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Abstract
The purpose of this paper is to describe some of the widely 

used non nested testing procedure such as the Cox-type family^ 
tests, the F-test and two new procedures recently proposed by 
Godfrey-Pesaran.

The general framework used for the analysis of these 
procedures is the encompassing principle which allows to classify 
all them into two groups: variance-encompassing and 
parameter-encompassing tests.

As the small sample behaviour of most of these tests is not 
known, Monte Carlo experimentation is required to assess the 
validity of different procedures. Power and size comparisons are 
then performed in the context of alternative dynamic models 
characterized by equal and unequal number of regressors. Monte 
Carlo simulations are however limited in the sense that they do 
not cover the number of all possible experiments. In this way, the 
results of such techniques are imprecise and characterized by 
specificity. To avoid this problem a possible solution is to 
resort to the application of response surface techniques. After a 
brief exposition of the main features of response surface 
analyses, an application is shown for the F-test and one of the 
Cox-type testing procedures derived by Godfrey-Pesaràn.





1. INTRODUCTION (*)

It is a common fact that a great deal of economic phenomena 
can be interpreted according to different and often conflicting 
theories. A crucial role is then assigned to econometric 
techniques in order to find evidence in favour of one particular 
specification. As the true Data Generating Process (DGP) is not 
known - nor it is possible to know - the only output of 
econometric research is then a set of approximations which may not 
be directly comparable from the point of view of classical testing 
procedures. This is precisely the case of non nested models, or 
models that can not be obtained one from the other by imposing a 
set of parametric restrictions. In presence of more alternative 
non nested formulations two different problems have to be 
distinguished: the problem of model discrimination and the problem 
of model specification. In the first case, one model is always 
chosen as the best among different alternatives, while in the 
second case the specification of a model is checked by using the 
performance of competing models. In both cases, being the models 
non nested it is not possible to employ any of the classical 
testing procedures based on the likelihood principle as their 
distribution is unknown. Clearly, a direct solution could be to 
derive analytically or numerically the distribution of particular 
testing procedures in each case, but this is inefficient and very 
expensive.

(*) This paper was written in September 1986 at the University of 
Warwick where the author was attending the M.A. course in 
economics. He would like to thank K.F. Wallis, W. Narendranathan 
and M. Salmon for their many useful comments and helpful advice. 
However, the usual disclaimer applies.
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To solve this problem two different approaches are currently used 
in the econometric practice. The first one, directly concerned 
with the problem of discriminating among separate models, relies 
on the optimization of criteria based on the standard error of the 
regression (adjusted R , Akaike Information Criterium, etc.). 
According to this approach a model is always chosen as the 
preferred one by considering its fit along with the parsimony of 
its specification. Apart from the "ad hoc" nature of these 
criteria (there does not exist a statistical theory underlying the 

2 comparison of the R of two or more non nested models) the main 
criticism concerns the fact that the problem of discrimination is 
solved by considering only the performance of a model without 
taking into account its capacity to predict the performance of 
alternative specifications.

The last observation forms the basis of a second and more 
fruitful approach: the encompassing principle. In this context, if 
a model, say Mq, is assumed to be the best approximation to the 
DGP (the null hypothesis) it has to predict the performance of the 
alternative(s). The testing procedure is then obtained by com- 
paring the actual performance of the alternative with the perfor­
mance that could be expected were Mg supposed to be mimicking the 
DGP. This is the encompassing approach as described by Mizon 
(1984) and Mizon-Richard (1986). Basically, encompassing tests may 
be considered as model specification tests because a rejection of 
the null hypothesis does not provide evidence in favour of the 
alternative. In this context, the alternative modelle) is (are) 
used as a guide in testing the specification of the "true" model. 
However such tests may also be used in a discriminating context 
when they are employed in a particular testing procedure defined 
as "paired separate tests" (see McAleer (1984)). In this case, 
given two competing models, Mq and Mi, two test-statistics are 
computed: one with Mq as the null hypothesis and Mi as the alter- 
native; the other with the role of the two models reversed. There 
are four possible outcomes deriving from the application of paired 
separate tests: 1) accept Mg; 2) accept Mi; 3) accept both models; 
4) reject both models. Discrimination is then possible only in the 
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case 1) and 2) (it is worth pointing out that the application of 
paired separate tests is justified if the two models, Mq and Mi 
are meaningful). In cases 3) and 4), the outcome is clearly in- 
determinate so the only possible suggestion is that the two models 
are somehow misspecified.

In practice there are different kinds of encompassing test­
statistics according to the statistic used to measure the perfor­
mance of a model. Following the terminology used by Mizon (1984) 
and Mizon-Richard (1986) the whole set of non nested encompassing 
tests may be classified into two groups: variance encompassing and 
parameter encompassing tests. The former relies on the variance of 
the disturbance term and includes the family of Cox-type tests -
i.e. Cox tests, J and JA tests - while the latter, based on the 
whole set of parameters, concerns the ortodox or comprehensive 
model approach characterized by the use of the F test. Sections 2 
and 3 review some of the most important features of these tests; 
in particular, section 3 contains an analysis of the asymptotic 
properties, consistency, efficiency, etc. of the different testing 
procedures. As all these properties are equivalent for all tests a 
possible discrimination between them may be based on the small 
sample behaviour of the tests. In this context, problems arise in 
connection with the Cox-types tests and the J test because their 
exact distribution is not known. Moreover, when some form of 
dynamics is introduced into the analysis, then, even those 
procedures which are exact in the static case - i.e. the F test 
and the JA test - are valid only asymptotically. The only pos- 
sibility of deriving some information about small sample behaviour 
is therefore the application of Monte Carlo techniques. Some of 
the most important results obtained by Monte Carlo simulation is 
briefly summarized in section 4. This section also contains a 
description of two different small sample adjusted Cox tests 
derived by Godfrey-Pesaran (1983) (GP hereafter).

Monte Carlo experimentation is not free of problems. Like 
all statistical experimentation it is characterized by some 
drawbacks that should be taken into account by the researcher. The 
two main problems connected with the implementation of Monte Carlo 
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analysis are the imprecision and the specificity of the results 
(see Cochran-Cox (1957), Mizon-Hendry (1980) and Hendry (1984)). 
In order to limit the possible, effects of these two negative 
characteristics most researchers have produced a great number of 
experiments with the consequence of publishing an increasing 
quantity of tables and numbers. As it can be seen, this kind of 
solution lacks efficiency from the point of view both of the 
analysis and of the potential reader. In this context, the 
response surface analysis technique may provide a viable alter- 
native as Mizon-Hendry (1980) and Ericsson (1986) show. A response 
surface analysis or, in Ericsson's terminology, post simulation 
analysis, is applied to a particular case of GP's study of the 
small sample behaviour of non nested testing procedures. In par- 
ticular, we consider the case where both models, the data 
generation process and the alternative, are dynamic in the sense 
that they contain a lagged dependent variable. Moreover, the case 
where the two models have a different number of regressors is 
investigated as well. Section 5 describes the experimental design, 
while section 6 illustrates the methodology employed in the 
simulation exercise along with a brief analysis of the main 
characteristics of response surface techniques.

Section 7 illustrates the results of the Monte Carlo 
simulation and the consequent application of response surface 
analysis to the F test and one of the small sample adjusted Cox 
test proposed by GP. The estimates of power and size we obtain are 
different from what GP present. This is essentially due to the 
fact that our analysis is characterized by the presence of an in­
tercept term in both competing models, whereas GP do not take into 
account any constants. The results of response surface analysis 
yield an indication of the potentialities of such an approach to 
evaluate Monte Carlo simulations.

Some concluding remarks and suggestions about further 
research in this area are finally reported in section 8.
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2. TESTING PROCEDURES

The encompassing principle relies on the comparison of the 
actual performance of an alternative model with its expected per­
formance under the null hypothesis given by the model supposed to 
be the best approximation to the unknown DGP. In other words, the 
two different performances of the alternative model must not be 
significantly different if the null hypothesis is true. In order 
to give a formal expression to this concept throughout all our 
analysis we concentrate exclusively upon the linear regression 
model, although it is possible to extend the results to the non 
linear case. The choice of the linear case is essentially 
motivated by the simplicity of the calculations involved.

