6] into the original objective 
function (rewritten as in eq. [4]), they obtain:

F T 2 - —2
J = 2 «t + <1^ + 2 dfc + var(y^) + +

- 2 yt yt - 2 yt dtj [7]

2. We do this by computing numerically (by means of
stochastic simulations) the multiplier matrices mapping 
changes of x^_ into changes of E(y. ) and changes of Var(y. ).
... In the general case, with n instruments and T periods, a 
"full stochastic approach requires nT+l stochastic simulations 
at each iteration. This is so because one needs to compute 
the partial derivatives of all the objective variables and 
their variances with respect to all the instruments in each 
time period (see Appendix A for more details).
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They then (!990b, p. 250) suggest "a solution algorithm 
which involves iterating between conventional [i.e., 
deterministic] optimal control exercises and stochastic 
simulation exercises"; their algorithm involves three steps:

(1) At each iteration, i, apply conventional optimal control 
techniques to:

J = 8 a. ly? + 2 y. dL”1) - 2 y. y. ( + k [8]

where the deterministic simulation bias from previous 
iteration (d^-1^, d0 = 0) and the variance are treated 
as constants. The term k includes all the additive 
constants that obviously do not affect the result:

k = (d(i-1))2 + var(yt) + y£ - 2 yfc d£i-1)

(2) Use stochastic simulation techniques in order to
re-estimate d. around the solution obtained in step (1),

. . * ( i Tthat is, Xfc '.

(3) The iterative procedure comes to an end when a fixed 
point is found between xfc and dfc.

Clearly, the variance plays no role in such an iterative 
procedure: it only appears in the constant k, and therefore 
does not affect the result of the deterministic optimization 
of eq. [8].

Neglecting the variance is equivalent to switching from 
the original objective function to the following one:

TJHS = E <x [E(y ) - y ]2 [9]
t=l L € r
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To see this, substitute dfc ■ E(yfc) ~ ^t ^nto e<1’ t0 
get an objective function that looks like eq. [8], except 
that the constant term is now different.

This approximation has the attractive feature that, 
unlike full stochastic algorithms, it requires only one 
stochastic simulation at each iteration: this is needed to 

, J 3 compute dfc.
As the number of instruments and the number of time 

periods rise, full stochastic algorithms therefore become 
extremely expensive in terms of computing resources. By 
contrast, the Hall-Stephenson procedure is not affected and 
still requires only one stochastic simulation at each 
iteration.

There is clearly a tradeoff between saving computer 
resources and keeping the problem in its full form.

Hall and Stephenson are aware of the implicit 
modification they introduce in the original objective 
function, but feel that this is a reasonable approximation to 
make, at least when nonlinearity is mild.

When it is not, they suggest to evaluate a linear 
approximation of the variance of y^, as a function of the 
instruments.

Given the nonlinearity of the model, this relationship 
cannot, in general, be assumed to be stable during the 
iterative process.

Therefore, this "extended" algorithm can be guaranteed 
to improve upon the basis one only if the relationship 
between the variance of and the instruments is linearized 
at each iteration: this can be done by performing step (2) 
above twice, with two different sets of stochastic 
simulations; the first one around x k the second around

3. On the other hand, the number of stochastic simulations 
needed at each iteration of the full stochastic algorithm is 
a function of the number n of instruments and periods within 
the time horizon (nT+l).
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* ( i ) *X ' ' + ùx .
However, in the general case of n instruments and T 

periods, while the first set consists of just one stochastic 
simulation, the second one involves nT simulations.

Consequently, nothing is saved in comparison with full 
stochastic algorithms, as there would not be any reduction in 4 the number of stochastic simulations.

3. An example based on a model having a closed-form 
solution

In order to compare the performances of the three 
solution methods briefly described above, we chose a simple 
two-equation dynamic nonlinear model that has been used 
extensively in the literature on nonlinear deterministic bias 
(see, e.g., Mariano and Brown, 1983 and 1988).

The structural form of the model is given by:

( log yt « <xQ log xfc + «1 log Yt_1 + ut [10]
2t = xt + pl Yt + vt 1111

(ut, vt)' ~ UN (0, 8)
v 2where we assume = auv = 0.

The closed-form solution and the analytical properties 
of the model (including the deterministic bias) are fully 
described in Appendix B.

The fact that the model has a closed-form solution 
allows us to compute, with a single deterministic optimal

4. it is in fact quite likely that a full stochastic 
algorithm would be more computationally efficient: at each 
step of the full stochastic algorithm, the derivatives of 
both the objective variables and their variances would 
suggest the direction towards the solution. The "extended" 
Hall-Stephenson algorithm would probably require a larger 
number of iterations as the information content of the bias 
is probably smaller than that of the derivatives of the 
objectives.
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control exercise, the values of the instrument (x^) which 
solve the stochastic optimal control problem. As we show 
below, this is done by modifying the model structure so that 
the expected value and the variance of the objective (z^) 
appear explicitly as identities in the reduced form of the 

. t 5 model.
In the discussion below we present the detailed results 

relative to the model generated with the following set of 
parameter values:

2
ccq = .8, «1 = .2, 0q = 1, Bi = .1, au = .01, y0 = 1000, 
Xi = 1000, x is growing at .5 per cent per period.

