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Abstract 

We propose a new approach for predicting corporate default probabilities and for conducting 
scenario analyses by combining firm-level and macro time series data. We apply a local 
projection approach to a simple logit framework and bridge the gap between micro data on 
firms, for which no scenario is available, and macroeconomic variables, for which the forecaster 
instead has a scenario. We apply this model to an out-of-sample exercise, estimating it with 
data through the end of 2017 and forecasting corporate defaults over the following three years. 
We compute two sets of projections, the first based on the realized values of the macroeconomic 
time series (baseline), and the second conditional on a scenario that simulates a worsening in 
the macroeconomic environment comparable to the one observed during the European 
sovereign debt crisis (adverse). The baseline forecast closely matches the actual corporate debt 
default rate; under the adverse scenario, the default rate is similar to the one actually recorded 
in Italy during the sovereign debt crisis. We also run two exercises that make use of the granular 
forecasts of the corporate default probabilities. First, we assess which sectors are more 
vulnerable under each of the previous two scenarios (baseline and adverse). Second, we assume 
that the economy shifts from the baseline to the adverse scenario and construct transition 
matrices across different risk classes, showing which sectors are more exposed to the shift.  
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1. Introduction1 

Firms defaulting on their bank loans pose a critical risk to the stability of the financial system and the 

economy at large. Defaults correlate with the accumulation of non-performing loans on banks' balance 

sheets, which impairs banks' capacity to lend per se (Accornero et al., 2017) and may eventually drive 

banking crises, with their dire consequences (Reinhart and Rogoff, 2009; Schularyk and Taylor, 

2012). Firms close to default may increase their borrowing, displacing healthier firms and increasing 

impairments in the future (Ivashina and Scharfenstein, 2010; Giesecke et al., 2014). Thus, 

understanding the drivers of corporate defaults and predicting their evolution under different 

economic conditions are important for monitoring financial stability risks.    

Most models employed by central banks and regulatory authorities focus on aggregate data and 

forecast the average corporate default rate. These models can perform conditional forecasting given 

a macro scenario (e.g. Bonaccorsi di Patti and Cascarino, 2020; Gross and Población, 2017). On the 

contrary, the corporate finance literature generally studies the cross-section of individual corporate 

defaults using firm-level factors (for a survey of classic empirical works studying defaults at the firm-

level, see Altman and Hotchkiss, 2006).  

We propose a modelling approach to obtain firm-level projections of loan default rates combining 

microeconomic information (balance sheet and Bank of Italy's Central Credit Register data) with 

macroeconomic variables (real and nominal).2 The approach allows us to build a flexible toolkit for 

scenario analysis. In particular, this model can be used (i) to assess the evolution of default risk for 

groups of firms (industrial sectors, geography, size-classes, types of lenders) especially exposed to 

unforeseen shocks; (ii) to simulate the impact on credit risk of firm-targeted policies, while accounting 

for various heterogeneity dimensions; and (iii) to perform stress testing. 

A key challenge that we must address to construct a mixed micro-macro model that performs 

forecasting over a multi-year horizon is how to combine data updated with different frequencies and 

available after different lags (shorter for the macroeconomic variables; longer for balance sheet 

information). Most importantly, projections are typically available only for macroeconomic variables. 

As the forecast horizon moves further in the future, the microeconomic data age, while the 

macroeconomic data stay current because of scenario projections’ updates. Thus, we cannot simply 

fit forward the same model.     

We adapt the logic of local projections (Jordà, 2005)3 to address this challenge; thus, we estimate a 

different specification for each forecasting horizon. We first define the one-year-ahead default 

equation and then, to perform the h-years-ahead forecast, we estimate an equation that exploits the 

latest firm-level information up to the last year available in the sample, minus h. Thus, we forecast 

defaults exploiting the data available at each forecasting horizon.   

Each h-years-ahead forecast equation is a logit hazard model in the style of Shumway (2001); thus, it 

predicts the probability of default of each firm. Starting from a set of microeconomic and 

macroeconomic variables, we identify the best one-year ahead equation using a selection algorithm 

that optimizes forecast performance. First, we identify the specifications with the highest performance 

in discriminating between future defaulters and survivors; second, among the specifications selected 

                                                 
1 We would like to thank Alessio Anzuini, Emilia Bonaccorsi di Patti, Alessio De Vincenzo for their helpful comments 

and suggestions.  
2  Other recent works explored firm-level and macroeconomic default predictors jointly, e.g. Jacobson, Lindé, and 

Roszbach (2013); Filipe, Grammatikos, and Michala (2016). Nevertheless, these works do not tackle scenario analysis. 
3 Jordà (2005) first introduced local projections to recover impulse responses from a sequence of distinct regressions at 

different horizons, instead of projecting the same multivariate dynamic model over progressively longer horizons (as in 

VARs). The local projections method is highly flexible and has been applied to a variety of topics, such as the effects of 

geopolitical risk (e.g. Caldara and Iacoviello, 2022), of credit booms (e.g. Jordà, Schularick, and Taylor, 2016), and how 

these and other kinds of shocks interact with firms’ heterogeneity (e.g. Crouzet and Mehrotra, 2020; Fabiani, Falasconi, 

and Heineken, 2022; Ottonello and Weinberry, 2020). 
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in the first step, we choose the best at fitting the average default dynamics. We then estimate the two-

year-ahead and three-year-ahead equations by increasing by one and two years the distance between 

the micro and macro covariates. Thus, we keep the resulting specification fixed for the two and three 

years ahead horizons. In conclusion, our model is the three independently estimated equations.   

The Granular and Macroeconomic Probability of Default Model we present in this draft (GRANMA-

PD model henceforth) performs very well in terms of in-sample fit and can correctly point out 

defaulters out-of-sample at each horizon. The predicted default probabilities of failing firms are 

systematically higher than those of surviving firms. The Area Under the Receiver Operating 

Characteristic curve (AUROC) amounts to about 80 percent for all equations, both in-sample and out-

of-sample, which confirms a good discrimination capacity, matching the performance of the machine 

learning model by Cascarino, Moscatelli, and Parlapiano (2022).4    

Studying a set of alternative specifications that omit groups of predictors, we find that the 

macroeconomic variables’ main contribution is fit. Without macroeconomic variables, the model 

could not match the average default rate dynamics, i.e. the overall level of risk. In contrast, firm-level 

data increase the model’s capacity to single out future defaulters. These findings are consistent with 

the results in Jacobson, Lindé, and Roszbach (2013).   

We show two applications of the GRANMA-PD model. In the first, we collapse our firm-level default 

forecasts to obtain an average default rate and perform an out-of-sample exercise. We estimate the 

model with data up to 2017 Q4 and forecast defaults over the years 2018, 2019 and 2020 under two 

different scenarios. The baseline scenario takes as inputs the realized values of the macroeconomic 

time series, while the adverse scenario simulates a worsening in the macroeconomic conjuncture 

comparable to the one recorded in Italy during the European Sovereign Debt crisis. The resulting 

average of the baseline forecasts matches the realized corporate debt default rate closely, while the 

average of the adverse forecasts implies a counterfactual 30 percent increase in the default rate, close 

to the one experienced from 2011 to 2012.   

While our forecast period ends with the onset of the COVID-19 pandemic, our baseline exercise does 

not foresee jumps in the average default probability. The lack of foreseen structural breaks should not 

come as a surprise for two reasons. First, the macroeconomic time series informing our forecasts end 

at Q4 2019. Thus, the macroeconomic effects of the pandemic are excluded from our inputs, making 

our model "COVID-ignorant". Second, the macroeconomic conjuncture did not react immediately to 

the pandemic crisis, while the moratorium on corporate debt and other aid limited the immediate 

impact of business closures. 5 In conclusion, we can interpret our baseline forecast for year 2020 as 

projecting the average default rate in the absence of the pandemic; the good fit of the model even in 

that year provides evidence that support measures kept corporate debt default on its initial path at 

least up until the end of year 2020.6 

                                                 
4 We also test that the high AUROC is not the result of forecasting on an unbalanced sample. We focus on firms’ defaults 

and these are always a minority in the data. Therefore, a bogus model always forecasting survival could appear to be 

“good” from a naïve reading of AUROC-like indicators. To address this possible pitfall, we also compute the level of 

Specificity (the capacity to correctly foresee survivors) and Sensitivity (the capacity to correctly foresee defaulters) of our 

forecasts using as a default threshold on the fitted probabilities equal to the average default rate in the whole of the sample. 

