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ABSTRACT

Thanks to modern information technology, economic and in 
particular financial phenomena tend to be systematical 1y observed 
at increased time frequency (weekly, daily, hourly etc.). This 
paper* investigates the limit case of a continuous record of 
observations, presenting a general maximum-likelihood method for 
estimating the parameters of stochastic differential equations 
(S D E s) of observable point vari ab les. This method, whose 
foundations can be found in the probabilistic literature, has the 
advantage of avoiding the main difficulties met by the discrete- 
time «approach in the case of nonlinear and/or multivariate SDEs. 
In this paper, its properties are presented and some examples, 
covering a large part of the recent financial literature, are 
worked out, The cast?. of discrete observations is considered, 
suggesting the importance of Monte Car1o experiments to eva 1uate 
t; he al t e r n a t i v e a p p r o a c h e s particularly in p r e s e n c: e o f 
nonstationary time series.

CONTENTS

§ 1 I n t t - o d ii c t; i o n p . 5

§ 2 Definitions and assumptions " S‘

fi 3 Almost sure estimation of the diffusion matrix "10

§ 4 Martingale properties of the iikelihood ratio and the 
score vector •' 11

§ 5 Properties of the ML. estimator' " 16

§ 6 Some examples "19

5 7 Discrete observations ” 22

§ 8 Conci usions " 2 6

Footnotes " 2 8

References " 33





§ 1 INTRODUCTION (")

Stochastic differential equations (SDEs) are currently used 

in many areas of economics, from macro analysis to micro theory.1 

This concept, which is now part of a new and rapidly growing 

branch of the theory of probability called 'stochastic analysis', 

found its first analytical treatment in a problem of financial 

economics, when, at the beginning of this century, a model of the 

brownian motion was suggested and an application to option prices 

was giuen by L.Bachelier.2 More recently, in the same area of 

financial economics, empirical applications of SDEs have been 

greatly stimulated by the seminal work of Black and Scholes 

(1973) who, assuming a simple SDE for the stock price, were able 

to find a valuation formula for stock options completely free 

from preference assumptions, dependent only on observable 

variables and their dynamics.

The recent increase in the opportunities of applications has 

angmented the importance to provide general estimation method for 

SDEs .

The literature concerning this inferential problem can be 

easily segmented into two different approaches. The 'discrete 

approach' is typically econometric and realistical 1y assume 

discrete sampling: for simple 1inear-in-the-variables (u-linear) 

models this approach transforms the SDE into an equivalent

" This paper is a revised version of a chapter of my D.Phi1 
thesis (Cesari(1987)) submitted to the University of Oxford. I 
would like to thank my examiners, J.Mirrlees and S.Schaefer, and 
a referee for their helpful comments. Financial support from the 
Bank of Italy is also gratefully acknowledged. Any responsibility 
is of course only my own.
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stochastic difference equation for which a number of estimation 

and testing results are known,3 When v-nonlinearities are 

i n v o1ve d, the transformation is, in general, no 1o n g e r possible 

and linear approximations are called for,

The 'c ont i n u o u s approach', instead, is t y pi c a1 of t he 

pro b ab i1i st i c 1 i t eratur e and assumes, at t he outset, the 

a v a i 1 a b i 1 i t y o f a c o n t i n u o u s r e c: o r d o f o b s e r v a t i o n s over t h e 

s a m p 1 e i n t e r v a 1 . F r o m t h i s i n for m a t i o n , a maxim u m - 1 i k e 1 i h o o d (ML.) 

Pr o c:e d ur e i s developed by exploit! ng a num b er of power f u 1 r es u 11s 

o f t o c h a s t i c c a 1 c u 1 u s . * Closed f o r m sol u t i o n s o f t h e M I... 

e qu a t i o n s a r e e a s i1y o b ta i n e d i n the 1i n e a r •••■ i n-1 h e - • p a r a m e t e r s (p- 

1 i n e ar ) c a s e . T. n p ar t i c u 1 a r , v-- no n 1 i 11 e ar i t i es pr e s e n t s no 

a d d i t i o n al di f f i c li 1 t y a n d m u 1 t i d i m e n s i o n a 1 i t y does no t r a i s e a n y 

a1i a s i n g pr o blem (s e e Phi 11i ps (1973) a n d Ha n s e n a n d Sa r g e n t 

( 1 9 B 3 ) ) which is i n s t e a (J a r e s u 11 o f the di s c: r e t i z a t i o n o f the 

S D E .

C. 1 e ar 1 y , the co nt i n uo us a p pr o a c h c:o n c er ns the a bs t r a c t, 

limi t hypo th es i s of t he a v a i1 a b i1i t y of a co nti n uous record of 

o bs erv at i o ns . As a ma11 er of fact, t he r ec ent t e c: h no 1 o g i c 1 

i m p ro v e m e n t i n d a t a co 1 1e c t i on h a * a 11o we d t o s y s t e m a t i cal 1 y 

o b s e r ve a n u m b e r o f e cono m i c ( c: h i e f 1 y , f i n a n c i a 1 ) p h e n o m e n a a t 

i n c re a s i n g fve qu e n cy, fro m m o n t hIy t o weekly, d a i1y, h o u r1y, 

mi n u te b y m i nu te, m a king t h e ‘c o n ti n u o u s r e c o r d' a s sum pt i o n n ot 

i r r e a 1 i s t i c i n m a n y c a s e s .

A n a dd i t i o n a 1 r e s t r i c t i v e c o nd i t i o n i s the c o m p1 e t e 

observabi1ity of the model variables. If, for example, flow data
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a r e i n v o1v e d (a case o f po i n t u n o b s e rv a b i 1 i t y : c o n su m p t i o n, 

income etc., observable only on a time interval) the continuous 

ap p r o a c h i s s i g n i f i c a n 11y c o m p1i c a t e d b e c o m i n g a j o i n t pr o b1e m of 

p a r a m e t e r e s t i m a t i o n a n d f i 1 t e r i n g . T h e d i s c r e t e il p p r o a c h i s , 

i n s t e a d , t h e n a t u r a 1 s e t u p f o r m o d e 1 s o f t h i s t y p e .