The one step ahead weighted bias is then:

Yd = .0025 
zt

This bias (around .2 per cent of the total variance of 
z^) is very small, but nevertheless sufficient to produce 
significant differences between Hall and Stephenson's 
solution and the full stochastic solution.

The optimal control problem is defined by:

_ 100 O
min J = min 8 E(z.-z.) [12]xt xt t-81 b h

subject to the model above, where z. is growing at 1 per cent 
6per period (against .5 per cent in the baseline).

5. In order to evaluate the sensitivity of the results with
respect to the parameter values, we chose to generate 27 
different data sets, each consisting of 100 observations; see 
Appendix B for details. In order to reduce the influence of 
the initial conditions, the optimization experiments were 
performed over the last 20 periods.
6. It is worth remarking that the model is homogeneous and 
that in the steady state all the variables grow at the same 
rate as x.
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The exact solution of the stochastic optimal control 
problem defined by [12]-[10]-[11] is equivalent to the 
solution of the deterministic optimal control problem defined 
by [12] and [13]-[14]-[15]-[16] below: 

z
* a0 109 xt + al ^t-l

2 - 2t . a l-a
Eyt = exp ($t + log Yo + ---2") [14]

l-a
<

Ezt = 0O xfc + 0! Eyt [15]

2 tVzt = 01 exp (2£t+2 «1 log yQ) •
, . 2t , . 2t• exp (</ [eXp ( o2 ^« ) -1) (16]

I U l-a U l-a 

where = 0.
Eyt, Ezt and Vzfc, which are treated here as ordinary 

endogenous variables, are in fact the closed-form expressions 
2of E(y^), E(z^), Ele^-Ele^.)) , given the relevant information 

available at t = 0, i.e. yg.
In order to solve this problem, it is necessary to 

compute the numerical derivatives of Ez*. and Vz*. with respect 
to the instrument x., as should be clear after rewriting 
FJ as follows:

F 100 - 2 100 2J = S (E(z.)-z.)Z + E E(z.-E(z.))Z
t-8l € t=8l L €

100 _ , 100
= Z (Ez.-z.F + E (Vz.-O) 

t=8l € z t-8l [17]

Thus, while the Hall-Stephenson algorithm solves a one 
target-one instrument problem (and hence reaches exactly the 
target), the full stochastic algorithm minimizes an objective
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function that depends on two targets (a target for and one 
for its variance): hence, neither will be reached.

We compare the solutions of the following three 
problems :
(1) Minimize

D 100 - 2J = E (z.-z. )Z 
t=8l L

subject to the nonlinear model defined by the deterministic 
part of [10] and [11].

The solution of this deterministic optimal control 
, D.100 exercise is txt't=8i’

(2) Minimize
HS 100 - 2Jnt> = I (Ez.-z. F 

t=8l € L

subject to [13]-[14]-[15].
This gives Hall and Stephenson's solution of the

HS 100 stochastic optimal control exercise, {x^ C=8l*
(3) Minimize

100 9 100
J = E (Ez.-z. )z + E Vz.

t=8l L c t=8l c

subject to [13]-[14]-[15J-E16].
This gives the full stochastic solution of the optimal

F 100control problem, lxtC=8l’

We then evaluate our results by computing the values of 
D HS Fthe three objective functions J , J and J evaluated around 

each of the three optimal paths.
Obviously, given that both problem (1) and problem (2) 

are of the one target-one instrument type, the objective 
D HSfunctions J and J , evaluated at the optimum, are zero. 

F This is not the case for J .
The most relevant comparison is, of course, the one 

obtained by feeding the values of the optimal paths {*1},
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HS F F1{x^. } and {x^} into J (first column of Table la).
The improvement with respect to the deterministic 

solution produced by the approximation suggested by Hall and 
F DStephenson is the difference between J evaluated at {x.} and 

HS{Xj. }: this difference is slightly larger than 4,000, that 
is, around .8 per cent of the value of the objective 
function. This improvement can be attributed in part to the 
fact that zt is closer to zt (which induces a reduction of 
about 1,500 in the value of the objective function) and in 
part to the reduction in the variance of (about 2,500).

Moving from Hall and Stephenson's solution to the full 
stochastic solution, there is a further reduction of more 
than 1,000 in the value of the objective function, i.e., 
about .2 per cent.

Summing up, using a solution method that takes account 
of the stochastic nature of the problem (either Hall- 
Stephenson or full stochastic), a significant reduction of 
the objective function is obtained in comparison with the 
deterministic solution, even when the degree of nonlinearity 
is, by usual standards, quite low (see above).

Moreover, the marginal improvement produced by moving 
from Hall-Stephenson to full stochastic is far from 
negligible, as it amounts to about 24 per cent of the total 
improvement (row 3 - row 1 in first column of Table la).

Figures la, lb and lc show the paths of the instrument 
xfc, of the objective variable Ezt and of the variance of the 
objective Vzfc for the deterministic and the exact 
Hall-Stephenson procedures, as deviations with respect to the 
exact full stochastic solutions.

it can be seen that the deterministic solution is 
suboptimal because the instrument is raised excessively: this 
is so because the deterministic solution does not take 
account of the fact that z. < E(z.).

The difference between the deterministic and the full 
stochastic solutions amounts to about 0.5 per cent of the
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latter. Using the approximated Hall-Stephenson algorithm, the 
difference is reduced by about half, as can be seen in Figure 
la.

