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ABSTRACT

Thanks to modern information technology, economic and in
particular financial phenomena tend to be systematically observed
at increased time Frequency (weekly, daily, hourly etc.). This
paper investigates the 1imit case of a continuous record of
observations, presenting a general maximum-likelihood method for
estimating the parameters of stochastic differential equations
(SDEs)  of observable point variables., This method, whose
foundations can be found in the probabilistic literature, has the
advantage of avoiding the main difficulties met by the discrete-
time approach in the case of nonlinear and/or wmultivariate SDEs.
In this paper, its properties are presented and some examples,
covering a large part of the r1recent financial literature, are

worked out, The case of discrete observations is considered,
suggesting the importance of Monte Carlo experiments to evaluate
the alternative approaches particularly in presence of

nonstationary time series,
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§ 1 INTRODUCTION (™)

Stochastic differential equations (SDEs) are currently used
in many areas of economics, from macro analysis to micro theory.?

This concept, which is now part of a new and rapidly growing
branch of the theory of probability called 'stochastic analysis’',
found its first analytical treatment in a problem of financial
economics, when, at the beginning of this century, a model of the
brownian motion was suggested and an application to option prices
was given by L.Bachelier.% More recently, in the same area of
financial economics, empirical applications of GSDEs have been
greatly stimulated by the seminal work of Black and Scholes
(1973) who, assuming a simple SDE for the stock price, were able
to find a wvaluation formula for stock options completely free
“from preference assumptions, dependent only on observable
variables and their dynamics.

The recent increase in the opportunities of applications has

augmented the importance to provide general estimation method for

ShEs,

The Jliterature ;oncerning this inferential problem can be
gasily segmented into two different approaches. The 'discrete
approach' is typically econometric and realistically assume

discrete sampling: for sinple linear—-in-the-variables (v-linear)

models this approach transforms the 6DBE into an equivalent

.

This paper is a revised version of a chapter of my D.Phil
thesis (Cesari(1987)) submitted to the University of Oxford. I
would like to thank my examiners, J.Mirrlees and 6.Schaefer, and
a referce for their helpful commerts. Financial support from the
Bank of Italy is also gratefully acknowledged. Any responsibility
is of course only my own,
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stochastic difference equation for which a number of estimation
and testing results are knpown.® UWhen v-nonlinearities are
involved, the transformation is, in general, no longer possible
and tinear approximations are called for.

The ‘continuous approach', instead, is typical of the
probabilistic literature and assumes, at the outset, the
availability of a continuous record of observations over the
sample interval. From this information, a maximum-likelihood (ML)
procedure is developed by exploiting a number of powerful results
of stochastic calculus.* Closed form solutions of the ML
equations are easily obtained in the linear-in-~the-parameters (p-
lTinear) case., In particular, v-nontinearities presents no
additional difficulty and multidimensionality does nolt raise any
aliasing problem (see Phillips (1973) and Hansen and Sargent

(1933)) which is instead a result of the discretization of the

Clearly, tﬁe continuous approach concerns the abstract,
Timit hypothesis of the availability of a continuous record of
observations. As a matter of fact, the recent technological
improvement in data coT1ection has ailowed to systematically
ohserve a number of economic (chiegfly, fFinancial) phenomena at
1ncrea$fng Ffrequency, from wmonthly to weekly, daily, hourly,
minute by minufe, making the ‘continuous record' assumption not
irrealistic in many cases,

An  additional restrictive condition is the complete

obhgservahility of the model variables. I1If, for example, flow data



?.
are i1nvolved (a case of point wunobservability: consumption,
income etc., observable only on a time interval) the continuous
approach is significantly complicated becoming a joint problem of
parameter estimation and Filtering. The discrete approach 16,
instead, the natural set up For models of this type.

Moreover, it must be noted that the typical situation in
empirical applications 1s the avalilability of a set of discrete
observations, 50 that the practical implementation of the
continuous approach requires to approximate the (stochastic)
integrals involved in the ML estimators by (stochastic) sums
which, however, by the separabhility property of diffusion
processes, converge in probability to the corresponding integrals
over the set of refined partitions of the sample interval,

Notwithstanding these limitations, the continuous approach
has a wide range of empirical applications and, as it will be
apparent from the examples provided 1in tThe text, a number of
popul ar theoretical models, particularly +in finance, could be
zasily estimated by it,

Unfortunaletly, no comparative analysis concerning the two
approaches is available in the literature: in particular, either
approach does not have optimal properties in finite samples and
it would be very useful to obtain simulation results in different
conditions (linearsnonlinear, unismultivariate models, high/low
observation frequency etc.)

As a first step in this direction, in this paper we shall

analyse the continuous approach in the case of observable point



variables, presenting assumptions and results of the continuous-
time ML method which, to our best knowledge, has been largely
neglected by financial economists and econometricians. The main
contributions in the literature are reviewed and presented in a
general and unified framework. Marginal references to alternative
approaches are provided, leaving to future work a proper
comparative analysis through Monte Carlo experiments.

The paper is as follows: in 8 2 definitions and assumptions
are presented; the estimation of the diffusion matrix is
considered in § 3; § 4 shows the martingale properties of the
likelihood ratio and the score vector; § 5 is concerned with the
optimal properties of +the continuous-time ML estimator of the
drift; & 4 presents some simple examples; &8 7 is devoted to the

problem of discrete observations and & 2 concludes.