The general set up characterizing our investigation is given 
by the two non nested linear regression models:

[2.1] Mo : y = XbQ + Uq

[2.2] : y - Zbi + Ui

where y is the (Txl) vector of observations on the dependent 
variable; X and Z are the (TxRq) and (TxkjJ non stochastic obser- 
vation matrices; bg and bi are the (k^xl) and (k^l) parameter 
vectors and Uq and Ui are the (Txl) vector of disturbances. It is 
assumed that the U's are distributed as NID( 0, <T1^It) where i = 
0,1. It is customary to assume that the matrices (X'X/T) and 
(Z'Z/T) converge to well defined positive limits and that the 
limit of Z’X/T does not vanish. Mq and Mi are supposed to be non 
nested in the sense that the columns of Z (X) can not be written 
as linear combination of the columns of X (Z). In this context, 
the structure of a test for separate models need assume a model as 
"true" (the null hypothesis or MQ), and the other as the alter­
native (Mi). According to Mizon (1984) and Mizon-Richard (1986) Mg 
is said to encompass Mi if and only if:

[2.3] D = dx - d1Q = 0
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where di is a statistic relevant to the analysis of Mi - in our 
case, di is the whole parameter set of 1^, di = (biiaj ); is 
the expectation of di under the null hypothesis given by Mq. For 
practical purposes, di and dig may be replaced by their maximum 
likelihood estimators, di and dip.

The first step in the construction of an efficient testing 
procedure is the derivation of the limiting distribution of /t(d), 
which Mizon ((1984), page 149) shows to be:

(2.4] /T(D) = /T(d!-d10) Ì* N(0,V0(d!-d10))

where v0(d1~d10) = Vg^) - V(di0).
This result is of great importance because it allows to 

obtain a Wald test for separate models. In effect, according to 
the statistic of interest we choose, it is possible to derive 

- 2different Wald tests. For instance, if tri is chosen, then we have 
(for the complete derivation of ni and n2» see Mizon (1984) and/or 
Mizon-Richard (1986)):

T(« 2-« 2)2T a10 2(2.5] n. = ---1 _ ~ X (1)
V'l-'io*

In the same way, if bi is chosen:

(2.6] n2 = T(b1-b10)'V0(b1-b10)"1(b1-b10) - x2(r)

where r is the number of non overlapping variables in the matrix 
Z. As ni is based on the error variance of Mi it is defined as a 
variance encompassing test while n2 as a parameter encompassing 
test. Mizon-Richard show that as all the Cox-type testing 
procedures are variance encompassing tests they are asymptotic 
equivalent to n^. This is the reason why these tests are called 
one degree of freedom tests. On the other hand, is shown to be
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asymptotic equivalent to the classical F-test for separate models 
applied in the context of the orthodox or comprehensive model 
approach.

In this section, we first analyze some variance encompassing 
tests such as the Cox test and a linear version of it; the J and 
the JA tests. Secondly, for the parameter encompassing tests the 
widely used F-test is considered.

2.1 Variance encompassing tests

2.1.1 The Cox test

The Cox test is based on a modified likelihood ratio test 
(LR hereafter) as suggested by Cox (1961), (1962). Given the LR 
for the models [2.1] and [2.2]:

LR = Lq - Li

where Lq and Li are the maximized log-likelihood functions of Mi 
(i=0,l), if Mq were nested in Mi, then the asymptotic expectation 
of LR, evaluated under the null, would be zero. This does not 
occur with non nested models so Cox proposed to correct LR by 
subtracting its asymptotic mean. Thus the Cox text is based upon:

[2.7) To - (Lo-ip - T • (pli.0T-1(l,0-L1))x/=;()

2 where plim^ denotes probability limit under Mq and /j= (b^,a ^) 
(i=0,l) is the vector of parameters characterizing the two models. 
Cox proves under general conditions that if Vq is the variance of 
Tq, then (see Cox (1961)):

(2.8] No = ^/(vq)*5 - N(0,l)

where ~ means "converges in distribution to" (this result is not 
affected if we use a consistent estimator, say Vq , instead of the
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true variance).

In the linear case, a formal expression for Tq may be 
derived by observing that:

(2.9] I»! = -(T/2)[l+log(2jio.2) ] (i = 1,0)

-2 2where oj (i=0,l) is the maximum likelihood estimate of i^ ; and

T(pii“OT"1(L0)i^;o ■ lo

Tq may then be rewritten as:

[2.10] To = -L1+T(plim0T (4)C„; “ T/2log(o1z/a10z)

A 2 A 2where denotes the plim of under Hq, that is for /j=Pq.

To derive we may notice that:

12.11] aY2 = l/TCy-ZbpUy-Zb!) =

- 1/T(y-Xb0+Xb0-Zb!)•(y-Xb0+Xb0-Zb1)

- l/T(y-xb0)'(y-Xb0)+2(y-XbQ)'(XbQ-Zb1)+(XbQ-Zb1)'(Xbg-zbi)]

where bg and bi are (X'X)-1X'y and (Z'Z)-1Z'y respectively.
Under the null hypothesis that Mq is the true specification, 

(y-XbQ)=eg is asymptotically uncorrelated with (Xbg-Zbi), that is

plimQ eg'(xbg-zbi) = J?

This comes from the fact that eQ tends to a stochastic variable 
with mean zero and variance oq , while (Xb^-Zbi) to a non 
stochastic limit (see Davidson-McKinnon (1981)). In particular,
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plimgZbi = z(z'z) 1z,xbQ

so from (2.H):

[2.12] plim^i = e10z = <roz+lim(l/T)(b0'X'(I-Z(Z'Z) J’Z')Xb()]

2by replacing the elements of ^iq with their consistent estimates, 
under we get:

ffio2 = ff02+(1/T)(bo'x'(I-Z(Z,Z)-1Z')Xb0)

A 2Thus dig may be seen as the sum of two components: an estimate of 
the variance of the "true".model and an estimate of the additional 
variance due to the difference between Mq and .

As a last step in the derivation of Ng, we need an estimate 
of vq. This may be obtained by applying a result of Cox (1962) 
(see also Pesaran (1974)) such that:

- - J - A[2.13] Vq = ( <Tq /®1Q ) (bg 'X'A1A0A1Xb0 )

-1 -1where AQ»(I-X(X'X) X») and A1=(I-Z(Z'Z) Z').
Nq is finally given by:

[2.14] No = T/2log( <r12/ff1()2)/[ ( a02/ff104) (b0'X,A1A0A1Xb(j)

It may seem extremely cumbersome to compute Nq, but it can be 
easily obtained by the means of four regressions. In effect, we 
have :

_ elei ((eoeoe100e100)1[2.15] No = | log —,--- , ---
e0e0 + e10el0 (e0e0 + e10e10)

where ei (1=0,1) is the OLS residual vector of the regres- 
sion of Hq and ;

eiQ is the OLS residual vector of the regression of
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y0(=Xb0) on Z;
e100 1s residual vector of the regression of

eiQ on X
(see Pesaran (1974); for the non linear case and systems of 
equations see Pesaran and Deaton (1978)).

By noting that
T^log^2/^2) - T/2log( - D

Fisher-McAleer (1981) show that [2.15] is asymptotically 
equivalent to

[2.16] NLq = T/2log(a12-C102)/((a02/a104)(b0'X'A1A0A1Xb0)}J4

[2.16] is useful because it shows that the value of the Cox sta- 
- 2 A 2tistic crucially depends on the sign of ()• Specifically,

- j - 2 s s
(ffi _ffio ’ Ì 0 as NLo Ì 0

so that a significant negative Cox-test means that the actual per-
formance of Mi is better than expected and therefore Hq must be
rejected. Similarly a significant positive value of NLq implies
that the alternative is performing worse than expected and Hq must
be rejected as well. Hq is not rejected only when

2 2 ~ n*1 - ff10 ~ 0

In this case the performance of Mi under Hg is as expected and we 
may reasonably suppose that Mg variance-encompasses Mi»

2.1.2 The J and the JA test

One of the main drawbacks of the Cox test, as shown in 
[2.15] or [2.16], is that it is very cumbersome to derive. In 
order to simplify the computation, several different testing 
procedures have been proposed in the literature. Two of these test
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statistics are the J test of Davidson-McKinnon (1981) and the JA 
test of Fisher-McAleer (1981) which can be easily obtained by thè 
means of an auxiliary regression. In the preceding paragraph it 
has been shown that the Cox procedure is based upon the comparison

- 2 A 2of c^i and • Specifically, the Cox test checks whether:

[2.18] (y-Xb0) ' (XbQ-Zbp = 0

In other words, it is checked whether the residuals from the 
"true" model are uncorrelated with the difference between the 
fitted values from Mg and Mi.

