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Abstract 

EU member states have committed to achieving carbon neutrality by 2050. Given that building-
related activities contribute to almost a quarter of EU greenhouse gas emissions, the 
implementation of new regulations to decarbonize this sector is paramount. However, 
policymakers must carefully evaluate policies to mitigate transition risks associated with these 
regulations, as buildings represent a significant portion of household wealth and bank assets. 
Accurate metrics regarding buildings' energy efficiency, including the energy class reported in 
Energy Performance Certificates (EPCs), are essential for such evaluations. In this study, we 
developed a machine learning-based model to predict the energy class of Italian buildings using 
publicly accessible data. The model, trained on a geographic subset of the Italian territory, 
achieves a 37% accuracy rate, which increases to 74% when allowing for a one-class margin of 
error (1-class accuracy). Further testing against a mortgage portfolio provided by a commercial 
bank yielded a 69% 1-class accuracy. Comparison with statistics reported by the official EPC 
register (SIAPE) suggests a potential discrepancy in the representation of the worst energy 
efficiency class. 
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1 Introduction1

Decarbonizing the energy use of the building sector is fundamental for mitigating
climate change and achieving the ambitious climate targets engraved in the Paris
Agreement. Buildings consume a significant amount of energy (approximately
35% of the final energy consumption in Europe2), and were responsible for almost
a quarter of EU GHG emissions in 2021.3 However, energy retrofits are costly and
lengthy.

At the same time, real estate is a significant part of both households’ wealth and
banks’ assets. Real assets, such as houses, account for a significant portion of
households’ gross wealth (82% as of the end of 2020 in Italy; Banca d’Italia 2022).
Residential real estate (RRE) and commercial real estate (CRE) loans are a signifi-
cant part of banks’ portfolios while mortgages are usually collateralized and bought
by insurance and pension funds because of their relatively stable cash flows and low
risk.

Some jurisdictions, like England and France, have already implemented mandatory
regulations to enhance the energy efficiency of houses. For instance, since April
1, 2018, a Minimum Energy Efficiency Standard (MEES) has been enforced in
England and Wales. This regulation prohibits the rental or rent-to-buy of any house
with an Energy Performance Certificate (EPC) rating below class E. Similarly, in
France, as of January 1, 2025, a house with an EPC4 rating below F will no longer
be available for rent.5 Such measures represent significant changes, potentially
impacting owners’ real wealth.

Meanwhile, the European Union, known for its staunch stance against climate
change,6 has recently established new targets through the recasted Energy Per-

1The views expressed are those of the authors and do not necessarily reflect those of the institu-
tions to which they belong. This paper is the result of the collaboration between the privately-owned
company Datasinc and the Bank of Italy, within the first Call for Proposals by the Bank of Italy’s Mi-
lano Hub. The data utilized in this study were collected by Datasinc, a company acting under its sole
responsibility. They were graciously provided to researchers at the Bank of Italy in an aggregated
format. Neither the Bank of Italy nor its employees were involved in the data collection process or
contributed to the creation of the dataset in any way. The aggregate data shared with the Bank of
Italy were solely used by the institution for research purposes. We would like to thank Paolo An-
gelini, Diletta Arcangeletti, Laura Bartiloro, Giuseppe Bruno, Luigi Cannari, Ivan Faiella, Alberto
Felettigh, Massimo La Rana, Stefano Montemaggi, Patrizio Pagano, Valeria Passano, Marino Ottavio
Perassi, Alessandra Perrazzelli, Alfonso Rosolia, Paolo Sestito, Bruna Szego, Alberto Ventura and
Ylenia Yashar for their useful comments.

2Energy efficiency trends in buildings in the EU, ODYSSE-MURE.
3Greenhouse gas emissions from energy use in buildings in Europe, European Environment

Agency.
4EPCs across countries are not comparable.
5Interdiction de location et gel des loyers des passoires énergétiques, Ministeŕe de la Transition

Ecologique et de la Coheśion des Territoires.
6The European Climate law includes ambitious goals such as achieving carbon neutrality by 2050

and reducing greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels.
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formance of Buildings Directive (EPBD).7

Policies mandating energy retrofits could influence the pricing of this crucial asset
class. Therefore, a careful evaluation before implementation is essential. This pa-
per contributes to the literature on real estate transition risk (Bernardini et al., 2021)
by presenting a machine learning approach for predicting the Energy Performance
Certificates (EPCs), known in Italian as Attestato di Prestazione Energetica, for all
buildings in Italy.

In Italy, every building sold, rented, or undergoing major renovation must obtain
an Energy Performance Certificate (EPC), which is then transmitted to the regional
energy cadastre. Currently, there are over 67 million building units (of which 36
million are houses) in Italy, yet as of May 2024 only 5.7 million EPCs are registered
in Italy’s national EPC cadastre, known as the “Sistema Informativo sugli Attestati
di Prestazione Energetica” (SIAPE).

The SIAPE register, managed by ENEA (Italy’s national energy efficiency agency),
was established in 2015 and has been gradually populated since then for all italian
regions (except for Campania and Sardinia). The coverage of this database has
only recently become substantial. However, over 1 million EPCs failed a qual-
ity check conducted by ENEA and have been filtered out, and some regions have
only partially transmitted their archives; for example, while there are 223 thousand
EPCs from Sicily in SIAPE, the regional cadastre contains over 690 thousand units
as of May 2024.

As a result, the majority of buildings in Italy lack any assessment of their energy
performance. Large European banks have only recently begun collecting EPCs due
to Pillar 3 ESG disclosure obligations. Consequently, this information is absent
from the majority of mortgage portfolios.

Our study is the first attempt to estimate the energy efficiency class of each building
in Italy. This information is crucial for evaluating the transition risk associated with
a mortgage portfolio or any derivatives.

Energy certificates are issued by an expert following an on-site visit, during which
critical aspects such as the building’s construction, fixtures, heating type, floor, po-
sition etc., are evaluated. Similarly, our model predicts the energy efficiency of
Italian buildings using cadastral data and other open data sources, including build-
ing/apartment features, municipality characteristics, etc. We trained our model on
data from the Lombardy region.8

7The directive sets objectives for reducing the average primary energy consumption for buildings;
establishes criteria for the national building renovation plan; requires Member States to promote the
introduction of investment and financing instruments, such as, for example, energy efficiency loans
and green mortgage for the renovation of buildings in addition to public finance interventions.

8EPCs are collected by each region. However, only Lombardy, Piedmont and Trentino published
their archives as open data. In this work we use mainly data from Lombardy (the most populated
region in Italy) and those of Piedmont as a robustness check.
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Our model accurately predicted the energy class in 37% of cases. This rate in-
creases to 74% when allowing a one-class margin of error. In the case of Piedmont,
used as robustness, the respective figures are 25% and 61%.

We tested our model in a real-world scenario through a collaboration with an Italian
bank. Specifically, we applied our model to estimate the energy class of a set of
properties serving as collateral for a mortgage portfolio in the Lombardy region.
Among the real estate units in this portfolio, our model accurately predicted the
energy class in 31% of cases (69% when allowing for a one-class margin of error).