When evaluated on the objectives and the variances of 
the objectives, the relative improvement produced by using 
the Hall-Stephenson algorithm is still half the total 
improvement produced by moving from the deterministic to the 
full stochastic algorithm; see Figures lb and lc.

Finally, it is .worth noting that the finite-horizon 
characteristic of the.se experiments implies a mild instrument 
instability in the last 2 or 3 periods: this is obviously so 
only in the full stochastic case, where the number of targets 
exceeds that of the instruments. This effect tends to reduce 
the difference between the deterministic and Hall-Stephenson 
solutions and the full stochastic one towards the end of the 
time horizon. .This is again clear from Figures la, lb, lc.

If the variance plays a role in the loss function, then 
it is possible to solve the optimal control problem under 
different assumptions regarding the degree of risk aversion 
of the policy maker, as suggested by Mitchell (1979).

Mitchell suggests to give different weights to the first 
and second component of the loss function in eg. [17], i.e., 
to solve the following problem:

M 100 - 2 100 2min J = X E (E(z.)-z.)z + E E(z.-E(z.))Z [18] 
t=8l £ L t=8l

subject to [13]-[14]-[15]-[16]
where X is the risk aversion parameter; "in general, the 
higher is X the less the policy-marker is concerned with the 
predictability (variance) of the target" (Mitchell, 1979, p. 
914).

7. Mitchell gives Examples, taken from the economic
literature, for both of the two extreme cases A + « and X=0.
Notice that, with X -> », we are back to Hall and Stephenson's
problem.
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Table la: Ccnparison of the performance of three different solution methods: 
deterministic, Ball-Stephenson, and full stochastic optimi control

Objective 
function

Solution
algorithm

J100 - 2
/= E E(z -z )z = 

t=8l

100
= 2 l(E(z )-z ] +Var(z ) 

t=8l 1 1 1

„ 100
E [E(z )-z F 

t=8l

n 100 - 2
J = £ (z -z / 

t=8l

p 
Full stochastic (x ) 551,376 1,283 5,392

Hall-Stephenson (xA 552,662 0 1,422

_ ... z DxDeterministic (x ) 556,807
------- ij-------------------------------

1,429 0

Table lb: Comparison of the performance of Hall-Stephalsan and full stochastic 
optimal control: consequences of increasing the muter of Implications 
(all performances evaluated with J )-

Number of 
antithetic 

replications 
Solution 
algorithm

100 1,000 10,000

p
Full stochastic (x ) 551,469 551,385 551,378

Hall-Stephenson (x^) 552,818 552,680 552,668
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Figure 1: Instrument, objective and variance for the deterministic 
and exact Hall-Stephenson procedures (Deviations with 
respect to the exact full stochastic solution)

(a)

Deterministic

Hall-Stephenson

(b)

Deterministic

Hall-Stephenson

(c)

Deterministic

HaB-Stophenoor



20

Clearly one can allow for a varying degree of risk 
aversion only if the variance term is not dropped from the 
loss function.

Since the economic theory is very often concerned with 
the effects of risk aversion in the policy-marker's objective 
function, it seems interesting to keep the possibility of 
solving optimal control problems with different values of X.

We solved the problem above under a set of different 
assumptions concerning the parameter X (X = .01, .05, .1/ .5, 
1, 5, 10). In table 2a we compare the results obtained
applying full stochastic optimal control to these problems, 

Mwith the value of the objective function J evaluated along 
the Hall-Stephenson and deterministic solutions.

Quite obviously, the differences between the full 
stochastic and the Hall-Stephensòn methods decrease as A 
increases. On the other hand, for X smaller than unity, the 
Hall-Stephenson solution can be considerably outperformed by 
the full stochastic one. For instance, with X=.l the value of 
the loss function evaluated around the Hall-Stephenson 
solution is more than 2 per cent higher than that obtained 
with the full stochastic solution (as a term of comparison, 
it is slightly more than .2 per cent with X=l).

It can be seen that the advantage of using Hall and 
Stephenson's algorithm rather than standard deterministic 
optimal control vanishes as X approaches zero: the loss of 
performance with either of these two methods is of about the 
same order of magnitude.

Table 2b compares the detailed results for the case 
X=.l: while, with A=l, the relative improvement in
performance produced by using the Hall-Stephenson algorithm 
was about half the total improvement produced by moving from 
the deterministic to the full stochastic algorithm, it is now 
much less than that (it is in fact about 1/10).
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Table 2a: Evaluation of the objective function with different values for 
the risk aversion parameter X (percentage deviation from the full 
stochastic result in parentheses)

X

Solution method
.01 .05 .1 .5 1 5 10

FFull stochastic (x ) 448,094 528,035 540,069 550,096 551,376 552,404 552,533

Hall-Stephenson (xA 552,662
(23.3)

552,662 
(4.7)

552,662 
(2.3)

552,662 
(0.5)

552,662 
(0.2)

552,662
(0.05)

552,662
(0.02)

Deterministic (x^) 555,392
(23.9)

555,449 
(5.2)

555,520 
(2.9)

556,092
(1.1)

556,807 
(1.0)

562,522 
(1.8)

569,667
(3.1)

Table 2b: Ccnparison of deterministic, fell-Stepbenson and full-stochastic 
solutions with À=.l
(Hall and Stephenson and full-stochastic solutions are computed 
as percentage deviations from the deterministic solution).