5§ 2 DEFINITIONS AND ASSUMPTIONS

Let (Q,F,(Fe),P) te [0,T] be a standard set-up® and let
dX'e = a4 (Xeddt + 0¢' (Xe)dWe Xi0=X10, i=1(1)m 1)
be an m-dimensional stochastic differential equation (SDE) system
s.t., We'=(WP¢, ..., W ) is  an n-dimensional standard Wiener
process®, nzm, and Xezo(X'e, ..., X"e)! is 1its wunique strong
solution (a diffusion process). In matrix form we have?

dXe = A(Xe)dt + G(Xe)dWe (za)



Xo = ¥Xo (2b)
We explicitly note that the solution Xe shares many
properties with the Wiener process: it is Markov and continuous
in probability, it has P-a.s. uniformly c¢ontinuous sample paths
and it is nowhere differentiable and therefore of unbounded
variation.
In particular, X¢ is not mean-square differentiable so that
the generalized Langevin equation
dXes7dt 2 DXe = A(Xe) + G(Xe)€e (3)
interpreted as an ordinary differential equation driven hy a
continuous~time zero-mean Gaussian white noise, €., has no direct
correspondence with the I1té equation (1) but with (1) as a
Stratonovich equation.*®
In (1) we assume that the coefficients aq, g+', i=7(1)m are
smooth functions of two unrelated sets of parameters ©
a1 (Xe,0) , gy '(Xe,0) e no = &, 8ch, o€H (4)
where &8 and H are open subsets of R%, RM respectively, and that
the parameters are identifiable in the sense that will be defined
below. Moreover we assume that X¢ is a process with observable
components.'®
The econometric problem in the 'continuous approach' is to
find estimators 6%+, ¢~y having optimal properties on the basis
of the continuous record { X.: telO,T1 }.
Many different estimation methods can be found for this problem
in the literature but the maximum-likelihood (ML) procedure is

certainly the most important one on both theoretical and
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practical grounds.
We shal devote therefore our inquiry to the ML method giving

marginal reference to alternative approaches.™?

§ 2 ALMOST SURE ESTIMATION OF THE DIFFUSION MATRIX
We shall show the following
PROPOSITION 1: Given the system (1) and the continuous record {Xe
tel0O,T1}y, the diffusion matrix GG' is a.s. known on [0,TI.
PROOF: The SDE system (1) in matrix and integral form is
T t
Re = Xo + J A(Xy,03ds + J G(Xy,0)dUWg (H)

0 0
By hypothesis, Xe 1% a sample continuous semimartingale'® and

M Xo + JLG(X,,.,O')dwg (4)
0

i a sample continuous second order martingale. By Meyer (1942)
decomposition theorem there exists a unique sample continuous
increasing process of bounded variation (BUY null at zero, called
the quadratic wvariation—covariation process®™®  of My, <M, MY>e
[<M?*,M¥I>ed, and a sample continuous martingale Ne s.t.

MeMe! Ne + <My MYy (7)
and

<X, X)) ¢ <M, Mo )
Using the Kunita-Watanabe (1%47) characterization, the stochastic
integral in (43} is a martingale uniquely determined by the
following covariation property

T t
<j G{Xe,;0)dW,, Re> = J GiXg; 0)d<UW,R> f.e. martingale Ry (%)
0 0

This implies
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't t

<J Ci{Xg,0)dWe,W>e = G(Xg,0)dcl;Wyy = [ G(Xa,0)Inds

¢} J0 0
[t (10)
= G(Xg,0)ds
Jo
[t

G'(Xgq,0)ds (11)

it

<U,J G(Xy,0)dWade
0 J0

ti

t
<M, M>e = <JG(X,,0)dwm,J C(Xg,0)dWa> s [ G(Xg,a)d<w,[ C(Xy,0)dW>g
0

0 0 0
(12)
and using (&) and (12)
t
(X, X>e¢ = <M, My = G(Xg,0)G'(Xu,0)ds (13)
0

From the constructive characterization of quadratic variationsg 4
T T

(X, X>y = J dXedXy' = J G(Xg,0)CG' (Xe,0)dt P-a.s, (14)
0 0

50 that the covariance diffusion matrix D(Xe,0)=G(Xe,0)6' (Xe,0)

can bg assumed a.s. known, If it is nonsingular for every X.,

then G(X.,6) is its unique positive definite square root.'®

The parameter wvector o is defined to be identifiable if,
from (14), 1t can be put in explicit form

0%y = f(Xe, telO,T1H) (1853

§ 4 MARTINGALE PROPERTIES OF THE LIKELOHOOD RATIO AND THE SCORE
VECTOR
Let us consider the systems
dXe = A(Xe,B8)dt + G(Xe)dUWe 0 ¢ O\0O,o (16)
dYe = A(Y4,00)dt +G(Ye)dWe o € &, true value (17

Xo = Yo 1)
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having unique strong solutions X.,Y: which induce on the
measurable space of continuous functions, (C"y,B"y), the
probability measure Pe, Po respectively.'s