While these performance levels are lower compared to similar attempts documented
in the literature, such as deep learning models coupled with street view imagery
(Sun et al., 2022), which require advanced IT infrastructures and are not freely ac-
cessible, our model’s performance remains substantial. Furthermore, our model’s
performance aligns closely with another recent study conducted in the UK (Mayer
et al., 2023) albeit with a more ambitious aim of class-by-class prediction, as op-
posed the UK study which focused on larger aggregates (class A-D vs E-G). Fi-
nally, our model is parsimonious with data, requiring only a dozen variables.

We also compared the distribution of the energy classes across all buildings in
Italy from our model with the distribution from the national cadastre (SIAPE). We
identify two significant differences: our model underestimates the proportion of
buildings in all classes except for class F (one of the least efficient), consequently
overestimating the proportion of buildings in class F (in the case of residential
buildings, by 35 percentage points: 59% in our model vs. 24% in SIAPE). This
discrepancy likely arises from a sample selection bias in the SIAPE dataset, as the
issuance of EPCs is legally required for new constructions, renovations, or energy
retrofits— situations where buildings are more likely to be efficient. As a result, the
distribution of buildings in SIAPE may be distorted towards more energy-efficient
houses compared to the actual stock of all buildings. Based on the lower end of
the energy efficiency distribution (classes G and F), our estimates suggest that 82%
of Italian houses are inefficient, contrasting with the 56% inferred from the SIAPE
distribution. This disparity holds significant implications for policy formulation,
highlighting the necessity for energy retrofitting in approximately 9 million addi-
tional houses.

2 Literature review

We have split our literature review into two sections. The first section delves into
regulatory and supervisory aspects, while the second section explores the technical
literature on research close/similar to ours.
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2.1 EU bank regulatory and supervision framework

Climate change affects the banking system through the impact on macro and mi-
croeconomic variables, generating different types of risk that influence the typi-
cal risks of banking institutions. The transition to a carbon-free economy indeed
generates transition risks due to changes in government policies, technological de-
velopments, or changes in consumer and investor preferences. Examples of such
changes are the introduction of energy efficiency policies or taxes on fossil fu-
els or incentives for the use of eco-sustainable sources; other examples include
the introduction of technologies with a lower environmental impact or re-direction
of the choices of consumers and investors towards more eco-sustainable products
and services. At an international and European level, standard setters and regu-
lators (BCBS, 2021; NGFS, 2020; EBA, 2021) agree on conducting analyses of
the impact on banks’ balance sheets that these risk factors have on the existing
traditional categories of financial risks (credit, market, liquidity, operational and
reputational). For example, a borrower’s ability to repay his debt could be affected
by extreme weather events in some geographic areas or customers’ changing sen-
sitivity to climate-related issues could damage the bank’s reputation when lending
to sectors of controversial activities on environmental issues. Real estate assets
used as collateral in banks’ credit portofolio, with the aim of credit risk mitigation,
are also exposed to transition risks. Energy consumption and prices indeed have an
impact on the value of properties and therefore on their ability to mitigate the credit
risk associated with secured exposures. Changes in regulatory standards on the en-
ergy efficiency of buildings9 could lead to a deterioration in the value of those less
energy efficient and make it more difficult to sell them for the recovery of the credit
guaranteed by these properties. The transition risk could also affect the value of
properties due to the change in consumer preferences (RICS, 2022) or changes in
the demand and prices of energy-efficient properties especially in the context of ris-
ing energy prices such as those we’ve been experiencing since mid-2021. A recent
study on the Belgian real estate market (Reusens et al., 2022) shows that in the
last ten years, the price difference between energy-efficient and energy-guzzling
houses is large and has been increasing. In 2021 a house in Belgium with energy
label B is about 12% more expensive than a similar house with energy label D and
22% more expensive than a similar house with energy label F. Also in Italy,10 re-
cent research finds that the best energy-performing houses sell at a 25% premium
compared to the worst-performing ones (Loberto et al., 2023). Concerning the im-

9A prescription similar to the English minimum energy efficiency standard - mentioned in the
introduction - has been in force in the Netherlands for corporate real estate since 1 January 2023.

10The energy class identifies the energy performance of a building, i.e. the amount of energy
required to meet the requirements related to the standard use of a building, annually, for heating,
cooling, ventilation, production of domestic hot water and, in non-residential buildings, lighting, ele-
vators, and escalators. There are ten energy classes, ranging from A4 for the most efficient buildings
to G for the least efficient. This classification was introduced in Italy by Decreto interministeri-
ale 162/15 following the transposition of the European Directive 2012/27. The energy performance
certificate (EPC) is known in Italian as “Attestato di Prestazione energetica” or APE.
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pact of transition risk and creditworthiness, numerous studies have analyzed the
relationship between the probability of default of mortgages and the energy effi-
ciency of the properties used as collateral. A study by the Bank of England11 has
highlighted how the energy efficiency of a building could be a relevant predictor
of mortgage defaults. A recent study by Energy Efficiency Financial Institutions
Group12 concludes that there is a statistically significant correlation between the
energy performance of building collateral and mortgage credit performance.

In light of their potential impact on the financial stability of supervised institutions
and the whole system, the inclusion of climate-related and environmental risks in
the prudential regulatory framework and the supervisory ongoing activities is a pri-
ority in the agenda of international standard setters, regulators, and supervisors. In
the European jurisdiction, the European Commission published in 2018 the “Ac-
tion Plan on financing sustainable growth” (European Commission, 2018) with the
aim – through even changes in the financial regulatory framework - of redirecting
capital flows towards a more sustainable economy; managing financial risks aris-
ing from climate change, resource depletion, environmental degradation and social
issues; promote transparency and long-term vision in economic and financial ac-
tivities. In 2020, the European Commission also adopted the European Green Deal
(European Commission, 2019) to reduce net greenhouse gas emissions by at least
55% by 2030 and to reach climate neutrality by 2050. To realign capital flows to-
wards meeting these objectives and mitigate the risk of greenwashing practices, the
European Commission introduced the Taxonomy Regulation (Commission, 2020),
aimed at establishing criteria for classifying economic activities as sustainable,
thereby aligning related financial assets with the established taxonomy. Taxon-
omy Regulation applies to financial institutions that offer financial products on the
European market and also includes (article 8) disclosure requirements for finan-
cial and non-financial companies already under the Corporate Sustainability Re-
porting Directive.13 Since 2004, disclosure requirements have included the Green
Asset Ratio (GAR), which is the proportion of company activities aligned with the
taxonomy. For credit institutions, the GAR represents the proportion of assets fi-
nanced and invested in taxonomy-aligned economic activities, as a percentage of

11Guin and Korhonen (2020) assessed a sample of 1.8 million outstanding mortgages throughout
the UK and found that energy-efficient mortgages (rated A–C) have 11 bps lower payments arrears
shares than low-energy-efficiency mortgages (rated D–F). This result is more robust after controlling
for factors such as borrowers’ income, borrowers’ age, LTVs, property, and regional factors.