Period

Optimal path for Optimal path for Ez^ Optimal path for Vz^

Determ.
Hall 
and 
Steph.

Full- 
stoch. 

with X=.l
Determ.

Hall 
and 
Steph.

Full- 
stoch. 

with
Determ.

Hall 
and 
Steph.

Full- 
stoch. 

with X=.l

81 1621 -0.26 -2.78 3114 -0.24 -2.52 22390 -0.42 -4.41
82 1652 -0.25 -2.59 3145 -0.25 -2.55 23331 -0.48 -4.97
83 1670 -0.25 -2.55 3177 -0.25 -2.55 23786 -0.49 -5.03
84 1687 -0.25 -2.55 3209 -0.25 -2.55 24259 -0.49 -5.03
85 1703 -0.25 -2.55 3241 -0.25 -2.55 24746 -0.49 -5.03
86 1721 -0.25 -2.55 3273 -0.25 -2.55 25244 -0.49 -5.03
87 1738 -0.25 -2.55 3306 -0.25 -2.55 25751 -0.49 -5.03
88 1755 -0.25 -2.55 3339 -0.25 -2.55 26269 -0.49 -5.03
89 1773 -0.25 -2.55 3372 -0.25 -2.55 26797 -0.49 -5.03
90 1790 -0.25 -2.55 3406 -0.25 -2.55 27335 -0.49 -5.03
91 1808 -0.25 -2.55 3440 -0.25 -2.55 27885 -0.49 -5.03
92 1826 -0.25 -2.55 3475 -0.25 -2.55 28445 -D.49 -5.03
93 1845 -0.25 -2.55 3509 -0.25 -2.55 29017 -0.49 -5.03
94 1863 -0.25 -2.55 3544 -0.25 -2.55 29600 -0.49 -5.03
95 1882 -0.25 -2.55 3580 -0.25 -2.55 30195 -0.49 -5.03
96 1901 -0.25 -2.55 3616 -0.25 -2.55 30602 -0.49 -5.03
97 1920 -0.25 -2.55 3652 -0.25 -2.55 31421 -0.49 -5.03
98 1939 -0.25 -2.54 3688 -0.25 -2.55 32053 -0.49 -5.03
99 1958 -0.25 -2.52 3725 -0.25 -2.52 32697 -0.49 -4.98
100 1978 -0.25 -2.26 3762 -€.25 -2.28 33354 -0.49 -4.56
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4. Operative solutions based on stochastic simulation 
techniques

While the comparisons presented in the previous 
paragraph are interesting per se, their relevance is limited 
by the fact that they are only possible when a model has a 
closed-form solution. Since this is not generally the case 
for nonlinear econometric models, we now compare the 
performances of an operative version of the procedures 
discussed above.

By operative versions we mean algorithms that are based 
on stochastic simulation techniques and can be used for any 
kind of econometric model.

Appendix C describes the details of the experiments of 
stochastic simulation that we need in this paragraph, 
including the particular Monte Carlo technique which we use.

Appendix C also stresses the need to take proper care in 
computing the deterministic simulation bias: the fact that 
this is a key factor in determining the properties of the 
results is clearly shown by the functioning of the 
Hall-Stephenson procedure.

We have computed the deterministic bias with different 
number of replications (100, 1,000 and 10,000). We also 
explored the consequences of introducing methods of 
variance-reduction: we found that they can greatly improve 
the precision of the estimates of the bias, as we discuss in 
Appendix C.

All in all, in our experiments the choice of 1,000 
antithetic replications appears to be a reasonable compromise 
between precision and computing costs.

The results discussed below are based on the 
optimization exercises of Section 3: we are thus able to make 
a comparison of the operative versions of the algorithms and 
to compare them, with the exact ones.

Figures 2a, 2b and 2c show respectively the behaviour of 
the instrument, the objective and the variance of the
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Figure 2: Instrument, objective and variance for the three solution 
procedures (1,000 replications, deviations with respect 
to the exact full stochastic solution)

(a)

Oetcnrimstic

Holl-Stephenson

Full stochastic

(b)

Deterministic

Hall-Stephenson

Full stochastic

(C)

Deterministic

Hall-Stephenson

Full stochastic
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Figure 3: Instrument, objective and variance for the full stochastic 
procedure: effects of increasing the number of replications 
(Deviations with respect to the exact full stochastic 
solution)

(a)

(b)

(c)
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objectives for the deterministic, Hall-Stephenson and full 
stochastic procedures (the last two computed with 1,000 
antithetic replications), as deviations with respect to the 
true full stochastic values.

Comparing these figures with figures la, lb and lc, we 
see that the operative versions give results that are 
reasonably close to those of the exact algorithms. The 
largest deviations are those of the variance of the 
objectives (Figure lc).

The relative performances of the three algorithms are 
basically the same as before, with the Hall-Stephenson 
procedure catching up roughly half of the total difference 
between deterministic and full stochastic methods.

The central column of Table lb shows the value of the 
objective function (J ) evaluated around the full stochastic 
and Hall-Stephensoh solutions shown in the figures: it 
basically confirms the findings of the previous chapter.

The table also shows the effect of changing the number 
of replications: one can see that not much is gained by 
moving from 1,000 to 10,000 replications (of course, much is 
lost in terms of computer time). This confirms that the 
choice of 1,000 antithetic replications, justified in 
Appendix C, is quite reasonable in this case.