We shall show the following
PROPOSITION 2: If
F(mee) E G'(Ya)(G(Y¥a)G'(Yg)) " (A(Yg,0)-A(Y,,60))
is nonanticipative of class LZ% 17 gatisfying the boundedness
condition E exp(ulf(t)lz) < « , ux0, f.e. tel0,T) and 0¢d and
A'(Ya,0)(G(Yg)G'(Yg)) " '8(Ya,0), 8¢®@ 1is of «class L' then there
exist a likelihood process Le(¥Y,0) on [0,T] and it 1is a
martingale.
PROOF: The hypothesis of Liptser and Shiryayev (1974 ch.?7 p.279)
are satisfied so0 that Pe and Po are equivalent (they have the
same zero-measure sets) and in  particular the Radon~Nikodym

derivative is given by

dPe(¥Y,T) = L4(Y¥Y,0) (1%)
where
T
Ly(Y,0) = exp[J (A(Ya,0)-A(Y4,06)) ' (G(YR)G'(Ya))~"dYe =~
0 (z0)

T
«%J (A(Y4,0)-A(Y4,00)) "(G(Ya)G'(Ya)) " (A(Y,0)+A(Ys,00))ds])
0

Equivalently, the likelihood ratio L+(8) can be written as
T T

Ly(¥Y,8) = exp[J T (Ye,0)dWs - %J |F(V,,6)|2d5] 21)
] 0

where |.| is the Euclidean norm.

Clearly,

Eo(Ly(Y,08)) = 1,
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the supermartingale L+(Y,8) is a Po-martingale'® and Girsanov
(1940) theorem applies, so that
t
W"e = We - "(Ya,0)ds (zZ23)
0
i a BM w.r.t. Pe f.&. 0¢0.

Take the restriction of L+(¥Y,0) on BeeBy

Le(Y,0) = EO(LT(Y,G)lB,) (24)
Clearly it is a Po-martingale as well and, using (21) we have
t t
LelCY,T) = exp[J F'(Ye,0)dWs - %[ |F(Y,,e)|2ds] (25)
0 0
t t.
z oexpl| MA(Ye,0)dW" s + % |F(Y,,0)|2ds] (24)
0 0
By assumption on I,
t
M~y E [ M {Ys,0)dW " 4 (27>
0

is a Pe-martingale and we can write

Le(Y,0) = exp(M™e + %<M™ , M7>e) = 1 - JtL,(Y,,e)dM”. (28)
50 that Le(Y,0) is also a Pe-mart?ngale f.e.0e¢d, with unit
mean,'¥

e observe that, by "Jensen inequality, the 1loglikelihood
loglLe(Y,8) is a supermartingale.

PROPOSITION 3: If the order of differentiation and intergration
can be interchanged®®, it can be shown that the score vector is a

zero-mean martingale null at zero.

PROOF: In fact, symplifying notation,

it

t
qGe(VY,0) d log Le(Y,0) = J 5 [(A(B)-A(B8G)) ' 1(GG' )~ "dYs -

50 0 30

t

- 5 [(ACO)-A(B0)) ' (GG')=" (A(B)+A(Oo)) 1ds
0 86
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t t (29)
= J S A'(BI(GG' ) "dYy - S A'(BI(GG')I-TA(B)ds

0 %0 0 %6

given that

S IA'(OXI(GGE')-'A(B)) = _& A'(B8) _b [A'(B)I(GG')-TA(0)]
:] 50 56

2 5 A'(BI(GE')I"TA(O)
30

H

Using (17) and (24) we can uwrite

t t
qQe(¥,0) = J__Q ﬁ'(@)(GG')“‘GdNr"J S A'(B)(GG'I~T(A(B)~-A(B,))ds
0 b6 0 %@
t
= l 35 A'(OI(GE')~'"GdW < (8) (30)
0 %9

which is a zero-mean square-integrable Pe-martingale,.

A maximum likelihood (ML) estimator 6% 1is an adapted
process satisfying
LelY,0%:) = Supe {LelVY,0), 6¢d) (31)
s0 that, Le being exponential, 6°: solves the likelihooh equation
Ge(¥Y,0%:) = 0 (32)

Note that in this case of Wiener disturbances we obtain, in
continuous time, the well known result that the MLE coincides
with the minumum-distance (weighted Teast-square) estimator

t
mine j (dY. ~ AC(O)ds) ' (GE')~" (dYs ~ A(O)dS)
0

PROPOSITION 4: In the hypotheses of Proposition 3 the Fisher

information matrix is given hy *?

t
I.(0) = J $ A'(BI(GG' ) d A(O) ds
0 %96 1Y)



18

PROOF: From the Ité integration by parts formula and Meyer (1%42)

theorem we obtain

t t
g+ (0)qe' (B) = J dga(0) q.'(0) + J 9e(B) dqa'(0) + <q(8),q(0))>
0 0 (33)