12European Commission and Directorate-General for Energy (2022) considered a sample of about
800,000 residential mortgages granted in the UK, Germany, Finland, and Italy and included also a
review of the literature on green premiums in real estate in several European countries. The Energy
Efficiency Financial Institutions Group (EEFIG) is a specialist expert working group by the European
Commission and United Nations Environment Programme Finance Initiative (UNEP FI) and also
includes representatives of the financial and banking sector, representatives of industry, and energy
efficiency specialists.

13The Corporate Sustainability Reporting Directive (CSRD) adopted in 2022 applies to companies
with more than 250 employees and listed SMEs. A detailed overview of ESG disclosure requirements
for banks can be found in Loizzo and Schimperna (2022).
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total covered assets (including the percentage of financial guarantees supporting
debt instruments financing taxonomy-aligned economic activities). In 2021, the
EU Commission adopted the first Technical Screening Criteria (TSC) relating the
climate change adaptation and mitigation objectives.14 The first TSC includes cri-
teria for buildings classification15 when they are used as collateral in a secured
portfolio, with a significant impact for banks to determine taxonomy compliance
of the underlying mortgage and loans (as well as a covered bond for example). The
energy efficiency rating or score of a building is the criteria used in the TSC, as a
proxy of the contribution of the building to taxonomy objectives.16

The EU Commission’s Action Plan also steered the European Banking Authority’s
(EBA) Sustainable Finance Action Plan in 2019 which progressively introduced
ESG factors into the three pillars of prudential regulation for European banks. In
June 2021, EBA published the “Report for the management and supervision of
ESG risks for banks and investment firms” (EBA, 2021), focused on assessing
the resilience of banks and investment firms to the potential impacts of ESG risks
across different time horizons, and recommends to institutions and supervisors a
holistic, forward-looking and proactive approach on ESG risks. In February 2022,
the EBA published an implementing technical standard (ITS) on prudential dis-
closure of ESG risk to broaden the Pillar 3 framework and enforce market trans-
parency (EBA, 2022). The technical standard applies to listed large institutions17

and requires the publication, from 2023, of qualitative and quantitative information
on ESG risks, with a specific focus on climate risks, including GAR and Banking
Book Taxonomy Alignment Ratio (BTAR). In template 2 of the ITS, banks should
disclose information on loans collateralized by immovable property, detailing en-
ergy consumption and the energy class of the collateral. In October 2023, the EBA
published a report (EBA, 2023) to assess how the current prudential framework
captures environmental (and social) risks and recommends targeted enhancements
to accelerate the integration of these risks across Pillar 1. The report encourages
the inclusion of energy efficiency to address transition risk in the section on due
diligence requirements and valuation of immovable property collateral.

14In the Taxonomy Regulation, an activity is deemed as sustainable if it: i) substantially con-
tributes to one or more of the six environmental objectives; ii) does not significantly harm (DNSH)
to the other objectives, and iii) meets minimum social safeguard standards; iv) complies with techni-
cal standard criteria that have been established by the Commission. The six environmental objectives
identified by the legislator are i) climate change mitigation; ii) climate change adaptation; iii) sus-
tainable use and protection of water and marine resources; iv) transition to a circular economy; v)
pollution prevention and control; and vi) protection and restoration of biodiversity and ecosystems.
Currently, there are Technical Screening Criteria only related to the first two objectives.

15The classification regards: i) construction of new buildings; ii) renovation of existing buildings;
and iii) acquisition and ownership of buildings.

16In the first TSC, the alignment to adaptation and mitigation criteria considers buildings with an
energy class “A” or, as an alternative, the 15% best in the class of the regional and national building
stock.

17In the CRR3 proposals (published by the European Commission in 2021), the application of this
ITS could be extended to all European banks (Commission, 2021).
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Supervision authorities may contribute to raising awareness of the impact of cli-
mate and environmental risks on banks’ activities and stimulate their inclusion
in banks’ practices and policies by setting their expectations (NGFS, 2020). In
November 2020, the European Central Bank published a “Guide on climate-related
and environmental risks” for Significant Institutions (ECB, 2020), setting out 13
supervisory expectations regarding how climate and environmental risk could be
integrated into the strategy, business model, governance, risk management frame-
work, and disclosure under the current regulatory framework. The Guide aims to
promote sound and effective practices in climate and environmental risk manage-
ment and disclosure and to provide a starting point for the supervisory dialogue.18

In expectation 8 of the Guide (“Credit risk management”), the ECB explicitly refers
to the holistic approach in the integration of climate and environmental risks at all
stages of the credit process as envisaged in the EBA Guidelines on Loan Origi-
nation and Monitoring (LOM). These guidelines, published in June 2020 (EBA,
2020), recommend the inclusion of ESG factors in credit policies and procedures,
in creditworthiness assessment and collateral. In collateral management, the ECB
Guide requires that the impact of climate and environmental risks in the collateral
assessment considers the physical location and energy efficiency of residential and
non-residential buildings. These aspects should be integrated both in the process
of establishing the value of the collateral and in the review process provided for
by the applicable regulation. The policy on credit mitigation tools should be re-
viewed to take into account the assessment of these climate-related metrics. The
EBA LOM also recommends evaluating the use of energy efficiency performance
and EPC labels for the assessment of residential and commercial property value.

2.2 Modeling the energy performance of buildings

Modeling energy performances is paramount to enhancing energy efficiency and
reducing GHG emissions. However, lack of data, and low computational power,
have historically hampered most of the attempts to model energy demand. More
recently, large and open datasets, joined with new techniques based on advanced
statistics and machine learning are providing a rapid increase in model availability.

A way to improve buildings’ energy efficiency is to simulate their performance un-
der different circumstances in the design phase - modeling energy demand before
construction is fundamental, with significant gains (up to 40%) just simply getting
the proper shape and orientation (Sahu et al., 2012). As a way to reduce the costs of
multiple designs, Elbeltagi and Wefki (2021) propose an artificial neural network
(ANN) algorithm to help architects reduce simulation costs and find the best solu-
tion to enhance energy performances. Li and Yao (2021) developed a framework
to predict the energy consumption of residential and non-residential buildings by
generating energy consumption data feeding different machine learning models.

18In April 2022, the Bank of Italy also published supervisory expectations for all supervised enti-
ties on how to integrate climate and environmental risk in their current practices.
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In the United Kingdom, there is a long history of developing methodologies to as-
sess and compare the energy and environmental performance of dwellings. Indeed,
the Building Research Establishment (BRE), a profit-for-purpose organization, has
been feeding HM Government with several tools since 1992 to calculate the en-
ergy use and fuel requirements of dwellings, based on their characteristics. The
most important is the so-called BRE Domestic Energy Model (BREDEM), whose
latest version is the BREDEM 2012 (updated in 2015) and the standard assessment
procedure (SAP) methodology. The latter has been used since 1994 to assess the
energy performance of new buildings, and, lately, to produce the Energy Perfor-
mance Certificate (EPC). In 2005 a Reduced Data SAP (RDSAP) was introduced
as a simplified method of assessing the energy performance of existing dwellings.
The current versions are SAP (10.2) and RDSAP 2012. Both assess how much
energy a dwelling will consume given a defined level of comfort and service pro-
vision, an energy efficiency rating, and the CO2 emissions. All these models are
trained and calibrated using the yearly English housing stock (EHS), a survey on
dwelling energy demand and performance.

