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Abstract 

The determinants of secondary-market price changes in EU emission allowances (EUAs), the 
main carbon-pricing tool in the European Union, are still largely unknown. Using a VAR model 
that combines data at different frequencies and exploits shock-based restrictions, we investigate 
the role of four potential drivers: i) EUA supply and, more in general, the EU’s carbon policy; 
ii) the business cycle; iii) the emission intensity of output; iv) market sentiment or financial 
factors. According to our model, carbon policy and financial factors explain the bulk of the 
variability in EUA prices, while the business cycle and the emission intensity play a more 
marginal role. 
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1 Introduction1

The European Union Emissions Trading System (EU ETS) is a cornerstone of the EU’s policy

to combat climate change and a key tool for reducing greenhouse gas emissions cost-effectively.

Established in 2005, the EU ETS operates on a cap-and-trade principle, where a cap is set

on the total amount of certain greenhouse gases (mostly CO2) that industries covered by the

system can emit. Within this cap, companies receive or buy emission allowances, which they

can trade with one another as needed. The cap is reduced over time so that total emissions

fall.

The price of EU emission certificates, also known as EU Allowances (EUAs), is a critical

indicator of the system’s effectiveness and has significant implications for the behavior of

regulated entities, market participants, and policymakers. Understanding the drivers behind

the price fluctuations of EUAs is essential for assessing the stability and predictability of the

EU ETS, and for designing policies that enhance its efficiency.

The market for EUAs has exhibited considerable price volatility since its inception, in-

fluenced by several factors, including regulatory changes, economic conditions, and market

expectations. This paper analyzes the determinants of EUA price changes.

We distinguish between four key types of shocks that potentially drive EUA price changes.

First, a business cycle shock: when economic activity increases (decreases), so do energy

consumption and CO2 emissions; as a result, the demand for EUAs rises (falls), driving up

(down) their prices. Second, an emission intensity (greening or transition) shock: over time,

there are changes in the amount of emissions generated by a given level of production (the

so-called emission intensity). For example, advances in non-fossil energy adoption and energy

efficiency reduce emission intensity, and hence the demand for EUAs. Third, a shock to the

supply of allowances (carbon policy): policy-driven adjustments, such as the introduction of

the Market Stability Reserve, change the supply of EUAs and have an impact on their price.

Finally, a market sentiment shock: speculative and precautionary demand for allowances may

change due to non-fundamental factors such as shifts in risk aversion and liquidity needs, with
1We thank Fabrizio Ferriani, Gianluca Fusai, Giovanni Veronese, Riccardo Cristadoro, and participants

at "Measuring, managing and hedging indirect climate-transition risk" in Politecnico di Milano for useful
feedback. The views expressed in this paper do not necessarily reflect those of the Bank of Italy or Eurosystem.
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a direct impact on EUA prices.

A dynamic model and a sound identification strategy are essential to disentangle these

factors because they can simultaneously influence the price of EUAs. A further complication

arises from the availability of verified emissions data only with a considerable lag at the

annual frequency, which hinders econometric exercises based on these measurements.

In a motivating exercise, we use a simple accounting identity to decompose EUA price

changes in intuitive factors at the annual frequency. This exercise suggests that components

unrelated to current fundamentals play a significant role in the EUA market.2

We then propose a dynamic model to disentangle the EUA price drivers in a more timely

and comprehensive way by exploiting high-frequency information and forward-looking vari-

ables. We use the real-time SVAR methodology proposed by Gazzani et al. (2024). Unlike

traditional SVAR models that rely on low-frequency data with significant publication lags

and revisions, a real-time SVAR includes in its set of endogenous variables only daily data

(e.g., prices of assets and commodities). This allows the model to be updated in real time

and to provide timely insights into the drivers of EUA price changes.

We include in the VAR the prices of EUAs, fossil fuels (oil, natural gas and coal) and elec-

tricity, an industrial equity index, and long-term interest rates. Traditional sign restrictions

(Faust, 1998; Canova and Nicolo, 2002; Rubio-Ramirez et al., 2010) could offer a potential

identification strategy for the VAR. However, this approach requires economically motivated

restrictions, which increase quadratically with the number of variables and shocks that one

aims at identifying. As our VAR includes several financial variables to fully capture the

potential explanatory power of non-fundamental factors in the ETS market, we would need

a very large number of sign restrictions to achieve a sharp characterization of the structural

shocks of interest.

As we are not confident in a full-set of sign restrictions, we instead identify the VAR

model through shock-based restrictions (Ludvigson et al., 2020, 2021). These restrictions

require the identified shocks to exhibit a certain sign during specific periods (corresponding

to well-understood historical events) and a sufficiently high correlation with certain variables
2By fundamentals, we mean the business cycle, the emission intensity and the supply of EUAs, while we

consider market sentiment a non-fundamental factor.
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external to the VAR that should be informative about the shocks of interest. The external

variables we use are i) measures of the business cycle, ii) data about electricity production

from fossil and non-fossil sources, iii) low-frequency measurements of carbon intensity, iv)

Känzig (2023) carbon policy surprises, v) a measure of EUA supply and vi) two variables

that capture market sentiment (a proxy of risk aversion and an index of speculative interest

in emission allowances).

We find that business cycle oscillations and changes in the carbon intensity of output

(both current and expected) have minor effects on EUA prices. Instead, much of the price

variation is explained by changes in carbon policy and market sentiment. Importantly, shifts

in expectations about the future carbon-policy stance, in a context of heightened climate

policy uncertainty (Gavriilidis et al., 2023), appear to play a major role. The finding that

changes in emissions (caused by variations in output and carbon intensity) are not a major

source of price variability aligns well with the simple observation that verified emissions

decreased at a relatively steady and predictable pace in our sample, while EUA prices were

extremely volatile (approximately three times as volatile as an EU industrial equity index).