We find a Sensitivity of 78 percent and a Specificity of 67 percent. These numbers point to the fact that our good 

performance comes exactly from the correct forecasting of defaulters, thus mitigating the unbalanced sample concern. 
5 First, the Decree Law 18/2020 ('Cura Italia') introduced a debt moratorium targeting small-to-medium-sized enterprises 

(SMEs) that had no non-performing loans when the measure was introduced (see the ‘Public intervention in lending to 

firms’ Box within the Bank of Italy Financial stability Report, n.1 2020). Furthermore, the Decree Law 23/2020 

(‘Liquidità’) introduced the opportunity for firms to access new state-backed loans via the Central Guarantee Fund or 

SACE. 
6 Multiple works studied the role of the wide array of economic support measures implemented by the Italian government 

to limit corporate bankruptcy liquidations during Covid pandemic, reaching similar conclusions. See, for instance, 

Giacomelli et al. (2021) and Orlando and Rodano (2022). Emergency support measures enabled many companies to cover, 

at least partially, their liquidity needs and potential equity deficits (see also De Socio et al., 2020, Orlando and Rodano, 
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The second application uses the firm-level granularity of the estimates to map the distribution of 

default probability forecasts for all firms in each sector. We propose two examples of how we can 

use such granular information. First, we look at how the distribution of firms’ default probability 

forecasts varies across industries fixing the macroeconomic scenario. Such an exercise helps tracking 

divergence in the sectoral evolution and concentration of risk under a determinate conjuncture. Then, 

we compute the share of firms that transition between four risk classes, based on the probability of 

default value, under the adverse scenario. This last exercise provides us more detailed insight into the 

drivers of fragility, pointing out whether a worsening of the situation of the core of healthy firms 

drives the increase in the average forecast or whether this is due to the tail of firms whose probability 

of default was already high under the baseline scenario.  

The remainder of the paper is as follows. Section 2 discusses the literature on firms default forecasting 

and its relation to our approach. Section 3 describes the dataset used in our work. Section 4 presents 

the methodology and the results of our average default forecasting exercise. Section 5 illustrates the 

two applications exploiting the granularity of our forecasts to track the evolution of firm default risk 

within and across scenarios. Finally, Section 6 highlights the main conclusions of the work.  

2. The literature on default risk quantification 

There are two established approaches to quantify firm-level default risk: first, risk scoring using 

structural models of the stochastic movement in firms’ value of assets; second, statistical models of 

default, either based on discriminant analysis or on logit regressions fitted to historical firm-level 

data. Recently, however, the field has been undergoing a wave of innovations. Applications of 

machine learning and artificial intelligence promise to help optimize the variable selection step, while 

improving forecasting performance. We provide here a brief review of these strands, to better frame 

our contribution to the subject matter.  

The structural approach descends from Merton (1974). Merton’s paper builds a forward looking 

Distance to Default (DD) model. The underlying theory is that firms default if their assets’ value falls 

below their liabilities’ value. The model evaluates assets and liabilities based on market price data, 

derives the difference, and finally fits the relationship between this difference and data on defaults 

(see Altman and Hotchkiss, 2006, for a synthetic description). This framework is extensively used in 

valuation (see the recent review in Bakshi, Gao, and Zong, 2022), but it requires information on the 

market value of firms’ assets and liabilities, which is usually not available for small firms. This 

limitation is especially relevant to us, as 64 percent of Italian value added and 75 percent of 

employment is due to SMEs, making Merton’s model unviable.7   

Lack of market value of equity implies that applying Altman (1968)-like discriminant analysis is not 

possible for us either, as the market value of equity is part of the inputs in Altman’s baseline approach. 

We thus build on logit-based approaches, similarly to Shumway (2001), estimating a hazard model 

of firm default. Hazard models explicitly deal with the passing of time in discrete steps, allowing us 

to tackle the relationship between default and the evolution of firm and macroeconomic conditions. 

We modify this framework by including industry and macroeconomic variables, thus our work is also 

related to contributions such as Chava and Jarrow (2004), showing the relevance of industry effects, 

and Jacobson, Lindé, and Roszbach (2013), Filipe, Grammatikos, and Michala (2016) and Jensen, 

Lando, and Medhat (2017), focusing on the importance of the economic conjuncture.   

In as much as we include an automated variable selection step in the design of our default model, we 

are related to the longstanding line of works applying machine learning to corporate default 

forecasting (e.g. Altman, Marco, and Varetto, 1994). Similar approaches are gaining new momentum 

                                                 

2020, and the box ‘The effects of the pandemic on the balance sheets and riskiness of firms in the various economic 

sectors’, in Bank of Italy, Financial stability report No. 1 – 2021). 
7 The figures quoted come from the European Commission Italian SMEs’ fact sheet 2024, collected within the Small 

Business Act and available at  https://ec.europa.eu/docsroom/documents/60571 

https://ec.europa.eu/docsroom/documents/60571
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thanks to the greater availability of computational power and to novel software advancements. Recent 

applications show that these techniques can achieve improvements over basic logit models (e.g. 

Bachman and Zhao, 2017; Barboza, Kimura, and Altman, 2017; Moscatelli et al., 2020). 

Nevertheless, there is an accuracy vs. interpretability trade-off, as such models often lack an easily 

interpretable functional form (Cascarino, Moscatelli, and Parlapiano, 2022).    

Finally, the GRANMA-PD model complements other tools already employed by the Bank of Italy’s 

Financial Stability Directorate to assess risks to financial stability arising from nonfinancial firms. 

First, the model’s firm-level forecasts can be aggregated at will, in contrast with time-series models, 

such as Bonaccorsi di Patti and Cascarino (2020), whose level of aggregation is pre-set. Second, the 

model also complements the In-house Credit Assessment System (ICAS, Giovannelli et al., 2020). 

The ICAS model forecasts the probability of default at the firm level too. However, it does so only at 

the one-year ahead horizon and does not include macroeconomic variables directly. 8  As the 

GRANMA-PD model forecasts firms' default at multiple horizons and includes such macroeconomic 

variables, it can be used for stress testing and scenario analysis. Finally, the GRANMA-PD model 

can be integrated with the microsimulation model by De Socio and Michelangeli (2017). De Socio 

and Michelangeli (2017) simulates firms' balance sheets over a two-year horizon to assess financial 

vulnerability under given scenarios, rather than default probabilities.   

3. Data and variables   
To build our forecasting model, we draw on the following sources:  

  

1. Credit information from the Central Credit Register (CCR), updated monthly with a time lag 

of two months.   

2. Corporate balance sheet data from the Company Accounts Data system (provided by Cerved) 

available on an annual basis, with a lag of about one year.   

3. Macroeconomic quarterly data and projections updated by the Bank of Italy’s scenario 

exercise for the Italian economy for the next three years.9   

  

Our target variable is the probability that a firm will be in default status over a certain time horizon, 

conditional on being initially healthy. For each quarter q in our dataset, and for each non-defaulted 

firm in q, we define as the dependent variable a dummy indicator (the new default dummy) equal to 

1 if the firm is in default in year y0+h starting from quarter q. We consider h equal to one, two or 

three years. For the time horizon of 2 years, we also impose that the firm is not in default at time y0+1 

and in the case of 3 years, that the firm is not in default at both time y0+1 and y0+2.   

We employ the same default definition as for the system-wide non-performing status of a borrower, 

reported by the Bank of Italy in its Central Credit Register. A firm is classified as being in default at 

a given date of reference if the ratio of non-performing to total credit drawn from the banking system 

is greater than five per cent for at least one month. We can aggregate this measure the average default 

rate, i.e. the fraction between new non-performing borrowers over a one-year period and performing 

borrowers at the beginning of that period, calculated quarterly. Such average ratio is an aggregate 

measure of credit risk, which will constitute our first validation target.   