A recent study (Williams and Bonham, 2020) conducted by the Data Science Cam-
pus organization, sponsored by the Welsh Government, developed a predictive
model for rating the energy efficiency of homes in Wales, as part of an initiative to
reach zero-carbon emissions by 2050. The purpose was to apply this model to all
buildings for which the EPC has never been produced, thus obtaining a compre-
hensive, nationwide picture of energy efficiency in the residential sector. Similarly
to Italy, most buildings in the UK have never undergone an evaluation procedure
to measure energy scores. The model was implemented in a two-step procedure
in which a prototype model was first obtained by training the eXtreme Gradient
Boosting (XGboost) algorithm on an open dataset of 700k EPC-evaluated welsh
buildings, attaining 82% accuracy. This first step provided insight into the most
important features for determining EER scores, such as total area, floor height,
and hot water system. The second step was aimed at finding proxy variables for
these features, as the latter are only available for EPC-evaluated buildings (about
50% of the total). Many of these proxy variables were obtained with closest neigh-
bors techniques in conjunction with the EPC-evaluated dataset. The proxy-based
model attained a 40% accuracy, suggesting a significant loss of information when
attempting to reconstruct all features annotated in EPC Certificates via an indirect
approach.

Artificial neural networks (ANN) have also been employed for similar estimations
in recent works. Lin et al. (2022) report the results of 24 energy consumption
models trained on a sample of 227 houses in Oshawa (Canada). Data collected
via smart metering, phone surveys and energy audit are used to train eight data-
driven algorithms,19 the most accurate being the Backpropagation Neural Network

19These are: Multiple Linear Regression (MLR), Stepwise Regression (SR), Support Vector Ma-
chine (SVM), Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network
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(BPNN).

In Sun et al. (2022), a DenseNet-based architecture has been trained on EPC data
coupled to Google Street View (GSV) imagery, attaining an overall accuracy of
86%. Explainable AI techniques have shown that insulations around doors and
windows strongly affect energy efficiency.

To further develop an EPC-independent ANN classifier Mayer et al. (2023) have
trained a model on fully remotely sensed data sources (GSV and Landsat-8 satellite
images). This model achieved a 68.30% accuracy in predicting two macro-classes,
namely A-D and E-G energy rating intervals.

The approach described in the following sections largely resembles the one used
in Williams and Bonham (2020), given the set of data sources currently at our
disposal. Retrieval and inclusion of image data in the model is an interesting de-
velopment that could be approached in future works.

3 Data

The ensuing sections encapsulate a comprehensive overview of the diverse data
sources harnessed in the course of this investigation.

3.1 Real estate data

In 1861, with the unification of the Italian Crown, Italy had 22 different Cadastres,
each with its logic and boundaries. The first law to unify all properties into a single
Ordinary Cadastre was enacted in 1886. This law created a set of Sheets (“Fogli”)
for each Municipality (“Comune”) upon which all land portions and buildings were
drawn.20 In turn, each land portion and/or building was identified as a parcel (“Par-
ticella” or “Mappale”). Furthermore, within each parcel, there is a sub-portion
(“subalterno”) code to identify a specific unit. Summing up, each house can be
identified using a combination of Municipality (“Comune”), Sheet (“Foglio”), Par-
cel (“Particella”), and sub-portion (“subalterno”).

This paper focuses on the Ordinary Cadastre, which covers more than 95% of all
properties in Italy.

The Ordinary Cadastre is formed by two layers:

(RBFN), Classification and Regression Tree (CART), Chi-Square Automatic Interaction Detector
(CHAID), and Exhaustive CHAID (ECHAID)

20While this was true for most regions, some of the North-Eastern provinces did not adopt the
Italian Ordinary Cadastre but kept the Austrian Empire system, the so-called “Catasto fondiario” or
“Tavolare”. The main difference between the two is that the Tavolare’ is probatory and only a judge
can change the deeds, the Ordinary Cadastre is not. During the ‘900, most Italian regions adopted the
Ordinary Cadastre except for Trentino Alto Adige, the provinces of Trieste and Gorizia, and some
smaller municipalities in Lombardy and Veneto. As of today the two Cadastres still co-exist.
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• Land portions: pieces of land used for agriculture, parks, etc.

• Buildings: once developed on a piece of land, buildings substitute the land
portion, which becomes a sub-portion of the building. Other ancillary units
can be sub-portioned to the main unit (e.g. garages, attics, etc.).

Theoretically, all land portions should correspond one-to-one with buildings (“Par-
ticelle”), but in practice, more than 20% of the time, this is not the case. This dis-
crepancy arises because Municipalities have undergone split or merge processes
over the years, resulting in new numbering for each Sheet and Parcel. Newly as-
signed numbers have been applied to all newly transacted buildings, while those
that have never been transacted still retain old numbers. While land portions have
been updated with new numbering, the old numbering for building portions has
been retained, leading to duplicates that do not match in terms of either name or
numbers, thus causing misalignment and confusion. This misalignment generates
a critical issue as the Agenzia delle Entrate (the Italian Income Revenue Authority
who manages the Cadastre) only provides mapping of the land portions. Moreover,
neither the Sheets nor the Parcels numbers are sequential but placed semi-randomly
on the map (e.g., Sheet 1 and Sheet 2 may or may not be next to each other and so
are Parcels).

As this misalignment is structural in the Ordinary Cadastre, we used a proprietary
tool, namely Elenco Immobili which can correctly map buildings on the land map-
ping.21 All non-matching properties are re-mapped either through the (verified)
street address or through an in-depth analysis of all related data available in the
Cadastre.

Datasinc has developed a tool that periodically maps the entire Cadastre from the
Sister website22 tapping into each municipality, each “foglio”, each “Particella”
and each “Subalterno”. In other terms, the machine gets all the data available on
each page within the website for all the building units in each municipality and
adds it to a Postgres relational database. The entire database, collecting more than
180 million units, represents a complete mapping of the Italian real estate stock
(buildings and land portions) and is periodically updated to track changes in the
Italian real estate environment.

21Elenco Immobili is a proprietary database owned and maintained by Datasinc, collecting Cadas-
tre data for over 180 million data points. The database is created from the Agenzia delle Entrate’s
portal, keeping track of all changes and updates at the building/unit level. The floor area of buildings
is not published and cannot be retrieved via the aforementioned procedure. However, the portal offers
access to the cadastral income (“Rendita catastale”) values (in euros), which are strictly correlated
to the floor surface.