Our main contribution is to provide estimates that – thanks to a new methodology – si-

multaneously leverage high-frequency data from commodity and financial markets and lower-

frequency data about macroeconomic trends and the functioning of the ETS system (issued,

surrendered and unsurrendered allowances, and verified emissions). The proposed dynamic

model can be updated in real time; it can incorporate information that is available only for

some parts of the sample period, and it can easily be extended to new variables thanks to

the flexibility of the external-restrictions methodology of Ludvigson et al. (2021).

Relation with the literature. Our findings contribute to the literature that studies

EUA prices. Känzig (2023) provides an influential contribution by building a measure of

carbon policy shocks based on the EUA price changes generated by the announcements

of policy interventions on the ETS system. We exploit his series of surprises as an external

variable that is informative for the identification of EUA supply shocks. Notably, his surprises

allow us to capture the forward-looking component related to the future carbon policy stance

in the EU. Bjørnland et al. (2023) decompose the drivers of EUA prices into three components

(EUA supply, business cycle, and transition), using a monthly VAR model. Our approach
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relates to their paper as we also consider multiple sources of fluctuations in EUA prices. Two

main features distinguish our analysis from theirs. First, our model is specified at the daily

frequency and allows us to inform policy-makers in real-time on ETS market developments;

second, we investigate the role of financial factors in the ETS market, also by constructing a

proxy of speculative interest in carbon-related financial instruments.

Our work also contributes to a more policy-focused debate on the role of financial factors

and speculation in EUA price formation (Friedrich et al., 2019; Ampudia et al., 2022; ESMA,

2022; Quemin and Pahle, 2023). Several commentators voiced concerns that the significant

volatility in EUA prices, mainly since 2018, may have been caused by speculative activity

unrelated to market fundamentals. The debate spurred some research aimed at disentangling

the effects of speculation. Contrary to our findings, Lovcha et al. (2022) provide evidence

that fundamentals explain up to 90% of EUA price variability, although their results hinge

on the identification assumption that speculative shocks produce only short-lived effects.

In contrast, Lucia et al. (2015) analyze data on EUA derivatives and find high degrees of

speculative behavior in the early years of the ETS system. Ampudia et al. (2022) regress EUA

prices on some commodity prices and find statistically significant regression coefficients, which

they interpret as evidence of a strong relation between EUA prices and market fundamentals;

however, the R squares in their regressions reveal a large fraction of unexplained variance.

Koch et al. (2014) find that 90% of the variability in EUA price changes is not explained

by abatement-related fundamentals. Overall, the findings in the literature are mixed and

mostly about the earliest phases of the ETS system. Our findings underscore a relevant role

for non-fundamental financial factors in driving EUA prices and can provide policy-makers

with important information for the design and potential reform of the ETS system.

Structure of the paper. The rest of the paper is organized as follows. Section 2

describes the potential determinants of EUA prices and Section 3 presents the data. Sections

4 and 5 illustrate the evidence from the static model and the SVAR respectively. Finally,

Section 6 concludes.
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2 Institutional background and determinants of EUA prices

This section describes in detail the four types of shocks that affect the pricing of EUAs and

that we seek to identify. The first two, the business cycle and emission intensity, are shocks

that determine the current and future level of emissions and, hence, the demand for EUAs

to be surrendered. The third shock relates to carbon policy and the supply of EUAs, that

is, the number of allowances issued. These first three shocks concern the “fundamentals” of

the ETS system and capture not only changes in current fundamentals, but also shifts in

expectations about their future evolution. For example, supply shocks include reactions to

announcements about changes in carbon policy that will affect the future supply of EUAs,

and emission intensity shocks may comprise revisions in expectations about the pace of

green-technology adoption. In other words, each kind of shock can include forward-looking

components. The fourth shock is a market sentiment or financial shock that is unrelated to

ETS fundamentals but stems from changes in the risk aversion or liquidity needs of investors

holding EUAs in their portfolios for speculative purposes. Finally, our most sophisticated

model includes a residual component that includes all the sources of fluctuations in EUA

prices that cannot be directly related to the four shocks described so far.

2.1 Business cycle

Greenhouse gas emissions are highly correlated with cyclical fluctuations (Sheldon, 2017;

Khan et al., 2019; Doda, 2024). During periods of economic expansion, industrial produc-

tion, transportation, and overall consumption increase. These activities are energy-intensive

and often rely on fossil fuels, which release CO2 when burned. On the contrary, in a reces-

sion companies produce less, and factories may operate at reduced capacity or shut down

temporarily, which leads to a significant drop in energy consumption and, consequently, CO2

emissions.

This relationship can be seen through the lens of the identity

Emissions = Output · Energy
Output

· Emissions
Energy

(1)
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which equates carbon dioxide emissions to the product of output, the energy intensity of

output, and the emission intensity of energy (Kaya, 1989). The identity can be also expressed

in the simpler form

Emissions = Output · Emissions
Output

(2)

where the ratio between emissions and output is the emission intensity of output.

We define a business-cycle shock as one that affects the current or expected future level of

output but is orthogonal to emission intensity, as well as to the other shocks defined below.

2.2 Emission intensity

The second category of shocks encompasses all the fluctuations that mainly affect emission

intensity. We also call them “greening shocks”. They include several distinct components.