Writing I« for the quadratic covariation process of qe

I.00) <g(0),q(0) > (34)

it can be considered a random Fisher conditional information
matrix for dependent observations. In fact, if the order of

differentiation and integration can be changed we have (using E

for Ee)
ElI.(B8)] Elqe(0)g.'(0)] = Eldloul. Sloglel ~EL3*2100dl+ 1
80 50" 5089
given that
321ogl.+ = _d (8loagle) = _& (8be _1) = 82Le_ _1 -~ Slogl. Slodl.
686" b8 LR d0 30 L. 080" L. 50 58!
and, using (23)
EL&%h e _11 = Eol_8%Le] = _ 8% FEollel = O (35)
50866 L 080" $680"
The following property holds
E(It(O)wIm(e)IBg) b= E(qt(e)qt'(0)~qm(9)qm'(0)|Bm) (34)

= E[(qt(0)~qm(6)I(qt(G)wq“(e))'WBGJ
so that
E(dIt(0)|Bt) a E(dqt(e)dqt'(0)|8t) = dIe(0) (37)
the lTast equality being a result of the predictability property
of the quadratic variation process®=*,

Consequently the Fisher information matrix is

@

t t
I«(0) J dqu(8)dgs'(0) = J S AY(BI(GE' )Y 5 AL6) ds (38)
o 0 %6 50
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Equations (293 and (32) are the basic results to calculate
the ML estimator ©%¢; equations (30) and (33) allow to
investigate its distributional properties. The identifiability of

8 means that it can be made explicit from (32).

5§ 5 PROPERTIES OF THE ML ESTIMATOR
We shall consider the asymptotic properties of the ML
estimator in some special cases.

P~LINEAR U~-NONLINEAR DRIFT. Let us assume that the drift vector

ACX,8) is linear in the parameters (p-linear) but quite general

w.r.t. the variables.

We have
dXe = (a(Xe) + B(X)8)dt + G(Xe)dWe (3va)
XQ = Xeo (39b)
and, omitting arguments,
t t
qe(¥Y,0) = B'"(GG')~'dYsy -~ B'(GG')~*(a+BB)ds (40)
0 0
t-
Io+(Y,0) = B'(GG')~"Bds = Ie(Y) (41)
0
giving (for I, non singular)
t T
8% = Tg—? [[ B*(GG' ) "d¥Yg ~ J B*(GG'")~Yads} (42)
0 0]
so that
t
8% = B + L™ B'(GG')~'GdUW, (43)
0

and using (40) q« has the representation
Gel(Y,8) = Ia(Y,8)(8%,.~0) (44)
The following theorem gives sufficient conditions for asymptotic

normality.
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PROPOSITION 5: If ags t = «

t Pe
1 B' (Xe)(G(Xe)G' (X)) "B(Xy)ds
t Jo - C(9) (45a)

21 ItE [B'(Xe)(G(XgIG' (X))~ "B(Xe)1ds
t JO - (C(8) (45h)
where C(6) is a nonrandom nonsingular matrix, then a.s. the
likelihood equation has a unique solution which is consistent and
normally distributed in the sense that
T (8%:-8,) i N(O,C~1(8o)) (44)
If a,B,6 are time-independent (homogeneous diffusion) and the
process is recurrent with a (steady state) ergodic distribution
P e then, if B,G have bounded norms,
C(B) & E-oIB'(X)(GIX)IG'(X))~"B(X)] (47)
where E-e is the expectation operator w.r.t. the steady state
distribution. *=

PROOF: See Taraskin (1970) p.214,.

P~ U- NONLINEAR DRIFT If the drift vector 1is nonlinear in the

parameters as well as 1in the variahfes (p~ v~ pnonlinear) then
Taraskin's (19703 theorem can be extended provided that the
process is ergodic f.e. 0€& and the function
_EQ A (X0, 0)(G(Xo)G'(Xo)) TG (Xe)

9

satisfies a boundedness condition (see Kutoyants (197&) p.401),

Under these assumptions €%, is consistent and asymptotically

normal:

D
Nt (8%:-06) = N(O,D""(0o)) (42)
D(O) = E-g [__ 8 A'(Xo,0) (G(Xo)E'(Xo))' _& A(Xo,0) 1] (49)

48 56!
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ASYMPTOTIC EFFICIENCY The strong law of large numbers (SLLN) for

brownian motions, saying that

1lim _UWe_ = 0 a.s. (50)
t 4w t
can be extended to any square~-integrable sample-continuous

martingale Me 5.t

tim <M, Mreg = w
)

in which case it is stated as

Tim <M, M>e¢™" Me = 0 a.5. (51)
tT“\,

As a result we have

Tim IT.77(0)ge(0) = 0 Pe—-a.s. (652)
t te

provided that
Tim IT4(0) = » (53)
t de
In the univariate case, using a random-time substitution it
possible to write the martingale 9q¢ as a BM with a random time
change
Ge(0) = W (54)
I(0)
so that a central limit theorem (CLT) holds=<
D
Ie"%(0)U - NC(O,1)
Ic(8)

If the score can be factorized as

e (B8) = IL(6)(0":~-0) (55)

then, using SLLN and CLT, we obtain strong consistency and

asymptotic normality®® in the sense that

is
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D
T1e%(0)(0¢-0) = N(O,1) (Rhé)
Following Feigin(1974,1972) and Heyde and Feigin (1975) define
the estimator 7. asymptotically efficient if ags t =«

Pe
[I:%(0)(07¢-8) - Q(O)I+~%°0)qe(0)] = O (57)

for some constant nonsingular matrix Q0(e8).