22Sister is the service providing all cadastral information belonging to Agenzia delle Entrate for
public use. It requires a registration and does not provide any API for faster interactions. Within the
website, units or subjects can be searched with the right coding (VAT number for subjects or Sheet,
Parcel for units). The response contains all the details on the building (e.g. address, tax value, size,
etc.) and allows for a further search on all beneficiaries of the unit.
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As of today, to summarize, the data collected in the Elenco Immobili dataset in-
clude, as of the time of writing:

• 180.45 million total units, of which 109.33 million are land portions, and
71.13 million are building portions.

• Within building portions, 55.3% are cadastral category A buildings (i.e.,
residential apartments, villas or offices), 41.3% are category C (i.e., non-
revenue-generating units such as garages, warehouses, etc.), 2.8% are cate-
gory D (i.e., revenue-generating units for industrial or commercial purposes)
and the remaining categories sum up to 0.6%.

• Within building portions, 11.5% are in Lombardy, 10.0% in Sicily, 9.3% in
Piedmont, 8.0% in Veneto.

For each of these units, the database includes:

• Type of property (land vs. buildings and the corresponding cadastral cate-
gory)

• Municipality and Street address

• Floor

• cadastral income (“Rendita catastale”), assigned by the tax authority

• Dimension of the unit (in m2)

Street addresses are of limited help. First of all, no land portion has a street address.
This is because typically they are in rural areas or portions of land reachable only
on unpaved roads. Moreover, even geo-referencing buildings using street addresses
and available mapping tools on the web result in unsatisfactory precision. To be
sure of the GPS coordinates, Datasinc developed, in collaboration with the Inter-
national School for Advanced Studies (SISSA) in Trieste, a tool that extracts and
georeferences polygons for each entity in the Italian Cadastre. These polygons are
computed by scanning raster maps from the Cadastral databases, and their centroid
can be used for localizing each building with an approximate error of ±9 meters,
which is negligible for the scope of our analysis.

We use the information on the floor to create a dummy variable (boundary unit, see
Table 3) which is equal to 1 whenever the unit is located either on the ground or
the highest floors, i.e. where thermal dispersion is higher.

3.2 Energy performance certificates

According to current Italian legislation (“Decreto Interministeriale 26/06/2015”)
EPCs provide the energy class, EPGL ratings,23 and other information such as

23EPGL is an index describing the overall energy consumption per square meter for heating, cool-
ing, lighting, ventilation, and hot water production. EPGL.nren defines the same consumption in a
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heated (cooled) surface, floor per unit, construction year and climate zone. They
should be collected by each region though only Lombardy, Piedmont, and Trentino
have published their archives as open data, with Lombardy’s archive (CENED)
being the most extensive. The Italian Energy Efficiency Agency (ENEA) owns the
SIAPE database, which collects most of the energy certificates at the national level.
Unfortunately, the data are currently published on an aggregated basis and do not
cover the entire Italian territory.

We trained our algorithm on a subset of the Lombardy (CENED) database, specif-
ically focusing on the EPCs issued after 2015 (approximately 1.21 million EPCs
at the time of the analysis).24 Some of these certificates have been excluded from
the dataset due to errors; for instance, a significant number of certificates refer
to units that should not have an energy certificate (such as land portions, garages,
etc.). Furthermore, to establish a benchmark by region/province, the distribution of
energy efficiency classes by province has been retrieved from the SIAPE website
(which only publishes aggregated data).

3.3 Other datasets

An energy class prediction model is valuable for making predictions for buildings
without certification. Therefore, CENED data have only been utilized to extract
the target variable, namely the energy class, while various strategies have been
applied to generate proxy variables from different sources, as listed below. The
following paragraphs are dedicated to delineating the scope of data acquisition
and preparatory measures employed to enrich the CENED dataset with readily and
effortlessly accessible additional features. A model based solely on such features
would be useful for any building, provided fundamental cadastral and geographic
information is available.

3.3.1 Osservatorio OMI

The Real Estate Market Observatory (“Osservatorio del Mercato Immobiliare”,
OMI) is an agency managed by Agenzia delle Entrate which collects and publishes
several statistics on the real estate market on a 6-month basis, including maximum
and minimum market prices and rents.

Data are provided in the so-called “OMI zones”, defining distinct areas of the sur-
vey. Each zone is essentially a partition of a map (polygons) that can be regarded
as being homogeneous as regards the type of urban landscape (available types are
Central, Semi-central, Outer, Suburban, and Rural). This dataset provides the av-
erage market value for each cadastral entity at the OMI zone level.

building using non-renewable energy, which, compared to a theoretically similar unit with standard
energy-saving features, defines the energy certificate class (from G to A4)

24In 2015, the government published new national guidelines for the EPC, leading to a disconti-
nuity with those issued before.
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Figure 1: OMI zones around the city center of Brescia in Lombardy.

Note: OMI zones around the city center of Brescia. Central zones are red, Semi-central zones are

yellow, Suburban zones are blue, and Rural zones are green.
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3.3.2 ANAIP Data

The heating degree-per-day (“gradi-giorno” or HDD) variable represents the dif-
ference between the average indoor (set to 20◦ C) and the outdoor temperature in
the municipality, summed over each day of the year. This information, published
in the D.P.R. 412/93, was extracted from an open table provided by the “Associ-
azione Nazionale Amministratori Immobiliari Professionisti” (ANAIP), the Italian
National Association of Building Managers. This variable is higher in areas with
harsher climates and thus serves as a coarse measure of the expected energy re-
quirements for heating.

3.3.3 Other data

We also gathered some data from the Italian National Statistical Office (ISTAT).
ISTAT provides several statistical aggregates at the municipal level, including pop-
ulation, population trends, and per-capita income trends.

Supplementary data that have the potential to enhance the predictive power of
an energy efficiency model are accessible for extensive geographical aggregates,
specifically at the level of provinces:

• Natural gas consumption by province in 2020 (m3, source: Italian Ministry
for Ecological Transition - MITE).

• Mean household electricity consumption by province in 2020 (source: TERNA25

Group’s statistical annual report).

• Solar energy production by province in 2020 (source: TERNA Group’s sta-
tistical annual report).

These data are used to improuve the accuracy of the model (see section 4.3).

4 Statistical Methodology applied

The aim of this project is to develop a machine learning model for predicting en-
ergy classes. Before delving into its technical details, a couple of considerations
need to be accurately discussed.

Firstly, it’s important to emphasize that an energy class prediction model is only
useful when applied to buildings without certification, i.e., those not covered by the
CENED dataset. For this reason, CENED data have only been used to extract the
target variable, namely the energy class, while input variables have been selected
from complementary, freely, and easily accessible data sources listed in Section 3.
A model based solely on these features will be valuable for any building, as long as

25TERNA is the national operator managing high-voltage transmission grids all over Italy.
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basic cadastral and geographic information is available. Additional variables have
been created using data engineering techniques, as will be shown in Paragraph 4.2.

Furthermore, to reduce training time during the parameter optimization step, the
model was tuned on a geographic subset of the data (Brescia province), as detailed
in Section 4.1. This strategy is also useful for testing generalization capabilities and
ascertaining if the model is relying too heavily on specific characteristics found in
certain areas.’