First, shifts to greener (or browner) energy sources. For example, an increase in the

proportion of electricity produced from renewable sources, such as wind and solar, is a positive

greening shock that decreases emissions. Not only electricity generation has been the single

most important source of emissions historically (especially among the sectors covered by

the ETS system), but its greening has been a major contributor to emissions reductions

in the EU (Ember, 2024). It is important to note that shifts in the proportion of green

electricity are driven not only by long-term factors such as investment in new renewable

generation capacity, but also by short-term ones, such as coal-to-gas switching, the variability

of hydropower generation due to precipitation, and temporary shutdowns of power plants

(e.g., for maintenance). Second, other technological changes that reduce emissions without

negatively impacting economic activity. For example, a more widespread adoption of energy-

saving devices (provided that the money saved on energy bills is spent elsewhere). Third,

changes in preferences that do not affect the overall level of economic activity but determine

re-allocations of production and demand from more polluting to less polluting activities. An

example could be a reduction in business travel motivated by environmental concerns, and

compensated by less polluting corporate expenditures (e.g., on IT infrastructure). Fourth,

the offshoring of more polluting production activities, if compensated by an increase in less

polluting onshore ones. This kind of greening, however, becomes ineffective/irrelevant once
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a well-functioning Carbon Border Adjustment Mechanism is in place.

Thus, we define greening shocks as fluctuations in current or future expected emission

intensity orthogonal to the other shocks, such as the business cycle shock.

2.3 EUA supply

Since the EU ETS was established in 2003, its rules have been changed multiple times,

primarily to reduce the surplus of emission allowances and create additional scarcity in the

market.3

The main changes regarded seven factors. First, the percentage of annual issuance allo-

cated via auctions. For example, in 2018 a cut in free allocations was decided (starting in

2021).4 Second, the programmed reduction in the annual issuance of new allowances. The

European Commission has been regularly tightening the market with higher reduction rates.

The initial rate was 1.74% per year. The current rate is 4.3%, and it will increase to 4.4%

in 2028. Third, programmed delays in the issuance of allowances, also called back-loading.

Fourth, the Market Stability Reserve (MSR), a mechanism used to adjust the supply of EUAs

by transferring to the reserve allowances withheld from auctions and either releasing or can-

celing them at a later stage. The MSR was created in 2015, amended in 2018, and became

operational in 2019.5 The entry into force of some of its rules was staggered (e.g., the cancel-

lation of allowances has been possible since 2023). Fifth, the treatment of offsets originally

allowed in the EU ETS.6 Introducing offsets into the system was economically equivalent

to increasing the supply of allowances. Rules concerning offsets became progressively more

restrictive over time, and their use has been disallowed since 2021. Sixth, the scope of the

ETS system, which was progressively enlarged to encompass more industries (e.g., airlines

since 2012 and shipping since 2024) and importers (through the so-called Carbon Border

Adjustment Mechanism). Finally, the links to foreign ETS systems like the link to the Swiss

ETS since 2020.
3Directive (EU) 2003/87/EC.
4This is different from the allowances allocated for free to sectors deemed at risk of carbon leakage.
5Decision (EU) 2015/1814 and Directive (EU) 2018/410, respectively.
6I.e., carbon credits from projects that reduce, avoid, or remove emissions. Offsets can be used as

substitutes of emission allowances.
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Long and complex public negotiations and consultations preceded legislative changes.

Moreover, they were often implemented in a staggered and delayed manner. This process

created not only variability in the supply of EUAs, but also an almost continuous “news flow”,

relevant for forecasting future supply and hence able to produce an impact on prices.

In line with these considerations, we define an EUA supply shock as one that pertains to

actual or expected changes in ETS rules, with consequent shifts in the supply of EUAs.

2.4 Market sentiment

The fourth category of shocks we consider are financial in nature and so in principle unrelated

to market fundamentals in the ETS. These shocks, dubbed “market sentiment” shocks, include

two main components.

First, changes in speculative demand by EUA traders and investors that do not surren-

der allowances to pay for generated emissions but hold them for speculative and investment

purposes. Speculative demand may be influenced by multiple factors that are unrelated to

fundamentals, such as changes in risk aversion and liquidity needs. For example, financial

tensions that induce intermediaries and investors to liquidate risky assets may also have reper-

cussions on EUA prices. The creation of investment vehicles (such as ETFs) that facilitate

EUA trading may increase investors’ participation in the market for EUAs.

Second, shifts in precautionary demand by industrial players not driven by fundamentals.

Some industrial players may decide to hold stocks of allowances that go beyond their imme-

diate surrendering needs for precautionary motives. These players may alter their stock of

allowances because they anticipate future changes in fundamentals. Ideally, we would like to

classify this kind of shock under the previous three categories of EUA price determinants.

However, shifts in precautionary demand may also be induced by changes in risk aversion or

more concretely, risk-management practices. We classify these changes, which are unrelated

to fundamentals, as market sentiment shocks.

Thus, we define a market sentiment shock as one that alters the willingness of investors

and firms to hold EUAs but is unrelated to current and expected future fundamentals.
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3 Data

We use data from various sources. We present them in this section, grouped by frequency.

Daily data. We use the daily prices of the main energy commodities. We focus on Euro-

pean benchmarks: Brent oil 1-month futures prices, TTF natural gas 1-month futures, API2

coal 1-month futures, the average of day-ahead electricity baseload prices on the EEX Phe-

lix, Powernext, GME, and OMEL markets (for Austria/Germany, France, Italy and Spain,

respectively), EUA 1-month futures. Moreover, we use the following series from non-energy

markets: a Datastream industrial equity index for the EU, the yield to maturity of German

10-year benchmark government bonds, and the BEX Risk Aversion Index (Bekaert et al.,

2022). All the daily series, which start on 1-Jan-2008 and end on 31-May-2024, are displayed

in Figure A1.