We describe the behavior of the average default rate over the last 16 years in Figure 1. There, we can 

observe a twin-peaks evolution, with highest levels hit in 2009, after the Great Financial Crisis, and 

                                                 
8 This last model's main objective is to assign a risk rating to Italian firms. This rating enables banks to use loans granted 

to these firms as collateral for the Eurosystem.    
9 The macroeconomic projections for Italy are released in April, June, October and December on the Bank of Italy's 

website.  On exceptional basis, an update of the macroeconomic projections for Italy can be released to take account of 

new data and of possible changes in the external environment. For more details see: 

https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html.  

 

https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
https://www.bancaditalia.it/pubblicazioni/proiezioni-macroeconomiche/index.html
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2014, in the aftermath of the European sovereign debt crisis with the associated slowdown of the 

Italian economy. After that, the aggregate default risk started decreasing, with default rate just above 

1% at the end of the observed period. A good risk model, one that we can use to project this series 

forward and perform scenario analysis, must be able to replicate the default behavior over time both 

within and out of sample.  

Figure 1: The average default rate over the last 16 years  

 

Sources: Central Credit Register. Note: The annual average of new defaults is the proportion of firms in our sample that 

will be in default in a one-year period over the number of firms not in default at the beginning of that period, calculated 

quarterly. For example, mar-08’s data point covers the default rate between 2007Q1 and 2008Q1. The weighted average 

of new defaults is the same indicator, but weighted by the (drawn) loan amount.   

As regards the possible regressors in the model, we rely on balance sheet and credit indicators for 

Italian non-financial firms (micro variables) and macroeconomic data. We base a first selection of the 

variables on the literature on corporate default and bankruptcy risk (especially internal works using 

the same sources, e.g. Bonaccorsi di Patti and Cascarino, 2020; Moscatelli et al., 2020). Micro 

variables measure profitability, financing structure, debt sustainability, credit drawn and granted 

amounts for non-financial corporations, all at the firm level.   

We then select as macro variables five components of the macroeconomic conjuncture whose 

relationship with insolvency we deem of primary importance (see Table A.1):  

1. The growth rate of real GDP, as a proxy of demand movements that may push or depress firms’ 

profitability and, as a consequence, firms’ debt repayment capacity. 

2. The average nominal interest rate (cost of credit) on new loans paid by non-financial 

corporates, which directly affects corporates’ debt repayment ability. We consider this 

important, first, because the weight of debt service rises with loan rates, directly increasing 

firms’ vulnerability. Second, because loan rates are tightly related to bank funding conditions. 

Rates’ systemic increase often signals negative credit supply shocks, which harm firms in need 

to refinance their loans (Bonaccorsi di Patti and Cascarino, 2020). 

3. Inflation, as measured by the growth rate of the national final consumption deflator.  As we 

measure the cost of credit in nominal term, it is important to also control for changes in the 

value of money. Moreover, as observed in Jacobson, Lindé, and Roszbach (2013), the overall 

effect of inflation on credit risk is not obvious. Indeed, increases in nominal profitability may 

increase corporate debt repayment capacity if fixed rate debt is a quantitatively important 
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source of funding. Nevertheless, rise in inputs’ cost and price uncertainty may harm sales and 

profits, limiting firms’ debt repayment capacity. Moreover, demand and supply driven inflation 

episodes may have different effects. Indeed, prices rising for increasing demand imply also 

positive news for producers, while, if supply bottlenecks or cost push shocks drive inflation 

up, firms may expect only a decrease in margins. 

4. The growth rate of house prices. Residential real estate is a primary source of collateral for 

European firms, with 30 percent of firms with less than 50 employees reporting pledges of 

entrepreneurs’ personal assets, including the owners’ home (Banerjee and Blickle, 2016; data 

from SAFE survey). 

5. The firm gross operating margin (EBITDA). We use an index number summarizing the 

information across all firms in the Italian economy. This indicator measures the efficiency of 

the non-financial corporate sector. 

The four macroeconomic variables are updated quarterly, and their projections one, two and three 

years ahead are computed at least four times a year with the Bank of Italy’s quarterly econometric 

model.10   

To obtain the dataset on which we estimate and project our models, we convert all data to a quarterly 

frequency. We repeat over each quarter data that is updated yearly, and disregard mid-quarter 

observations for data that is updated monthly. We focus on the quarterly frequency to align with the 

quarterly scenario’s update frequency. The resulting dataset includes 840 thousand distinct firms and 

almost 300 thousand firms per quarter.   

4. Risk assessment framework: A local logit approach 

We face a fundamental challenge in building a multi-period forecast model for the probability of 

default at the firm level. Firms’ balance sheet data are only available yearly with a one-year lag. 

Moreover, these data are static, with no forward projection. Macroeconomic data are instead dynamic, 

as the Bank of Italy updates its forecast quarterly. Consequently, we cannot just forward the one-year-

ahead model to obtain the two- and three-year-ahead predictions. Indeed, as we forecast firms’ default 

probability further in the future, the lag between the micro and macroeconomic information would 

widen, making our estimated coefficients incoherent with the underlying data. To address this 

problem, we estimate three different binary logit models to forecast firm defaults at the one, two, and 

three-year horizons, inspired by the local projection approach (Jordà, 2005). Each model is local to 

its forecast horizon, thus exploiting information as well as possible in its timeframe.11  

We choose the logit model as our building block based on the result in Shumway (2001), showing 

that a multi-period logit model is equivalent to a hazard model with a logistic cumulate density, 

describing survival probability up to time t. Hence, it is a natural framework to predict the probability 

that a firm defaults in time t+1, conditional on having survived up to t.   

                                                 
10 The macroeconomic projections for the euro area are released on the web site of the European Central Bank in March, 

June, September, and December of each year. In June and December these projections are produced on a set of common 

assumptions by experts from the Eurosystem national central banks, jointly with ECB staff members. Twice yearly (in 

June and December) the Bank of Italy releases a brief comment on the macroeconomic projections for Italy. A more 

detailed analysis of the outlook for the Italian economy, including any updates made necessary by changes in the external 

environment or by new data, is published in the January and July issues of the Bank of Italy's Economic Bulletin. 

Furthermore, updated scenario can be implemented if necessary for internal use.   
11 Such approach is conservative, for simulating firm-level balance sheet variables is a complex task and requires taking 

a stance on the drivers of firms’ balance sheet evolution. The upside of our simple approach is not to make such further 

assumptions, keeping the moving parts at a minimum. The downside is a limitation in capturing possible feedback loops 

from macro to micro. To address such limitation in the future, we are also working on an extension of the model that 

integrates simulated balance sheet variables from De Socio and Michelangeli (2017) microsimulation model.  
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We believe this to be the best parametric option. A valid alternative would have been the 

implementation of a bottom-up non-parametric model, for example the machine-learning-based 

framework in Cascarino, Moscatelli, and Parlapiano (2022). We favored starting from a parametric 

perspective as it allows greater transparency and interpretability of the results. Our framework is 

however amenable for integration with interpretable machine-learning approaches, which we leave 

for further research. Nevertheless, we do include a bottom-up component, i.e. an automated variable 

selection step to simplify and discipline our choice of macroeconomic variables for the first model 

(one-year horizon, details in Section 4.2).  