4.1 Training subset

Lombardy is the Italian region with the highest number of certificates available.
The province of Brescia was chosen as the training subset due to the following
considerations:

• it is the largest province in Lombardy (4,786 Km2);

• it has 203 municipalities spanning a large range of population values, from
Brescia (∼ 200,000 inhabitants) to villages with less than 3,000 residents,
totaling 1.2 million residents as of 2022;

• it has a wide variety of land types (mountains, valleys, hills, lakeside);

• being one of the most industrial areas in Italy, it should well represent all
types of buildings (residential, hotels, offices, factories, warehouses, etc.),
with a total of 1.8 million units;

• it has a significant amount of energy certificates available, totaling 152,000
certificates (out of the 1.21 million of our sample) at the time of this work.

Figures 2, 3, and 4 show the distribution of the energy certificates collected in the
province of Brescia and how they are distributed among cadastral categories and
main municipalities:
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Figure 2: EPCs in the Brescia province - overview.

Note: energy class is missing in 20% of the EPCs. These observations have been dropped. Source:

CENED.

Figure 3: Buildings in the Brescia province - by building type

Note: the total of all columns equals the total number of units per type, for a total of 1.8 million

units. Sources: CENED and our elaborations on the Italian Cadastre.
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Figure 4: Buildings in the Brescia province - by municipality.

Sources: CENED and our elaborations on the Italian Cadastre

4.2 Feature Engineering: year of construction

To exploit the maximum amount of information from the available data sources,
feature engineering techniques have been applied to extract the year of construction
for each building.

Indeed, the year of construction of a given building is likely a relevant feature in
predicting energy classes.26 Unfortunately, this variable isn’t freely accessible and
thus not included in the Elenco Immobili dataset. For this reason, a geometric
model has been adopted to estimate the year of construction of buildings based on
their distance from the old town, as detailed in Figure 5.

Urban areas typically expand radially from their center, assuming that most new
buildings occupy previously vacant areas. In this approximation, urban expansion
can be represented as a circle whose radius increases over time, with the center of
the circle often corresponding to the old town. If the rate of radial expansion can
be characterized using historical data, the year of construction can be inferred from
the building’s position relative to the circle’s center.

ISTAT provides census data on residential buildings constructed in every munic-
ipality across various “eras”, including counts in 1900, 1930, 1955, 1965, 1975,
1985, 1995, 2002, and 2008. In the absence of additional data, the conversion
of residential building census data into urban surface areas has been based on a
heuristic approach. This approach relates the density of residential buildings, a
clear indicator of urbanization, to a higher fraction of urban areas. The density
of residential buildings was approximated as the latest residential building count
divided by the municipality’s surface area, while the corresponding fractions of the
urban area were determined with the assistance of domain experts and are listed

26The first law promoting energy efficiency in Italy was published in 1976 (law 373/76).
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Figure 5: Representation of our model for estimating the year of construction of a
building from its location

in Table 1. These fractions were heuristically adjusted to align with the ISTAT
urbanization scale in the Lombardy region. They were then used to recalculate the
residential building density in the urban area, which, in turn, was used to convert
the residential building count for a given year into the urban surface area.

Table 1: Estimates for the urban area fraction against residential density

Residential Density (buildings / km2) Fraction of urban area
70 10%
100 25%
200 35%
400 50%

>400 70%

Finally, for each municipality, the urban epicenter was determined using street ad-
dress geolocation via the Geoapify service, employing toponyms as search key-
words. This method is preferred over calculating the centroid of GIS polygons, as
it is not guaranteed to be close to the true center of the urban area. The “urban disc”
is expected to be much smaller than the municipality boundaries, resulting in many
buildings falling outside of it. For these peripheral buildings, the average year of
construction of all residential buildings was utilized. The output of this processing
step is a table that lists the urban area of each municipality for each “era”, along
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with its epicenter and the average year of construction. This data is then utilized to
predict the year of construction for each building based on its geolocation.

4.3 Model development and training

To choose and tune the optimal algorithm for the energy class prediction task,
hyperparameter optimization was applied to several algorithms, namely Random
Forest Classifier (RFC), Random Forest Regressor (RFR), and XGBoost (XGB).
The Brescia subset was divided into training and test sets using a 75%-25% ran-
dom split, while the parameter optimization procedure was evaluated using 5-fold
cross-validation.27 Table 2 lists all the variables used in this step, along with their
source.
Besides usual classification metrics (accuracy, precision, recall, F1-score), two fur-
ther quantities are used to better capture task-specific performance for the models,
namely:

• numerical deviation: average of the absolute value of deviation from true
values, expressed as the number of energy classes (e.g. true value = D, pre-
diction = F, numerical deviation = 2)

• 1-class accuracy, evaluated with a tolerance band of one class, i.e. accepting
predictions that are off by one class.

In particular, 1-class accuracy is intended to give a more benign picture of the
actual performance, as slightly off predictions can pragmatically be regarded as
useful in evaluating a stock of buildings.

The performance criterion for the choice of the best model was accuracy. The
latter selected a Random Forest Classifier (RFC) whose hyperparameters are listed
in table 3. Model performance on the test set is reported in table 4.

The model trained so far experiences a 4 percentage points drop in 1-class accu-
racy and a 6 p.p. drop in accuracy when applied to the whole Lombardy dataset.
This worsening denotes poor generalization capabilities of the model and can be
attributed to different provincial features not explicitly included in the dataset, such
as differences in building techniques, materials, survey strategies, and conventions.

Freezing hyperparameters to their optimal values (table 3), the RFC algorithm has
been retrained on the full Lombardy dataset including the province-level features
mentioned in section 3.3.3, resulting in overall improved metrics, as shown in table
5. Model explainability (as provided by variable importance) ranks surface area
and market value on top for determining energy efficiency as shown in table 6. The
year of construction, extracted with procedure described in section 4.2, also figures
among the most important variables.

27N-fold Cross-Validation is a Machine-Learning technique that evaluates N models trained over
a subset of the training set, which is different for each model. The average performance of the N
models is the score used to optimize the set of hyper-parameters.
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Table 2: List of input variables

Feature Data source
Year of construction own elaborations
Unit surface Cadastre + Elenco_immobili
Floor Cadastre + Elenco_immobili
Floors in building Cadastre + Elenco_immobili
Number of units per floor Cadastre + Elenco_immobili
Boundary unit Cadastre + Elenco_immobili
Cadastral class (12 features) Cadastre
Omi class (5 features) OMI
Value per sqm OMI
Province ISTAT
Region ISTAT
Heating degree days ANAIP