In this context, a simpler way to test [2.18] is by the 
means of the test of a in the regression:

[2.19] y = (l-a)Xbg + aZbi + w

As such test -defined as the C test - is conditional on bg and bi 
the derivation of its distribution is quite complex, so Davidson 
and McKinnon (1981) suggest to resort to the comprehensive model:

[2.20] y = (l-a)Xbg + aZbi + w

In [2.20] a, bg and bi are not identified, so this model can not 
be used. However, as bi is a consistent estimator of bi» Zbi may 
be substituted with Zb^ the vector of fitted values from . The 
t-test of a in:

[2.21] y = (l-a)Xbg + aZbi + v

is then the J-test of Hq: Mq against Hi: Mi. The J test is not an 
exact test but it is only asymptotically valid and distributed as 
a standard normal variate. This is due to the fact that, under Hq, 
(y-Xbp)=eQ is not independent of Zbi.

If Zbi is substituted by Y1q=Z(Z'Z)'X(X'X)X'y, the vector 
of fitted values from the regression of Xbg on Z, then the JA test 
is the test of a = 0 in [2.21]. This is an exact test and it is



16
distributed as a t (T-k^-l) variate because is independent of 
6q. However, when one of the models contains lagged dependent 
variables, then the JA test is only asymptotically valid and 
distributed as a standard normal variate.

The asymptotic equivalence of both the J and the JA test to 
the Cox test is due to the fact that the former can be directly 
derived from the Cox procedure, while the latter may be obtained 
from an asymptotic equivalent variation of the Cox test due to 
Atkinson (1970) (see McKinnon (1983)).

2.2 Parameter encompassing test

2.2.1 The F test

The F test for non nested models was derived in the context 
of the comprehensive model approach. In other terms, the non 
nested testing procedure is based on the construction of a general 
model obtained as the combination of two (or more) competing 
specifications. This general model may be given by some form of 
embedding, such as exponential embedding, in this way a parameter 
encompassing test of Hq:Mq against Hiini is based on the F test of 
T1 in the model

[2.22] y = Xtg + Z~T1 + w

where Z~ and Ti are (Txr) and (rxl) matrices with r equal to the 
number of non overlapping variables in Mi. The F test is exactly 
distributed as F(r,T-kg-r) provided X and Z~ are non stocastic 
matrices. In the case of dynamic models, where, for instance, 
lagged dependent variables are included among the regressors, the 
F test of t. in (2.22] is only asymptotically valid and 1 2distributed as X (r,0) under Hq. It is worth observing that when 
Z contains only one colùmn, that is only one variable, the F-test 
of ti in [2.22] coincides with the J-test of a in [2.21]. However, 
when Z is characterized by more than one variable the two test
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procedures will differ.

There are some well known problems with the application of 
the F-test: collinearity among the regressors in the matrices X 
and Z~; the restricted number of degrees of freedom if X and Z~ 
have great dimensions; various difficulties in case of non 
linearity. Besides this "technical" problems there is the dif- 
ficulty of deciding what to do when both the F-test of Tj and Tq 
are significant. In effect, this would be interpreted as evidence 
in favour of the general model even if this has no economic 
meaning.

A new interpretation of F test is provided by Mizon-Richard 
(1986) who prove its asymptotic equivalence with nj in [2.3] 
(actually, Mizon-Richard show that and the F test adequately 
transformed coincide for all sample sizes). In this way, the F 
test for non nested models may be included among the class of 
parameter encompassing tests.

3. LOCAL POWER COMPARISONS

All four procedures we have illustrated in the previous 
section share the same asymptotic properties for the test of Hq:Mq 
against Hiini» In particular, as Davidson-McKinnon (1981) show; 
all tests have correct size asymptotically and they are all 
consistent in the sense that, as the sample size increases (T-»«) 
the probability tends to zero that these tests will fail to reject 
Hq if a fixed Hi is true.

Given the asymptotically equivalence of the tests, a pos- 
sible comparison among them depends on the local behaviour of 
their power function. Two approaches may be followed according to 
the kind of alternative hypothesis being considered. In other 
words, we may check the power of different tests against fixed 
alternatives or a sequence of local alternatives. In the second 
case, the main motivation is to avoid trivial asymptotic 
distributions.

In general, a sequence of local alternative hypotheses, Hi^,,
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approaches the null hypothesis as T tends to infinity, or, in 
other terms, the sequence differs from Hq only by 0p(T ^) terms (a 
somewhat different approach is analyzed in Davidson-McKinnon 
(1982) where the authors keep Hi fixed and let the DGP approach Hq 
so that it is possible to analyze the case where neither Mq nor Mi 
need be assumed true).

Various specifications for H1T are possible. Dastoor-McAleer 
(1985) consider:

[3.1] HG : y = Xb0 + (T-Ji)8 + e

where 8 is a vector of constants. As can be seen, hg approaches Hq 
as T tends to infinity. This form of general alternative is pos- 
sible only when Hq and Hi are partially non nested in the sense 
given by McAleer-Pesaran (1985). As [3.1] is not informative about 
the rate at which the specific alternative Hi approaches Hq, 
Pesaran (1982a) presents the following specification for H1T:

[3.2] Hp : 2 = XB + ( T-*5 ) T + o(T-is)

where B and F are (kgxki) and (Txl^) matrices of constants (Hp may 
be shown to be a special case of HQ; see Dastoor-McAleer (1985)). 
It is interesting to observe that in the case of [3.2] the two 
matrices 2 and X become more similar as T increases. However, if 
we want to keep the power bounded away from unity, the crucial 
condition is (see below):

(3.3] Lim (F'A0T)/T = W.T->® U 1

where Aq = ( I-X(X'X)-^X' ) and Wi is a (k^ki) matrix of constants. 
This occurs if the number of regressors of the model assumed as 
the null hypothesis is greater/equal the number of regressors of 
the alternative, or

(3.4] kx > kQ
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(see Pesaran (1982a), page 1291).
By using [3.2], Pesaran derives the asymptotic power of the 
2 2F, Nq , and J test. The most important result is that all three 

testing procedures possess a limiting distribution with the same 
non centrality parameter (n) but with a different number of 
degrees of freedom. In particular:

F ~ x2 ( r, n )
[3.5] J2,N2 ~ X2(1in)

2with n = bn'Wibn/ffi

where bn is the vector of coefficients of the non overlapping 
variables in the alternative model. As it can be seen from the 
formula for the non centrality parameter, condition [3.3] ensures 
that the value of n does not attain high values so that the power 
of the test - which is an incresing function of the non centrality 
parameter - is kept away from unity. Under [3.3] or [3.4], the 
asymptotic power is:
[3.6] Pp = Lim prob {F > x*(r,0)|Hq_}

F T->« c •LT

- prob [X2(r,n> > x|(r,0)]

p = p = Lim prob {Noz > x^drO) |h1t) 
T->®

2 2= prob [X (lin) > Xc<l,0)]

2 2where P^,, Pj, PN are the asymptotic power of the F, Jg , Ng , 
tests; c is the critical level of the test. By using a well 
established result in statistics (see Das Gupta-Perlman (1974)), 
Pesaran concludes that:

p — p p J N ? F



20

because of the difference in the number of degrees of freedom of 
the limiting distributions. Thus the asymptotic power of the F 
test is less than the asymptotic power of the Cox-type tests, the 
greater the number of non overlapping variables.

A serious limitation of Pesaran's approach is given by con- 
dition [3.4]. More general results may be obtained by the means of 
H_. In this case, Dastoor-McAleer (1985) show that the local 
asymptotic power of the Cox-type tests and the F test can not be 
ranked, the reason being that not only the number of degrees of 
freedom of the non central F test is greater, but the non 
centrality parameter is greater as well.