Monthly data. We employ the seasonally-adjusted volume of industrial production in

the euro area computed by Eurostat, the business confidence indicator for the euro-area

manufacturing sector as published by the Directorate General for Economic and Financial

Affairs of the European Commission, the volume of electricity production in the European

Union (separated between fossil and non-fossil sources) computed by Ember.7 We also employ

the EU baseline carbon-policy shocks estimated by Känzig (2023). Finally, we exploit an

index that measures investors’ interest in carbon allowances, obtained by combining Google

Trends data (volume of searches for financial instruments related to allowances), a proxy of

the amount of EUAs held by exchange-traded funds (ETFs), and a measure of trading volume

on the EUA futures market. The methodology for constructing the index is described in the

Appendix. Not all the monthly series cover the entire period spanned by the daily series (see

Figure A2 for details), but this is not an issue thanks to the flexibility of the methodology

involved.

Yearly data. The following EU ETS yearly data, referred to all stationary installations,

is sourced from the EU Transaction Log (EUTL) and aggregated across countries: total

allocated allowances (i.e., the overall amount of emission certificates issued in a given year,

both via free allocations and by auctions and other mechanisms), surrendered allowances
7We perform a denoising seasonal adjustment by removing the components with periodicities below one

year from the spectral decomposition of the series.

13



(i.e., the number of certificates used by firms in a given year to pay for their emissions),

verified emissions (i.e., the amount of emissions generated by the firms participating in the

ETS system). We compute the total supply of allowances in each period by summing the

allowances allocated in that period to those allocated but not surrendered in previous periods.

These yearly series are displayed in Figure A3. When inspecting the the figure, it is helpful to

remind that, in the first years of life of the ETS system, the amount of surrendered allowances

was often much lower than the amount of allocated ones because large quantities of offsets

were surrendered in place of the allowances. This led to the accumulation of a significant

stock of unsurrendered allowances, which contributed to the build-up of supply.

4 Motivating evidence from an accounting identity

In this section, we perform a first exercise providing evidence that changes in current fun-

damentals (output, emission intensity, and EUA supply) are not a primary driver of EUA

prices, and – instead – the bulk of price variability is likely to be generated by shifts in

expectations about future fundamentals and market sentiment.

We use the following accounting identity:

ln (Pt) = ln (Yt) + ln

(
Et

Yt

)
− ln (St) + ln

(
Pt

Et/St

)
(3)

where Pt is the price of EUAs at the end of year t, Yt is the yearly volume of industrial

production, Et is the amount of verified emissions, St is the supply of allowances equal to the

sum of all allowances allocated in year t and those allocated and not surrendered in previous

years.

The identity above separates the price of EUAs into four components that can be mapped

to the four sources of price shocks discussed in Section 2: i) ln (Yt) is the component asso-

ciated to business-cycle oscillations; ii) ln
(

Et

Yt

)
is the component associated to changes in

the emission intensity of output Et/Yt (the lower this term, the greener production is); iii)

−ln (St) is the supply component; iv) ln
(

Pt

Et/St

)
is a log valuation ratio that tells us how

pricey EUAs are relative to their scarcity, measured by the ratio Et/St. This component
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captures market sentiment and shifts in expectations about future fundamentals.

The fourth component is equal to the logarithm of a time-varying elasticity-of-demand

parameter θt in a stylized static model in which prices are determined by the demand equation

Qt = θt
Et

Pt

where the quantity of certificates demanded Qt is assumed to be proportional to emissions8

and inversely proportional to prices.9

In an equilibrium, the demand Qt is equal to the supply St, and we can write

Pt = θt
Et

St

By taking the natural logarithm of both sides, adding and subtracting ln (Yt) from the

right side, and re-arranging terms, we obtain:

ln (Pt) = ln (Yt) + ln

(
Et

Yt

)
− ln (St) + ln (θt) (4)

which is equal to the previously shown accounting identity once we replace θt with its value

derived from the equilibrium condition in equation (3).

Thus, in the framework above, the fourth component of EUA prices can be interpreted

as not related to the current value of market fundamentals (output, emission intensity, and

supply), but to other factors (such as preferences and expectations) that determine how firms

and investors value current fundamentals.

Figure 1 displays the yearly changes (first differences) in the four components, whose

sum equals the change in the log-price of EUAs (itself an approximation of percentage price

changes). From the figure, it is apparent that market sentiment (and expectations) explain

the bulk of the variability in the EUAs prices. The standard deviations of the contributions

of output, emission intensity, EUA supply, and the residual valuation component are 0.061,

0.041, 0.126 and 0.424 respectively. Their variances as a proportion of total variance are 1.7%,

0.8%, 7.3%, and 83.4%, respectively (the proportions do not sum to 1 because contributions
8Note that in this simple model emissions are taken as exogenous, which is a realistic assumption in the

short-run, when firms are unable to adjust their technology.
9As in a classical demand equation derived from the optimization of a Cobb-Douglas utility function.
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are not orthogonal).

Figure 1: Static model decomposition

Note. The figure reports the decomposition of EUA prices according to the static model.

5 VAR-based evidence

The main theoretical drawback of the decomposition presented in the previous section is

that it is static and, as such, it does not allow us to disentangle expectations about future

fundamentals from market sentiment.

This section proposes a dynamic model featuring the same four components of EUA

prices previously discussed. However, in this model, the three fundamental components po-

tentially incorporate changes in both current and future fundamentals. Therefore, the fourth

component (market sentiment) is explicitly identified rather than obtained as a residual,

thus moderating any concerns that results may driven by model mis-specification. A fifth

stochastic component, a proper residual one, can also affect EUA prices.

5.1 The VAR setting

First, we estimate the reduced-form vector auto-regression (VAR) model defined:
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Yt = µ+

p∑
l=1

AlYt−l + Σzt (5)

where, given an integer dimension n, Yt is a n × 1 vector of endogenous variables, µ is an

n × 1 constant vector, p is the number of lags, Al are n × n constant matrices, Σ is an

n × n lower-diagonal matrix with positive diagonal entries, and zt are serially independent

and identically distributed n × 1 random vectors with zero mean and identity covariance

matrix.