The output class distribution displays a tendency to over-predict class G, as easily
visualized in figure 6. An attempt was performed by repeating the whole training
procedure on a balanced input set, however, it didn’t yield encouraging results. As
an alternative solution, the true distribution of energy classes obtained from SIAPE
data was used to introduce a probabilistic correction to the model output. This
correction is based on gain coefficients computed on the training set depending on
province (p) and energy class (c). Taking the total number of predictions of class c
in province p, nModel

c,p , a posterior probability is computed as:

pModel
c,p = nModel

c,p /nTraining
p (1)

being nTraining
p the total number of observation belonging to province p in the

training set. Similarly, an empirical distribution is inferred from SIAPE data
pSIAPE
c,p . Then a class- and province-dependent deviation of the model distribution

from the empirical one is computed as:

devc,p = pSIAPE
c,p − pModel

c,p (2)

Table 3: Optimal hyperparameters

RF Classifier hyper-parameters
max_features 0.5
max_samples 0.5
n_estimators 200
max_depth 20
min_samples_split 5
min_samples_leaf 1

Table 4: Best model - performance
metrics on the Brescia subset

RF Classifier metrics
Numerical Deviation 1.43 ± 1.87
1-class accuracy 67.5%
Accuracy 40.0%
Macro-precision 48.0%
Macro-Recall 28.0%
Macro-F1 score 32.0%
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Table 5: Performance - Lombardy

RF Classifier metrics
Numerical Deviation 1.26 ± 1.65
1-class accuracy 70.0%
Accuracy 40.0%
Macro-precision 54.0%
Macro-Recall 30.0%
Macro-F1 score 35.0%

Table 6: Feature importance

Feature Importance
Surface area 0.22
Market value 0.15
Sub-units per floor 0.14
Degrees per day 0.10
Year of construction 0.09
Floor 0,06

This allows us to define a probability gain coefficient for all predictions belonging
to province p:

gainc,p = 1 + γ
devc,p∑

c=A1,A2,...G

|devc,p|
(3)

These coefficients are used to correct the class probability vector of each training
observation, while the value of γ is optimized to maximize 1-class accuracy, which
is achieved at γ = 1.

Table 7 shows that this procedure does not improve single-class metrics, which is
reasonable since the correction results in a sub-optimal algorithm. However, sig-
nificant improvements are achieved for numerical error and 1-class accuracy, indi-
cating that predictions are on average closer to the true class, as shown in the con-
fusion matrix in Figure 7. These corrections are only feasible for those provinces
that are adequately represented in the training set so that reliable values for pModel

c,p

can be calculated. Furthermore, the province must be present in the SIAPE survey,
which isn’t always the case e.g. in Campania or Sardinia. In the following, this
correction will be adopted whenever data guarantee its validity.

To assess robustness, we conducted the same analysis using a subset (approxi-

Figure 6: Confusion matrix bar-plot for the RF Classifier with the Province model.
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Figure 7: Confusion matrix bar-plot for the RF Classifier with probability gain.

mately 50%) of the EPC archive from Piedmont. The results, shown in Table
8, underline the significance of utilizing probability gains to enhance the perfor-
mance of the RFC. Notably, when using the Piedmont archive, we observe a slight
decrease in accuracy. This underscores the presence of regional heterogeneity and
emphasizes the importance of accessing the whole microdata of the SIAPE for
improved forecasting capabilities.

4.4 Classical reference - Ordered logit model

To demonstrate the additional value brought in by machine learning techniques, we
conducted an estimation using a parametric approach known as a discrete choice
model. Given the nature of the setting, we employed an ordered logit model (for
a review of the model, refer to Wooldridge 2002) and utilized the dataset corre-
sponding to the entire Lombardy region. This technique is particularly suitable for
the task at hand as the energy classes adhere to the proportional odds assumption
upon which the model is based. Furthermore, the model offers distinct advantages
in terms of the interpretability of regression coefficients. Additionally, a parametric
approach provides confidence intervals, variance estimates, and other metrics that

Table 7: Performance of RF Classifier with provincial features and probability
gains

RF Classifier with Province metrics
Numerical Deviation 1.19 ± 1.49
1-class accuracy 73.7%
Accuracy 37.0%
Macro-precision 54.0%
Macro-Recall 30.0%
Macro-F1 score 36.0%
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Table 8: Robustness check: RFC trained on Lombardy vs. Piedmont

RF Classifier with probability gains
Lombardy Piedmont

Numerical Deviation 1.19 ± 1.49 1.74 ± 1.9
1-class accuracy 73.7% 61.3%
Accuracy 37.0% 25.0%
Macro-precision 54.0% 14.0%
Macro-Recall 30.0% 13.0%
Macro-F1 score 36.0% 12.0%

are not available in a non-parametric approach.

The ordered logit model achieves an accuracy of 32.7% and a 1-class accuracy of
62.9%. This represents a performance loss of approximately 7 percentage points
compared to Table 5 and between 4 and 10 p.p. once introducing data-driven prob-
ability gains (see table 7).

The superior performance of machine learning models in this setting can be at-
tributed to multiple factors. First, Random Forest is capable of capturing nonlinear
effects that may be present in such a complex task. Moreover, the dataset exhibits
a significant class imbalance, which is known to have a detrimental impact on lin-
ear models, affecting both performance and parameter estimates. Random Forest,
based on ensemble learning and sampling (bagging), has the ability to downsample
the majority class and construct trees on a more balanced dataset.

5 Results

Assessment of the energy class prediction model obtained so far is not straightfor-
ward, mainly due to the lack of an extensive, energy-efficiency labeled dataset. In
the next sections the model will be tested against:

• SIAPE dataset. Due to the lack of microdata, we compare our results with
the regional class distributions provided on the website of SIAPE;

• bank X dataset.28 We compare our results to the EPCs collected by bank X
from its clients.

5.1 Comparison to the SIAPE dataset

The resulting model was applied to a dataset of 1.49 million buildings chosen ran-
domly29 as per Figure 8. Data are primarily located in the regions of Lombardy,

28A portfolio of loans from an Italian bank was obtained and used confidentially by Datasinc.
29The dataset size was adjusted to be as large as possible while containing the computational and

temporal cost of the analysis. Trentino Alto-Adige was excluded.
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Veneto, Emilia-Romagna, and Lazio. As previously mentioned, the SIAPE dataset
is incomplete and does not provide, yet, EPC information for 2 out of 21 regions
(Campania and Sardinia). For this reason, buildings located in those provinces
could not benefit from the probability gain method described in Equation 3.
The lack of microdata in this dataset limits validation procedures to a qualita-
tive cross-check of the distributions of model predictions w.r.t. those found in the
SIAPE dataset, focusing on residential properties (which accounts for almost 90%
of the EPCs in the SIAPE). Figures 9 and 10 report the EPCs distribution values
by region, while figure 11 gives an overview of the deviations between the models
and the SIAPE dataset at the national level. The model shows a tendency to over-
predict one of the least energy efficient classes (F) while underpredicting the other
ones. Deviations are shown in absolute magnitude for better visualization. It’s
worth noting that according to our model houses belonging to the bottom of the
energy distribution (classes G and F) would be 82% of the total w.r.t. 56% which
could be inferred from SIAPE, indicating that there are 9 million more houses that
need retrofitting. This is significant in terms of policy implications, which we will
discuss later.