4.1 Empirical model 

We estimate the following linear model in the log-odds of default:  

log (
𝑝𝑞,𝑦0+ℎ

1−𝑝𝑞,𝑦0+ℎ
) = Βh

CE𝑋𝑦0
𝑚𝑖𝑐𝑟𝑜,𝐶𝐸 + Βh

CR 𝑋𝑞,𝑦0
𝑚𝑖𝑐𝑟𝑜,𝐶𝑅 + Βh

macro𝑋𝑞,𝑦0+ℎ 
𝑚𝑎𝑐𝑟𝑜 ,            ℎ = 1, 2, 3          (1) 

where q is the quarter of the year y0 at which the default information was last observed, and h is the 

forecast horizon in years. 𝑝𝑞,𝑦0+ℎ is the probability that a firm that did not default up to quarter q of 

year y0 defaults by the same quarter of year y0+h (also PD, henceforth);  𝑋𝑦𝑚𝑖𝑐𝑟𝑜0 ,𝐶𝐸 is the matrix of 

the latest available balance sheet information, and 𝑋𝑞𝑚𝑖𝑐𝑟𝑜,𝑦0 ,𝐶𝑅
 contains the credit information 

available at quarter q of the year y0; 𝑋𝑞𝑚𝑎𝑐𝑟𝑜,𝑦0+ℎ is the matrix of macroeconomic variables (possibly 

lagged), that reaches in the future thanks to the Bank of Italy’s macroeconomic projections. Finally, 

ΒhCE, ΒhCR, Βhmacro are the parameter vectors we must recover. 

To estimate and validate the above three independent logit equations we perform three steps:  

1) Variable selection. We consider several combinations of micro and macro variables (with 

different lags) and, among them, we select the subset of covariates which optimizes the 

prediction performance. 

2) Estimation.  For each forecast horizon h, we estimate a logit model where the dependent 

variable is the new default dummy described in Section 3, and the regressors are the optimally 

chosen ones. We estimate each h-model on its own dataset, which encodes the appropriate 

structure of lags to reflect the different control variables’ update pattern. Which is, take the 

qth quarter of year y, the balance sheet and credit register information concerns the same 

quarter of year y-1 for the model forecasting the one-year-ahead PD, y-2 for the two-years-

ahead model, and y-3 the three-years-ahead model. The macro variables are, instead, always 

fully updated due to the scenario.  In conclusion, the Β̂hmacro vector will reflect the impact of 

the macroeconomic variables on default probability, net of all the information that can be 

extracted from micro data last updated h years ago. We obtain 95 percent confidence intervals 

for our predicted probabilities by bootstrapping. We detail the bootstrapping procedure in 

Annex B. 

3) Validation. We compute prediction performance of the three models along two dimensions, 

(i) the ability to predict average default rates (for all firms and for industrial sectors) and (ii) 

the predicting power for future defaults at the firm level. 

4.2 Variable selection algorithm  

We identify the optimal set of variables among the ones reported in Tables A.1 and A.3. We do so 

targeting the best possible performance in terms of discriminating power between defaulted and non-

defaulted firms and fit of the average default rates aggregated from the model predictions. We 

implement a two-step algorithm, based on two measures of performance, the Area Under the Receiver 

Operating Characteristics Curve (AUROC) and the Root Mean Square Error (RMSE). The AUROC 
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measures the probability of correctly forecasting firms’ default or survival;12 its optimization ensures 

that our model assigns high default probability to future defaulters and vice versa. The RMSE is, 

instead, a standard measure of fit. 13  Targeting it, we make sure that fitted default probabilities 

aggregate to an average default rate close to the one we observe on a per-firm basis.14  

In the first step of the algorithm, we estimate several one-year-ahead probability of default models, 

for different combinations of micro and macro variables.15 Then, we compute the AUROC in-sample 

for each model, using a training dataset including observations up to 2016 and keeping the models 

with an in-sample AUROC of 0.8 or greater.   

In the second step, we apply an automatic procedure based on backward search to find, among the 

models detected in step 1, the specifications that have a low RMSE for the out-of-sample aggregate 

default rate’s prediction. From this set of specifications, we select the reference model by expert 

judgment, to account for the fact that a fully automated procedure may incur in local minima, and 

may fail to include key scenario variables.  

 Both steps are important. Indeed, a model with a great performance in discriminating between future 

defaulters and survivors (identified by AUROC) may yet be far from the best in fitting the average 

default rate dynamics. In practice, the first step selects credit register and balance sheet controls, 

whereas the second step the set of macro variables and their lags. 16 

The resulting set of covariates includes seven firm-level variables plus five macro variables, each of 

which may appear in our equations with multiple lags. In detail, the micro variables are:  

1) Capitalization, measured by the ratio of equity over total assets, which tracks firms’ capacity 

to absorb shocks with own resources (and is negatively correlated with leverage). 

2) Liquidity, measured as the ratio of current assets and short-term debt (current ratio), which 

tracks each firm’s ability to pay off short-term debt obligations with cash and cash equivalents. 

3) The ratio of interest expenses over cash flow, indicating the enterprise’s ability to pay interest 

promptly. 

4) Financial flexibility, i.e. the proportion of total drawn to total granted bank credit to the firm, 

which tracks how each firm can absorb shocks by increasing its borrowing. 

5) Profitability, measured as the ratio between gross operating margin (Earnings Before Interest 

Taxes Depreciation and Amortization, EBITDA) and total assets. The higher this ratio, the 

higher the firm capacity to generate cash flow from its assets and, consequently, to repay debt. 

6) Dummies for firm size based on the European Commission definitions of micro, small, 

average and large firms. 

7) Dummies for the economic sector in which the firm operates, which account for individual 

industry exposure to shocks, often an important determinant of revenue volatility and fragility 

(see Chava and Jarrow, 2004). 

                                                 
12 In greater detail, the AUROC is a summary statistic for the likelihood of predicting the default of a firm that will not 

default, and vice-versa, under a given model. It varies between a half, characterizing a model that has no capacity to 

distinguish between future defaulters and future survivors, and one, a model that is perfectly able to distinguish between 

future defaulters and future survivors.   
13 To provide accurate average scenario forecast, the average fit tracked by the RMSE is important in its own sake, even 

if it is not crucial for discriminating defaulters and non-defaulters. This attention is coherent with standard risk-modeling 

calibration practices, where analysts verify the models’ capacity to replicate in-sample default rates (e.g. Giovannelli et 

al., 2020).  
14 Albeit we focus on firm-level default, our fit is not sensitive to weighting firm defaults by each firm loan amounts.  
15 We considered possible combinations of 4-6 variables, on the basis of the evidence from the literature and not including 

indicators with similar meaning. 
16 The algorithm adapts standard practices in model selection: See, for example, Bruce and Bruce (2017) and James et al. 

(2014). In particular, the separation between micro and macro variable selection steps is common in default modeling: 

See, for example, Filipe, Grammatikos, and Michala (2016). 
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We report the list of the micro variables included in the dataset in Table A.2 and their descriptive 

statistics in Table A.3.   

The macroeconomic variables we include are:  

1) The spot and six months lag of the average nominal interest rate on new corporate loans. 

2) The spot and six months lag of inflation. 

3) The six months and yearly lag of the growth rate of real GDP.   

4) The two years lag of the growth rate of house prices.   

5) The spot value of firm gross operating margin (EBITDA) in the Italian economy.   

4.3 Model performance and estimated average effects  

In Table 1, we show the values of in and out-of-sample AUROC. First, from the fact that the out-of-

sample AUROC is also high, we can see that we are not overfitting, and we can robustly point out 

risky firms. Second, we use the AUROC statistic to compare two versions of the one-year-ahead logit 

equation and show the role that different variables play. The first version is our baseline; we call it 

the “Reference model” henceforth. The second is a micro-data-only model, which we call 

“Firmvariable model”. From the AUROCs’ similarity in Table 1, we can appreciate that balance sheet 

and credit information are enough to make accurate firm-level default predictions.17   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
17 We check that this accuracy is not due to always foreseeing survival of firms in an unbalanced sample in which defaults 

are always a minority of observations. To do so, we check our model performance in terms of specificity, which is, the 

likelihood of foreseeing no-default for a firm that will actually survive, and – more importantly - sensitivity, which is, the 

likelihood of foreseeing default for a firm that will actually default. In order to compute these statistics, we need to actually 

turn the estimated probability of default into zero-one default predictions. We follow standard practice and assign to the 

default state firms with an estimated default probability greater than the sample average. Doing so, we obtain a specificity 

of 67 and a sensitivity of 78 percent for the one-year-ahead model, and similar performances for the other two logit 

equations. In conclusion, our high AUROC does not come from being correct only concerning survivals in a sample in 

which survival is the most likely outcome.  
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Table 1: Balance sheet and credit variables are sufficient for firm-level default forecasts   

Model specification  AUROC in-sample  AUROC out-of-sample  

Reference model   0.803  0.803  

Firm-variable model  0.801  0.802  

Note: All the figures reported concern one-year-ahead default models. We estimate two such models: The Reference 

model is the baseline, selected through the algorithm described in Section 4.2. The Firm-variables model includes only 

micro variables. We estimate each model using data from 2007Q1 to 2015Q1. We perform the out-of-sample AUROC 

calculation using data from 2015Q2 to 2016Q4.   