Ericsson (1983) adopts a different form for the sequence of 
local alternatives. The general comprehensive model in [2.22]:

H2 : y = X8q + Z 81 + £

may be considered as a local alternative hypothesis to Hq in the 
particular case where

(3.7] (Sq,^) - (bo,bl) " (°'8//T)

The difference in [3.7] and in [3.2] is that in the former the 
parameters of Hq and Hi become more similar as The advantage 
in this specification is in that it is not limited by any 
restrictions such as [3.4] and can be applied to the general case. 
In this context, Ericsson (1983) derives the asymptotic 

2distribution of the Nn , and the F tests under the alternative.2 2UThey are X (l,nc) and x (r,nF) where nN, np are given by:

2 A'n[3.8] n = —c w. 0
2with /jq = - (£0+e1)/2a1/e2

w0 - ( (e0+E!) /4£2] • VAR(q)/<r1z
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2 2VAR(q)/d1 - 4(e0+c1-£2)/(Cq+S!) - 41E2~e3)/[(cQ+ei>e21 +

2 + (€2-e3)/C2

= $1 - 4>i+1 U20)
4>0 - plinti* • Z~ ' Z~ 8*/T

♦ i = plinti 'Z~[X(X'X) XZ~(Z~'Z~) xz~'] Z~(Z~'Z~) •lZ~'X8 /T

8* = bn/T

★ —1 * 7n„ = 8 'Z~[I-X(X'X) xX']Z~8 /(a. -T) 
t 1

4. SMALL SAMPLE PERFORMANCE

While the F and the JA tests are exact tests - i.e. their 
exact distribution under the null is known - the Cox test and the 
J test are only asymptotically valid so that their finite sample 
behaviour may be assessed only by Monte Carlo analyses. However, 
when the models under consideration contain lagged dependent 
variables, then all testing procedures are only asymptotically 
valid and Monte Carlo techniques have to be employed for the F and 
the JA tests as well ('see GP, page 149).

The Monte Carlo simulation studies that have been performed 
in the case of non nested linear regression models are well sum­
marized by McAleer (1984). By considering the analyses of Pesaran 
(1974), Pesaran (1982a), Davidson-McKinnon (1982), and GP, McAleer 
provides a classification of the experiments according to dif- 
ferent criteria, such as: the DGP, the relationship of the models 
to each other and also to the DGP when both models are false; the 
use of fixed or local alternatives; the sizes of the samples; the 
use of asymptotic or empirical critical values; the use of 
two-sided or one-sided tests; the importance of using symmetric or 
asymmetric empirical critical values; the robustness of the test 
statistics to non-normality of the disturbances; and the variety 
of tests examined (see McAleer (1984), page 53).
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An established result is that the Cox test seems to reject 

the true null hypothesis too frequently, or, in other words, the 
estimated size is greater than the nominal size. If we want to 
perform an anlysis of the power of the test, then it is necessary 
to introduce some corrections which may concern the test statistic 
itself or the critical value employed in estimating the power of 
the test (for an application of this technique, see Ericsson 
(1986)). In the first case, interesting results are obtained by 
GP, who derive two different adjusted Cox tests.

The basic idea underlying the work of GP is that as Tg in 
(2.8] has mean zero only asymptotically, a different specification 
should be found for which Tq has mean zero in small samples as 
well. Formally, if we consider the numerator of NLq in [2.14]:

(4.1] z0 = T/2(o12-o102)

a possible correction may be introduced by using its mean, that 
is:
(4.2] E(Zq) = 502{Tr(R()R1)-k1}

where Rg • (X(X'X)-1X'] and »! = [Z(Z'Z)-1Z'l (see GP, page 136).
In this way, the variate:

(4.3] z0 = z0 - cr0 (Tr(RQR1)-k1)

~ 2 has zero mean both asymptotically and in small samples (a. is the2 unbiased estimator of » i = 0,1). following the analysis of 
Pesaran (1974), GP derive:

-2 ~2(T-k.)(cf-cfn)
(4.41 W = ± 10----- j-

(2ffQTr(B >+4ffQeiQQe100)

and
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Jzi T-ki ) log( C~Lo ) 
f4’5] N » —---------------------------- 35---------5—Ì7

((<xo/<Tio(eiooeioo+JsffoTr(B

- 2where r ei )/( T-k^^ ) (i = 0,l)

~ ~ 2*10 = {a0 tr)] + (QreQ)I/(T—)

Tr(B2) = kx - Tr^Rp)2 - [k1-Tr(R1R0) ]2/(T-kQ)

The small sample corrections to the basic Cox test do not affect 
its asymptotic distribution so that W and N possess the same 

2 ~2asymptotic standard normal distribution and the W and the N the 
2 2 ~2asymptotic X (1,0) under the null hypothesis. When W and N are 

computed under the alternative, then the asymptotic distribution 
of the two procedures is not affected (Ericsson (1983) formally 

~2proves that a slightly different form of N is asymptotically 
equivalent to Ng under Hi).

For finite samples, however, no theoretical results are 
available so only Monte Carlo simulations may shed light on the 

2 -2behaviour of W and N . In a series of different experiments 
(equal/unequal number of regressors in the two competing models; 
non normal errors; presence of a lagged dependent variable) GP 

2 ~2find that the mean adjusted Cox tests (W and N ) have empirical 
sizes that are very close to the nominal ones. In particular, for 
the set of experiments where a lagged dependent variable is in­
cluded among the regressors (the case in which we are mainly in- 

2terested), the performance of W is very good. Indeed, for a 
-2sample size of 20, GP find that N and J have too high size while 

W, JA and F present values that are not very far from the nominal 
ones. The most interesting result concerns the behaviour of the W 
test in terms of power. In effect, the power estimate of W is the 
highest among the testing procedures under examination.

As to the JA test while it shows an acceptable empirical 
size, its power performance seems to be affected by the number of 
regressors in the two competing specifications. In particular,
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when the model which is supposed to be the null hypothesis 
contains more regressors than the alternative, the power estimate 
of the JA test is very low.

The J test exhibits the same problem as the Cox test, that 
is its empirical size is always higher than the nominal one. An 
adjustment similar to that proposed for the Cox test may be 
applied but in this case the main motivation for the computation 
of the J test, that is its simplicity, is lost.

5. THE EXPERIMENTAL DESIGN

In order to apply a post simulation analysis technique to 
the results of GP, we replicate the experiment of GP in the case 
of the presence of a lagged dependent variable in both competing 
models. This experiment, or, better, set of experiments (labelled 
as "D" in GP, page 142) is interesting also because it considers 
the case of a different number of regressors in the two 
specifications.

The data generation process adopted by GP is:

^0
[5.U y - 0y+ E a.x + uQt

1=1

2with uni_ ~ NlD(0,<r ) and x.. ~ nid(0,1). x_ and u. are generated V w U Xu X A
by the means of the routine G05DDF of the FORTRAN 77 NAGLIB. 
Setting «1=1 for every i (see below), the variance of Ug^ is cal- 
culated in such a way that the value of the population multiple 

2 correlation coefficient is R . So:

[5.2] <f02 = k0( 1-R2 )/( R2-02 ) 02 < R2 < 1.

The presence of a lagged dependent variable creates some problems 
for the generation of initial values. Two solutions have been 
proposed in the literature. The "conventional" method is based 
upon the generation of yt with set equal to some arbitrary
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value. The sample of is then obtained by discarding a certain 
number of initial values. The alternative method is much more 
concerned with the first observation, y^. This is generated 
randomly and such that the variance is equal to the variance of 
yt, as specified in [5.2]. In our case, given [5.1] and [5.2], 
is generated as a NlD(0,<TyQ^) where:

[5.3] oy02 = kQ/(R2-|32)

The second method is employed by GP beacuse, as they say: "it 
seems superior on theoretical and computational grounds" (GP, page 
141) .

The alternative model is given by:

* kl
(5.41 yt ■ 6 rt-1 + J/it + uit

where z.^ is obtained as:

zit ’ //iXit + Vit for 1 = 1>2' ' ' ' r»in(k0»kl)

(5.5] and if ki > k&

z.t = v.t for i = ko+l,...,k!

vit ~ NID(O,1) and is generated with the same subroutine as the 
x's and the u's. The coefficient is determined by:

(5.6) fji = T./d-T.2)1*

where r. is the canonical correlation between x. and z.. 1 ? ? ? 1 1GP calculate the tests: Ng , N , W , J and F under the null 
hypothesis for 500 replications of each of 144 points defined by 
the combination of:
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T = ( 20, 40, 60 )
R2 = ( 0.5, 0.8 )

[5.7] T2 =(0.3,0.9)

0 = ( 0.3, 0.5, 0.7 ) 
2ut - NID(0, <ru*)

In our case, however, we have decided to reduce the number of 
experiments by ignoring the cases given by (3 • 0.5 and T = 40 so 
that the number of our experiments is 64.