Figure 8: Building distributions by region for the Italy dataset
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Figure 9: SIAPE aggregated class distributions by region

Figure 10: Aggregated model predictions by region
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Figure 11: Deviation in predictions vs. SIAPE data for national residential proper-
ties
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5.2 Comparison to bank X data

In order to test the quality of the model, bank X provided a dataset containing part
of its real estate collaterals located in Lombardy.30 This dataset includes the details
of each property (Municipality, “Foglio”, “Mappale” and “Subalterno” when avail-
able) and the energy rating collected during the loan agreement process (if avail-
able). The portfolio contains approximately 169 thousand units, including those
not required to post an EPC (e.g. garages/boxes or land properties). Considering
that the collection of energy certificates in real estate transactions was introduced
in 2010, most observations do not include information about the energy class. As
a result of these limitations, bank X dataset provides an energy class for 33.6 thou-
sand units (20% of observations), but only 15.5 thousand have an energy rating.
Table 9 shows the performance and accuracy of the model on the overall portfolio.
To correctly interpret these results, it is worth to remark the following:

• the energy rating scale has undergone several changes through time. In par-
ticular, before 2015 it encompassed labels “A” or “A+”, while starting from
2016 it has been divided into four classes, from "A4" to "A1". In the current
evaluation all “A” and “A+” have been considered correct if mapped in the
new A1-A4 classes - see the first row in table 9;

• for completeness the model has also been run on units for which bank X has
no available energy class rating - see row "No Data" (60,686 EPCs estimated
but with no real EPCs to compare with);

• for 92 thousand units in the portfolio the model does not provide an energy
rating: 76 thousand are units that don’t require an energy rating (e.g. garages,
attics); 3 thousand are units in the cadastral classes for which the model has
not been trained (e.g. cadastral type F); 14 thousand are not provided due to
issues in the raw data.

30Data were retrived and used by Datasinc.
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Table 9: Confusion matrix between truth and our model’s predictions for the bank
X dataset
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Energy class estimate with best fitting model
A4 A3 A2 A1 B C D E F G No Estim. Total

A 2 0 0 3 0 5 16 106 140 40 826 1,138
A+ 1 0 0 0 0 0 3 24 14 12 165 219
A4 4 1 0 0 0 0 4 32 75 19 396 531
A3 0 4 0 0 0 0 3 37 59 13 367 483
A2 0 0 2 0 0 1 13 40 54 16 346 472
A1 0 0 3 1 0 0 7 46 77 24 376 534
B 11 0 3 0 12 0 84 211 449 144 1,519 2,433
C 0 0 1 0 0 3 54 177 343 136 1,029 1,743
D 2 0 0 0 0 0 75 293 722 288 1,725 3,105
E 0 2 0 2 0 3 81 542 1,313 533 2,816 5,292
F 2 0 0 0 0 1 74 487 2,006 878 3,525 6,973
G 0 0 1 0 1 0 109 631 2,784 2,137 5,087 10,750

No Data 96 54 36 48 66 275 3,462 10,452 30,066 16,131 74,457 135,143
Total 118 61 46 54 79 288 3,985 13,078 38,102 20,371 92,634 168,816

When summarizing the results achieved on this dataset (Table 10), and focusing
on the units for which microdata are available (15.5 thousand units), it turns out
that accuracy is 31% while 69% of the predictions match the corresponding true
value within one class (1-class accuracy). The majority of the “errors” are due
to underestimation of the energy class by the model, in coherence with what was
already observed while assessing the model w.r.t. SIAPE data.

Table 10: Class-match deviations

Absolute # % on total
Perfect match 4,792 31%
1 class 5,894 38%
2 classes 2,227 14%
Not matched 2,583 17%
Total predictions 15,496 100%

6 Conclusions

The decarbonization of the building sector is crucial for achieving the EU’s cli-
mate targets. Detailed information on buildings’ energy performance is essential
to guide investment decisions and assist the financial sector in reducing its carbon
footprint and complying with regulatory requirements. Several European coun-
tries, including France31 and Spain32, maintain centralized, open-data archives of

31The French Environment and Energy Management Agency (ADEME) publishes its EPC dataset
as Open Data, likely in accordance with the Open Data general rules and Article L. 126-32 of the
French Construction Code.

32In Spain, EPC regional datasets are included in the Open Data National Platform as Spanish law
restricts access to the Spanish Cadastral and Property Registries.
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their EPCs. In Italy, however, each region is responsible for collecting EPC data,
which are mandated by law only for buildings sold, rented, or refurbished since
2010. These regional energy performance cadastres are often inaccessible, except
for Lombardy, Piedmont, and Trentino.

ENEA is currently gathering data from various regions to populate a national
dataset, SIAPE, but the microdata remains unavailable.

In this paper, we present a predictive model for determining the energy class of all
building portions across Italy. Our model is based on a Random Forest Classifier
trained using readily available data from Lombardy, which is Italy’s most populous
and affluent region. The model identifies surface area, market value, year of con-
struction, heating degree days, and the number of sub-units per floor as the most
significant variables for predicting energy classes. Notably, all these variables are
easily retrievable by banks.

Our model achieves a 37% accuracy rate in correctly predicting the energy class.
When allowing for a one-class margin of error (where a “real class C” might be
mistakenly labelled as either a “B” or a “D”), the accuracy increases to 74%. Fur-
thermore, when applying our model to data from the only other available regional
open data source, Piedmont, we observe a slight decrease in accuracy. This high-
lights the presence of regional heterogeneity in the regulations governing EPCs,
as also noted by Loberto et al. (2023), who analyzed a large dataset of real estate
listings on the Immobiliare.it platform, Italy’s largest online portal for real estate
services.

Additionally, we compare the results with the regional distribution of EPCs from
SIAPE and with a proprietary database from an Italian bank.

In comparison to SIAPE, particularly within the residential sector, our model demon-
strates an overestimation of the proportion of least energy-efficient homes (classes
G and F) by nearly 26 percentage points, equating to approximately 9 million ad-
ditional houses requiring energy retrofitting in the near future. This discrepancy
serves as a significant alarm for policymakers aiming to craft effective energy ef-
ficiency policies. While our estimates may not precisely reflect the exact number
of least energy-efficient homes, it underscores the urgency for further investigation
given the policy implications of this issue. Moreover, it’s important to note the
simplicity of our model, which relies on only a few readily available variables, in
contrast to the numerous parameters required to generate EPCs.

Also, although modest, the accuracy of our model represents a notable improve-
ment compared to a traditional parametric approach, such as an ordered logit,
which achieves lower accuracy.

To obtain a more accurate assessment of energy efficiency in buildings, microdata
from SIAPE should be made publicly accessible, and the coverage ratio should be
increased, meaning more buildings should undergo energy audits.
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The current performance of our model can be viewed as a conservative estimate,
as evidenced by other research (Mayer et al., 2023) demonstrating the positive
impact of satellite and street-view imagery on similar models. Incorporating freely
available satellite imagery, such as that provided by the Copernicus Programme,
represents an intriguing avenue for future development and is likely to result in
improved performance.
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