Using the SLLN and CLT you can see that "¢ is consistent for O
and asymptotically normal in the sense that, as t =«
Ie%(0) (0™ ¢-6) = N(O,3(8)) (58)
where I%(6) = Q(8)

If the factorization (55) holds, then the MLE is asymptotically
efficient and therefore consistent and asymptotically normal with

Q(O) =Ty

§ 6 SOME EXAMPLES=<

Example 1: Ornstein-Uhlenbeck (0-U) process

dXe = OXedt + odUW, OeR\B, (5%a)
dYe = Bo¥Yedt + odWe (59’b)
Xo = Yo (59c)

The diffusion coefficient is obtained as

t
62 = _1 J (dXe)? = _1 <X,%>x
t 0 t
where, as above, (dXe)® = d<X,X>¢. From (29%)
T t t
Ge(O) = _1 [J Yed¥Yq - J OYs2dsl = _1 l YedW™ e
6* 0 o 6 JO

t t t t
0% = (| Ya®ds) (| YadYs) = (| YaZds)="%IY+%-Yo2-| (dYg)%)
0 0 0 0
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t

It(e) = _l I Ygzds - It
62 Jo

so that

qt(e) = It(eAt-e)

It can be shown®” that I. is an integrable process increasing to
» 50 that 6. 1is strongly consistent f.e. ©. Moreover, for 6o
n.e. 0,

D
Ie% (8%¢~00) = N(0{1)
For 6o = 0, however, asymptotic normality does not hold ¢in
particular, the sufficient conditions (45) in Proposition 5 are
non satisfied). In this case, in fact, Ye«~¥o = 6We and, assuming
for simplicity Yo=0, we have
t

t t

WgZdg)—% = %(wt2~t)(J Wa®ds)—%

It"eAt = (j
0

WedWa) (j
0

0
implying that the asymptotic distribution is non normal, being
Tim P(I4%0%: % 0) = Tim P(_WeZ 2 1) = XZ,(1) >» K

t te t tw t

where X=#, is a chi-gquare distribution function with 1 d.f.
Therefore 6,=0 represents a point of singularity in the
asymptotic distribution results,h 2®

Moreover, optimal properties are not wvalid in Finite sample
intervals: as shown by Liptser and Shiryayev (1974 theorem 17.2),
given the SDE

dXe = OB(Xe,t)dt + dWe 8¢R

dYe = BoB(Xe,t)dt + due

XQZVQ:O
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the MLE is biased for any finite record length (0,t]l, being
o[t t
0%e = ( B#(VY4,5)ds) 1 B(Ys,5)dYe
0 0
and if B satisfies regularity conditions (e.g. if it is bounded)
thenz*

t
Eo(8™¢) = 0o + _b Eo([ B#(Yw,s)ds)?
300 0

Example Z: Feller diffusion (diffusion branching process)

dXe = OXedt + oVXedW, 0<¢0, X220 (404)
dY¢ = BOoVYedt + oV¥¥YoedUy (460Db)
Xo = Yo > O (40c¢)
We have

t t
6% = (| Ygds)=1(| (d¥a)*)

0 0
t t t
ge(0) = _1 [ dYa - 9[ Yads = _1 j VWadWW™ e
6* JO 0 ¢ JO
t
0’\: = ([ YudS)_.'(Yt;'vo)
0
t
I.(0) = _1 [ Yads = I
g2 JO
Qe(B) = [¢(0%e-0)

It can be shown (Feigin (1974))) that €%¢ is strongly consistent
and asymptotically normal. Note that the change of vairiable

RexVY+ would give

ng = (_go Rt - [ ydt + 0 dldt
2 ZR ¢ 2
s0o that, given
t
62 = _ﬁ_[ (dRg )=
t Jo

we would obtain the same ML estimator of 9
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t

0%, = (I Re?ds) "' (Re%2-Ro?®*)
0

In other words, the MLE 4is invariant under

transformations of the state space.>°

Example 3: Multivariate diffusion

dX‘l't: = 91X1tdt + g«,'{xztdwt
dXz+ = BzXzedlt + g2'iXzedWe

(X10,X20) = (Xq0,X20)}

regular (C2)

(41a)
(41b)

(61c)

We outline the sfeps to obtain the ML estimator. Write 1in vector

form 0'=(8,,02), Xe'=(Xyx,X2e) and G6=(g,,92)"' a Zxn matrix s.t.

G4 7% aASq15z t t
GG' = 3 = [ ] = (| Xaads)—1( dXagdXa '

as,%q 522 (4] 0
where s,2=g,'9y, 52%=02'0G2, aS152=04'92=0=2"'9,.

0

t,. Xia O tr X1
Ge(O) = [ ]_2_:‘___d><s - [ ] ==
0 0 ng X2g 0 0 ng xzs

)

61 X1a
[ ] ds
Oz Xaa

Calculate Z-' and solve the likelihood equation for 6%,

The Fisher conditional matrix is
t X,m 0 ) X‘lﬂ 0

Ie = [ ] 5o [ ] ds
0 0 xzn xzs 0 xz»

and therefore

Qe(0) = I+(0%:-0).