The vector Yt includes several variables observed at daily frequency that are informative

about the four shocks of interest. Some of them (e.g., financial-market variables and the prices

of storable energy commodities) are also known to be forward-looking: they may incorporate

traders’ expectations about the future dynamics of the fundamentals. The VAR includes:

log of the EUA price, log of the oil price, log of the natural gas price, log of the coal price, log

of the the electricity baseload price (as weekly moving average due to its extreme volatility),

log of the industrial equity index, 10-year bond yield.

We set the number of lags to n = 2, and we use a ridge estimator of the parameters of the

model.10 Results are, however, pretty insensitive to these choices (i.e., they are quite stable

if we use ordinary least squares instead of ridge, or if we add more lags to the specification

of the model).

5.2 Identification strategy

We aim at identifying the four structural shocks described in Section 2 but, as it is well

known, an infinite number of structural representations of the VAR compatible with the

reduced-form representation exist.

Let Q be any orthogonal n× n matrix, and QT be its transpose. Then,

Σzt = ΣQQT zt = Bεt (6)
10The ridge regression is performed after rewriting the model in such a way that the dependent variable

is Yt − Yt−1 and all variables are standardized (zero mean and unit variance). The regularization parameter
is set equal to 100.
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where B = ΣQ, and εt = QT zt is a vector of orthogonal shocks (zero mean and unit variance)

that can be interpreted as structural shocks.

The identification of the model is performed by searching for matrices Q such that the

first four entries of εt are interpretable as the four fundamental shocks of interest: i) business

cycle, ii) emission intensity, iii) EUA supply, iv) market sentiment).

We randomly draw matrices W whose entries are mutually independent standard normal

random variables. Then, we compute their QR decompositions W = QR, where Q is orthog-

onal and R is upper-triangular with positive diagonal entries. The orthogonal matrices Q

thus obtained are kept and used in subsequent analyses only if they – together with the as-

sociated shocks εt – satisfy a set of identification constraints. Otherwise, they are discarded.

The draws stop when the number of kept matrices reaches a pre-defined threshold. These

matrices are then used to derive probability distributions for quantities of interest such as

impulse-response functions, variance, and historical decompositions.

The main tool we use for the identification of the model are the shock-based restrictions

proposed by Ludvigson et al. (2021), which impose that the shocks εt satisfy two sets of

constraints. First, a set of event constraints based on unusual historical episodes that offer

unambiguous economic narratives and, thus clear implications for the structural shocks of

interest. Second, a set of external variable constraints that require the VAR shocks to display

non-zero correlations with some variables external to the VAR. In our framework, these

constraints are particularly useful because they connect our daily model based on asset and

commodity prices with low-frequency macroeconomic variables and measurements of carbon

emissions.

We also impose a small and incomplete set of sign restrictions that are deemed completely

safe. Conversely, we deliberately refrain from imposing complete sign restrictions based on

theoretical considerations due to the complexity of the analysis at hand and to the limited

theoretical insights from the literature. First, the empirical evidence about correlations and

causal relationships in carbon pricing markets is still very limited and often mixed (Rickels

et al., 2015; Fan et al., 2019; Ampudia et al., 2022; Shi et al., 2023; Wang et al., 2024).

Second, the balance among opposing effects of carbon pricing is not yet well understood.

For example, a lower supply of EUAs might incentivize producers to switch from coal to less
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polluting fuels, and thus put downward pressure on the price of coal. However, this effect

might be partially or more than compensated by other effects: a lower supply of EUAs might

discourage investment in coal production capacity, making coal scarcer in perspective and

incentivizing storage; it might encourage investment in capital-intensive green technologies,

spurring economic activity and increasing the demand for energy resources (including coal)

in the short-run; it might increase the cost of the energy that is used to extract and deliver

coal, with a positive impact on the final price. Which of all these effects prevail is not clear.

This is just an example, but it is indicative of the fact that a more agnostic approach to

shock identification seems preferable to a tight sign identification scheme.

5.2.1 Event constraints

For each of the four shocks of interest, we select three historical events in which the sign of

the given shock is unambiguous according to the prevailing narrative. Thus, we impose a

total of twelve event constraints, reported in Table 1.

Most of the proposed event constraints concern announcements or data releases that

provided indications about the future evolution of regulation, energy markets, or the economy.

Therefore, the constraints force the shocks to include forward-looking components.

Events related to the business cycle shock are associated with surprises in the state of

economic activity. The events linked to the emission-intensity shock are instead associated

with developments in the nuclear energy sector that affect the level of emissions. EUA supply

shocks are constrained through policy events similarly to Känzig (2023). For example, on

February 1, 2013, the 6th meeting of the Carbon Market Forum was convened to provide

indications about a possible response to the European Commission consultation on EU ETS

restructuring options. The Background Document for the meeting was immediately made

public and clearly pointed at low carbon prices, excesses of EUA supply, and the need for

carbon-policy tightening. EUA prices rose by 27% on that day. We interpret this narrative as

an unambiguous indication that the EUA supply shock was positive, and we therefore impose

εt,3 > 0 (representing a decrease in supply) for t = 2013/02/01. Finally, market sentiment

shocks are disciplined via events originating in financial markets.
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Start date End date Event Constraint
2008-11-21 2008-11-21 Euro Area flash manufacturing PMI much below ex-

pectations due to Great Financial crisis (actual 36.2
versus expected 40.5)

Business cycle shock < 0

2020-03-24 2020-03-24 Euro Area flash manufacturing PMI much above ex-
pectations in spite of Covid-19 pandemic (actual 44.8
versus expected 40.1)

Business cycle shock > 0

2020-04-23 2020-04-23 Euro Area flash manufacturing PMI much below ex-
pectations as Covid-19 effects hit the economy (actual
33.6 versus expected 38.7)

Business cycle shock < 0

2010-10-28 2010-10-29 Germany approves a moratorium on the shut-down of
some nuclear plants.