Moreover, it must be noted that the typical situation in 

empirical applications is the aval i 1 abi 1 i ty of a set of discrete 

observations, so that the practical implementation of the 

continuous approach requires to approximate the (stochastic) 

integrals involved in the ML estimators by (stochastic) sums 

whi c h, howev er, by t he separ ab i1i ty property of di f fusion 

processes, converge in probability to the corresponding integrals 

over the set of refined partitions of the sample interval.

N o t w iths t a n d i n g these limitations, the continuous approach 

has a wide range of e m p i r i c a 1 applications and, as it will be 

apparent from the examples provided in the text, a number of 

popular theoretical models, particularly in finance, could be 

easily estimated by it.

Unfort urial et 1 y , no com p ar at i v e a n a 1 ys i s concerning the two 

approaches is avallatile in the literature: in particular, either 

approach does not have optimal properties in finite samples and 

it would be very useful to obtain simulation results in different 

conditions (1inear/nonlinear, uni/multivariate models, high/low 

observation frequency etc.).

As a first step in this direction, in this paper we shall 

analyse the continuous approach in the case of observable point 



variables, presenting assumptions and results of the continuous­

time ML method which, to our best knowledge, has been largely 

neglected by financial economists and econometricians. The main 

contributions in the literature are reviewed and presented in a 

general and unified framework. Marginal references to alternative 

approaches are prouided, leaving to future work a proper 

comparative analysis thro Ugh Monte Carlo experiments.

The paper is as follows: in § 2 definitions and assumptions 

are presented; the estimation of the diffusion matrix is 

considered in § 3; § 4 shows the martingale properties of the 

likelihood ratio and the score vector; 5 5 is concerned with the 

optimal properties of the continuous-time ML estimator of the 

drift; § 6 presents some simple examples; § 7 is devoted to the 

problem of discrete observations and § 8 concludes.

§ 2 DEFINITIONS AND ASSUMPTIONS

Let (2,F,(Fr),P) te [0 , T 1 be a standard set-upa and let

dX1, = a,(Xt)dt + flf'lXtidWt X<o=x,o, i=1(1)m (1)

be an m-dimensional stochastic differential equation (SDE) system 

s.t. Ut'-(U’t...,Wn*) is an n-dimensional standard Wiener 

process4, nèm, and Xt=(X1*,...,Xmt)' is its unique strong 

solution (a diffusion process). In matrix form we hayeT

dX* = A(Xr)dt + G(Xt)dUt (2a)
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X o z X o ( z b )

We explicitly note that the solution Xt shares many 

p r o pe r t i e s with the Wiener process: it is Markov a n d conti nu o u s 

in p r o ba b i1i t y, it has P- a . s. un i f o r m1y c o n t i n u o u s sample pa t h s 

and it is nowhere differ entiable and therefore of unbounded 

vari a t i o n.

In particular, X17 is not mean-square differentiable so that 

the generalized Langevin equation

dX*/dt “ DXt.- ~ A(Xtr) + G(Xtr)€t (3)

interpreted as an ordinary differential equation driven by a 

continuous-time zero-mean Gaussian white noise, has no direct 

correspondence with the Ito equation (1) but with (1) as a 

Stratonovi ch equation.6*

In (1) we assume that the coefficients ai , gt 1 , i =. 1 ( 1 ) m are 

smooth functions of two unrelated sets of parameters * 

aUXt,e) , gi'(Xtlff) e H o = 0, ©€$, (T€H (4)

where § and H are open subsets of Rk, Rh respectively, and that 

the parameters are identifiable in the sense that will be defined 

below. Moreover we assume that Xt is a process with observable 

components.10

The econometric problem in the 'continuous approach' is to 

find estimators eAT| Oat having optimal properties on the basis 

of the continuous record { Xt: t€[O,T] }.

Many different estimation methods can be found for this problem 

in the literature but the maximum-likelihood (ML) procedure is 

certainly the most important one on both theoretical and
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P r ac t i c a 1 grounds.

We shal devote therefore our inquiry to the ML method giving 

marginal reference to alternative approaches.11

§ 3 ALMOST SURE ESTIMATION OF THE DIFFUSION MATRIX

We shall show th e follow i ng

PROPOSITION 1 : Given the system ( 1 ) and the c o n t i n u o u s record {X .t 

t c[0,T1>, t h e di ff u s i o n m a t r i x G G' is a.s. known on [0,T] .

PROOF: The SDE system (1) in matrix and integral form is

't rt
X-t; ::: Xo -t- A(Xltt,0)ds •* G(Xw,0')dWw (5)

JO JO
By hypothesis, Xr is a sample continuous semimartingale12 and

T
M-t Xo •+ G(Xm,o)dWm (Ó)

. 0 
is a sample continuous second order martingale. By Meyer (1962) 

d e c o m posi ti o n th e o r e m t h e re e x i s ts a u n i q u e sa m p1e c o nt i n u o us

i n cr e a s i n g pro ce s s o f b o un de d v a ri at i o n (BU) null a t z e ro, c a 11e d 

t h e (1 u a d r a t i c v a r i a t i o n -cova r i a t i o n p r o c e ss13 of M r■, < M , M > r

[ < M1 , MJ ] , and a samp 1 e cont i nuous mart i ngale Nr . t .