§ 7 DISCRETE OBSERVATIONS

In many instances, whenever a continuous monitoring is not

possibhlie, a discrete sample of observations, usually taken at

equally spaced time points, is available. In this case, if the
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SDE is sufficiently simple such as a nonzero-mean homogeneous O-U

SDE
dXe = (OXe+bh)dt + odU. (62)
corresponding to the integral equation
Xe - Xg = r(exu+b)du + ardu., (63)
s s

it is possible to obtain the closed form solution for the process

given, in this example, by

T

Xe = Xo€°F + pP(e®t*-1)/0 + GJ gecr-=odijg (64)
0

50 that, as in Sargan (1974), writing X, for X,s, 7T=z=0,1,..,.,» &

being the fixed time interval between successve observations, we

obtain
7d
Xy = €°3X,.q + b(e®2-1)/0 + 0| e@<TE-w>dy, (45a)
(r-13)8&
onr
Xy = Co + C1Xypmq + Uy (465b)

where cozb(e®®-1)s6, c,=e®® and u, is a zero mean Gaussian white
noise with variance

% = 0%(e®°%-1)/(29).

From the OLS estimates of co, €4+ and s# (and the assumption 8=1)
the ML estimates for ©, b and 6% can be easily obtained.

This discrete approach, which involvues no approximation,
has, however, two major limitations: it needs an ‘explicit
solution of the SDE, i.e. a result quite difficult to obtain in
nonlinear cases, and it involves identification problems in the
Tinear but multivariate case (see Phillips (1973) and Hansen and

Sargent (1983)). In general some sort of linearization must be
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introduced.
Alternatively, assuming for simplicity b=0, the continuous-

time ML approach would give, as in Example 1,

T T
0% = ( I X,zds)“([ XadXa) (64)

0 0
which, using the Cauchy approximation to integrals®', become
eAn,T - (21Nn Xy_126n)"'(21"" X-,...-,f_l_x-r) N.—.ET_/6n (6?)

i.e. the OLS estimator of

IN\Xy = BXpqdn + U, T=1,...,Nn (48)

The basis for this approximation comes from the separability
property of continuous processes (see Wong and Hajek (19858) p.45)
by which operations involving a continuoum of realizations of the
‘process can be consistently approximated using a discrete number
of observations, with the convergence in probability defined in
terms of infinitesimal asymptotics i.e. as the maximum distance,
8., between successive times of observation goes to zero.

More ogenerally, following Prakasa-Rao and Rubin (1981) it
can be shown that for a stationary ergodic process satisfying the
SDE with nonlinear drift
dXe = AR(Xe,0)dt + dWe (49a)
Xo = Xo (69b)
the least square criterion applied to
Ny = A(Xylq ,8)8, + uy (70)

giving the LS estimator

8%n,r = Mineg I N" (ANXy - A(Xy1,0)0, )% (71)

is equivalent to the ML criterion on the basis of the continuous



25

record over [0,T] provided that the maximum distance &, between
successive observations vanishes.
This problem has also been studied by Le Breton (1974) for the 0-
U process. He found, in particular, that the discrete-time
Cauchy-analog, 6*,,v, of the ML estimator as well as the exact
discrete-time MLE converge in probability to the continuous-time
MLE 6%y a5 8, ¢ 0. Moreover, they differ from 6%+ by an error
which is of order J¥8, in probability.
The difficulty, however, is that the discrete-time analog {(Cauchy
sums instead of integrals) of the ML estimator converges (for
$,90) to an estimator which 18 only asymptotically (for Ttw)
optimal: as shown by Bergstrom (1984 theorem 4) for the
stationary 0-U case the asymptotic (T4t) bias of B8%n.+ is of
order &, in probability==,
In the nonstationary case 0ox=0 Phillips (1%237) has shown that, as
8n ¢ 0,

D
0, T = (atn, v ~1)78, = 8%,
as expected, but also that the asymptotic (8,40} distribution of
a*n.,v is. degenerate, the estimator being consistent for t as
3,40, so that in this nonstationary case a*n,+ has optimal
properties not only in the infinite (T4+) but also in the
infinitesimal (5,40) convergence: a suitable discrete sampling
scheme turns out to be preferable and more informative than a

single continuous record over a finite time interval,
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§ 8 CONCLUSIONS

We have presented a general ML method for estimating SDEs
based on the assumption of the availability of a continuous
record of observations, an assumption not irrealistic whenever
the modern information technology is used in collecting the data.
From basic results of stochastic analysis we have shown the
almost sure estimability of the diffusion matrix, the martingale
properties of the lTikelihood ratio and the score vector as well
as the equivalence of a Fisher conditional information matrix to
the quadratic variation process of the score. Conditions for
consistency, asymptotic normality and the Heyde-Feigin (1978%)
asymptotic efficiency are given in the general case of nonlinear
drifts both 1in the parameters and in the variables. The usual
difficulties related to the discrete-time estimator of nonlinear
in the variables andsor multivariate SDEs are overcome.