In this context, the Monte Carlo design variables are (see 
Hendry (1984) and Ericsson (1986)):

(5.8] q - (|3,a. ,T.2,R2,k0,k!) € Q = {q|r.2<l, 02<R2<1)

T e T = [ 20, 60 ]

In this way,

SP = ( Q x T )

defines the parameter space.
The objective of GP's Monte Carlo simulation is to in- 

vestigate the finite sample rejection frequency:

[ 5.9 J it = prob ( | Q | > c )

2-222 2where 0 is any of the Nq , N , W , J , JA , F tests and c the 
nominal critical value (generally correspondent to the 5% 
significance level).
n depends upon q and T and it may be interpreted as a conditional 
probability:

[5.10] n = prob { |0| > c |q,T } = G* (q,T)
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It has to be noticed that c is a design veriable and as such it 
ought to be included in q. However, as it is kept constant in all 
experiments, its presence in q can be ignored. Further, in order 
to simplify the calculations, the coefficients of x., a., are set2 2 1 1equal to 1 and Ti =x (see Pesaran (1982a) and GP).

All estimations are computed in deviations from the mean in 
order to take into account the presence of a constant term. In 
this way the mean of the estimated residuals is zero and this is 
perfectly coherent with the generation of the structural 

2 disturbances as N(0,ou ). In the analysis of GP this does not 
happen because they estimate a model without a constant term but 

2 generating u as N(0iau ). Clearly, their estimate of the variance 
of u is biased and may cause trouble in the derivation of the test 
procedures under examination.

The generation of the alternative set of regressors accor­
ding to [5.5] and (5.6) highlights the fact that the relevant 
control variable is given by the correlation between x. and z..

2 1 1Clearly, as t increases the distance between the two models 
decreases. In this context, it is interesting to derive the non 
centrality parameter characterizing the asymptotic distributions 
of the testing procedures under the alternative. When the number 
of regressors in both models is equal - i.e. kg = ki - we may 
apply Pesaran's (1982a) analysis and derive the non centrality 
parameter according to [3.5]. In this case, the sequence of alter- 
native hypotheses is given by [3.2] and a measure of the distance 
between the two models may be:

[5.11] 8 = T(1 - t2) (8. = 8)

The non centrality parameter is then obtained from [3.5] as:

[5.12] n = 6(R2-02)/(1-R2)

When the two models are charaterized by a different number of 
regressors, then we may apply Ericcson's (1986) formulae for the 
non centrality parameters as given in [3.8]. In this context, we
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obtain:

A) kx > kg

(5'131 T • kQ[(1-t2)(1+T2)]t2(R2-fi2)
c [T2k0+(l-T2)k1][4T2+(l-T4)(l+T2)](1-R2)

T • ko(l-T2)(R2-02) 
nF “ 2 2 2~(TZk0+(l-TZ)k1](l-RZ)

B) kg > ki

[5.14]
T • k0[(l-T2)(l+-t2)2]T2(R2-(32)

nc = 4 4 2 2C k1[4x4+(l-T4)(l+TZ)](l-RZ)

T • k0(l-T2)(R2-B2) 
nF “ ----------- 2-------kx(l-RZ)

It is interesting to observe that if we increase kg, then nc and 
nF increase as well. This result may be explained by the way we 
have generated the variables x and z (see (5.5] and [5.6]). In 
effect, in case A), given the DGP:

[5.15] yt - + £

and the alternative:

(5.16] yt - 0*Yt_1 + z1 + z2 + w

using [5.5] we have:

(5.17] yt - + TXi + vx + v2 + w

if we increase kg, then the two models become:
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[5.18] Mq : yfc - ^Yfl + X1 + x2 + 6

*Ml : yt = B yt_1 + ziXi+xp + Vi + v2 + w

and the distance between them is greater.
When kg = kj, [5.13] and [5.14] reduce to the formulae given 

by Ericsson (1986) (page 6).
2Ericsson observes that if t ~ 1, then Pesaran's result - 

i.e. nc = nF - obtains, in effect, Ericsson's approach and 
Pesaran's are very similar numerically. In this context, when kg ■ 
k^, we apply Pesaran's formula for the non centrality parameter as 
given in [5.12].

6. MONTE CARLO METHODOLOGY

In this section, we explain the basic methodology underlying 
our exercise. Particular attention is devoted to the concept of 
estimated size and power in order to obtain two estimates which 
can be considered homogenous.

The basic priciples characterizing our response surface 
analysis are then illustrated, along with the "battery" of 
misspecification tests to check the results of the estimation 
procedure.

6.1 Size and power estimates

As indicated in the previous section, the objective of out 
Monte Carlo simulation is the investigation of the small sample 
behaviour of different non nested testing procedures. The small 
sample performance of a test may be measured by its estimated size 
and power. The general concept underlying the estimation of these 
two quantities is represented by expression (5.10]. In particular, 
the estimated size is computed as the proportion of times the test
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rejects the null hypothesis when it is in fact true. As it may be 
seen, the estimated size is an estimate of the probability of type 
I error. The nominal value is given by the 5% critical value of:

2 9 9 7 7the x (1,0) distribution for the No , N , W, J , JA tests 
(under Hq).
In the case of the F test, we follow GP who computes the 

estimates of the size and the power by using the nominal critical 
value of the F distribution. It is worth pointing out that this 
choice may be justified only on practical grounds, since in the 
case of dynamic models the F test is asymptotically distributed as 
a X2.

The estimate of the power is obtained by interchanging the 
role of the null and the alternative hypotheses. In this way, an 
estimate of the power is the proportion of times the test rejects 
the null hypothesis.

In the context of non nested testing procedures, it is im- 
portant to realize which kind of power and size estimates are 
computed. Indeed there are four different cases according to which 
of the two models is assumed to be the DGP. By computing the 
proportions of times the test.rejects the null hypothesis, we have 
the following two cases:

1) the DGP is Mg (see [5.11])
la) Hq : Mq and Hi : Mi estimate of the size of the test of Mq ;
lb) Hq : Mi and Hi : Mq estimate of the power of the test of Mi;

2) The DGP is Mi (see [5.14])
2a) Hq : Mq and Hi : Mi estimate of the power of the test of Mq;
2b) Hq : Mi and Hi : Mq estimate of the size of the test of «i;

It is worth observing that the results of the two sets of 
tests (1 and 2) are the same when the models are perfectly sym- 
metric. A case in which this may happen is when we have the same 
number of non overlapping variables in both competing 
specifications (see Ericsson (1986), page 23). in this case, it is
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more convenient to compute the size and power estimates by con­
sidering only one set of tests (in our case: set 1). If, on the 
other hand, there is some form of asymmetry between the two 
models, such as a different numbers of regressors, then it may be 
the case that the results of the two sets of tests are asymmetric 
as well. In this context, both case 1 and case 2 have to be 
analyzed and this implies that we have to interchange the DGP. 
When we use [5.4] as the DGP, the variables Zi generated from the 
first of [5.5] are scaled so that the variance of yt and u*. is not 
changed: in this case, the scaling factor is:

Sc = ( (1+z/2) ]->s

6.2 Response surface analysis

The main drawbacks of every Monte Carlo simulation may be 
summarized in two points: imprecision and specificity.
a) The imprecision of results.

It is well established that when performing simulations the 
results are always imprecise even when the sample size is large 
(see Mizon-Hendry (1980)). A measure of the imprecision is 
provided by the standard error of the size/power estimate. This is 
computed as:

[6.1] Ser(it) = /[n(l-n)/N]

where n is an estimate of n given by [5.101 ; N is the total number 
of replications.