Figure 2: Balance sheet and credit variables are not sufficient to match default rate dynamics  

 
Source: Fit for the one-year-ahead default model. Authors’ calculation based on Cerved and Credit register data. Notes:  
The Figure presents fits for Table 1’s reference and firm-variables models, estimated on the whole sample up to 2016Q4. 

Time labels in the plot are moved forward by one year due to the default variable definition.   

Nevertheless, in Figure 2 we show that we cannot match the average default rate dynamics without 

macro variables. We report the aggregate estimated defaults one-year-ahead, obtained by using our 

reference model and the variant that includes the same set of micro variables but no macro variables. 

We plot the fitted values against actual aggregate default rates.   

While the two models have similar discriminatory power between defaulters and non-defaulters (in 

terms of AUROC, see Table 1), the model that relies only on micro variables does not yield an 

accurate estimate of the average rate of corporate defaults over time. The fit is instead very good for 

the model including both micro and macro variables. This result is consistent with the literature. For 

example, Jacobson, Lindé, and Roszbach (2013), studying logit models for Swedish firms’ defaults, 

show that while an only micro model can still make a reasonably accurate ranking of firms’ according 

to their riskiness, macroeconomic variables are key to explaining the average default rate dynamics.18   

4.4 Estimation results  

In Figure 3, we report the average marginal effects (AME) for each variable across the three models. 

AMEs are the standard statistic to summarize the effects of independent variables in non-linear 

models and they equal averages of the independent variables’ effect over all the sample. We obtain 

                                                 
18 Filipe, Grammatikos, and Michala (2016) shows similar evidence on a Portuguese dataset.  
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AMEs taking the empirical derivative of each logit with respect to each variable of interest.19 To ease 

AMEs’ interpretation we use standard deviation changes as the reference for all our balance sheet, 

credit and macroeconomic independent variables, while using one percent changes for the inflation 

and cost of borrowing series.   

To explain with an example, let's focus on interest expenses over cash flow, the first variable in Figure 

3 Panel a), presenting the AMEs of balance sheet variables. The colored bars describe how a one 

standard deviation increase in interest expenses over cash flow shifts the firms’ probability of default 

on average, across all observations. The blue bar shows that the AME of a standard deviation increase 

in the ratio in year y on year y+1’s default probability is slightly more than half a percentage point; 

the orange bar shows almost identical effects on year y+2; the grey on year y+3.   

Concerning other firm-level variables in Figure 3 Panel a), we can see that the probability of default 

is lower for more capitalized/less leveraged firms, for those with more liquidity, and for those with 

greater profitability. On the contrary, a high level of interest expenses on cash flow and especially a 

high drawn over granted ratio (financial flexibility) contribute to increasing default risk.   

In Panel b), recording economic sector dummies’ AMEs above and beyond agriculture (the excluded 

category), we can observe that all sectors, but electricity and gas are more exposed to default than 

agriculture. Firms operating in manufacturing and construction are the riskiest, followed by 

transportation and retail trade.   

Finally, in Panel c), we report the effects of changes in the macro variables, displaying an aggregate 

impact encompassing the effects from the different lags of each variable included in the forecasting 

equations.20 The overall effect of nominal interest rates in each model is positive and especially large 

at the final forecast horizon of three years ahead. Instead, GDP growth, higher house prices and greater 

average profitability lower default rates, as expected. Finally, the statistical evidence suggests that 

inflation tends to be correlated with higher default risk, pointing to increased costs as the main effect 

of inflation on the average firm over the period covered by our estimation sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
19 We compute the AMEs by fitting our logit equation and obtaining an estimated default probability 𝑝   for each firm. 

From the fact that 𝑝 = exp(Β𝑋) /(1 + exp(Β𝑋)), where 𝑋 is the full independent variable matrix in equation (1) and Β 

its parameter matrix made of 𝛽 elements, it follows that the partial derivative of 𝑝 in a single variable equals to 𝛽 ∗ 𝑝 ∗ 

(1 − 𝑝). Substituting the theoretical 𝑝 with the average of the 𝑝 s we get the AME estimate. We perform these operations 

employing the margins package in R (see Leeper, 2017) and provide a deeper review on AME calculation and 

interpretation in Annex C.   
20 We refer to Section 4.2 for the list of lags included for each macroeconomic variable.   
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Figure 3 – Parameter estimates 

a) Micro variables 

 

b) Economic sector 

 

c) Macro variables 

 

Source: Authors’ calculation based on Cerved, Credit register data, Supervisory reports and Istat. Note: Across all panels, 

AME stands for Average Marginal Effects. In Panel b, we present the marginal effect of each sector with respect to a base 

sector (agriculture).  

We move forward describing the heterogeneity in the effect of macroeconomic variables across 

sectors. We do so by obtaining the macroeconomic variables’ AMEs averaging over observations 

pertaining to each specific industry alone. The non-linearity of the logit model implies that the final 

effect of each variable depends on all the effects of the other variables. As a consequence, local effect 
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averages are meaningful impact heterogeneity’s statistics.21 The variability of impact estimates is 

crucial information, since banks often specialize in lending to a subset of firms (Paravisini, Rappoport, 

and Schnabl, 2022; Giometti and Pietrosanti, 2022; Duquerroy et al., 2022). As a result, a stark 

increase in one single sector’s defaults may considerably harm specific banks and, through this, have 

unexpected systemic consequences.  

We report the sectoral AMEs in Figure 4, on the y-axis, on a percentage points scale (e.g. 0,6 stands 

for 60 basis points). For example, the sub-plot showing the heterogeneity of inflation’s effect across 

industries (Panel (a)) displays how an average one percent change in inflation (across all lags) affects 

the average default probability forecast for manufacturers, utilities, etc. In Panel (b), (c), and (d) we 

can instead observe the heterogeneity of GDP growth, NFC rate, and EBITDA’s effects. We can see 

that the construction, accommodation, and transportation sectors are the most affected by 

macroeconomic shocks as of 2016’s end.   

The heterogeneity we report is economically significant. For just one example, looking at the effect 

of inflation on one-year-ahead defaults, the AME of a one percent increase in inflation for 

construction firms is an approximately 65 basis points increase in default probability. This local effect 

is 20 basis points larger than the baseline effect reported in Figure 3, the latter standing at about 45 

basis points.   

     

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

  

                                                 
21 An alternative would have been to estimate a fully interacted model. We did so and recorded very similar results in 

terms of ranking of sectoral exposures to different macroeconomic factors. Moreover, the fit and discriminatory capacity 

did not improve, while forecast error bands increased due to collinearity introduced by the coefficients’ overabundance. 

We thus discarded the option. The cost of doing so is that we can only have more and less reactive sectors overall, at 

every point in time. For example, it cannot be that one sector is more reactive to GDP, and less to inflation. Nevertheless, 

being more or less reactive to macroeconomic shocks captures a key aspect of fragility; it is thus an important information 

to track.  
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Figure 4 – Sector specific reaction to changes in GDP and inflation  

a) Inflation                                                                b) GDP growth 

 

c) Non-financial Corporate’s rates                              d) EBITDA 

 

Source: Authors’ calculation based on Cerved, Supervisory reports, Credit register data and Istat.  Note: Across all panels, 

AME stands for Average Marginal Effects, displaying the sector-average effect of, respectively, one percent increase in 

inflation (Panel a), one standard deviation increase in GDP growth rate (Panel b; one s.d. change in GDP growth rate 

amounts to a 1,7 percent change), and one percent increase in NFC rates (Panel c).   