Nt 4. < M , M > 17 (7)

and

< X , X > * < M , M > -e ( :3 )

U si ng t h e l< u n i t a - W a t a n a b e ( I 2 6 7) c h a r a c t e r i z a t i o n , t h e s t o c h a s t i c 

i nt egra 1 i n (6) i s a mar ti nga 1e uniquely determi ned by the 

fol 1ow i ng cova r i a t i o n p r o pe rt y 
't ft

< G ( X 1r,, o ) d W « , R t- > G ( X , 0 ) d < W , R > m f . e . m arti n gale R e ( 9 ) 
.0 Jo

Th is i m p1i e s
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' rt rt
< G(Xe, O)dWTO, W > tr » G(XW, 0 ) d<U, W>s = G ( XTO , ff ) I n ds

,0 Jo JO
't (10)

x G(X»,o)ds
. 0
rt

<W, G(X», 0) dbU>t7 = G'(X«;G)ds (11)
s 0 Jo

rt
<M,M>t = < G(X«,O)dldm, G(Xto, or) dbU>.t - G(Xa,o)d<W, G ( Xu,0)dW>m 

,0 Jo JO JO
(12) 

and using (8) and (12)

't
<X,X>^ =: <M,M>r =: G(XW, or ) G ' (Xw, ff ) ds (13)

, 0

From the constructive characterization of quadratic variations 1 * 

fcT PT
<X,X>T - dXtdX*.' := OCX*, ff)G ' (Xt, tr) dt P-a.s. (14)

. 0 JO

so that the covariance diffusion matrix D ( Xr , 0 ) ~G ( X* , 0 ) G ‘ ( X t, o') 

can be assumed a.s. known. If it is nonsingular for every Xx , 

then G(Xt;,ff) is its unique positive definite square root.15

The parameter vector 0 is defined to be identifiable if, 

from (14), it can be put in explicit form

oat ~ f(Xt, t€[0,Tl ) (15)

§ 4 MARTINGALE PROPERTIES OF THE LIKELOHOOD RATIO AND THE SCORE 

UECTOR

Let us consider the systems

d X t- :: A(Xr,0)dt G(Xt)dW17 0 € c!?\Go (16)

dVt; - A(Ytr;0o)dt eo € 8, true value (17)

X o Y o (1 .3 )
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having unique strong solutions XtJYt which induce on the 

measurable space of continuous functions, (CnT,BnT), the

probability measure Po, Po respectively,1** 

Ue shall show the following 

PROPOSITION 2: If 

r<Yro,e) ~ G* (YJ(G(YJG' (Yb) )”1 ( A( Yra, e)-A(Y„,eo) ) 

is nonantici pati ve of class La 17 satisfying the boundedness 

condition E exp( p |f( t ) [*) < , y>0, f.e. t€[O,T3 and GeS? and

A ’ ( Ye , 8 ) ( G ( Y« ) G ’ ( ) ) “"1 A ( Y« , 9 ) , 0€$ is of class L1 then there

exist a likelihood process L-t(Y,e) on EO,T] and it is a 

marti ngale. 

PROOF: The hypothesis of Liptser and Shiryayev (1974 ch.7 p.2?9) 

are satisfied so that Pe and Po are equivalent (they have the 

same zero-measure sets) and in particular the Radon-Nikodym 

derivative is given by 

dP_e(¥/T) - LT(Y,e) (19)
dPo 

w here 
‘T 

LT(Y,e) == expt (A( Y«,0)-A(Y«,eo) ) ‘ (G(Y«)G‘ (YJ ) ““1 dYtt - 
, 0 (20)

VT 
(A( 8)-A(Y„ , Go) ) ' (G( Y«)G ‘ ( Y«) )“■* ( A( Yw, 0)t.A(Y«, 6o ) ) dsJ

. 0

Equivalently, the likelihood ratio L.T(6) can be written as 
?T fT

Lt(Y,0) “ exp(' r'(Vw,G)dW« - V IT(Vw,6 ) I * ds J (21)
; 0 JO

where |, | is the Euclidean norm. 

Cl early, 

Eo(Lt(Y,0)) " 1, (22)
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the supermartingale LT ( Y,6 > is a Po-martingale1B and Girsanov 

(I960) theorem applies, so that 

t
U~t = |Jt - r(Y,,e)ds (23)

. 0

is a BM w.T’.t. Po f.e. 0 € <5.

Take the restriction of LT(Y,9) on 0teBT

L»(Y,e) = EO(LT(Y,8) |Bt) (24)

Clearly it is a P.-martingale as well and, using (21) we have 
‘t ft

L-eCY.T) :: expt F ' ( Y., 0 ) dW. - £ IF ( Y„ , 9 ) |2ds ] (25)
. 0 Jo

't ft
= exp[ F'(Ywje)dW~„ + % |F(Va,0) |*ds] (26)

.0 JO

By assumption on I", 
ft

M~t = F'(Y„,0)dW~m (27)
. 0

is a P.-martingale and we can write
‘t

Lt(Y,6) = expCrC-e + £<M~,M~>t) = 1 - L.(Y«,0)dM~„ (28)
JO

so that Lt(V,9 ) is also a P.-martingale f.e.OeS, with unit 

mean.1*’

Ue observe that, by Jensen inequality, the loglikelihood 

1ogL«(Y,8) is a supermartingale.

PROPOSITION 3: If the order of differentiation and intergration 

can be interchanged20, it can be shown that the score vector is a 

zero-mean martingale null at zero.

PROOF: In fact, simplifying notation, 
ft 

qt(Y,Q) = $ log Lt(Y,6) = 8 t(A(6 )-A(6O)>' HGG' )-1dY„ -
òe Jo 80

‘t
8 I (A(6)-A(eo) ) ' (GG' )-’ (A(O)+A(0o))Ids 

. o se
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■t rt (29)
= ___3 A'lSJtGO-’dV. - ___8 A ' ( 0 ) ( GG 1 ) “1 A ( 9 ) ds

.o se Jo se

given that

8 [A' (9 ) (GG ' )“'A(0 ) 1 = 8 A1(6) ò lA' (6) (GG ' )"nAle) 1
80 80 86

= 2 8 A'(0)(GG‘)-’A(6)
66

Using (17) and (24) we can write

t rt
q t ( Y , 0 ) = ___ò A' (0)(GG')-1GdUt- _6 A 1 (6)(GG' (A(9)-A(9O))ds

,009 Jc 8©
t 

= 6 A 1 (9 ) (GG' )-1GdW~t(6 ) (30)
. o &e

which is a zero-mean square-integrable P.-martinga 1 e.