Figures 3a, 3b and 3c show, for the full stochastic case 
only, how the objectives and thervariances are affected by 
the increase in the number of replications. It is clear that 
the main effect is to reduce their variability.

Summing up, the findings of the previous paragraph are 
still valid when referred to the operative algorithms.

5. Concluding remarks

Given our choice of a simple two-equation nonlinear form 
having an analytical solution, we have been able to compare 
three algorithms for the solution of .optimal control problems
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(deterministic, Hall-Stephenson, full stochastic) in both 
their exact and their operative versions.

This has allowed us both to verify the properties of 
these algorithms per se and to make a direct evaluation of 
the effects of using stochastic simulation techniques, which 
are the only viable ones, for the most general nonlinear case.

Our comparisons highlight the following considerations:
as one would expect, the loss due to the use of 

deterministic optimal control techniques is not relevant when 
the degree of nonlinearity (as measured by the bias) is very 
low;

before choosing the most appropriate algorithm, a 
preliminary analysis of the bias is advisable;

in order to obtain a good estimate of the bias, a large 
number of replications is necessary. We show that using 
variance-reduction techniques can considerably improve the 
estimate of the bias (it is worth recalling again that we can 
compare estimates of the bias with its true value, computed 
with the closed-form solution of the model);
- even with a model where nonlinearity is mild, the exact 
Hall-Stephenson procedure produces a significant improvement 
over the deterministic solution. As far as the operative 
version is concerned, the estimate of the bias becomes a 
crucial issue;
- however, the basic version of this algorithm neglects 
the role of the variance, and therefore implicitly modifies 
the objective function. If adjusted in order to overcome this 
limit (along the lines proposed in Hall and Stephenson, l990a 
and l990b), it becomes at least as costly (in terms of 
computing resources) as a full stochastic algorithm;

our version of the full stochastic algorithm involves a 
further reduction in the cost function, which is of the same 
order of magnitude as the one obtained when moving from the 
deterministic to the Hall-Stephenson algorithm. That is, 
neglecting the variance has a significant cost even when the 
degree of nonlinearity is mild;
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- finally, neglecting the role of the variance puts heavy 
constraints on the kind of loss function that one can 
postulate. In particular, if the variance term is not 
explicitly included in the loss function, one cannot allow 
for any of a range of degrees of risk aversion, as suggested 
by Mitchell (1979). We show that the introduction of an 
arbitrary amount of aversion to uncertainty in the loss 
function can make non trivial differences in the optimal 
solution.
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Appendix A: Description of the optimization algorithms
Let us consider a dynamic nonlinear econometric model in 

structural form:

ft( Yt,Xt ,xt ,0, et )=0 t = 1,2,...,T ,(A.D

where the symbols are defined as in eq. [2].
Given a set of m control variables (or instruments) with 

values x.. j=l,...,m, t=l,...,T and a set of n objectives 
with values i=l,...,n, t=l,...,T the problem can be
stated as:

{n T 1 in T
E ,E. ,E. +.E. ,£, (A-2) 
[1=1 t=l J j=l t=l J

subject to
- the structural nonlinear model (A.l);
- linear intertemporal equality and inequality constraints 

on control variables and/or objectives;
where 1
y.^ are the desired values (targets) for the objectives
x.. are the desired values (targets) for the control 

variables
hit' Nt are non-ne9ative weights, exogenously given.

The optimization algorithms presented here treat the 
problem as static by stacking all the periods of the time 
horizon. In this way we obtain the following vectors of 
control variables, objectives and targets over the entire 
time horizon:

y - JT11 *21 ••• *nl yl2 *22 '" *n2 ^lT *2T ynTL
X = [xn x21 ... xml x12 x22 ... xm2 ... x1T x2t ... xmT]'

y = (yn y21 ••• ynl y12 y22 ••• yn2 ••• y1T y2T ••• ynTr
x - [X11 x21 ••• xml x12 x22 ... xm2 ••• x1T x2t ••• xmT]'

and the problem can be written as:

min E< y'-y',xy-x' Hll® Y “ Y , (A.3)
x IL J L 0 H22 J L x - x J,
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subject to
- the structural nonlinear model (A.l)
- the linear constraints specified explicitly in the form

B1 < Cn y + C- x < Bu (A.4)
X 4U

where
Hu is a (nT,nT) diagonal matrix with elements h'it

i=l,...,n, t=l,...,T;
is a (mT,mT) diagonal matrix with elements k..22 j=l,...,m, t=l,...,T;

B1 and Bu are p vectors of lower and upper bounds

Ci is a (p,nT) matrix of coefficients for the
constraints on objectives;

C2 is a (p,mT) matrix of coefficients for the
constraints on control variables.

The basic idea (see Holbrook, 1974, and Brandsma, Hughes 
Ballet, Van der Windt, 1983) is to use an iterative procedure 
approximating the model by the (nT,mT) multiplier matrix that 
maps changes in the control variables into changes of the 
objectives (see Cividini, 1990).

Our algorithm for full stochastic optimal control
extends this idea to the stochastic context: at each 
iteration the multiplier matrix evaluation is based on the
numerical derivatives of the expected values of the
objectives with respect to the control variables computed via 
stochastic simulation. As already discussed in the text, full 
stochastic optimal control implies also computing the 
multiplier matrix based on the numerical derivatives of the 
variances of the objectives with respect to the control 
variables.