With discrete observations, however, the continuous-time MLE
must be, at best, consistently approximated in the sense that its
discrete-time approximation tends to the continuous-time MLE as
the discrete observations become more and more dense in the
sample interval,

In actual practice, both the continuous-time and the
discrete-time estimation methods involue, in general, some degree
of approximation and Monte Carlo studies, along with more
theoretical analysis, are an important point in the agenda on the
subject. In particular, the availability of a continuous-time

gestimation method as the one presented in this paper raises a
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number of questions: does it pay to transform a continuous model
into a discrete one? At which stage of the analysis? In which
setting linearizations and other approximations have weaker
effects? Which are the relative properties, in small and large
samples, of discrete and continuous estimates of a given
parameter vector when the data have the typical nonstationary
dynamics of economic time series? As suggested by Novikov (1%972)
and Shiryayev (1974) or by Feigin ((197%) and Phillips (1987),
alternative sampling schemes seem to be preferable in the case of
(near-) nonstationary processes but general results have not vyet

been obtained.
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1. See Malliaris and Brock (1932) for an extended survey,
Arguments in favour of continuous~-time economic modelling are
given, for example, in Merton (1975) and Gandolfo (1981) ch.1t.

2. Bachelier's pioneering work is reproduced: in Cootner (ed:)
(1944). Note that a careful distinction should be kept between

the brownian motion, which 1is a ‘matter of fact', result of
experimental observations by R.Brownf182a] and others and the
brownian motion process ¢ Bachelieri1900)-Einsteinl1905]1~

Wiener[192321) process) which 1is one of possible models of the
former and, in general, of erratic movements over space and time.

3. See Bergstrom (1924) for a recent survey of the discrete
approach. Pioneering works by J.b.Sargan, C.R.Wymer and
P.C.B.Phillips can be found in Bergstrom (ed.) (1974).

4. The foundations of the continuous~time ML procedure are in
Liptser and Shiryayev (1974). A recent extended framework is
given in Hutton and Nelson (1984). A survey is provided by Basawa
and Prakasa~Rao (1980),

5. (Fe) te [0,T1 is a standard filtration if it is a complete,
right-continuous increasing family of sub oc-algebra of F. See,
for example, Wong and Hajek (1985) p.210,

4. A (one-~dimensional) standard Wiener process (or standard
brownian motion process, BM) is defined by the properties

1) We ~ NCO,t); 2) E(WeWgdY=min(t,s); 3) We=0 P-a.s.

In the multidimensional case, each component is a standard BM.

7. The drift vector Al(Xe) and the diffusion matrix
G(Xe)ELgy'(Xe)]  are assumed to satisfy by components the
conditions of bounded growth and Lipschitz continuity of
Itél19511 theorem which guarantee existence and pathuwise
uniqueness of the solution process. The coefficients of the SDE
(1) do not depend directly on time so that X. has stationary
transition densities (time~homogeneous diffusion). This is not
necessary for the estimation method but it is required for the
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existence of a steady-state random process associated whith Xe
and therefore for the asymptotic properties of the estimators.

2. See Jazwinsky (1970) ch.4, Wong and Hajek (19858) ch.4, McShane
(1972), Sethi and Lehoczky (1981) . It and Stratonovich
stochastic intedgrals have different definitions and properties.
Even if equivalence theorems exist in order to identify the same
process with apparently different 1Itd and Stratonovich SDEs, a
particular interpretation must be adopted when a SDE 1is used to
model some random phenomenon. Different interpretations will give
different solutions,

9. The fact that ©,0 are assumed to be disjoint (no parameters in
common) in not restrictive. Using the result of the next
paragraph, if ©,6 have 6o 1in common (i.e. ©Oo=6o) and o is
identifiable then 6o <can be assumed a.s. known in the drift
vector and & substituted by €\6o,=0,.

10. In general, if X. contains unobservable components we face a
joint problem of estimation and filtering about which very
little, if any, is known in the general case of nonlinear
coefficients or linear but interactive systems., (See also the
following note). On the problem of instantaneous flow variables
(consumption, 1income, etc.), observable only in integral form
over a time interval, see Phillips (1978),

11. Alternative estimation methods are presented in Lanska (1979)

(minimum contrast estimation), Banon (1978) (nonparametric
estimation of the drift using the steady-state estimated density
and the Fokker-Plank equation), Aase (1982) whose recursive

estimator (fer linear-in-the-parameter drifts) generalizes the
Kalman-Bucy method and encompasses the ML estimator.

In the case of random varying “parameters", i.e. in the case of
multivariate diffusions with wunobservable components, filtering
methods can be found in Ershov (1970), Liptser and Shiryayev
(1974), Kallianpur (1920), Jazwinsky (1970).

1Z. A process Xe 15 a semimartingale if it can be decomposed as
Xe = Ag + Me where A, is an Fe-measurable (i.e. adapted) process
null at zero (Ao=0) with a.s. sample paths of finite (total)
variation and My 16 an F.-martingale. Such a decomposition, if it
exists, must be pathwise unique. Note that diffusion processes
are only a subset of the very general class of semimartingales
(e.g. Shiryvayev (1921)) which includes non-continuous as well as
non-Markov processes, Estimation methods for semimartingales are
developed in Hutton and Nelson (1986) and Christopeit (1984).

13, Given two onedimensional continuous martingale, M,N, the
quadratic covariation process <M,N>. is defined by

M, N>e = % <MaN,M+N>pe - % <M=N,M-N>¢

and the gquadratic variation process <M,M>. is defined, by Meyer
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(1962, 19463) theorem, as the unique continuous increasing process
s.t. MeZ - (M,M>y 15 a martingale.