A maximum likelihood (ML) estimator O'1* is an adapted 

process satisfying 

Lt(Y,e%) = sup. {L*(Y,e), ecffi) (31)

so that, Le being exponential, 0% solves the likelihooh eqUation 

qt(v,eAt.) - o (32)

Note that in this case of Wiener disturbances we obtain, in 

continuous time, the well known result that the MLE coincides 

with the minumum-distance (weighted 1 east-square) estimator

't 
mine (dV« - A(0 ) ds ) ’(GG’)-1(dVm - A(0)ds) 

. 0

PROPOSITION 4: In the hypotheses of Proposition 3 the Fisher 

information matrix is given by sei 
*t

It(6) = ___& A’(0) (GG ■ )-’ 8 A(9) ds
.0 66 68
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PROOF: From the Ito integration by parts formula and Meyer (1962) 

theorem we obtain
't ft

q t ( 9 ) q * ' ( 0 ) :: dqw(G) q «•. ' ( 0 ) + q^(0) dqa* (0) < q ( 0 ) , q ( 0 ) > t
.0 JO (33)

Writing It for the quadratic covariation process of qt

I-r(O) <q ( e ) , q ( e ) >t (34)

it can I:j e c o n s i d e r e d a r a n d o m Fisher conditional i n f o r m a t i o n

m a t r i x f o r dependent observations. In fact", i f the order of

dif f erenti ati on and integration can be changed we have (using E

f o r E o )

E[Ir(0) 1 E [ q t ( 0 ) q r ' ( 0 ) 1 E I 61 ogl,*- 61 ogL* 1 - E ES*1ogL*]
60 ÓG* 0669’

given t h a t

6*1 ogLt ~ 6 (61 ogLe-) ~ 6 ( 6L t 1 ) ~ ____ 1_ - Sl osL+ &1 ogL+-
ÒG60' 63 6G' 69 Ó0* l...t 6969’ L-t. 60 60'

and, usi ng (23)

ECSZLt —U - Ersi: &%■-] ~ 6* EolLt] ™ 0 (35)
Ó06G' Lt. 6000* Seó©1

The following property hold s

E ( (e)-Im(0) |B«) :: E ( q-e ( 6 ) q t ' ( 0 )-q w ( 6 ) q m ' ( 0 ) | Bfll ) (3Ó)

~ E [ ( q i. ( G ) - q m ( 0 ) ) ( q ^ ( G )-q m ( 0 ) ) 1 | ]

so that

E ( d 11 ( 0 ) | B r ) ::: IE ( d q ( 6 ) d q * ' ( 0 ) | B u > - d I * ( 0 ) (37)

the last equality being a result of the predictability property 

of the quadratic variation process22.

Co n se q u e n11 y t h e Fi s h e r i nf o rma t i o n m a t r i x is
*t ft

U(0) dqm(O) dqw 1 (O) - ___6 A ‘ (0) (GG ' )“ 1 ___6 A(0) ds (38)
,0 Jo 60 óe
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Equations (29) and (32) are the basic results to calculate 

the ML estimator 0%; equations (30) and (38) allow to 

investigate its di stributional properties, The identifiability of 

e means that it can be made explicit from (32),

§ 5 PROPERTIES OF THE ML ESTIMATOR

We shall consider the asymptotic properties of the ML 

estimator in some special cases. 

P-LINEAR U-NONL.INEAR DRIFT. Let us assume that the drift vector 

A(X,0) is linear in the parameters (p-linear) but quite general 

w.r.t, the v a r i a b1e s. 

We have

dXr (a(Xt) + B(Xr)8)dt + G(X.c)dWt. (39a)

Xq ~ Xo (39b)

and, omitting arguments, 

't ft
q-r(Y,G) ~ B 1 (GG ' )~1 dY« - B ' ( GG ' ) ""1 ( a + BO ) ds (40)

. 0 Jo
‘t 

It(Y,e) = B ' (GG ' )”n Bds ~ Ir(Y) (41)
, 0 

giving (for 11 nonsingular) 
t rt

6% ~ It""1 E B ' (GG' ) ~1d- B' (GG’ )~1 ads] (42)
.0 Jo

so that 
't 

0% - 0O + IV” B 1 ( GG 1 ) ”"1 G d (43)
. 0 

and using (40) qt has the representation

q^(Y,e) =: It(Y, 6) (6At-9) (44)

The following theorem gives sufficient conditions for asymptotic 

n o r m a 1 i t y .
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PROPOSITION 5: If as t -, «
‘t P.

1 B'(Xt)(G(Xt)G'(Xt)J-1B(X»)ds
t Jo -» C(O) (45a)

‘t
1 E [ B' (Xt) (G(X*)G ' (X-e) B(Xt ) 1 ds
t JO -» C(0) (45b)

where C(6) is a nonrandom nonsinaular matrix, then a.s. the 

likelihood equation has a unique solution which is consistent and 

normally distributed in the sense that
0

4t (OAt-eo) -» N(O,C~1 (Go) ) (46)

If a, B, G are time-independent (homogeneous diffusion) and the 

process is recurrent with a (steady state) ergodic distribution 

P~o then, if B,G have bounded norms,

C(0) == E-.I B ' (X) (G(X)G ' (X) )-’ B(X) 1 (47)

where E~. is the expectation operator w.r.t. the steady state 

distribution.5'3'

PROOF: See Taraskin (1970) p.218.