The [(t.-l)n+i,(t2-l)m+j] element of the multiplier 
matrix for tne expected values of the control variables is 
approximated by:

1svd -1?vc tx,t2-l,...,T
8E(Yit* N r-1 Yitl'r N r=l Yitl'r t.>t,
-TJ—-■ ----- x d x c----------- iiZ, ...n <A’5>

xn2 - xjt2 .... „

where
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N is the number of replications produced via
stochastic simulation;

y?. . are the control solutions for y. at time ti obtained
l1 ' via stochastic simulation using the exogenous

variables as they are;
yL . are the shocked solutions for y. at time ti obtained

• 1*’ via stochastic simulation increasing the exogenous
variable x. at time t9 by a finite increment Ax .. :J z J€2

f 10"5 if |x? | >l0"5
. J€2 4€2d c . c . cXit ~XTt +^X1t ' Axit]t2 J^2 Jt2 Jt2

I 10 5 if |xC I<10 5 
]t2

The multiplier matrix for the variances of the control 
variables is computed in an analogous fashion, using the same 
set of replications.

To improve the accuracy of the evaluation of the 
expected values of the objectives in (A.5), the antithetic 
variates method proposed by Calzolari (1979) has been used. 
This solves the model with pseudostructural disturbances of 
opposite sign and therefore requires two simulations for each 
replication of the stochastic simulation (for more details 
see Appendix C).

The number of dynamic simulations required to compute 
the elements of each column of the multiplier matrix is thus 
4N (2N control solutions and 2N shocked solutions); the total 
number of simulations is therefore 2N (mT+l).

Replacing E(y) with Ax (where A is the (nT,mT) 
multiplier matrix computed as in (A.5)), and Var(y) with Vx 
(where V is the (nT,mT) multiplier matrix) in the objective 
function, we obtain after some algebraic manipulations the 
following expression:

Min ( x’Qx + Lx) (A.6)

S.t. B1 < Dx < BU

where
Q - 2 (A'Hn A + H22) (A.7)

L = - 2y'Hn A - 2x'H22 + HnvecV (A.8)

D = Cx A + C2 (A.9)
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The matrices Q, L, D, B , Bu „are directly supplied to a 
quadratic programming algorithm.

Because of the nonlinearities of the model the solution 
requires an iterative procedure that consists of the 
following steps:
a) shock the structural model for each control variable and

each time period, solve the model for each shock via 
stochastic... simulation and compute the multiplier 
matrices A' and V ; ... ... ...b) compute the matrices Q , I» , Dl ' in equations 
(A.7), (A.8), (A.9);

c) solve the Quadratic Programming problem (A.6) to find 
the optimal values of the control variables;

d) evaluate the results; if the difference of the control 
variables from their values in the previous iteration 
does not satisfy a given convergence criterion go back 
to a) with the new values of the control variables, 
otherwise the solution procedure is over.
It is worth pointing out that the proposed algorithm 

does not introduce approximations in the full stochastic 
optimal control problem and is still computationally 
tractable even for large-size econometric models using the 
simulation package produced at the Bank of Italy-

Even if tractable the problem is still computationally 
formidable. A simplification of the algorithm, proposed by 
Hall and Stephenson (1990), can be used to reduce the number 
of stochastic simulations and therefore the CPU time.

The objective function of problem (A.2) can be stated 
as :

n T ff Ì2
ElJ) = i=l + Var[yitJ+yit -2*itE [/it]}

8. The routine used in this work is the E04NAF routine of 
the NAG Fortran library designed to solve the Quadratic 
Programming problem, which is assumed to be as stated in 
(A.6).
9. This package is a revised version of Modeleasy (Federal 
Reserve System, 1986) implemented as VS Fortran functions, 
designed as part of the Speakeasy software (Speakeasy Corp., 
Chicago, Illinois). Each equation is interpreted as a vector 
relation whose elements correspond to different datasets that 
are processed concurrently on a vector machine, thereby 
reducing the computational costs. A stochastic simulation can 
be viewed as a single vector simulatj.on. For more details see 
Cividini and Petersen (1987) and (1989).
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m T , _ v
+ E E k.. |x..-x..j (A.10)
j=l t=l -1 4 '---

Let us now define:

EtYit) ” yit + dit
where

yit is the deterministic model solution (±.e., the 
solution obtained setting the error terms to zero);

dif is the bias of the deterministic solution from the 
mean value.

The objective function can thus be written as:

n T 2 ( - 1 " fl 2E<J> ■ i-1 t-lhitlYit ' 2(difyiWy‘t + VarlyitJ + dit +

- 2 - 1 m T r - 12ylt ’ 2yit dit j+jS1 <A-11)

The idea of Hall and Stephenson is to consider an 
iterative solution procedure where the terms dit and Varali) 
are constant within each iteration even if they are functions 
of the control variables. However, the terms d.*. are 
recomputed at each iteration, and modify the linear term of 
the objective function as written below (A.14); on the other 
hand, the variance is also implicitly re-computed, but enters 
only in the constant term (not shown below) and thus does not 
affect the results.