Imprecision may be reduced by the so called variance 
reduction techniques (see Hendry (1984)). In our case, we have 
applied one of these techniques, namely the use of the same 
sequence of random numbers across different experiments. In this 
way, the re-using of the same set of random numbers may help in 
reducing the "intra-experiments" variability of the estimates (for 
a brief exposition of other techniques, see Hendry (1984)).
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b) The specificity of results.
Every experiment depends upon the value of the design 

variables. In effect, if P is the small sample power function of a 
test, then:

[6.2] P - G*(q,T)

(see section 5).
The main interest of a researcher is not to obtain estimates 

of P related to a few points within SP = q x T, the parameter 
space, but to have a more general view of the behaviour of P 
across SP. To achieve these results, the Monte Carlo estimate of 
P, P, may be used but as Mizon-Hendry (1980) show, it is very 
inaccurate. In effect, by considering its standard error (given by 
[6.1] ) N, the number of replications in each experiment should be 
very high in order to obtain an acceptable estimate. An efficient 
alternative is offered by the response surface analysis where P, 
the response is interpreted as a function of the parameters 
characterizing the Monte Carlo experiment.

In general terms, we have:

[6.3] P=G(q,T)+e
★ where G (q,T), the response surface, is an approximation to G 

(q,T) and e is a disturbance term. In particular, it is worth 
observing that e is given by two components: a simulation 
component related to the use of P instead of P; and an 
approximation component connected to the use of G (q,T) instead of 
G (q,T). A requisite of (6.3) is that the form of G should 
ensure that all power estimates and predictions lie within the 
(0,1) interval. Following Mizon-Hendry (1980) and Ericsson (1986) 
a possible response surface may be:

P ( P. )j
[6.4] ---— = --------- • exp [ G ( q, T ) ]

(1-P) 1-P.
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where the use of P. , the asymptotic power of the test, may in-i- 
crease the efficiency of the analysis.

In order to derive an implementable form of (6.4] we may 
resort to some results obtained by Cox (1970) about bynary 
variables (see Ericsson (1986), pages 6-8). In effect, if P is 
regarded as the probability of success (rejection of the false 
model) with 0 < P < 1 and N > 1 - then letting:

[6.5] A « [S(N-S)]/(N-l) where S is the number of
replications characterized 
by success (in our case, 
S=NP)

[6.6] L(h) = AJjlog[h/( 1-h) ] with 0 < h < 1 where h is
the probability of a binary 
variable

[6.7] L*(h) = A^logt(h-d)/(1-h-d)] d < h < 1-d where d=(2N)-1

then Cox (1970) shows that:

[6.8] 9 (P,P) - L*(P)-L(P) ~ N(0,l)

As P is unknown, it is important to check if the asymptotic 
power of the test, P., equals P and to do this we may simply check A AA
whether 2 (P,P.) is significantly different from the standard nor- 
mal distribution. The asymptotic power is computed by applying 
formulae [3.6] with appropriate non centrality parameters. The 2problem of approximating a non central X distribution is analyzed 
by Mizon-Hendry (1980), Hendry (1984), Ericsson (1986). The method 
we use is based on Mizon-Hendry (1980) or the first one described 
by Ericsson (1986) in his Appendix C.

Equations [6.4] and [6.8] constitute the basis for our 
response surface analysis. In effect, after some manipulations is 
possible to obtain:

[6.9] L*(P) - jL(P_) + A^Gtq,!) + €

where e is distributed as NID(0,l).
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In the response surface given by [6.9], j and G(q,T) are 

unknown and some approximations have to be employed. In par- 
ticular, j may be expanded in powers of T around T = », so that 
we have :

[6.10] j = jQ + jj^T-^ + ...

Things get more complicated for G( .,. ). G ( .,. ) may be 
expanded in powers of T and of the elements of q. In this last 
case, the expansion implies the computation of the powers and 
cross-products of the elements of q. For instance, as we have five 
elements in q, if we compute the second-order Taylor approximation 
of G( q,T ) in terms of q we have to take into account 15 terms.

_JcBy truncating the expansion of j and G( q,T ) at a 
suitable order, that is when the approximation error is 
negligible, estimates of the coefficients of j and G( q,T ) may 
be obtained by the application of the least squares to:

[6.H] L*(P) = j0L(PA) + j!T-isL(PA) +...+ A^T-( q, ) + e

where H is the least squares approximation to G. The presence of j.A is needed is we want to correct for heteroscedasticity.
The usefulness of a response surface as the one shown in 

[6.9] lies in the fact that it can offer a valid synthesis of the 
bulk of Monte Carlo results. More importantly, response surfaces 
are of great interest because they help predicting the values of P 
for different points in Q not included in the simulation. In this 
way an acceptable response surface can be used as an approximation 
to the finite sample distribution function of the statistic under 
examination. At this stage, the problem is then to establish the 
validity of the response surface employed.

Criteria to check the approximations for j and G ( .,. ) are 
provided by asymptotic theory and the fact that e in [6.9 ] must be 
asymptotically distributed as NID(0,l).

In the first case, asymptotic theory implies that jg must 
not be significantly different from one. In the second case, the 
properties of e may be checked by a set of misspecification tests
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well established in the econometric practice. Practically, we want 
to check for independence, homoscedasticity, normality and 
stability of the estimated residuals. In effect, when H(.,.) = 
G(.,.), then the estimated residuals must be distributed as 
NID(0,l). A list of a possible tests is provided by Ericsson 
(1986, page Ila). We apply almost the same set of tests, except 
for the normality test and the test for heteroscedasticity in 
quadratic terms. Specifically, the normality test is substituted 
with the set of tests proposed by Kiefer-Salmon (1983). The reason 
for this choice is that with the Kiefer-Salmon specification we 
can test not only for skewness and kurtosis but for higher moments 
of the s distribution as well. The whole set of misspecification 
tests is summarized in table 1. The use of tests to detect the 
presence of autocorrelation deserves some comments. In effect, our 
analysis lies in a cross-sectional set-up so that these tests may 
appear meaningless. However, a good response surface must be 
characterized by an error term which is independent across 
experiments. This must hold for any ordering of experiment. Once 
an ordering of the experiments is chosen, then the possibility of 
autocorrelation (due for instance to incorrect specification of 
H(.,.)) has to be checked. As a final remark, it should be noticed 
that all these tests help to check if a correct inference can be 
applied to the specification we have obtained.

7. RESULTS OF MONTE CARLO AND RESPONSE SURFACE ANALYSIS

The purpose of our Monte Carlo simulation is to replicate 
one of the sets of experiments of GP, mainly the set labelled as 
"D" (see GP, page 142). This set of experiments, as we have shown 
in section 5, is of great interest because it tackles the problem 
of the small sample behaviour of non nested testing procedures in 
the case of dynamic models. Moreover, the case of different number 
of regressors in the competing models is considered. 2The results of the Monte Carlo simulation for the W and F 
tests - i.e. the power estimates of these tests - are then used in
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Table 1

Misspecification Tests

Misspecification Statistic Sources

jo - 1 )w1(l,E-v-l) Hendry (1984, p. 962)
p invalid parameter 
restrictions

4/2(p,E-V-p) Johnston (1963, p. 126)

Skewness (SK) x2(l) Kiefer-Salmon (1982)
Excess kurtosis (EK) t3(l) H

SK + EK T4(2) tf

SK + EK + 5th moment t5(3) fl

First-order ARCH Tgd) Engle (1982)
First-order residual DW 
autocorrelation

Durbin-Watson (1950-51)
)U3( p,E—v-p) Harvey (1981, p. 173)

+7(P) Box-Pierce (1978)
H*(...) non costant v,E-2v) Kendall (1946, p. 242 ff.)
over subsamples

E2-v) Chow (1960, p. 595 ff.)
Predicted failure over a Z/g(p,E-V-p) Chow (1960, p. 594-5)
subset of p observations

Hendry (1979, p. 222)

2Notes: x.(s) represents a x distributed test statistic with s degrees 
of freedom;
XM(a,b) represents a F-distributed test statistic with a,b 
degrees of freedom.
E is the number of experiments or observations.



37
the response surface analysis presented in paragraph 7.2. The 
outcome of this analysis is very useful because it may give a 
synthetic description of the Monte Carlo simulation without having 
to analyze a huge quantity of tables and numbers.

7.1 Simulation results

The results the of our simulations are numerically different 
from GP study, although qualitatively they show the same pattern1. 
There are various reasons for such a difference. In particular, as 
explained in section 5, all our estimations are characterized by 
the presence of an intercept term in both models, while GP's 
analysis do not include any constants.