Emission-intensity shock < 0

2022-08-01 2022-08-31 Most French nuclear reactors are shut down or operate
at reduced capacity because of maintenance, heat, and
drought.

Emission-intensity shock > 0

2022-11-03 2022-11-04 French utility EDF announces a downward revision to
expected electricity output from nuclear plants.

Emission-intensity shock > 0

2013-02-01 2013-02-01 The Carbon Market Forum background document
highlights the need for a strong carbon-policy tight-
ening. EUA prices rise by 27% on the day of release.

EUA supply shock > 0

2013-04-16 2013-04-16 The EU parliament votes against a proposal to back-
load EUA issuance.

EUA supply shock < 0

2019-02-15 2019-02-15 The EU Commission decreases the number of sectors
exposed to carbon-leakage risks and entitled to alloca-
tions of free allowances.

EUA supply shock > 0

2018-02-05 2018-02-06 A sudden large spike in equity volatility (“Volmaged-
don”) leads investors to liquidate risky assets and
causes a flight-to-safety.

Market-sentiment shock < 0

2020-03-10 2020-03-18 “Dash for cash”: investors sell assets across the board
to increase cash holdings due to Covid-19.

Market-sentiment shock < 0

2023-03-08 2023-03-10 Silicon Valley Bank faces a liquidity crisis and is de-
clared bankrupt, triggering financial turbulence.

Market-sentiment shock < 0

Table 1: Events constraints

5.2.2 External variable constraints

The second subset of shock-based restrictions is a set of external variable constraints. As

explained by Ludvigson et al. (2020): “the data alone are often quite informative about the

quantitatively important shocks that have occurred in the sample”. What they propose is

to require the identified shocks to exhibit at least a small positive correlation with certain

variables external to the VAR that should be informative about the shocks of interest. The

methodology is predicated on the idea that “a credible identification scheme should produce

estimates that are congruent with our ex-post understanding of historical events and/or with

broadly accepted economic notions of a shock’s defining properties”.

The external variable constraints require that the daily shocks, once appropriately cu-
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mulated, are positively correlated with low-frequency changes in some observed external

variables. The latter are conjectured to be good proxies of current and expected trends in

the business cycle, emission intensity and EUA supply, as well as market sentiment, and help

to link the daily-financial shocks with physical counterparts.

We impose two external variable constraints for each shock, which amount to eight con-

straints on the correlations. We impose the constraints by requiring a correlation larger than

0.1.11 Ex-post, the average correlation across draws and constraints is found to be equal to

19.7%. The constraints are displayed in Table 2.

Shock Variable Sign
Business cycle (monthly sum) monthly % change in industrial production +
Business cycle (monthly sum) monthly change in business confidence +
Emission intensity (monthly sum) monthly change in electricity share from fossil fuels +
Emission intensity (yearly sum) yearly change in emission intensity of industrial production +
EUA supply (monthly sum) monthly Känzig (2023) shocks +
EUA supply (year sum) yearly change in annual supply -
Market sentiment (weekly sum) weekly change in BEX risk aversion index -
Market sentiment (monthly sum) monthly change in investors’ interest in EUA +

Table 2: External variables constraints

The advantages of the methodology are twofold. First, it allows us to use external vari-

ables that are forward-looking (such as business confidence and Känzig’s shocks). Second,

the correlation constraints are very flexible, as they can be imposed on external data that is

at lower frequencies than that of the VAR, and is not available for all sample covered by the

VAR.

5.2.3 Ancillary constraints

To sharpen the identification and to ensure a consistent definition of shocks, we also impose

a small set of sign restrictions mainly for computational purposes. Those constraints are

imposed on the the VAR impact matrix B:
11We observe that moderately higher thresholds (e.g., 0.11) do not change results significantly (although

they increase the computational burden of the exercise). In comparison, much higher thresholds (e.g., 0.15)
tend to lead to empty identification sets.
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• a positive business-cycle shock increases the prices of EUAs, natural gas, and the 10-

year yield;

• a positive emission intensity shock, i.e., an increase in emission intensity of production,

raises the prices of EUAs;

• an EUA supply shock, representing a decrease in EUA supply, raises the price of EUAs;

• a market sentiment shock, representing an improvement in sentiment, raises the price

of EUAs.

Thus, we impose six sign constraints. The four regarding EUA prices ensure that positive

and negative shocks are defined consistently across draws: a positive shock is always defined

as raising EUA prices. The other two constraints, which help to identify business-cycle

shocks, impose two well-known economic mechanisms on the system: when either current

or expected future economic activity increases, agents anticipate tighter monetary policy

and higher short-term interest rates, whose trajectory is incorporated in long-term bond

yields; furthermore, higher activity requires more energy resources, putting upward pressure

on their prices. We impose the latter restriction on the price of natural gas, whose market is

geographically segmented and therefore likely to be affected more markedly by EU-specific

shocks (as compared, for example, to the oil market).

Finally, we impose bounds on the forecast error variance (see for instance Volpicella, 2022).

Our VAR includes seven variables and seven shocks, but we identify only four of the structural

shocks. From a theoretical standpoint, these four perturbances should explain the bulk of

the forecast error variance in EUA prices, net of potential other (minor) shocks that may

affect EUA prices and measurement error. We thus impose a further constraint, requiring

that the contribution to the (impact) forecast variance of EUA prices by the unidentified

shocks should not exceed 20%.