Using this approximation and treating the problem as 
before, the optimal control problem can be formulated as 
follows :

1Min y x'Qx + Lx (A.12)
x

S.t. B1 < Dx < BU

where
Q = 2(A'Hn A + H22) (A. 13)

L - 2(d-y)'Hn A - 2x'H22 (A. 14)
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D = C. A + C9 (A.15)X

d - [dn d2l’’*dnl dl2 d22*’’dn2’“dlT d2T* ”dnT] (A'16)

and A is the (nT,mT) multiplier matrix based on the numerical 
derivatives of the objectives with respect to the control 
variables, computed via deterministic (rather than 
stochastic) simulation.

It is worth pointing out that, in this formulation, only 
one stochastic simulation is required to compute the vector 
of biases d at each iteration.

The iterative procedure consists of the following steps:
a) shock the structural model for each control variable and

each time period, solve the model for each shock via
deterministic simulation and compute the multiplier 
matrix A1 ; ...

b) compute the vector of biases d' ' as the difference
between the results of the deterministic simulation and 
the mean of the stochastic simulation; in the first 
iteration set d to zero; ... ... ...

c) compute the matrices Q' ',L' ',D' ' as in equations 
(A.13), (A.14), (A.15);

d) solve the Quadratic Programming problem (A.12) to find 
the optimal values of the control variables;

e) in the first iteration go back to a) with the new values
of the control variables, in the following iterations 
evaluate the results: if the difference of the control 
variables from their values in the previous iteration 
does not satisfy a given convergence criterion go back 
to a), otherwise the solution procedure is over. This 
amounts to finding a fixed point between the instruments 
and the deterministic bias.

10. As in the full stochastic algorithm the antithetic 
variates method has been used to improve the accuracy of the 
evaluation of the bias.
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Appendix B: Analytical properties of the model
The model used to compare the performance of alternative 

optimization algorithms is a slightly modified version of a 
simple two-equation nonlinear model that has been used 
extensively in the literature investigating the properties of 
alternative predictors for nonlinear models: see for instance 
Mariano and Brown (1983) and (1988).

The structural form is given by:

✓
log yt » aQ log xfc + «1 log yt-1 + ufc (B.D
zt = e0 xt + el yt + vt (B'2)

Ik

with (u. ,v._)'~ UN (0,E). For simplicity we require E to be a 
r c 2 2diagonal matrix, and use ou and <jy to denote the variances of

u. and vfc, respectively.
Theu optimization problems we are interested in always 

consist in moving the model from a given (stochastic) 
steady-state growth path to a different one. We therefore 
require the model to be homogenous of degree one: this simply 
amounts to imposing the constraint ccq + a. = 1.

The main advantage of this model is that, although 
nonlinear, it has a closed-form solution: this enables us to 
make an analytical evaluation of the bias of the 
deterministic simulation, which is a key factor in explaining 
the differences in the performance of alternative 
optimization algorithms.

The reduced form is:

✓
yt - exp[«Q log xfc + log yt-1 + ufc] (B.3)

zt “ ^0 xt + i5! exPf“o log xt + “1 1og yt-l + UL + vt(B,4)

The deterministic one-step ahead predictors, obtained by 
substituting u^ and v^ with their expected values, are:

f dyt = exp[a0 log xfc + log yt-1] (B.5)

zt ■ P0 Xt + el exPta0 log xt + al log yt-l] (B.6)

The closed-form one-step ahead predictors can be 
obtained by taking the expected value of the reduced form:
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yt “ E (yt I xt' yt-l} = yt * exp (%/2) (B.7)

C lzt = E (2t I Xt' Tt-l} =
d 2= zt + ^1 exPt«O 1og xt+<xl log yt-H • (exP( ffu/2)-1l <B«8)

Note that the expressions above would not be true in the 
presence of parameter uncertainty.

The one step ahead bias of the deterministic predictors 
can be easily evaluated as the difference between the 
deterministic and the closed-form solution:

/
Byt - y? [l-exp(ff2/2] (B.9)

<
= (3 • bJ (B.10)

I Zt 1 yt

This measure of bias is not unit-free; a scale-freee 
measure of bias, that shows what portion of the mean-squared 
prediction error of the deterministic simulation can be 
attributed to the deterministic bias, is:

ipd = (b^ )2/[variance of z. ] =
zt zt r

= [ l-exp( 0^/2 ) ] 2/[ exp( ) ( exp( )-i ) ] (B.H)

It should be noted that the absolute bias depends on all 
the parameters as well as on the initial conditions, while 
the relative bias does not.

The formulae above have been obtained under the 
assumption that, in each period t, the value of Is
known. However, in computing an optimal path over a given 
time horizon, e.g. [1, T], only the value of is known.That is, all the formulae above have to Be computed 
conditional on Yq (not on Yf_^).

The relevant formulae are those of equations
[13 ]-[14]-[l5]-[16] in the text.

A few remarks are in order:

i) The deterministic bias is due to the nonlinear 
relationship between the variables and the disturbances. In
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this model it is the nonlinear relationship between u*. and 
that produces the deterministic bias.

ii) Given that the only component responsible for the 
bias is the stochastic one in the first equation, the 
relative bias for z. should decrease with the contribution gf 
u. with respect to chat of v. : it is easy to verify thatc 2 ? 2 zttends to zero as (a /a ) tends to infinity. Given this 
feature, we eliminated11 the error term from the second 
equation.

iii) The bias for z. increases (in absolute value) with2 tou and Pi; the parameter measures the weight that the 
first nonlinear equation has in determining the value of zfc.

J
iv) From the expression relative to , it appears thatzt 2a large weighted bias is obtained for large values of cu. 