In conclusion, jointly estimating a set of logit equations with macro and firm-level controls we find 

economically significant variability in the impact of macroeconomic factors on different industries. 

Heterogeneity’s empirical relevance stresses the importance of having a flexible risk-analysis tool 

which directly embeds macro factors and can be aggregated at will.  

4.5 Validation  

We assess the prediction performance of the default models by considering two aspects. The first is 

the ability to fit the aggregate default rate, and the second is the power to discriminate defaulting and 

non-defaulting firms. Figure 5 plots the default rate over time, against the fitted average value. We 

present in separated panels the fit for the one, two, and three-years-ahead forecasts obtained with their 

respective model. The models replicate the default evolution over time with a very-good in-sample 

fit.   
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Figure 5 – All three equation have good in-sample performance  

 

  
Source: Authors’ calculation based on Cerved, Supervisory reports, Credit register data, and Istat.  Note: The Figure 

presents model fits for the three forecast horizons we consider. For the one-year-ahead model, the estimation period is 

2007Q1-2016Q4; 2007Q1-2015Q4 for the two-year-ahead model; 2007Q1-2014Q4 for the three-year-ahead one. This 

displacement allows us to recover the right parameters capturing the relation between ever more lagged firm level 

information. Assuming to have default data up to 2017 Q4, to obtain the one-year-ahead parameters we cut the last year 

of available information and forecast defaults between 2017 and 2018 Q4 with 2018 macro and 2017 firm level 

information. For the two-year-ahead model, we must cut two years, focusing on two-years-ahead defaults, which will 

only be available up to 2015Q4. Likewise, for the three-years-ahead model.  

Second, we verify that discrimination capacity is good at all horizons. We report the results in Table 

2. The full sample AUROC, calculated in-sample, is again close to 80 percent for each model. Figure 

6 illustrates the distribution of the fitted PD one-year-ahead, splitting the plot between future 

defaulting and surviving firms. We can observe that the density is concentrated at zero for the non-

defaulters, whereas the estimated probability is higher for firms that will default. This difference in 

densities supports the evidence of a good prediction performance at the borrower level.   
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Table 2: Default/Non-Default discrimination is good for all models, at all horizons  

Model    Reference model    

One-year-ahead   0.806  

Two-year-ahead  0.772  

Three-year-ahead  0.751  

Source: Authors’ calculation based on Cerved and Credit register data.  Note: The Table compares power of discrimination 

between future defaulting and surviving firms for the reference model at the three forecast horizons. The reference model’s 

number in the first cell differs from what shown in Table 1 since, there, we present the performance for the training set, 

here for the fully fledged model used in forecasting.   

  

  

  

Figure 6: Firms classified as defaulters default more often  

 

Source: Authors’ calculation based on Cerved and Credit register data. Note: The Figure reports the density distribution 

for the estimated one-year-ahead probabilities of default distinguishing between firms that will default in one year (blue) 

and firms that will not (red).   

5. Scenario Analysis 

In this Section, we use our three-equation model to conduct simulation exercises, forecasting firms' 

default probability over a three-year horizon, starting in 2017, using realized macroeconomic time 

series as the baseline scenario and hypothetical pejorative realizations of the same time series as the 

adverse one. We start learning from our firm-level granular projections by aggregating them 
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economy-wide in a forecast of the average default rate for corporates. This number is interesting per 

se, as an out-of-sample validation exercise. Furthermore, performing a full scenario analysis allows 

us to showcase useful applications of the at-will-aggregation potential of our model.   

Starting from the firm-level projections, we explore the heterogeneity in default risk. As a first 

example, we present local averages of firm default probabilities at the industry and size-classes levels. 

Such local average forecasts allow us to explore the drivers of our economy-wide forecast. Moreover, 

through them, we check that our predictions align with our fundamental understanding of the 

correlation between risk and firm heterogeneity -- smaller firms and sectors like construction tend to 

be among the riskiest, and our results confirm such knowledge.  

We then propose two last exercises that exploit forecast granularity. First, we look at the entire default 

probability forecasts' distribution for different industries and compare them under the same 

macroeconomic scenario.22 Industries with similar average default rates could display very different 

tails. Averaging could hide pockets of vulnerability in some sectors that we may uncover thanks to 

our granular projections. Second, our model’s forecasts naturally lend themselves to building 

transition matrices across risk classes when the conjuncture worsens. By tracking how many and 

which kind of firms transition from lower to higher risk classes when we change the scenario from 

baseline to adverse, we can learn which firms are more fragile to a change in the economic 

conjuncture.  

5.1 The aggregate forecast exercise  

We begin with a simple exercise, estimating the default models for one, two, and three years ahead. 

Each time, we forecast firm-level default probabilities based on the most recent balance sheet and 

macroeconomic time series describing a baseline and an adverse scenario. We derive the baseline 

scenario from the actual macroeconomic time series observed between the end of Q4 2016 and Q4 

2019 (Bank of Italy elaborations based on ISTAT data). Instead, we build the adverse scenario by 

simulating changes in macroeconomic time series based on the three years of the European Sovereign 

Debt Crisis (2011 – 2013). Specifically, we assume equivalent changes from the Q4 2016 baseline 

for each macroeconomic time series over the years 2017-2019. (See Annex D for the macroeconomic 

variables under both the baseline and adverse scenarios, along with a brief scenario narrative). Finally, 

we calculate aggregate forecasts by averaging the firm-level default probability estimates across all 

firms.  

In Figure 7, we present the GRANMA-PD model projections, from the end of Q1 2017 to the end of 

Q4 2020, shown against a light blue background. First, we observe that our one-, two-, and three-

year-ahead out-of-sample projections, based on realized macroeconomic data and firm-level data 

from Q4 2016, accurately forecast the average default rate, validating our approach. Under the adverse 

scenario, the model predicts an average default rate just below 4 percent in 2018, compared to 3 

percent at the end of 2017. Notably, the magnitude of this increase in the model predictions is in line 

with the rise in default rates observed in Italy during the peak of the Sovereign Debt Crisis. Indeed, 

between 2011 and 2012, the average default rate increased from approximately 5 percent to about 6.5 

percent, representing a similar 30 percent rise. 

The exercise period ends with the onset of the COVID-19 pandemic in Q2, Q3 and Q4 2020. During 

this last period, we interpret our forecast as projecting the average default path in the absence of the 

pandemic. This interpretation arises from the information set determining our 2020 forecasts, which 

stops with the end-Q4 2019 values of our macroeconomic time series, excluding the macroeconomic 

effects of the pandemic from our inputs. Despite this limitation, our baseline forecasts closely 

approximate the actual realization of the average default rate. We explain this result with two key 

                                                 
22 The choice of comparing different industries has the only purpose of being an example. We could have chosen firm 

size, bank that provided the most credit, or any other relevant dimension as alternative markers of heterogeneity to 

monitor.  
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factors. First, in our dataset, a debtor enters the default state only when more than 5 percent of its 

outstanding credit is more than 90 days past due. As a result, the pandemic’s effects on defaults could 

manifest only from Q3 2020 onward, as only then do the firms gravely affected by the March 

lockdowns start entering the default state. Second, several public support measures introduced in Q2 

2020 helped to minimize deviations between the average default rate and its pre-pandemic trajectory, 

at least in the short term.     

Figure 7: Projections based on the baseline and adverse macro scenarios   

 
Source: Authors’ calculation based on Cerved and Credit register data. Note: Estimation based on the three logit equations.   

X-ticks stand for last quarter of the year (e.g. 2017 means Q4 2017).  

In Figure 8, we then exploit our model’s granularity to examine the forecasts’ heterogeneity across 

sectors and firm size classes.23 We can see that the industry whose average default probability rises 

most in absolute terms is construction, with a 5.5 percent default rate peak under the adverse scenario, 

while all other sectors’ forecasts under the same scenario hover between three and four percent. 