P- U- NONLINEAR DRIFT If the drift vector is nonlinear in the 

parameters as well as in the Variables (p- v- nonlinear) then

Taraskin's (1970) theorem can be extended provided that the 

process is ergodic f.e. OeS and the function

6 A,(Xo,9)(G(X0)G,(Xo))“1G(X0) 
88

satisfies a boundedness condition (see Kutoyants (1978) p.401).

Under these assumptions OAt is consistent and asymptotical 1y 

normal :
()

ft (6\-0o) -, N(O, D-1 (Go) ) (48)

0(0) = E". I.__ 8 A'(Xo,e) (G(Xo)G' (Xo))-1 8 A(Xo,0) 1 (49)
89 66 •
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ASYMPTOTIC. EFFICIENCY The strong law of large numbers (SLLN) for 

brownian motions, saying that

1 i m Ut-_ ~ 0 a . s . (.50)
t t* t 

can be extended to any square-integrable sample-continuous 

martingale Mt s.t.

1 i m < M , M > t = * 
t fw

in which case it is stated as

1 im < M , M > t ~1 Mt =: 0 a.s. (51 )
11*

As a result we have

lim Ir1 (e)q-t(e) ~ 0 Pe-a.s. (52)
t

p r o v i d e d that 

lim It(e) = « (53)
1

In the univariate case, using a random-time substitution it is 

possible to write the martingale qt as a BM with a random time 

change 

qt(0) ~ W (54)
It(6) 

so that a central limit theorem (CLT) holds36*

D
i * - * ( e > w n ( o, 1 )

I-t (0)

If the score can be factorized as

qt(9) ~ Itr (0) (GAt-e) (55)

then, using SLLN and CLT, we obtain strong consistency and 

asymptotic normality2® in the sense that
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D
It* ( 0 ) ( 0At-0 ) -*N(0,1) (56)

Following F ei gi n(1976,1978 ) and Heyde and Feigin (1 975) define 

the estimator 6~t asymptoti cal 1 y efficient if as t -» «

Po 
(9~t-0) - Q ( 0 ) 1‘ © ) q t ( 0 ) 1 -» o (57)

for some constant nonsingnlar matrix Q(0). 

Using the SLLN and CLT you can see that Q~ t is consistent for 0 

and asymptoti cal 1 y normal in the sense that, as t -» • 

i**<e) (O~t-e) -»N(0,x(e)) (59)

where 2*(0) = 0(6)

If the factor)zation (55) holds, then the MLE is asymptotically 

efficient and therefore consistent and asymptotically normal with 

Q(6)=Ik.

§ 6 SOME EXAMPLES2*» 

Example 1; Ornstein~Uh1 enbeck (O'-U) process 

dX-e = OXtdt + adldt 6eR\eo (59a)

dYt = eoYtdt + cdWt (59b)

Xo - Vo (5?c)

The diffusion coefficient is obtained as 

t 
ff2 = I (dX-e)2 = 1 <X,X>t

t JO t
where, as above, (dXt)z = d<X,X>t. From (.29) 

‘t rt rt
qt(O) = 1 [ Y„dYw - 9Y.ads] = 1 Y.dW~t

o2 JO JO ff JO
t rt rt rt

0% = ( Ya2ds)-’( Y»dY«) = ( Y.2d5)-1^[YT2-Yo2- ( d V, ) «1
.0 Jo JO Jo
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't
Ir(O) = 1 Y„2ds = It

ff2 Jo 
so that 

qt(9) = I-eO^-e-O)

It can be shown27' that It is an integrable process increasing to 

« so that 0At is strongly consistent f.e. 0. Moreouer, for 9O 

n . e . 0,

D 
(6At-9o) -» N(0, 1 )

For 8O = 0, however, asymptotic normality does not hold (in 

particular, the sufficient conditions (45) in Proposition 5 are 

non satisfied). In this case, in fact, Y*-Yo = oUt and, assuming 

for simplicity Yo-0, we have 

‘t rt rt
1**0% - ( W„dldm) ( W^ds)-* = We2ds)-*i

.0 Jo JO

implying that the asymptotic distribution is non normal, being 

lim P(lt:'60At O') - 1 im P( Ul^z < 1) = X^,(1) > £ 
1t* t ft
where X2, is a chi-square distribution function with 1 d.f.

therefore eo = 0 represents a point of singularity, in the

asymptotic distribution results,28 

Moreover, optimal properties are not Valid in finite sample 

intervals: as shown by Liptser and Shiryayev (1974 theorem 17.2), 

given the SDE 

dXt. r 0B(X*,t)dt + dUt 6eR 

dVt = 0oB(X»,t)dt + did* 

Xo = Yo = 0
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the MLE is biased fo.r any finite record length tO,t1, being

't rt
= ( B5E(Y.,s)ds)-1 B(V.,s)dV.

. 0 Jo

and if B satisfies regularity conditions (e.g. if it is boUnded)

then2’ 
't 

Eo(9At) = 9o + 6 Eo( Ba(Y»,s)ds)
800 JO

Example 2: Feller diffusion (diffusion branching process)

dXt = OXtdt + oTXcdWt ©<0, Xt£0 (60a)

dY-e = OoY^dt + tUYtdUt (60b)

Xo - Yo > 0 (60c)

We haue

't ft
o2 = ( Yads)-’( (dYa)2)

. 0 Jo
*t ft [t

qt(6) = 1 clYK - 0 Y.ds = 1 4Y»dW~m
d5e JO JO G Jo
't 

0% = ( Y„ds)-’ ( Yf-Vo)
. 0 

t
Ir(O) = 1 V«ds = It

a2 JO 

qt(0) - it(eAt-e)

It can be shown (Feigin (1976))) that GA-e is strongly consistent

and asymptotical 1y normal. Note that the change of variable

Rt=4Yt would give

dRt = (_g.o Rt - oz )dt + c dWt 
2 2Rt 2

so that, given 
*t 

ff2 = 4 (dRa)a
t JO 

we would obtain the same ML estimator of 0
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t
e% = ( R.^ds)-1(Rt2-Ro2)