2 2Concerning the J and the JA tests, another source of difr 
ference is given by the nominal critical value we use. As GP 
clearly show, the have derived the estimated size and (power) for 

2 2the J and the JA tests using the nominal critical value from the 
F (1, T-k.-2) (i ■ 1,0) distribution, whereas in our case, the

1 2nominal critical value is obtained from the X (1,0) distribution.
2 2In effect, all our estimates for the J and the JA tests are 

greater than GP's ones and this agrees with the fact that:

F (1, T-k.-2) > x2 (1,0)

for T = 20, 60.

Another important observation concerns the problem of the 
kind of power we actually compute. In order to derive the power of 
the test of Mq, we have to carry out the set of computations under 
case 2a) illustrated in section 6.

Following Ericsson (1986), when the models are symmetric, 
the extra computations under 2a) are not necessary because the

1. Tables for the experiments analyzed with Monte Carlo 
simulations are avalaible from the author on request.
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results are the same as lb). This is no longer true when the num­
ber of non overlapping regressors in both models is different. In 
our case, however, extra computations may be avoided by observing 
that the experiments characterized by:

a) DGP : Mq, (k0, kx) = ( 4, 2 ) 

and

b) DGP : (kQ, kp = ( 2, 4 )

may be considered as symmetric. This seems, in effect, supported 
by the results we have obtained by analyzing the two experiments:

El) R2 = 0.5 and E2) R2 - 0.5
t2 = 0.3 t2 = 0.3

0 « 0.3 0 = 0.3
T = 20 T = 20

(k0,kx) = (2,4) (k0,k1) = (4,2)
under different DGP's.

If we compare the results (see table 2) of the two 
experiments when the GDP is given by Mq and Mi, then it is pos- 
sible to realize that the estimates for E2) when DGP : Mi may be 
approximated by the estimates of El) when DGP : Mq (and vicever­
sa) . if this finding reveals correct it allows to avoid extra 
computations in cases where there is asymmetry between the com- 
peting models. Clearly, more work, both theoretical and empirical 
is needed. Our estimates are related to the test of Mq while, from 
what we may understand from the tables presented by GP, their 
power estimates have to be considered as related to the test of Mi 
(case lb) at page 30). As a consequence, the outcome about the 
power of the JA test is completely reversed in our case, because 
if the power of the test of Mq is computed, then the JA test tends 
to show a very poor performance when kg < k^. On the contrary, GP
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Table 2

Results of experiments El and E2

Exp. El DGP : Mo DGP :

Test Est. size Est. power Est. size ESt. power

N2o 33.80 (2.12) 90.40 (1.32) 23.80 (1.90) 96.20 (0.86)
w2 4.60 (0.94) 68.80 (2.07) 6.40 (1.09) 56.00 (2.22)
N2 9.00 (1.28) 76.60 (1.89) 8.80 (1.27) 69.60 (2.06)
J2 26.20 (1.97) 80.00 (1.79) 11.20 (1.41) 92.40 (1.19)
JA2 7.60 (1.19) 61.60 (2.18) 6.40 (1.09) 31.60 (2.08)
F 4.20 (0.89) 58.40 (2.20) 3.80 (0.86) 54.80 (2.23)

Exp. E2 DGP : Mo DGP :

Test ESt. size ESt. power ESt. size ESt. power

N2o 23.00 (1.88) 99.90 (0.44) 37.60 (2.17) 92.20 (1.20)
W2 4.80 (0.96) 63.00 (2.16) 4.60 (0.94) 65.60 (2.12)
N2 6.80 (1.13) 75.40 (2.06) 8.40 (1.24) 78.00 (1.85)
J2 10.00 (1.34) 97.00 (0.76) 26.80 (1.98) 79.40 (1.81)
JA2 8.00 (1.21) 31.20 (2.07) 7.40 (1.17) 60.60 (2.19)
F 5.00 (0.97) 45.80 (2.23) 3.60 (0.83) 53.80 (2.23)

Note: The standard error is in parentheses.
All values are expressed as percentages.
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obtain results supporting the conclusion that the small sample 
power of the JA test is very poor when kg > ki (see GP, page 150).

in terms of size estimates, the main result we can derive 
from our analysis is that the small sample correction for the Cox 

2 ~2test, which allows to obtain the W and the N tests, seems to 
2work in the desired way. This is mainly true for the W test.
2In order to check if the estimated power of the W and the F 

tests significantly differs from the asymptotic power, we can 
perform a simple test by using the result derived by Ericsson and 
reproduced in [6.6]. Table 3 reports the value of the ratio 
between the mean of 2(P,P.) and the corresponding standard error 
(this ratio is represented by: t(P,P_)) for the following cases:A 
the total number of experiments (GEN); the experiments 
characterized by T = 20 and T = 60.

Table 3
2Case 1 : W—

GEN T=20 T=60

♦ ( P, P. ) 0.322 0.433 0.083

Case 2 : F

♦ ( P, P- ) -0.201 0.039 -0.061

As can be seen, in all cases the test does not reject the 
hypothesis that the small sample estimate of the power for the two 
tests under consideration is significantly different from the 
asymptotic power.

7.2 Response surface analysis

In this paragraph we apply the theoretical analysis presen- 
ted in section 6. Taylor approximations for j and G(.,.) are 
derived and truncated at the second order, in effect, more com-
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plicated response surfaces are not implementable, given the number 
of observations at our disposal. Specifically, the number of 

2experiments used is 44 and 43 for the case of the W and F tests 
respectively. Moreover, the data relative to 5 experiments have 
been left for post sample analysis, while 15 and 16 observations 
have been excluded. This is due to the fact these observations 
coincide with éxtreme values of ?A, that is for PA ~ 99.999 (see 
Mizon-Hendry (1980) and Hendry (1984)).

The estimates of the general regression equations for the 
two cases under consideration are illustrated in table 4.

At first blush, it appears that in the general 
specifications the fit of the response surfaces is not so bad; 
however, the estimates of the standard error of the regression are 
significantly different from one and this violates one of the 
basic assumptions of response surface analyses.

In the case of the coefficient of L(P.) our results are **
contrasting: the value of this coefficient is not significantly 

2different from 1 for the F test, while it is when W is concerned.
The general specifications of the response surfaces shown in 

table 4 are only the first step in the analysis. Indeed, they may 
be improved by dropping those variables whose estimated coef- 
ficients are not significant. It is importat to observe that this 
procedure, often applied in econometrics, is correct only if the 
results of the misspecification tests support the distributional 
assumptions about the response surface, in this context, the2 specification used in the case of the W test is characterized by 
a distribution of the residuals which seems to be non normal - see 
the value of the normality tests. As a consequence the application 
of the aforementioned procedure is not theoretically correct, but 
we may apply it in order to see if it is possible to obtain more 
interesting results, the outcome of this operation is shown in 
table 5.

The two restricted response surfaces show a slight 
improvement in terms of the standard error estimates and the value 
of the misspecification tests (see table 6).

A first explanation of the results presented in the tables
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4-5-6 may be found in the particular nature of the experiments we 
have carried out in our Monte Carlo simulations. These experiments 
concern primarily fixed alternatives (see GP, page 141), whereas 
response surface analyses of the kind we are considering would 
require the computation of power estimates under a sequence of 
local alternatives. A possible consequence of this fact is the 
relatively high number of extreme values excluded from the 
analysis.