Furthermore, if we aggregate our forecasts over firms’ size classes instead, we can see that micro and 

small firms primarily drive the peaks in the default forecast. In conclusion, our model not only 

reproduces the aggregate time series behavior of the average default rate, but it also captures cross-

sectional regularities across different types of firms.   

                                                 
23 As concerns the size classes, we use the EU Commission’s definition of micro, small, medium and large firms.  
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Figure 8: Disaggregated projections  

a) Industry heterogeneity 

 

b) Size heterogeneity 

 

Source: Authors’ calculation based on Cerved and Credit register data. Note: Estimation based on the three logit equations.  
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5.2 The granular forecasts exercise: Forecast distribution differences   

We then exploit our model granularity more deeply, and use the forecasts to check for pockets of risk 

across different types of firms. We start with a within-scenario exercise meant to track divergence 

from the average in the distribution of the firm-level default probability forecasts for specific sectors. 

To provide an example, we display in Figure 9 the two-years-ahead PD distributions for the whole 

sample (pink) and specific industries (light blue).24 In Panel a), we compare the average distribution 

to manufacturing’s, and, in Panel b), to construction’s. As expected, we observe that firms working 

in construction are more fragile, i.e., with a fatter-than-average right tail of the forecast distribution.   

Figure 9: Sectoral risk indicators within the baseline scenario  

a) Manufacturing                                                       b) Construction   

  
Source: Authors’ calculation based on Cerved and Credit register data. Note: The Figure reports the density of the 

estimated defaults for the whole sample of firms (red) against those of firms belonging to a specific economic sector 

(blue). We estimate the probability of default by using the logit equation for defaults two-years-ahead.   

  

5.3 The granular forecast exercise: Transitions between risk-classes  

We propose an approach to assess the sensitivity to the change in the scenario of different subsets of 

firms, identified by their riskiness in terms of probability of default. First, we save the fitted default 

probability for each firm under the baseline and adverse-scenarios over the two-year forecast horizon; 

(again, the focus on two years ahead is just to provide an example). We then use the model predictions 

from the most recent year to determine the risk quartiles, thus defining four risk classes. Next, we 

observe which percentage of firms falls in each risk class in the baseline and adverse scenario and 

track transitions.   

The resulting matrix reports the fraction of firms that migrate between quartiles due to the change in 

the scenario, keeping thresholds fixed, helping us tracking risks from adverse macroeconomic 

realizations. For example, in Figure 10, Panel A, we observe that 27 percent of firms were in the 

lowest risk class under the baseline scenario. Among these, 20 percent stay in the same risk class 

                                                 
24 We choose the two-years-ahead horizon just to provide an example, we could have similarly chosen year plus one or 

year plus three, or displayed all of them.   

  



25 

under the adverse scenario, meaning that their default probability forecast under the adverse scenario 

is still below the threshold for class 1, and 7 percent see their probability of default rising enough to 

enter class 2. No firm shifts from class 1 to the higher risk classes (3 and 4). Overall, the transition 

matrix can help us trace granular vulnerability to sudden changes in the conjuncture.  

  

Figure 10: Sectoral risk indicators between scenarios  

A) Total firms  

 
  

B) Construction sector  

 
  

C) Manufacturing sector   

 
  

Source: Authors’ calculation based on Cerved and Credit register data. Note: We estimate PDs by using the logit equation 

for defaults two-years-ahead, and employing baseline (rows) and adverse scenarios’ (columns) values for the macro 

variables.  

  

6. Conclusions   

This work presents a modelling framework relying on both micro and macro data for predicting 

corporate default risk under different macroeconomic scenarios. Our objective is to build a tool to 

forecast the probability of default at the firm level, aggregate these forecasts at will, and perform 

macro-scenario analysis taking granular firm characteristics into account. We apply the local 

projections’ logic to logit hazard models. Instead of projecting one equation in the future, which 

    Adverse      
        class 1   class 2   class 3   class 4   total    

Base   

class 1   20 %   % 7   % 0   0 %   27 %   

class 2   % 0   14 %   13 %   0 %   27 %   

class 3   % 0   % 0   11 %   1 4 %   25 %   

class 4   % 0   0 %   0 %   2 0 %   2 0 %   

        20 %   2 1 %   24 %   34 %       

    Adverse      
        class 1   class 2   class 3   class 4       

Base   

class 1   16 %   6 %   0 %   0 %   22 %   

class 2   0 %   1 0 %   9 %   0 %   1 9 %   

class 3   0 %   0 %   8 %   11 %   19 %   

class 4   % 0   0 %   0 %   40 %   40 %   

        16 %   16 %   17 %   51 %       

    Adverse      
        class 1   class 2   class 3   class 4       

Base   

class 1   24 %   9 %   0 %   0 %   33 %   

class 2   0 %   15 %   13 %   0 %   28 %   

class 3   % 0   0 %   1 0 %   12 %   22 %   

class 4   % 0   0 %   % 0   16 %   16 %   

        24 %   24 %   23 %   2 8 %       
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would require forecasts of the microeconomic variables in addition to the macroeconomic ones, we 

estimate a model made of multiple equations, each local to a specific forecast horizon.  

  

We base our estimates on a dataset covering 20 million observations referring to 840 thousand firms 

observed over 16 years. We build the model so that it has a good discrimination capacity between 

defaulters and non-defaulters while fitting the realized average default rate time series well. We 

further validate it with an out-of-sample forecasting exercise estimating the model using data up to 

2017Q4 and projecting defaults for the years 2018 to 2020.   

The average projections we display are aggregations of our model’s granular forecasts. We show how 

such granularity can be an important value added per se by proposing two ways to learn more 

information on the evolution of risk from it. First, we show that comparing the forecasts’ distributions 

across different types of firms (industries, but we could have used other groupings) can help us track 

the buildup of pockets of risk. Furthermore, our model's forecasts naturally lend themselves to 

building transition matrices across risk classes when the conjuncture worsens, helping us learn which 

type of firms bear more conjunctural risk.  
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ANNEX A: Model variables   

Table A.1: Macro indicators   

Variable   Description   Frequency   Source  

GDP  GDP growth rate 

(seasonally adjusted)  
Quarterly   

Bank of Italy’s elaboration 

on Istat data, Bank of Italy  
projections    

Rate NFC   
Average nominal interest 

rate on new loans to 

nonfinancial firms  

Quarterly   Supervisory Report, Bank 

of Italy projections    

Inflation   
Growth rate of  deflator for 

national final consumption  
(seasonally adjusted)  

Quarterly   
Bank of Italy’s elaboration 

on Istat data, Bank of Italy  
projections    

House prices  
Average price per square 

meter of residential real 

estate; growth rate  
(seasonally adjusted)  

Quarterly   Bank of Italy’s elaboration 

on Istat data, Bank of Italy  
projections    

EBITDA/Gross operating 

margin   
Gross operating margin of 

nonfinancial firms (; index 

(base 100= 2008)  

Quarterly   
Bank of Italy’s elaboration 

on Istat data, Bank of Italy  
projections    
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Table A.2: Firm level indicators   

Indicator   Description   Frequency   Source   

Capitalization    Ratio between equity and total assets. Used to 

assess how relevant are equity resources to 

fund a company’s commitments.  Annual  Cerved  

Liquidity   Ratio between current assets and short-term 

debt (current ratio). It measures each firm’s 

ability to pay off short-term debt obligations 

with cash and cash equivalents.   Annual  Cerved  

Firm size    Four classes according to the following criteria 

defined by European Commission: Micro, less 

than 10 employees and turnover (or total assets) 

up to EUR 2 million; small, less than 50 

employees and turnover (or total assets) not 

exceeding EUR 10 million; medium, less than 

250 employees and turnover less than EUR 50 

million (or total assets not exceeding EUR 43 

million); large, all remaining firms.  