Given that the differences between the optimal paths obtained 
with the alternative algorithms discussed in Appendix A 
critically depend on the size of the bias, a reasonable 
experimental design would appear to consist in choosing very 2large values for a . On the other hand we found that, with a 
high variance of u., the stochastic component of the first 
equation completely overshadows the deterministic structure 
of the model: in particular, the model never comes close to a 
steady-state growth path, as the growth rates of y^. and z. 
always tend to behave randomly, driven by the u^ process; 
There thus appears to be a trade-off as to the choice of the 
2a parameters.

Given the role played by the various parameters in 
determining the properties of this model, we chose to 
generate several different data sets, with the following 
parameter values:

a0 - 0.2, 0.5, 0.8 ( = 0.8, 0.5, 0.2)
0O = 1 0.1, 0.5, 0.9

2 2ffj = 0.01, 0.0001, 0.000001 aj = 0

The initial conditions are: - 1000, Xi = 1000
One hundred data points have been generated for each 

possible parameter combination (giving 27 data sets), with 
the exogenous variable growing at 0.5 per cent per period; 
the same seed has been used to generate the stochastic 
disturbances in the 27 cases.

Table B.l shows the main characteristics of three 
representative cases.

The first one is that corresponding to the largest bias
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in our sample: as stated above (remark (iv)), a larger bias 
is obtained in exchange for a high volatility in the growth 
rates of the zfc variable. This case corresponds to the 
results that are detailed in the text.

The third case is the one corresponding to the'smallest 
bias: it generates a zt sample that grows at rates very close 
to the theoretical 0.5 per cent per period.

Table B.l
Characteristics of three representative data sets

2 
ffu al *1 bias in 

period 81
bias in 

period 100
weighted 

bias

Maximum bias 0.01 0.2 0.9 -6.7149 -7.3824 2.5*l0-3

Intermediate bias 0.0001 0.5 0.5 -0.03707 -0.04076 2.5*l0-5

Minimum bias 0.0000001 0.8 0.1 -0.00073 -0.00080 2.5*l0~7

Note: Figures are given for the bias in periods 81 and 100 since 
this is the time range for the optimization exercises.
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Appendix C: Details on experimental design: 
Empirical measurement of deterministic bias

A key factor in determining the relative performance of 
the optimization algorithms compared in this paper is 
obviously the accuracy of the stochastic simulation as an 
approximation of the true (closed-form) solution. In 
particular, the performance of the algorithm proposed by Hall 
and Stephenson depends fundamentally on the correct 
measurement of the bias of the deterministic simulation.

Before comparing the relative performance of the 
optimization algorithms we therefore measured the 
deterministic bias with different numbers of replication and 
different techniques. Having done so, we chose what seemed to 
be a reasonable design for the simulation stage of the 
optimization algorithms.

There is obviously a trade-off between the accuracy of 
the approximation to the deterministic bias and the solution 
time; one way to improve the performance of the stochastic 
simulation dramatically without an enormous increase in the 
number of replications consists in making use of 
variance-reduction techniques.

In particular we use the so-called method of antithetic 
variates, first proposed by Calzolari (1979); this method 
considerably improves the degree of approximation to the true 
(closed-form) deterministic bias.

Here we present the comparisons relative to the data set 
having the following characteristics: «1 - 0.2, $1 =0.9, 

= 0.01. A set of one hundred errors is generated having 
zero mean and variance equal to 0.01. The m replications (m = 
100, 1,000, 10,000) used to compute the stochastic
simulations are then extracted from this set using the method 
of McCarthy (McCarthy, 1972).

For a generic nonlinear model whose reduced form is 
given by:

Yt = 9<xt, «t; 0) (C.l)

the stochastic simulation of size m is given by:

YtU) = "m“ ” 9(xt'utÌ); 6) (C'2)
v ni 11 ** *

where the i index refers to the replication number.
Using antithetic techniques we have:

s(m)A 1 [ 1 m (i) 1 m (i)
yt “ 2 [ m 9(xt,ut G) + - g(xt,-ut ;8)j (C.3)
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Chart C.l

Accuracy of measurement of the deterministic bias. Comparison of 
the results obtained with stochastic simulations with 100, 1,000 
and 10,000 replications; standard method and antithetic technique

Deterministic bias - 100 replications

Non antithetic

Antithetic
True

Deterministic bias - 1000 replications

Non antithetic

Antithetic
True

Deterministic bias - 10000 replications

Antithetic
True

Non antithetic
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Chart C.l shows the results. It can be seen that using 
antithetic techniques (which implies doubling the number of 
replications) leads to a dramatic improvement in the 
approximation to the true (closed-form) deterministic bias. 
For instance, while antithetic techniques give reasonable 
results with m = 100, the standard stochastic simulation 
sometimes gives a very poor measure of the deterministic 
bias. Moreover, antithetic simulations with m « 1,000 compare 
favourably with standard simulations with m = 10,000.

Generally speaking, antithetic techniques already 
perform quite well with m = 100, and the results improve only 
marginally by increasing the number of simulations. On the 
other hand, only 10,000 replications give reasonable results 
for the standard stochastic simulation case.

These results seem to justify the choice of 1,000 
antithetic simulations as a reasonable compromise between 
accuracy and computing time. All the results presented in the 
paper are based on this experimental design.
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