. o
In other words, the MLE is invariant under regular (C2) 

transformations of the state space.30

Example 3; Multivariate diffusion

dXlt = e,X1t:dt + g, ' (61a)

dX2t = 6s.Xa.tdt + g2 ' iX2tdUt (61b)

(Xi.jXaoJzlXio.X,.) (41c)

We outline the steps to obtain the ML estimator. Write in vector 

form ©'"(©i.ez), Xt'=(X,t,X2t) and G=(g,,g2)' a 2xn matrix s.t.

r s,2 aSiS2 . rt rt
GG' = X = = ( X2„ds)-’( dXadX„')

- 05,52 Sa2 J Jo JO

where s,2 = g, 79,, sa.a = g2 ' g2 , as,s2 = g, 'g2cg2'g, .

't r x, „ o _ rt r x, „ o .. r 0, x i. ..
qt(O) = g--» dX. - I-1 ds

. 0 - 0 Xa:. - Xa*«> .0-0 - Os, )(5,a

Calculate I-1 and solve the likelihood equation for 0At.

The Fisher conditional matrix is

‘tr X,„ 0 r X, „ 0 _
It -■ T-1 ds

. o L 0 xza J Lo x2„ .

and therefore

qt(6) = It (9^-6) .

§ 7 DISCRETE OBSERVATIONS

In many instances, wheneyer a continuous monitoring is not 

possible, a discrete sample of observations, usually taken at 

equally spaced time points, is auailable. In this case, if the
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SDE is sufficiently simple such as a nonzero-mean homogeneous O-U

SDE

dX-e = (OXt + b)dt + o d Id * (62)

corresponding to the integral equation 
't ft

X» - X. = (0Xu+b)du + a dUu (63)
.5 J S

it is possible to obtain the closed form solution for the process 

given, in this example, by 

‘t
Xt - Xoeot + b(es*-1)/e + a e®‘*-’a>dWw (64)

. 0
so that, as in Sargan (1976), writing XT for Xt6i t=0,1,.,.,* 6

being the fixed time interval between successue observations, we 

obt a i n

‘T&
XT = eosXT_1 + b(eo6-1)/0 + o eo<T*-»>dW« (65a)

.(t-1 )8 
or

XT - co + CiXT_i + uT (65b)

where co=b(e®*-1)/©, c,=ee& and ux is a zero mean Gaussian white 

noise with variance 

s2 = (j2(e286-1 )/(28) .

From the OLS estimates of co, c, and sa (and the assumption 8=1) 

the ML estimates for 0, b and a2 can be easily obtained.

This discrete approach, which involves no approximation, 

has, however, two major limitations: it needs an explicit 

solution of the SDE, i.e. a result quite difficult to obtain in 

nonlinear cases, and it involves identification problems in the 

linear but multivariate case (see Phillips (1973) and Hansen and 

Sargent (1983)). In general some sort of 1inearization must be
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i ntroduced.

Alternatively, assuming for simplicity b=0, the continuous­

time ML approach would give, as in Example 1, 
‘T fT

9at = ( Xa2ds)-1( X»dX„) (66)
Jo JO

which, using the Cauchy approximation to integrals31, become 

©Ar.,T = (IiNn X-,-, 26n)-’ (Si No Xt_,a\Xt) N„=T/8„ (67)

i.e. the OLS estimator of

z\XT = 9XT_,ón + uT t=1,...,N„ (66)

The basis for this approximation comes from the separability 

property of continuous processes (see Wong and Hajek (1965) p.45) 

by which operations involving a continuoum of realizations of the 

process can be consistently approximated using a discrete number 

of observations, with the convergence in probability defined in 

terms of infinitesimal asymptotics i.e. as the maximum distance, 

8n, between successive times of observation goes to zero.

More generally, following Prakasa-Rao and Rubin (1981) it 

can be shown that for a stationary ergodic process satisfying the 

SDE with nonlinear drift

dX-e = A(X*,0)dt + did* (49a)

Xo = xo (09b)

the least square criterion applied to

z\X^ = A(Xt_i ,6)8n + uT (70)

giving the LS estimator

e^n.T min. I,"" (/X.X,. - A(XT-i,e)5„ )2 (71)

is equivalent to the ML criterion on the basis of the continuous
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record over (0,T1 provided that the maximum distance Sn between 

successive observations vanishes.

This problem has also been studied by Le Breton (197<5) for the 0- 

U process. He found, in particular, that the discrete-time 

Cauchy-analog, 0An,T, of the ML estimator as well as the exact 

discrete-time MLE converge in probability to the continuous-time 

MLE 0at as in t 0. Moreouer, they differ from OAT by an error 

which is of order <8n in probability.

The difficulty, however, is that the discrete-time analog (Cauchy 

sums instead of integrals) of the ML estimator conuerges (for 

óntO) to an estimator which is only asymptotically (for If®) 

optimal: as shown by Bergstrom (1964 theorem 4) for the 

stationary 0-U case the asymptotic (Th») bias of 9An,T is of 

order 6„ in probability32.

In the nonstationary case 0o-O Phillips (190?) has shown that, as 

8n 4 0 ,
D

0A „ , t = (a^n.T -1)/8n “♦ 0^t

as expected, but also that the asymptotic (8„40) distribution of 

aAn.T is degenerate, the estimator being consistent for 1 as 

8n4O, so that in this nonstationary case a^n.T has optimal 

properties not only in the infinite ( T t>" ) but also in the 

infinitesimal (àntO) convergence: a suitable discrete sampling 

scheme turns out to be preferable and more informati ye than a 

single continuous record over a finite time interval.
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§ 8 CONCLUSIONS

We have presented a general ML method for estimating SDEs 

based on the assumption of the availability of a continuous 

record of observations, an assumption not irrealistic whenever 

the modern information technology is used in collecting the data. 