Annual  Cerved  

Interest expenses to cash 

flow  
Ratio that indicates the enterprise’s ability to 

pay interest from generated cash flow.  
Annual  Cerved  

Profitability  Ratio between gross operating margin and 

total assets. It measures how much earnings 

the firm is generating before interest, taxes, 

depreciation, and amortization, as a 

percentage of total assets.  Annual  Cerved  

Financial flexibility ratio   The ratio between drawn amount and granted 

amount. It measures the percentage of available 

credit that the firm is actually using. It refers to 

all the different types of loans.  

Monthly  
Central Credit 

Register  

ATECO section   
Dummy variables identifying firms’ economic 

sector. We consider NACE code.   
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Table A.3: Summary Statistics for Firm Level Indicators   

Variable  N  Mean  St. dev.  Min  p 25  p 75  Max  

Capitalization  15,388,258  0.200  0.229  -0.503  0.048  0.313  0.888  

Liquidity  15,388,258  0.067  0.109  0  0.003  0.081  0.625  

Interest expenses to cash 

flow  

15,388,258  0.957  1.302  0  0.136  1.667  1.957  

Profitability  15,388,258  0.066  0.125  -0.444  0.014  0.118  0.486  

Financial flexibility    15,388,258  0.723  0.296  0.001  0.525  0.996  1.094  

Source: Cerved and Credit Register. Note: See Table A.2 for definitions.  
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ANNEX B – Bootstrapped standard errors  

  

Estimates’ volatility evaluation is one of the goal of the analysis, since we want to understand what 

could be the deviation from the provided point estimates in a reasonable probability range. In order 

to address the uncertainty associated with prediction errors and conditional means, we need to build 

a proper prediction interval. Considering the modelling framework in which we move (generalized 

linear models), the standard calculation used for OLS regression based on Gaussian distributional 

assumption is not suitable. Estimating Equation (1), we cannot simply add and subtract twice the 

estimated standard errors to get the needed interval. We follow two methods to tackle this problem: 

endpoint transformation and bootstrapping.   

The endpoint transformation method computes confidence intervals for monotonic functions of 

x’β, such as the predicted probabilities in binary logit. It starts from computing the symmetric 

confidence interval for the linear predictor (x’𝛽 ). After that, it just applies the logit transformation on 

the upper and lower bounds. This method has the advantage of being computationally less intensive 

than bootstrapping, while ensuring that the final bounds of the prediction interval cannot exceed the 

range [0,1]. Nevertheless, it is a pure mathematical transformation that follows a simple rule: If the 

predicted probability is lower than 50 per cent (being always the case in this work) the lower bound 

will be always closer to the point estimate than the upper bound, and vice-versa. As such, the 

asymmetric distance between estimates and confidence bound will carry no economic meaning.   

Bootstrapping procedure overcomes this limitation, since its asymmetrical prediction intervals are 

not predetermined by any mathematical rule. The intuition is that we can measure actual population 

sampling variability by taking random samples from the original dataset. In detail, the procedure 

works as follow:  

1. Extract a random sample from the original dataset taking observations with replacements (the 

dataset size remains the same);  

2. Repeat Step 1 as many times (e.g. 1,000) as the number of desired models to re-fit;  

3. Re-fit the model on the samples extracted;  

4. Generate the new estimates for every repetition (so every observation in the dataset will have 

1,000 point estimates);  

5. Collect all the estimates and calculate the needed percentiles (if you want a 95 per cent 

interval, take the 2.5 per cent and the 97.5 per cent percentiles as lower and upper bound 

respectively)  

Bootstrapping fully exploits the informative power hidden in the data. The downside, though, lies in 

its computational cost: Repeated sampling and estimation, given our large dataset size, can extremely 

slow (days to obtain estimates) or unfeasible. For this reason, we apply a shortcut: We verify that 

taking a random 10 percent subsample does not affect materially our logit point estimates or 

prediction. Having verified this, we obtain the point estimates from the full sample, while the 

confidence intervals from the 10 percent subsample. In the future, increasing the computational power 

at our disposal, we plan to broaden this computation to the full dataset. Still, we do not expect 

significant changes in the results.  
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ANNEX C – Marginal effects in logistic regressions 

 

The interpretation of logit model parameters in terms of predicted probabilities is not straightforward. 

To study the contribution of each variable on the final outcome, we need thus to calculate the 

marginal effects (ME). In a regression framework, they are defined as the effect on the target 

variable of a change in the explanatory variable under investigation. 

From a mathematical perspective, they are computed taking the derivative of the regression function 

with respect to the explanatory variable of interest. This is an easy task in the standard linear 

regression: 

𝐸(𝑦 | 𝑥1, … , 𝑥𝑘) =  𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘 

The ME of 𝑥1 is: 

𝜕𝐸(𝑦|𝑥1, … , 𝑥𝑘)

𝜕𝑥1
= 𝛽1 

The calculation is the same for every variable. So, we can draw two conclusions: in linear regression 

marginal effects overlap with estimated parameters, plus they are constant for every observation in 

the sample. 

Things are more complicated in a non-linear framework, as for logistic regression. In this case, the 

expected value of the dependent variable, conditional on the independent ones, is: 

𝐸(𝑦 | 𝑥1, … , 𝑥𝑘) =  𝐹(𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) 

where F(-) is the logistic function. The ME of 𝑥1(provided it is a continuous variable) is: 

𝜕𝐸(𝑦|𝑥1,…,𝑥𝑘)

𝜕𝑥1
= 𝛽1 F’(𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) 

where F’(-) is the probability density function of the logistic distribution. We can immediately 

appreciate that: 

1. We cannot interpret the estimated parameter 𝛽1  as ME anymore, as done for linear 

regressions. 

2. The ME of 𝑥1 is different for every observation in the sample, since it is a function of the 

values of all the covariates and of the estimated parameters (this makes sense, given the non-

linearity of the logistic regression). 

To evaluate the rate of change of the predicted probabilities resulting from a small25 change in the 

continuous explanatory variables of interest, we introduce the Average Marginal Effect (AME). We 

calculate the ME per each observation in the sample (exploiting the latter equation above) and then 

we take the mean. In formula: 

𝐴𝑀𝐸(𝑥1) =  𝛽1 ∑
F’(𝛽0+ 𝛽1𝑥1,𝑖+⋯+𝛽𝑘𝑥𝑘,𝑖)

𝑛

𝑛
𝑖=1  

The interpretation is the following: on average, a small change of 𝑥1is associated with a change of 

AME(𝑥1) percentage points in the probability of y occurring.  

The ME calculation is different for the categorical explanatory variables, since it doesn’t make 

sense to refer to a ‘small’ change in their values. In this case the AME is equal to the change in the 

predicted outcome when the variable is set to a given level (i.e. Construction) minus the predicted 

outcome when the variable is set to its baseline level. To clarify, let’s assume we have only two 

sectors of economic activities: Construction and Agriculture (baseline). We compute the AME for 

Construction as follow: 

                                                 

25 (𝑥1 + ℎ), having h0 
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1. For the first observation in the sample, fit the predicted probability through the model built, 

forcing the economic activity sector to be Construction and leaving the other independent 

variables as they are.  

2. Repeat step 1, but in this case force the economic activity sector to be Agriculture.  

3. the ME for the individual case is the difference in predicted probabilities from step 1 and 2;  

4. repeat the process for every observation in the sample and take the mean: this is the AME for 

Construction.  
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ANNEX D – Macroeconomic variables scenarios  
  

Baseline scenario. Over the three years, the Italian economy experiences a weak economic growth 

and a reduction in inflation; meanwhile, interest rates have been decreasing, improving debt 

sustainability and helping containing the rise of macroeconomic risks. After a prolonged period of 

house price decline, the real estate cycle remains weak, even though some signs of recovery 

materialize toward the end of 2019.   

Adverse scenario. Over the first two years, the Italian economy experiences a strong negative GDP 

shock, lowering firms’ profitability significantly. While inflations stays low and keeps decreasing, 

the severely worsened real conjuncture implies a sharp rise in the perceived risk by intermediaries, 

whose supply tightens, as reflected in a 30 percent increase in the interest rate faced on average by 

non-financial corporates. Over the last year, the Italian economy stops contracting, but does not grow 

either.  

  

 

 