5.2.4 Computational aspects

The computational burden of identification procedures based on draws of random orthogonal

matrices tend to increase exponentially with the number of variables included in the VAR (and
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with the identified shocks), due to high rejection rates. For this reason, these identification

procedures are typically employed with small-scale VARs or few identified shocks.

Our 7-variable VAR is no exception to the empirical rule that computational requirements

increase exponentially with the number of variables. In fact, to obtain 100 accepted draws, we

had to perform approximately half a trillion draws. By parallelizing the random extraction

and rejection procedure on two low-end GPUs (RTX 3060), we managed to complete the

identification procedure in about three days.12

We stress that the computational burden of the identification does not prevent the use

of the model in real time. Once the extracted B matrices are saved, they can be re-used to

update the model at the daily frequency, at virtually no computational cost.13

5.3 Empirical Results

5.3.1 Impulse Response Functions

Figure 2 reports the impulse-response functions (IRFs) from the four shocks of interest iden-

tified in our VAR system.14 Several remarks are in order.

The IRFs show that the economic consequences of each shock are distinct from those of the

other shocks. The economic interpretation of the IRFs is completely straightforward for both

the business-cycle and the greening shocks. A positive business cycle shock raises interest

rates and natural gas prices, as imposed in our identification scheme, and increases coal,

electricity, and equity prices. The response of the oil price is not significantly different from

zero, which may be due to oil prices being expressed in euros in the model but quoted in dollars

in practice (a positive business cycle shock may determine an exchange rate appreciation).

A greening slowdown shock increases the prices of all fossil fuels and electricity. This is

expected, for example, when lower-than-forecast electricity production from green sources

forces utilities to burn more fossil fuels to keep up with electricity demand. Coherently with
12A companion paper describing the parallelization procedure and sharing the codes will be soon made

available.
13Adding a few daily observations to a dataset that covers over 4000 trading days is highly unlikely to

change the set of accepted matrices significantly, if at all. However, the model can be re-estimated every once
in a while (e.g., quarterly) to address potential concerns about the stability of the identification set.

14The whole set of IRFs are reported in Appendix. Here we report quantiles simply for graphical purposes.
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Figure 2: Impulse responses

Note. The figure reports the IRFs of all endogenous variables (rows) to the four shocks of interest (columns).
The solid line represents the median response and the shaded areas report the 68% set.

the inflationary nature of the shock, interest rates rise. Finally, equity prices decrease, which

may be explained by the higher energy costs firms pay.

The effects of a restrictive EUA supply shock are broadly in line with those found by

Känzig (2023). They are inflationary, leading to an increase in interest rates, and muted

for equity prices. Interestingly, the reaction of electricity prices is at first negative and

then positive over the longer run, pointing to possible strategic behaviors and intertemporal

optimization in selling dispatchable renewable energy (see for instance Bonacina and Gulli,

2007; Chernyavs’ka and Gulli; Hintermann, 2017, for an analysis of the pass-through of carbon

prices in the presence of market power).15 Finally, a positive market sentiment shock has the

distinctive feature of causing a significant increase in equity and oil prices while it depresses

coal prices. The latter finding might be explained by a “green preference” component driving

investors’ interest towards carbon-instruments.
15We also note that the first differences of log EUA and electricity prices are slightly negatively correlated

in our sample.
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5.3.2 Variance Decomposition

We report the forecast error variance decomposition to gauge the quantitative relevance of

each shock as a driver of the endogenous variables. For each draw of the impact matrix of

the shocks, we compute the variance decomposition of the unpredictable component of EUA

price changes. Figure 3 displays the proportion of variance explained by the four identified

shocks for each endogenous variable.
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Figure 3: Variance decomposition

Note. The figure reports the FEVD of all endogenous variables (raws) to the four shocks of interest (columns).
The solid line represents the median response and the shaded areas report the 68% set.

The variance decomposition confirms the findings of the static model regarding the busi-

ness cycle and emission intensity: although these two shocks now potentially incorporate

forward-looking components, they explain only a modest portion of EUA price variance

(4.4% and 2.1% respectively at the one-year horizon). Even if we look at the right tail of

the distribution of variance shares, they never explain a substantial portion of variance. We

note that this finding is not to be interpreted as evidence that the significant reduction in

emission intensity observed over our sample (see Figures A2 and A3) played a minor role

in carbon pricing. Simply, this process might have been more predictable and therefore less

25



relevant for explaining fluctuations in daily EUA prices.

EUA supply explains almost 40% of the variance at the 1-year horizon. As our EUA

supply shock is forward-looking and it measures changes in the carbon policy stance, this

finding is complementary to those of Känzig (2023), who shows that carbon-policy shocks

generate a significant fraction of the variability of energy prices.16 Finally, we find that

market sentiment explains more than 30% of the variance of EUA prices, in line with other

studies that provide evidence of a large role of speculative shocks in EUA markets (Lucia

et al., 2015; Friedrich et al., 2019).17

5.3.3 Historical Decomposition

This section focuses on the historical decomposition of the EUA price that provides economic

insights into the drivers of EUA prices from a historical perspective. The decomposition

descends directly from the moving-average representation of the VAR according to:

Yt = φt + d1,t + d2,t + d3,t + d4,t + e5,t (7)

dj,t =
t∑

s=2

bt,j,sεs,j (8)

e5,t =
7∑

j=5

dj,t (9)

where φt is a deterministic component that depends on the initial value Y1 and on the pa-

rameters of the model; the column vectors d1,t, d2,t, d3,t, d4,t are the components of the

observed variables that depend only on previous and current business cycle, emission inten-

sity, EUA supply and market sentiment shocks respectively; e5,t are the residual unidentified

components; the column vectors of coefficients bt,j,s are functions of the parameters of the
16Although he does not compute the variance decomposition of EUA prices, as they are not included in

his VAR.
17We note that there is significant variability around the figures just reported, given the agnostic nature

of the exercise and the objective difficulties in disentangling unobservable variables such as expectations
and sentiment-risk aversion. For example, if we consider the lowest quartile of the distribution of variance
proportions, the fraction of variance explained by market sentiment decreases to 16%. If we take the highest
quartile, the explanatory power of EUA supply increases to 57%. Despite the ample confidence bounds, the
role of market sentiment and EUA supply is always economically significant, while that of emission intensity
and the business cycle is always marginal.
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model.