From basic results of stochastic analysis we have shown the 

almost sure estimabi1ity of the diffusion matrix, the martingale 

properties of the likelihood r at i o and the score vector as well 

as the equivalence of a Fisher conditional information matrix to 

the quadratic variation process of the score. Conditions for 

consistency, asymptotic normality and the Heyde-Feigin (1975) 

asymptotic efficiency are given in the general case of nonlinear 

drifts both in the parameters and in the variables. The usual 

difficulties related to the discrete-time estimator of nonlinear 

in the variables and/or multivariate SDEs are overcome.

With discrete observations, however, the continuous-time MICE 

must be, at best, consistently approximated in the sense that its 

discrete-time, approximation tends to the continuous-time MLE as 

the discrete observations become more and more dense in the 

s ample interval.

In actual practice, both the continuous-time and the 

discrete-time estimation methods involve, in general, some degree 

of approximation and Monte Carlo studies, along with more 

theoretical analysis, are an important point in the agenda on the 

subject. In particular, the availability of a continuous-time 

estimation method as the one presented in this paper raises a



27

number of questions: does it pay to transform a continuous model 

into a discrete: one? At which stage of the analysis? In which 

setting 1inearizations and other approximations haue weaker 

effects? Which are the relatiue properties, in small and large 

samples, of discrete and continuous estimates of a giuen 

parameter vector when the data have the typical nonstationary 

dynamics of economic time series? As suggested by Novikov (1972) 

and Shi ryayev (1974) or by Feigin (1979) and Phillips (1987), 

alternative sampling schemes seem to be preferable in the case of 

(near-) nonstati onary processes but general results have not yet 

been obtained.
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1. See Malliaris and Brock (1982) for an extended survey. 
Arguments in favour of continuous-time economic modelling are 
given, for example, in Merton (1975) and Gandolfo (1981) ch.1.

2. Bachelier's pioneering work is reproduced in Cootner (ed.) 
(1964). Note that a careful distinction should be kept between 
the brownian motion, which is a 'matter of fact', result of 
experi mental observations by R.Brown[18281 and others and the 
brownian motion process ( Bachelier[19001-Einstein[19'05]- 
Wiener[19231) process) which is one of possible models of the 
former and, in general, of erratic movements over space and time.

3. See Bergstrom (1984) for a recent survey of the discrete 
approach. Pioneering works by J.D.Sargan, C.R.Wymer and 
P.C.B.Phi 11ips can be found in Bergstrom (ed.) (1976).

4. The foundations of the continuous-time ML procedure are in 
Liptser and Shiryayev (1974). A recent extended framework is 
given in Hutton and Nelson (1986). A survey is provided by Basawa 
and Prakasa-Rao (1980).

5. (Ft) te [0,T1 is a standard filtration if it is a complete, 
right-continuous increasing family of sub o-algebra of F. See, 
for example, Wong and Hajek (IS’SS) p.210.

6. A (one-dimensional) standard Wiener process (or standard 
brownian motion process, BM) is defined by the properties
1) III* ~ N(O,t); 2) E(WtW.)=mi n(t,s) ; 3) Uo = 0 P-a.s.
In the multidimensional case, each component is a standard BM.

7. The drift vector A(Xt) and the diffusion matrix 
G(Xt)=[fli1(X,)] are assumed to satisfy by components the 
conditions of bounded growth and Lipschitz continuity of 
It6[19511 theorem which guarantee existence and pathwise 
uniqueness of the solution process. The coefficients of the SDE 
(1) do not depend directly on time so that has stationary 
transition densities (time-homogeneous diffusion). This is not 
necessary for the estimation method but it is required for the
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existence of a steady-state random process associated whith X» 
and therefore for the asymptotic properties of the estimators.

8. See Jazwinsky (1970) ch.4, Wong and Hajek (1985) ch.4, McShane 
(1972), Sethi and Lehoczky (1981). Ito and StratonoUich 
stochastic integrals haue different definitions and properties. 
Even if equivalence theorems exist in order to identify the same 
process with apparently different It6 and Stratonovich SDEs, a 
particular interpretation must be adopted when a SDE is used to 
model some random phenomenon. Different interpretations will give 
different solutions.

9. The fact that e,a are assumed to be disjoint (no parameters in 
common) in not restrictiue. Using the result of the next 
paragraph, if 0,0 have o0 in common (i.e. eo=ffo> and o is 
identifiable then oo can be assumed a.s. known in the drift 
vector and 0 substituted by e\uo=9,•

10. In general, if contains unobservable components we face a 
joint problem of estimation and filtering about which very 
little, if any, is known in the general case of nonlinear 
coefficients or linear bat interactive systems. (See also the 
following note). On the problem of instantaneous flow uariables 
(consumption, income, etc.), observable only in integral form 
over a time interval, see Phillips (1978).

11. Alternative estimation methods are presented in Lanska (1979) 
(minimum contrast estimation), Banon (1978) (nonparametric 
estimation of the drift using the steady-state estimated density 
and the Fokker-Plank equation), Aase (1982) whose recursive 
estimator (for 1 i near-i n-the-paraiileter drifts) generalizes the 
Kaiman-Bucy method and encompasses the ML estimator.
In the case of random varying "parameters", i.e. in the case of 
multiUariate diffusions with unobservable components, filtering 
methods can be found in Ershov (1970), Liptser and Shiryayev 
(1974), Kallianpur (1980), Jazwinsky (1970).

12. A process Xt is a semi inarti ngal e if it can be decomposed as 
Xt = A-e + Mt where At is an Ft-measurabl e (i.e. adapted) process 
null at zero (Ao=0) with a.s. sample paths of finite (total) 
Variation and Mt is an F^-martingale. Such a decomposition, if it 
exists, must be pathwise unique. Note that diffusion processes 
are only a subset of the very general class of semi mantingales 
(e.g. ShiryayeU (1981)) which inclUdes non-continuous as well as 
non-MarkoU processes. Estimation methods for semimartingales are 
developed in Hutton and Nelson (1986) and Christopeit (1986).