Apart from these observations, some interesting remarks may 
nevertheless be made. In effect, the least squares approximation 
has been shown to possess some nice properties even when the model 
under consideration is misspecified (see White (1980)). In this 
way, it is interesting to observe that some of the results presen- 
ted by GP can be easily confirmed. This concerns, for instance, 
the effect of the coefficient of the lagged dependent variable 
(0): as GP point out (GP, page 150) there is a negative relation- 
ship between the value of this coefficient and the power of the 
tests. In other terms, as 0 increases the two models tend to be 
less indistinguishable as confirmed by the value of the non cen­
trality parameter given by the formulae (5.12], [5.13], [5.14]. 
The same reasoning applies for the correlation coefficient between 

2 the two sets of regressors (t ).
All these observations are straightforward by examing the 

response surface, while it should not be so if we had to go 
through all the numbers presented in the tables. This is one 
example of the advantages of response surface analyses. Moreover, 
if the response surface is well calibrated, then it could be in­
terpreted as an approximation of the small sample power function 
of the test under consideration and could also be used to predict 
values outside the range of experiments analyzed by Monte Carlo 
techniques (in our case, the predictive failure tests are not so 
significant as it is for other tests; see, for instance, the value 
of Chow test and Hendry test - and Tg in table 6 - especially 
for the F power estimates).
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Table 4

General Specifications

Variable F (Ser) [Cser] W2 (Ser) [Cser]

l(pa) k 0.84 (0.29) [0.13] 1.52 (0.32) (0.13)L(?J)/T^ -1.83 (1.51) [0.69]L(P*)/T
L(P?)/TJ » -112.67 (29.05) (12.87]

7.19 (12.57) [6.57] -49.01 (12.60) [6.13]
0**2 0.41 (0.79) [0.48] -0.53 (0.60) [0.26]

-0.12 (1.53) [0.82] -7.26 (1.56) [0.84]
t2**2 -0.03 (0.04) [0.02] 0.04 (0.02) (0.02]
RJ 0.62 (7.69) [3.87] 91.34 (20.63) [11.02)
R2**2 -0.72 (0.58) (0.36) -4.33 (1.46) (0.69]
Ko -0.61 (1.25) [0.63] -2.14 (1.35) [0.86J
Ko**2 0.07 (0.02) [0.01] 0.07 (0.02) [0.008]
K, . -0.19 (1.10) [0.11] 0.39 (1.37) [0.64]
Kj**2 0.04 (0.01) [0.01] 0.03 (0.02) (0.008]
rJ*|3 0.19 (0.19) [0.U] -0.34 (0.12) [0.07]
T2*R2 -0.08 (0.07) (0.09) 0.29 (0.21) [0.13]
Tj*K, -0.05 (0.02) [0.01] -0.38 (0.02) [0.011
T2*Kj 0.06 (0.09) [0.01] 0.06 (0.01) [0.008]
RJ*0 0.89 (0.68) [0.38] 4.75 (1.00) (0.68]
R2*K„ 0.06 (0.09) (0.07) 0.02 (0.20) (0.10)
R2*Kj 0.004 (0.09) [0.07] -0.12 (0.15) [0.091
0*KO -0.17 (0.13) (0.08] -0.14 (0.11) [0.07]

0.08 (0.13) [0.09] 0.06 (0.11) [0.05]
MK, -0.07 (0.02) (0.01] -0.09 (0.02) [0.008]
A -k 2.12 (2.41) [1.39]
A*T * -13.64 (12.99) [2.03] -13.59 (4.73) 13.04]
R squared 0.94 0.94
a 3.73 4.01
n. obs. 44.00 43.00

Notes: » all following .variables, except for A and A*T~L are 
multiplied by A*T- . 
Ser is the standard error of the estimated coefficient.
Cser is the standard error corrected for eteroschedasticity;
R2, t2, 0, K„, Kj are the parameters used for Monte Carlo
analysis.
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Table 5

Restricted Specifications

Variable F (Ser) [Cser] W2 (Ser) [Cser]

l(pa) * 0.84 (0.15) [0.10] 1.64 (0.20) [0.14]
l(p*)/t* -1.63 (0.74) [0.S5]L(P*)/T
L(P*)/T32 -123.00 (19.09) [14.09]
0* , -51.30 (8.83) (6.55]0**z
T1 -7.19 (1.28) [0.87]
T2**2 0.05 (0.02) [0.02]

95.50 (14.09) (11.80)
R2**2 -4.53 (0.84) (0.551
K. -1.27 (0.48) (0.36) -1.66 (1.05) (0.07]
Ko**2 0.07 (0.01) (0.009] 0.07 (0.01) [0.07]
Ki
Kj**2 0.03 (0.009) [0.004]
r2*0 0.14 (0.05) (0.04] -0.32 (0.09) (0.004]
TJ *R! -0.14 (0.06) [0.04] 0.29 (0.15) [’0.10]
T2 *K0 -0.04 (0.01) [0.007]
T2*Kj
R’*l3 0.38 (0.24) [0.19] 4.32 (0.85) (0.61]
R2*KO
R2*K1
0*KO -0.11 (0.07) [0.05] -0.14 (0.08) [0.05]
0*KX

-0.05 (0.008) (0.07] -0.09 (0.02) (0.008)
A -h 0.40 (0.33) [0.32]
A*T -15.02 (3.87) [3.53]
R squared 0.94 0.93
a 3.49 3.46
n. obs. 44.00 43.00

Notes: o all following, variables, except for A and A*T %, are 
multiplied by A*T-\
Ser is the standard error of the estimated coefficient.
Cser is the standard error corrected for eteroschedasticity;
R1, t2, 0, Ko, Kt are the parameters used for Monte Carlo
analysis.



45

Table 6

Misspecification Tests

Statistic W2 gen. F gen. W2 res. F res.

j = 1 15.06* 1.53 10.15* 0.011
"2 0.35 0.33
x2 9.51* 0.57 8.18* 1.38
t3 17.62* 0.13 14.53* 0.45
T4 27.13* 0.70 22.71* 1.83
t5 40.08* 1.74 33.02* 3.26
t6 0.44 0.23 0.12 0.19
DW 2.12 1.74 2.01 1.74
"3 2.03 2.69* 2.19 4.08*
X7 6,09 5.78 5.26 5.83
"4 3.65 0.30
"5 0.3 3 0.45
"6 4.24* 0.40 1.69 0.28
T8 15.41* 3.25 12.73* 1.62

Notes: * significant at the 5% critical value.
For the meaning of the symbols used for the test statistics 
and the relative degrees of freedom, see table 1.
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8. CONCLUDING REMARKS

At the end of our analysis, some concluding remarks may be 
very useful in providing some suggestions about the possibility of 
extending the research to cover more general cases than what we 
have done here.

The Monte Carlo simulation we have performed may already be 
considered as a slight generalization of GP, for it explicitly 
takes into account the presence of an intercept term in both com- 
peting models. The size and power estimates we have shown are not 
so different from GP's ones and this is particularly important for 
the adjusted Cox tests they propose. If we confine ourselves to 
the set up illustrated in section 5, further extensions are pos- 
sible by considering different ways of generating the X variables 
(and consequently the Z variables) and the disturbance U. GP 
present several sets of experiments but they do not analyze what 
happens to the small sample behaviour of the tests in the dynamic 
case when the X variables and/or the vector of disturbances are 
not assumed to be normally distributed.

An area where interesting results may be obtained concerns 
the case where the two competing models are characterized by dif- 
ferent (non nested) dynamics. This is a very important extension 
of the present work. In other terms, the problem is to find out 
what is the small sample behaviour of the usual non nested testing 
procedures when, for instance we have:

[8.1] Mo* : yt - Boxt + + ut

Hi* : * a0xt + “1*1-1 + "t

[8.1] is one of the several cases that may arise from the ap- 
plication of "general to specific" procedures. As it is well known 
there does not exist a unique ordering from the more general model 
to the more parsimonious representation we can find. In these 
cases, when two non nested final forms are regarded as plausible, 
then a possibility of discriminating between them may be given by
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the application of non nested tests. Clearly, this is correct only 
if we have at least a rough idea of the small sample behaviour of 
the non nested testing procedures we want to apply.

Another possible issue we have raised in our analysis is the 
problem of the kind of size and power estimates we are actually 
computing (see section 6). This is a very important problem which 
needs further investigation. Basically, the issue is to establish 
a set of conditions by which the computation of the estimated size 
and power is symmetric under different DGP's. In so doing, a lot 
of computation and time may be saved on applying Monte Carlo 
simulations to non nested tests. In section 7.1 we have just of- 
fered some kind of evidence about a possible solution in par- 
ticular cases (different number of regressors in the competing 
models). Clearly, more analytical and empirical work is required, 
especially when the competing models are specified as in (8.1].

Finally, the use of the response surface analysis has proved 
to be very efficient in simulation exercises such as our Monte 
Carlo study. Though it can be regarded only as a first step toward 
a more complete analysis - for instance by considering sequence of 
local alternatives - it allows to avoid the main limit of Monte 
Carlo simulations, that is their specificity. In our case, this 
means that the response surface we have obtained can be seen as an 
approximation to the small sample distribution of the test 
statistics under examination.
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