The historical decomposition highlights that the contribution of the business cycle and

emission intensity shocks to EUA price fluctuations is meaningful. However, these compo-

nents matter mostly at lower frequencies as they are more stable than the emission supply

and market sentiment components. The latter explain a larger share of the volatility of EUA

prices because they are relevant for both low- and high-frequency movements in EUA prices.

Business cycle shocks visibly contributed to a fall in EUA prices during the Covid. The

emissions intensity shock exerted a negative effect on EUA prices during the 2010s but this

tendency reverted during the 2020s in the aftermath of the Covid crisis, the European energy

crisis (due to gas-to-coal switching), and the reduced nuclear electricity production due to

policy and contingent reasons. The contribution of EUA supply oscillates during our sam-

ple, where EUA Phase IV (staring in 2021) marks a clearcut period of positive contribution

to EUA prices. Finally, the market sentiment component depressed EUA prices during the

global financial crisis in 2009, the Euro sovereign debt crisis, and the Covid-19 pandemic. In

contrast, a significant positive effect characterizes the latest part of the sample.
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Figure 4: Historical decomposition

Note. The figure reports the historical decomposition of EUA prices in deviation from the deterministic
component of the VAR.
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6 Conclusions

Two main obstacles hinder a reliable identification of the drivers of EUA prices. First, the

low frequency and the paucity of observations of some fundamental drivers (e.g., verified

emissions and the supply of allowances). Second, the difficulty of measuring changes in the

expectations about these quantities.

We have proposed a dynamic model that allows us to partly circumvent the above diffi-

culties by leveraging a significant amount of high-frequency and forward-looking data.

Shifts in current and expected carbon policy and in the supply of EUAs seem to be the

primary drivers of price changes. This finding is consistent with the fact that EU carbon

policy has been revised multiple times, and legislative changes were preceded by long and

complex public negotiations: these two factors created not only variability in the supply of

EUAs, but also an almost continuous “news flow”, relevant for forecasting future supply and

hence able to produce an impact on prices.

The second most important contributor to price variability is a financial factor unrelated

to developments in emissions and carbon policy, which we dub market sentiment. This

factor is related to risk aversion, liquidity needs, and the willingness of financial players to

hold allowances for investment or hedging purposes.

We find that changes in current and expected future emissions (caused by variations

in output and carbon intensity) are not a major source of price variability. This finding

aligns with the simple observation that verified emissions decreased at a relatively steady

pace in our sample, while EUA prices were extremely volatile (approximately three times

as volatile as an equity index). However, we do not interpret our results as evidence that

the significant reduction in emission intensity observed over our sample played a minor role

in carbon pricing. Instead, we conjecture that the greening process might have been more

predictable and therefore less relevant for explaining short-term fluctuations in EUA prices.
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A1. The index of investors’ interest in carbon allowances

We build a composite index of investors’ interest in carbon allowances, obtained by com-

bining Google Trends data (volume of searches for carbon-allowance-related financial instru-

ments), a proxy for the volume of EUAs held by exchange-traded funds (ETFs) and a measure

of trading volumes on the EUA futures market.

While the single series used to build the composite indicator are noisy, they show broadly

similar dynamics (in particular, they spike around the end of 2021). The noise is removed

by averaging the three series and denoising the result.

We download three distinct time series from Google Trends measuring the worldwide

volume of searches for financial instruments related to carbon allowances (not necessarily

EU). The financial instruments may be the allowances (or credits) themselves or futures and

exchange-traded funds having the allowances as underlying. The queries used are as follows:

• "EUA price" + "EUA prices" + "carbon credit price" + "carbon credit prices";

• "EUA future" + "EUA futures" + "carbon future" + "carbon futures" + "carbon

credit futures";

• "carbon credit ETC" + "carbon credit ETF" + "carbon ETF" + "carbon ETC".

As the three series are downloaded simultaneously, they are standardized by a unique

value and they can therefore be aggregated (by taking a cross-sectional sum) to produce a

single series of search volumes.

We then build a database of exchange-traded funds that invest uniquely or prevalently

in EUAs. For each of them, we download the total assets under management and divide

them by the price of EUAs to obtain a proxy of the amount of allowances held by the funds.

We then aggregate the series thus obtained to form a unique proxy of the total amount of

allowances held by ETFs.

As a third measure of investors’ participation / interest in allowances, we use the volume

of trading in front-month EUA futures.

The three time series obtained (Google Trends, allowances held by ETFs, EUA-futures

trading volume) are standardized (demeaned and divided by their standard deviation) and
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then averaged to produce a unique composite indicator. As both Google searches and future

trading volumes are highly seasonal, we also perform a denoising seasonal adjustment by

removing the components with periodicities below one year from the spectral decomposition

of the series. The raw index and its denoised version are plotted in Figure A2.

A2. Figures and tables

Figure A1 – Daily data
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Figure A2 – Monthly data
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Figure A3 – Yearly data
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Figure A4 – IRFs from each draw
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