13. Giuen two onedimensional continuous martingale, M,N, the 
quadratic coyariation process <M,N>t is defined by
<M,N>r = H <M+N,M+N>* - '4 <M-N,M-N>t 
and the quadratic variation process is defined, by Meyer
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(1?ó2, 1963) theorem, as the unique continuous increasing process 
s.t. Mt2 - is a martingale.

14. Note that in eq.(14) the second integral is defined as the 
limit -over nested partitions of [OUT] refining to zero- of the 
cross products of the increments of the elements of Xt. By the 
properties of continuous martingales it can be shown that this 
integral is a constructiye characterization of < M,M >T.

15. See Le Breton (1977) for1 the Ornstei n-Uhl enbeck case and 
McKeasue (1984) on the effects of misspecifying the matrix G.

16. Let C " t be the space of continuous functions f ( t ) : t -,Rn.
Let Br’T be the o-alsebra generated by the sets (t: f(t)eA) where 
te[0,T1 and A is any Borel set in Rn. Any sample continuous 
process Xt in (fi,F,P) induce a probability, say Px, on (CnTlBnT) 
through the definition
PX(B) = P(wefi; X.(w)eB) f.e. 0€BnT
where X.(w) is the sample path t -»X«(u).

17. A separable and measurable process Xt F^-adapted is called 
nonantici pati ve (w.r.t. (Fe)). It is of class L2 if

P( |XT |2dt <<»):= 1 
. 0

The class L.1 is defined analogously.

18. See for example Liptser and ShiryayeU (1974) ch.6 p.216 and
Friedman (1975) p.156.

19. Analogous results can be obtained for dP»(X.t)=U«.(X.e)
dP.

and for Lt.(X,G), U*(V,©) which equal, from the equivalence of
measures, U^-1(X,0) and Lt-’(Y,0) respect)Mely .

20. See Hutton and Nelson (1984) for sufficient conditions.

21. See Feigin (1976) for the uniuariate case.

22. Predictability essentially means that It.dt is Bt-measurable. 
The quadratic variation process is also called predictable 
quadratic variation or predictable compensator: see Wong and 
Hajek (1985 p.224).

23. See also Brown and Hewitt (1975a). Kulinich (1??5) gives an 
example of non recurrent diffusion with random limit C(0) such 
that the consistency of eAt is preserved but its asymptotic 
distribution (with a different normalization) is no longer 
G a u 5s ian.
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24. See Feigin (1976). Taraskin's (1973) theorem 1 and 5 deal 
with the multipari ate case.

25. McKeague (1984) proved that if the diffusion is stationary 
ergodic, then strong consistency and asymptotic normality of the 
MLE continue to hold even if the diffusion coefficient function 
G(X*) has been misspecified (loss in efficiency). If also the 
drift function is misspecified, consistency and asymptotic 
normality are valid w.r.t. the pont of minimum 6“ of the MSE 
between the true drift A(Xt,0o) and the misspecified one.

26. The recent literature on asset valuation provides a wide 
range of theoretical models in continuous time the ML procedure 
could be applied to. For example, Black and Scholes (1973) used a 
lognormal model, Uasicek (1977) an 0-U model, Cox, Ingersoll and 
Ross (1985) a branching process; Langetieg (1980), Merton (1973), 
Richard (1978) and others haue suggested multiyariate theoretical 
models. Cesari (1987) part 2 contains an application of the 
continuous-time approah to the estimation of a multivariate model 
of the real and nominal term structures of interest rates in 
Italy.

27. See Feigin (1976) and Brown and Hewitt (1975a).

28. See Feigin (1979) and Phillips (1987) theorem 6.3 for Vo n.e.
O. Note that for euery 0eR the O-U process does not explode in 
the sense that it cannot reach * «- at a finite time ( A a s e 
( 1982)) . For 0>O, however, it is nonstationary while for e< 0 it 
is stationary ergodic.

29. ShiryayeV (1974) and Nouikou (1972) suggests the sequential 
or stopped ML estimator: take H>0 and define the stopping rule

t(H) = inf(t: Ba:(X„,s)ds >H )
. 0

If f.e. 0e§,

P. ( Bz(Xm,s)ds = ® ) = 1
. 0

then P. ( t (H) < •> ) =1 and the sequential estimator (for B bounded) 
’T ( H )

= 1 B(Ya,s)d?„
H Jo

is unbiased, has constant variance abd is normally distributed 
i . e .

e~TCH> - N(0,1ZH)
For B(Xr,t)=Xt Novikou (1972) stddies the mean record length 
E,(t(H)) and the mean square error of 6At and e~T<H, showing that 
the gain of using the sequential ML estimator is especially large 
if O>O (nons tationary case). On sequential ML estimators see also 
Brown and Hewitt (1975b). Swensen (1985) shows that both 
estimators are non admissible for the quadratic loss but that the
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former is minimax (as well as Bayes for Uniform prior) for a 
suitable weighted quadratic loss function.

30. A general proof can be easily obtained via Ito lemma and 
(29). See also Aase (1982).

31. On discrete approximations to integrals see McShane (1983) 
p . 61 .

32. Along the same line, it can be shown that the trapezoidal 
approximation to (66)
S~n.T = (2/8n)(I,Hn XT2 + Z,Nn XT_,«)-’(X,"" X,-_,z\x^)
has an asymptotic bias of order 3„ in probability, while the 2SLS 
estimator
e°„,T = (2/8„) (X-, N" XT_, (X-r + X-r-1 D-’ (X, Nn Xz\XT)
derived from the trapezoidal approximation to (63) using XT-, as 
instrument han an asymptotic bias of order 8O2 in probability.
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