14. Note that in eq.(14) the second integral is defined as the
lTimit -over nested partitions of [0,T]1 refining to zero- of the
cross products of the 1increments of the elements of Xe. By the
properties of continuous martingales 1t can be shown that this
integral is a constructive characterization of «M,M>r.

15, See Le Breton ((1977) for the Ornstein-tUhlenbeck case and
McKeague (1984) on the effects of misspecifying the matrix G.

14, Let C*y be the space of continuous functions f(t): t = R"™,
Let By be the o-algebra generated by the sets (t: f(t)eA) where
tel0,T1 and A s any Horel set in R™. Any sample continuous
process Xe in (Q,F,P) induce a probability, say P, on (C°y,B"¢)
through the definition

Pye(B) = P(weQ; X.(Ww)eB) f.e. BeB"y

where X.(w) 15 the sample path t = Xe(w).

17. A separable and measurable process X. Fe-adapted is called
nonanticipative (w.r,t. (Fe))., It is of class L# if

w
P(J |xt|2dt ¢ w ) = 1
0

The class L' is defined analogously,

18, See for example Liptser and Shiryayev (1974) ch.& p.216 and
Friedman (1975) p.154,

19. Analogous results can be obtained for dPo(X,t)SV(X,0)

dPe
and for Le(X,8), Ue(Y,0) which equal, from the eguivalence of
measures, VUL~ 1(X,0) and L '(Y,0) respectively.

20. See Hutton and Nelson (1984) for sufficient conditions.
21. See Feigin (19746) for the univariate case.

22. Predictability essentially means that Ic.ae 15 Be-measurable.
The quadratic wvariation process is also called predictable
quadratic variation or predictable compensator: see Wong and
Hajek (1925 p.224),

23, See also Brown and Hewitt (197%a). Kulinich (1978%) gives an
example of non recurrent diffusion with random limit C(8) such
that the consistency of 8% 1is preserved but its asymptotic
distribution (with a different normalization) is no longer
Gaussian.,
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24, See Feigin (1974). Taraskin's (1973) theorem 1t and 5 deal
with the multivariate case.

25. McKeague (1984) proved that 1if the diffusion is stationary
ergodic, then strong consistency and asymptotic normality of the
MLE continue to hold even i1f the diffusion coefficient function
G(X¢) has been misspecified (loss in efficiency). If also the
drift function 1is misspecified, consistency and asymptotic
normality are wvalid w.r.t. the pont of minimum 6% of the MSE
between the true drift A(Xe,080) and the misspecified one.

24, The recent literature on asset wvaluation provides a wide
range of theoretical models in continuous time the ML procedure
could be applied to. For example, Black and Scholes (1973) used a
lognormal model, Vasicek (1977) an 0-U model, Cox, Ingersoll and
Ross (19@5) a branching process; Langetieg (1990), Merton (1973),
Richard (1978) and others have suggested multivariate theoretical
models. Cesari (1987) part 2 contains an application of the
continuous-time approah to the estimation of a multivariate model
of the real and nominal term structures of interest rates in
Italy.

27. See Feigin (1974) and Brown and Hewitt (19758a).

2%, See Feigin (1979) and Philtlips (1927) theorem 4.3 for Yo n.e.
0. Note that for every 06e¢R the 0-~U process does not explode in
the sense that it cannot reach * o at a finite time (Aase
(1982))., For ©>0, however, it is nonstationary while for 6«0 it
is stationary ergodic,

29. Shiryayeyv (1974) and Novikov (1972) suggests the sequential
or stopped ML estimator: take H>0 and define the stopping rule
t
T(HY = inf(t: J BZ(Xa,s)ds =H )
0
If F.e. 0¢d,

PQ(J BZ(Xe,5)ds = « ) = 1
0
then Pe(T(H)<»)=1 and the sequential estimator (for B bounded)

T(H)
8 s = _1J B(Ys,5)d¥e
H JO
is unbiased, has constant wvariance abd is normally distributed
i.e.
0 g cms> ~ NCO,1/7H)

For B(Xe,t)zXe Novikov (1972) studies the mean record length
Ee(T(H)) and the mean square error of 68%: and 6 ,cnu, showing that
the gain of using the sequential ML estimator is especially large
if 80 (ponstationary case). On sequential ML estimators see also
Brown and Hewitt (1975b). Swensen (198R) shows that both
estimators are non admissible for the quadratic loss but that the
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former 1is minimax <(as well as Bayes for uniform prior) for a
suitable weighted quadratic loss function.

30, A general proof can be easily obtained wvia Ité lemma and
(29). See also Aase (1982).

31. Oon discrete approximations to integrals see McShane (1983)
p.&1.,

32. Along the same line, it can be shown that the trapezoidal
approximation to (44)

87,7 = (Z/78n)(E4N" X% & Z4aN0 X, 4 2)- (I, N Xyl 20Xy)

has an asymptotic bias of order &, in probability, while the 25L§
estimator

0°,-.,1- = (2/6,.)(21"‘" x-r—1(X'r"'x'r—-1))—1(z1Nn x'r-'li.\_x‘f)

derived from the trapezoidal approximation to (43) using X,., as
instrument han an asymptotic bias of order &,% in probability.
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